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Abstract

We tackle the task of scene flow estimation from point clouds. Given a source and
a target point cloud, the objective is to estimate a translation from each point in
the source point cloud to the target, resulting in a 3D motion vector field. Previous
dominant scene flow estimation methods require complicated coarse-to-fine or
recurrent architectures as a multi-stage refinement. In contrast, we propose a
significantly simpler single-scale one-shot global matching to address the problem.
Our key finding is that reliable feature similarity between point pairs is essential and
sufficient to estimate accurate scene flow. We thus propose to decompose the feature
extraction step via a hybrid local-global-cross transformer architecture which is
crucial to accurate and robust feature representations. Extensive experiments show
that the proposed Global Matching Scene Flow (GMSF) sets a new state-of-the-
art on multiple scene flow estimation benchmarks. On FlyingThings3D, with
the presence of occlusion points, GMSF reduces the outlier percentage from the
previous best performance of 27.4% to 5.6%. On KITTI Scene Flow, without
any fine-tuning, our proposed method shows state-of-the-art performance. On the
Waymo-Open dataset, the proposed method outperforms previous methods by a
large margin. The code is available at https://github.com/ZhangYushan3/GMSF.

1 Introduction

Scene flow estimation is a popular computer vision problem with many applications in autonomous
driving [31] and robotics [39]. With the development of optical flow estimation and the emergence of
numerous end-to-end trainable models in recent years, scene flow estimation, as a close research area
to optical flow estimation, takes advantage of the rapid growth. As a result, many end-to-end trainable
models have been developed for scene flow estimation using optical flow architectures [27, 46, 55].
Moreover, with the growing popularity of Light Detection and Ranging (LiDAR), the interest has
shifted to computing scene flow from point clouds instead of stereo image sequences. In this work,
we focus on estimating scene flow from 3D point clouds.

One of the challenges faced in scene flow estimation is fast movement. Previous methods usually
employ a complicated multi-stage refinement with either a coarse-to-fine architecture [55] or a
recurrent architecture [46] to address the problem. We instead propose to solve scene flow estimation
by a single-scale one-shot global matching method, that is able to capture arbitrary correspondence,
thus, handling fast movements. Occlusion is yet another challenge faced in scene flow estimation.
We take inspiration from an optical flow estimation method [56] to enforce smoothness consistency
during the matching process.

The proposed method consists of two stages: feature extraction and matching. A detailed description
is given in Section 3. To extract high-quality features, we take inspiration from the recently dominant
transformers [47] and propose a hybrid local-global-cross transformer architecture to learn accurate
and robust feature representations. Both local and global-cross transformers are crucial for our
approach as also shown experimentally in Section 4.5. The global matching process, including
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estimation and refinement, is guided solely by feature similarity matrices. First, scene flow is
calculated as a weighted average of translation vectors from each source point to all target points
under the guidance of a cross-feature similarity matrix. Since the matching is done in a global
manner, it can capture short-distance correspondences as well as long-distance correspondences and,
therefore, is capable of dealing with fast movements. Further refinement is done under the guidance
of a self-feature similarity matrix to ensure scene flow smoothness in areas with similar features. This
allows to propagate the estimated scene flow from non-occluded areas to occluded areas, thus solving
the problem of occlusions.

To summarize, our contributions are: (1) A hybrid local-global-cross transformer architecture is
introduced to learn accurate and robust feature representations of 3D point clouds. (2) Based on the
similarity of the hybrid features, we propose to use a global matching process to solve the scene flow
estimation. (3) Extensive experiments on popular datasets show that the proposed method outperforms
previous scene flow methods by a large margin on FlyingThings3D [30] and Waymo-Open [44] and
achieves state-of-the-art generalization ability on KITTI Scene Flow [31].

2 Related Work

2.1 Scene Flow

Scene flow estimation [23] has developed quickly since the introduction of the KITTI Scene Flow [31]
and FlyingThings3D [30] benchmarks, which were the first benchmarks for estimating scene flow
from stereo videos. Many scene flow methods [1, 29, 31, 37, 40, 48, 58] assume that the objects
in a scene are rigid and decompose the estimation task into subtasks. These subtasks often involve
first detecting or segmenting objects in the scene and then fitting motion models for each object. In
autonomous driving scenes, these methods are often effective, as such scenes typically involve static
backgrounds and moving vehicles. However, they are not capable of handling more general scenes
that include deformable objects. Moreover, the subtasks introduce non-differentiable components,
making end-to-end training impossible without instance-level supervision.

Recent work in scene flow estimation mostly takes inspiration from the related task of optical
flow [9, 16, 41, 45] and can be divided into several categories: encoder-decoder methods [14, 27]
that solve the scene flow by an hourglass architecture neural network, multi-scale methods [3, 20, 55]
that estimate the motion from coarse to fine scales, or recurrent methods [17, 46, 53] that iteratively
refine the estimated motion. Other approaches [19, 34] try to solve the problem by finding soft
correspondences on point pairs within a small region. In order to reduce the annotation requirement,
some methods focus on runtime optimization [22, 18], prior assumptions [21], or even without the
need for training data [4].

Encoder-decoder Methods: Flownet [9] and Flownet2.0 [16], were the first methods to learn opti-
cal flow end-to-end with an hourglass-like model, and inspired many later methods. Flownet3D [27]
first employs a set of convolutional layers to extract coarse features. A flow embedding layer is intro-
duced to associate points based on their spatial localities and geometrical similarities on a coarse scale.
A set of upscaling convolutional layers is then introduced to upsample the flow to the high resolution.
FlowNet3D++ [52] further incorporates point-to-plane distance and angular distance as additional
geometry constraints to Flownet3D [27]. HPLFlowNet [14] employs Bilateral Convolutional Layers
(BCL) to restore structural information from unstructured point clouds. Following the hourglass-like
model, DownBCL, UpBCL, and CorrBCL operations are proposed to restore information from each
point cloud and fuse information from both point clouds.

Coarse-to-fine Methods: PointPWC-Net [55] is a coarse-to-fine method for scene flow estimation
using hierarchical feature extraction and warping, which is based on the optical flow method PWC-
Net [41]. A novel learnable Cost Volume Layer is introduced to aggregate costs in a patch-to-patch
manner. Additional self-supervised losses are introduced to train the model without ground-truth
labels. Bi-PointFlowNet [3] follows the coarse-to-fine scheme and introduces bidirectional flow
embedding layers to learn features along both forward and backward directions. Based on previous
methods [27, 55], HCRF-Flow [20] introduces a high-order conditional random fields (CRFs) based
relation module (Con-HCRFs) to explore rigid motion constraints among neighboring points to force
point-wise smoothness and within local regions to force region-wise rigidity. FH-Net [7] proposes a

2



fast hierarchical network with lightweight Trans-flow layers to compute key points flow and inverse
Trans-up layers to upsample the coarse flow based on the similarity between sparse and dense points.

Recurrent Methods: FlowStep3D [17], is the first recurrent method for non-rigid scene flow
estimation. They first use a global correlation unit to estimate an initial flow at the coarse scale,
and then update the flow iteratively by a Gated Recurrent Unit (GRU). RAFT3D [46] also adopts a
recurrent framework. Here, the objective is not the scene flow itself but a dense transformation field
that maps each point from the first frame to the second frame. The transformation is then iteratively
updated by a GRU. PV-RAFT [53] presents point-voxel correlation fields to capture both short-range
and long-range movements. Both coarse-to-fine and recurrent methods take the cost volume as input
to a convolutional neural network for scene flow prediction. However, these regression techniques
may not be able to accurately capture fast movements, and as a result, multi-stage refinement is often
necessary. On the other hand, we propose a simpler architecture that solves scene flow estimation in
a single-scale global matching process with no iterative refinement.

Soft Correspondence Methods: Some work poses the scene flow estimation as an optimal transport
problem. FLOT [34] introduces an Optimal Transport Module that gives a dense transport plan
informing the correspondence between all pairs of points in the two point clouds. Convolutional layers
are further applied to refine the scene flow. SCTN [19] introduces a voxel-based sparse convolution
followed by a point transformer feature extraction module. Both features, from convolution and
transformer, are used for correspondence computation. However, these methods involve complicated
regularization and constraints to estimate the optimal transport from the correlation matrix. Moreover,
the correspondences are only computed within a small neighboring region. We instead follow the
recent global matching paradigm [10, 56, 64] and solve the scene flow estimation with a global
matcher that is able to capture both short-distance and long-distance correspondence.

Runtime Optimization, Prior Assumptions, and Self-supervision: Different from the proposed
method, which is fully supervised and trained offline, some other work focuses on runtime optimiza-
tion, prior assumptions, and self-supervision. Li et al. [22] revisit the need for explicit regularization
in supervised scene flow learning. The deep learning methods tend to rely on prior statistics learned
during training, which are domain-specific. This does not guarantee generalization ability during
testing. To this end, Li et al. propose to rely on runtime optimization with scene flow prior as
strong regularization. Based on [22] Lang et al. [18] propose to combine runtime optimization with
self-supervision. A correspondence model is first trained to initialize the flow. Refinement is done by
optimizing the flow refinement component during runtime. The whole process can be done under
self-supervision. Pontes et al. [33] propose to use the graph Laplacian of a point cloud to force the
scene flow to be "as rigid as possible". Same as in [22], this constraint can be optimized during
runtime. Li et al. [21] propose a self-supervised scene flow learning approach with local rigidity
prior assumption for real-world scenes. Instead of relying on point-wise similarities for scene flow
estimation, region-wise rigid alignment is enforced. Most recently, Chodosh et al. [4] identify the
main challenges of LiDAR scene flow estimation as estimating the remaining simple motions after
removing the dominant rigid motion. By combining ICP, rigid assumptions, and runtime optimization,
they achieve state-of-the-art performance without any training data.

2.2 Point Cloud Registration

Related to scene flow estimation, there are some correspondence-based point cloud registration
methods. Such methods separate the point cloud registration task into two stages: finding the
correspondences and recovering the transformation. PPFNet [6] and PPF-FoldNet [5] proposed by
Deng et al. focus on finding sparse corresponding 3D local features. Gojcic et al. [12] propose to use
voxelized smoothed density value (SDV) representation to match 3D point clouds. These methods
only compute sparse correspondences and are not capable of handling dense correspondences required
in scene flow tasks. More related works are CoFiNet [59] and GeoTransformer [36], both of which
involve finding dense correspondences employing transformer architectures. Yu et al. in CoFiNet [59]
propose a detection-free learning framework and find dense point correspondence in a coarse-to-fine
manner. Qin et al. in GeoTransformer [36] further improve the accuracy by leveraging the geometric
information. RoITr [60] introduces a Rotation-Invariant Transformer to disentangle the geometry and
poses, and tackle point cloud matching under arbitrary pose variations. PEAL [61] introduces the
Prior Embedded Explicit Attention Learning model (PEAL), and for the first time explicitly injects
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Figure 1: Method Overview. We propose a simple yet powerful method for scene flow estimation.
In the first stage (see Section 3.1) we propose a strong local-global-cross transformer architecture that
is capable of extracting robust and highly localizable features. In the second stage (see Section 3.2), a
simple global matching yields the flow. In comparison to previous work, our approach is significantly
simpler, while achieving state-of-the-art results.

overlap prior into Transformer to solve point cloud registration under low overlap. However, the
goal of point cloud registration is not to estimate the translation vectors for each of the points, which
makes our work different from these approaches.

2.3 Transformers

Transformers were first proposed in [47] for translation tasks with an encoder-decoder architecture
using only attention and fully connected layers. Transformers have been proven to be efficient in
sequence-to-sequence problems, well-suited to research problems involving sequential and unstruc-
tured data. The key to the success of transformers over convolutional neural networks is that they
can capture long-range dependencies within the sequence, which is very important, not only in
translation but also in many other tasks e.g. computer vision [8], audio processing [24], recommender
systems [42], and natural language processing [54].

Transformers have also been explored for point clouds [28]. The coordinates of all points are stacked
together directly as input to the transformers. For the tasks of classification and segmentation,
PT [63] proposes constructing a local point transformer using k-nearest-neighbors. Each of the points
would then attend to its nearest neighbors. PointASNL [57] uses adaptive sampling before the local
transformer, and can better deal with noise and outliers. PCT [15] proposes to use global attention
and results in a global point transformer. Pointformer [32] proposes a new scheme where first local
transformers are used to extract multi-scale feature representations, then local-global transformers are
used as cross attention to multi-scale features, finally, a global transformer captures context-aware
representations. Point-BERT [62] is originally designed for masked point modeling. Instead of
treating each point as one data item, they group the point cloud into several local patches. Each of
these sub-clouds is tokenized to form input data.

Previous work on scene flow estimation exploits the capability of transformers for feature extraction
either using global-based transformers in a local matching paradigm [19] or local-based transformers
in a recurrent architecture [11]. Instead, we propose to leverage both local and global transformers
to learn a feature representation for each point on a single scale. We show that high-quality feature
representations are the fundamental property that is needed for scene flow estimation when formulated
as a global matching problem.
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3 Proposed Method

Given two point clouds X1 ∈ RN1×3 and X2 ∈ RN2×3 with only position information, the objective
is to estimate the scene flow V ∈ RN1×3 that maps each point in the source point cloud to the target
point cloud. Due to the sparse nature of the point clouds, the points in the source and the target point
clouds do not necessarily have a one-to-one correspondence, which makes it difficult to formulate
scene flow estimation as a dense matching problem. Instead, we show that learning a cross-feature
similarity matrix of point pairs as soft correspondence is sufficient for scene flow estimation. Unlike
many applications based on point cloud processing which need to acquire a high-level understanding,
e.g. classification and segmentation, scene flow estimation requires a low-level understanding to
distinguish geometry features between each element in the point clouds. To this end, we propose a
transformer architecture to learn high-quality features for each point. The proposed method consists
of two core components: feature extraction (see Section 3.1) and global matching (see Section 3.2).
The overall framework is shown in Figure 1.

3.1 Feature Extraction

Tokenization: Given the 3D point clouds X1, X2, each point xi is first tokenized to get summarized
information of its local neighbors. We first employ an off-the-shelf feature extraction network
DGCNN [51] to map the input 3D coordinate xi into a high dimensional feature space xhi conditioned
on its nearest neighbors xj . Each layer of the network can be written as

xhi = max
xj∈N (i)

h(xi, xj − xi), (1)

where h represents a sequence of linear layers, batch normalization, and ReLU layers. The local
neighbors xj ∈ N (i) are found by a k-nearest-neighbor (knn) algorithm. Multiple layers are stacked
together to get the final feature representation.

For each point, local information is incorporated within a small region by applying a local Point
Transformer [63] within xj ∈ N (i). The transformer is given by

xli =
∑

xj∈N (i)

γ(φl(x
h
i )− ψl(x

h
j ) + δ)⊙ (αl(x

h
j ) + δ), (2)

where the input features are first passed through linear layers φl, ψl, and αl to generate query, key and
value. δ is the relative position embedding that gives information about the 3D coordinate distance
between xi and xj . γ represents a Multilayer Perceptron consisting of two linear layers and one
ReLU nonlinearity. The output xli is further processed by a linear layer and a residual connection
from xhi .

Global-cross Transformer: Transformer blocks are used to process the embedded tokens. Each of
the blocks includes self-attention followed by cross-attention [38, 43, 47, 56].

The self-attention is formulated as
xgi =

∑
xj∈X1

⟨φg(x
l
i), ψg(x

l
j)⟩αg(x

l
j), (3)

where each point xi ∈ X1 attends to all the other points xj ∈ X1, same for the points xi ∈ X2. Linear
layers φg, ψg, and αg generate the query, key, and value. ⟨, ⟩ denotes a scalar product. Linear layer,
layer norm, and skip connection are further applied to complete the self-attention module.

The cross-attention is given as

xci =
∑

xj∈X2

⟨φc(x
g
i ), ψc(x

g
j )⟩αc(x

g
j ), (4)

where each point xi ∈ X1 in the source point cloud attends to all the points xj ∈ X2 in the target
point cloud, and vice versa. A Feedforward network with multi-layer perceptron and layer norm
is applied to aggregate information to the next transformer block. The detailed architecture of our
proposed local-global-cross transformer is presented in Figure 2. The feature matrices F1 ∈ RN1×d

and F2 ∈ RN2×d are formed as the concatenation of all the output feature vectors from the final
transformer block, where N1 and N2 are the number of points in the two point clouds and d is the
feature dimension.
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Figure 2: Transformer Architecture. Detailed local (left), global (middle), and cross (right) trans-
former architecture. The local transformer incorporates attention within a small number of neighbors.
The global transformer is applied on the source and target points separately and incorporates attention
on the whole point clouds. The cross transformer further attends to the other point cloud and gets the
final representation conditioned on both the source and the target.

3.2 Global Matching

Feature similarity matrices are the only information that is needed for an accurate scene flow
estimation. First, the cross similarity matrix between the source and the target point clouds is given
by multiplying the feature matrices F1 and F2 and then normalizing over the second dimension with
softmax to get a right stochastic matrix,

Ccross =
F1F

T
2√
d
, (5)

Mcross = softmax(Ccross), (6)
where each row of the matrix Mcross ∈ RN1×N2 is the matching confidence from one point in the
source point cloud to all the points in the target point cloud. The second similarity matrix is the self
similarity matrix of the source point cloud, given by

Cself =
Wq(F1)Wk(F1)

T

√
d

, (7)

Mself = softmax(Cself), (8)
which is a matrix multiplication of the linearly projected point feature F1. Wq and Wk are learnable
linear projection layers. Each row of the matrix Mself ∈ RN1×N1 is the feature similarity between
one point in the source point cloud to all the other points in the source point cloud. Given the point
cloud coordinates X1 ∈ RN×3 and X2 ∈ RN×3, the estimated matching point X̂2 in the target point
cloud is computed as a weighted average of the 3D coordinates based on the matching confidence

X̂2 =McrossX2. (9)

The scene flow is computed as the movement between the matching points

V̂inter = X̂2 −X1. (10)

The estimation procedure can also be seen as a weighted average of the translation vectors between
point pairs, where a softmax ensures that the weights sum to one.

For occlusions in the source point cloud, the matching would fail under the assumption that there
exists a matching point in the target point cloud. We avoid this by employing a self similarity matrix
that utilizes information from the source point cloud. The self similarity matrix Mself bears the
similarity information for each pair of points in the source point cloud. Nearby points tend to share
similar features and thus have higher similarities. Multiplying Mself with the predicted scene flow
V̂inter can be seen as a smoothing procedure, where for each point, its predicted scene flow vector
is updated as the weighted average of the scene flow vectors of the nearby points that share similar
features. This also allows the network to propagate the correctly computed non-occluded scene flow
estimation to its nearby occluded areas, which gives

V̂final =MselfV̂inter. (11)
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3.3 Loss Formulation

Let V̂ be the estimated scene flow and Vgt be the ground truth. We follow CamLiFlow [25] and use a
robust training loss to supervise the process, given by

LV̂ =
∑
i

(∥V̂final(i)− Vgt(i)∥1 + ϵ)q, (12)

where ϵ is set to 0.01 and q is set to 0.4.

4 Experiments

4.1 Implementation Details

The proposed method is implemented in PyTorch. Following previous methods [14, 55], the numbers
of points N1 and N2 are both set to 8192 during training and testing, randomly sampled from the
full set. We perform data augmentation by randomly flipping horizontally and vertically. We use the
AdamW optimizer with a learning rate of 2 · 10−4, a weight decay of 10−4, and OneCycleLR as the
scheduler to anneal the learning rate. The training is done for 600k iterations with a batch size of 8.

4.2 Evaluation Metrics

For a fair comparison we follow previous work [14, 46, 55] and evaluate the proposed method with
the accuracy metric EPE3D, and the robustness metrics ACCS , ACCR and Outliers. EPE3D is
the 3D end point error ∥ V̂ − Vgt ∥2 between the estimated scene flow and the ground truth averaged
over each point. ACCS is the percentage of the estimated scene flow with an end point error less than
0.05 meter or relative error less than 5%. ACCR is the percentage of the estimated scene flow with
an end point error less than 0.1 meter or relative error less than 10%. Outliers is the percentage of
the estimated scene flow with an end point error more than 0.3 meter or relative error more than 10%.

4.3 Datasets

The proposed method is tested on three established benchmarks for scene flow estimation.

FlyingThings3D [30] is a synthetic dataset of objects generated by ShapeNet [2] with randomized
movement rendered in a scene. The dataset consists of 25000 stereo frames with ground truth data.

KITTI Scene Flow [31] is a real world dataset for autonomous driving. The annotation is done with
the help of CAD models. It consists of 200 scenes for training and 200 scenes for testing.

Both datasets have to be preprocessed in order to obtain 3D points from the depth images. There
exist two widely used preprocessing methods to generate the point clouds and the ground truth
scene flow, one proposed by Liu et al. in FlowNet3D [27] and the other proposed by Gu et al. in
HPLFlowNet [14]. The difference between the two approaches is that Liu et al. [27] keeps all valid
points with an occlusion mask available during training and testing. Gu et al. [14] simplifies the task
by removing all occluded points. We denote the datasets preprocessed by Liu et al. in FlowNet3D as
F3Do/KITTIo and by Gu et al. in HPLFlowNet as F3Ds/KITTIs. In the original setting from [14, 27],
the FlyingThing3D dataset F3Ds consists of 19640 and 3824 stereo scenes for training and testing,
respectively. F3Do consists of 20000 and 2000 stereo scenes for training and testing, respectively.
For the KITTI dataset, KITTIs consists of 142 scenes from the training set, and KITTIo consists of
150 scenes from the training set. Since there is no annotation available in the testing set of KITTI,
we follow previous methods to test the generalization ability of the proposed method without any
fine-tuning on KITTIs and KITTIo. For better evaluation and analysis, we additionally follow the
setting in CamLiFlow [25] to extend F3Ds to include occluded points. We denote this as F3Dc.

Waymo-Open Dataset [44] is a large-scale autonomous driving dataset. We follow [7] to preprocess
the dataset to create the scene flow dataset. The dataset contains 798 training and 202 validation
sequences. Each sequence consists of 20 seconds of 10Hz point cloud data. Different from [7] which
only contains 100 sequences, we trained and tested our model on the full dataset.
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4.4 State-of-the-art Comparison

We compare our proposed method GMSF with state-of-the-art methods on FlyingThings3D in
different settings. Table 1 shows the results on F3Dc. Evaluation metrics are calculated over both non-
occluded points and all points. Among all the methods, including methods with the corresponding
stereo images as additional input [46], or even with optical flow as additional ground truth for
supervision [25, 26], our proposed method achieves the best performance both in terms of accuracy
and robustness.

To give a fair comparison with previous methods we report results on F3Do and F3Ds with gener-
alization to KITTIo and KITTIs in Table 2 and Table 3. The proposed method achieves the best
performance on both F3Do and F3Ds, surpassing other state-of-the-art methods by a large margin.
The generalization ability of the proposed model on KITTIo and KITTIs also achieves state of the art.

We further conduct experiments on the Waymo-Open dataset. We train and test on the full dataset
with 798 training and 202 testing sequences. Comparisons with state of the art are given in Table 4.

Table 1: State-of-the-art comparison on F3Dc. The input modalities are given as a reference. Our
method with only 3D points as input outperforms all the other state-of-the-art methods on all metrics.

Method Input EPE3D ↓ ACCS ↑ EPE3D ↓ ACCS ↑
non-occluded non-occluded all all

FlowNet3D [27] CVPR’19 Points 0.158 22.9 0.214 18.2
RAFT3D [46] CVPR’21 Image+Depth - - 0.094 80.6
CamLiFlow [25] CVPR’22 Image+Points 0.032 92.6 0.061 85.6
CamLiPWC [26] arxiv’23 Image+Points - - 0.057 86.3
CamLiRAFT [26] arxiv’23 Image+Points - - 0.049 88.4

GMSF(ours) Points 0.022 95.9 0.040 92.6

Table 2: State-of-the-art comparison on F3Do and KITTIo. The models are only trained on F3Do

prepared by [27] with occlusions. Testing results on F3Do and KITTIo are given.

Method F3DO KITTIO
EPE3D ↓ACCS ↑ACCR ↑Outliers ↓EPE3D ↓ACCS ↑ACCR ↑Outliers ↓

FlowNet3D [27] 0.157 22.8 58.2 80.4 0.183 9.8 39.4 79.9
HPLFlowNet [14] 0.168 26.2 57.4 81.2 0.343 10.3 38.6 81.4
PointPWC [55] 0.155 41.6 69.9 63.8 0.118 40.3 75.7 49.6
FLOT [34] 0.153 39.6 66.0 66.2 0.130 27.8 66.7 52.9
CamLiPWC [26] 0.092 71.5 87.1 37.2 - - - -
CamLiRAFT [26] 0.076 79.4 90.4 27.9 - - - -
Bi-PointFlow [3] 0.073 79.1 89.6 27.4 0.065 76.9 90.6 26.4
RAFT3D [46] 0.064 83.7 89.2 - - - - -
3DFlow [49] 0.063 79.1 90.9 27.9 0.073 81.9 89.0 26.1
SCOOP+ [18] - - - - 0.047 91.3 95.0 18.6

GMSF(ours) 0.022 95.0 97.5 5.6 0.033 91.6 95.9 13.7

4.5 Ablation Study

Table 6 shows the results of different numbers of global-cross transformer layers. While our
approach technically works even without global-cross transformer layers, the performance is sig-
nificantly worse compared to using two or more layers. This shows that only incorporating local
information for the feature representation is insufficient for global matching. Moreover, the capacity
of the network improves with the number of layers and achieves the best performance at 10 layers.

Table 7 shows the importance of different components in the tokenization process. We tried different
methods, DGCNN [51], PointNet [35], and MLP, to map the 3D coordinates of the points into the
high-dimensional feature space. For each of these mapping methods, the influence of the Local
Point Transformer [63] is tested. When the local transformer is present, the metrics are similar with
different mapping strategies, which demonstrate the effectiveness of the proposed local-global-cross
transformer architecture. In the absence of the local transformer, the performance remains comparable
with DGCNN for mapping but drops significantly with PointNet or MLP, which indicates the necessity
of local information encoded in the tokenization step.
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Table 8 gives the ablation study on feature dimensions. The default number of feature dimensions
is 128 in our model. Reducing the number of feature dimensions leads to a lack of capacity of the
model.

Table 3: State-of-the-art comparison on F3Ds and KITTIs. The models are only trained on F3Ds

prepared by [14] without occlusions. Testing results on F3Ds and KITTIs are given.

Method F3DS KITTIS
EPE3D ↓ACCS ↑ACCR ↑Outliers ↓EPE3D ↓ACCS ↑ACCR ↑Outliers ↓

FlowNet3D [27] 0.1136 41.25 77.06 60.16 0.1767 37.38 66.77 52.71
HPLFlowNet [14] 0.0804 61.44 85.55 42.87 0.1169 47.83 77.76 41.03
PointPWC [55] 0.0588 73.79 92.76 34.24 0.0694 72.81 88.84 26.48
FLOT [34] 0.0520 73.20 92.70 35.70 0.0560 75.50 90.80 24.20
HCRF-Flow [20] 0.0488 83.37 95.07 26.14 0.0531 86.31 94.44 17.97
PV-RAFT [53] 0.0461 81.69 95.74 29.24 0.0560 82.26 93.72 21.63
FlowStep3D [17] 0.0455 81.62 96.14 21.65 0.0546 80.51 92.54 14.92
RCP [13] 0.0403 85.67 96.35 19.76 0.0481 84.91 94.48 12.28
SCTN [19] 0.0380 84.70 96.80 26.80 0.0370 87.30 95.90 17.90
CamLiPWC [26] 0.0320 92.50 97.90 15.60 - - - -
CamLiRAFT [26] 0.0290 93.00 98.00 13.60 - - - -
Bi-PointFlow [3] 0.0280 91.80 97.80 14.30 0.0300 92.00 96.00 14.10
3DFlow [49] 0.0281 92.90 98.17 14.58 0.0309 90.47 95.80 16.12
PT-FlowNet [11] 0.0304 91.42 98.14 17.35 0.0224 95.51 98.38 11.86

GMSF(ours) 0.0090 99.18 99.69 2.55 0.0215 96.22 98.25 9.84

Table 4: State-of-the-art comparison on Waymo-
Open dataset.

Method EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
FlowNet3D [27] 0.225 23.0 48.6 77.9
PointPWC [55] 0.307 10.3 23.1 78.6
FESTA [50] 0.223 24.5 27.2 76.5
FH-Net [7] 0.175 35.8 67.4 60.3

GMSF(ours) 0.083 74.7 85.1 43.5

Table 5: Meta-information.

Runtime(ms) 417.3
FLOPs(G) 654.32
Parameters(M) 7.07
Memory (test)(GB) 4.99
Memory (train)(GB) 162.3

Table 6: Ablation study on the number of global-cross transformer layers on F3Dc. The influence
of the number of global-cross transformer layers is tested. The best performance is gained at 10
transformer layers.

Layers EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
all all all all non-occ non-occ non-occ non-occ

0 0.212 39.01 63.59 66.51 0.132 43.95 70.24 62.92
2 0.075 79.02 90.22 25.64 0.047 84.67 94.23 22.07
4 0.055 87.37 93.76 16.39 0.032 92.01 96.84 13.41
6 0.050 89.32 94.60 14.23 0.029 93.46 97.33 11.54
8 0.045 91.22 95.25 12.11 0.025 94.91 97.70 9.68
10 0.040 92.64 95.84 10.34 0.022 95.94 98.06 8.13
12 0.043 91.95 95.57 11.12 0.024 95.40 97.88 8.81
14 0.045 91.66 95.41 11.54 0.025 95.19 97.78 9.21
16 0.044 91.74 95.51 11.33 0.025 95.38 97.93 8.91

4.6 FLOPs, GPU memory, and Runtime.

We report meta-information on our experiments: runtime (ms per scene) during testing on an NVIDIA
A40 GPU, FLOPs (G), Number of parameters (M), GPU memory (GB) during testing (batch size 1)
and training (batch size 8) with 10 transformer layers and 128 feature dimensions in Table 5.

4.7 Visualization

Figure 3 shows a visualization of the GMSF results on two samples from the FlyingThings3D dataset.
Red and blue points represent the source and the target point clouds, respectively. Green points
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Table 7: Ablation study on the components of tokenization on F3Dc. The influence of using
different backbones and the presence of a local transformer is tested. The results show that as long
as there is local information (DGCNN / Point Transformer) present in the tokenization process, the
performance remains competitive. On the other hand, using only PointNet or MLP for tokenization,
the performance drops significantly.

Backbone PT EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
all all all all non-occ non-occ non-occ non-occ

DGCNN ✓ 0.040 92.64 95.84 10.34 0.022 95.94 98.06 8.13
DGCNN 0.052 89.68 94.37 13.71 0.030 93.74 97.14 11.00
PointNet ✓ 0.043 92.22 95.80 10.86 0.024 95.65 98.04 8.63
PointNet 0.063 86.76 93.06 16.67 0.037 91.45 96.31 13.51
MLP ✓ 0.043 91.81 95.48 10.21 0.023 95.43 97.84 7.75
MLP 0.060 88.08 93.33 14.11 0.035 92.69 96.55 10.83

Table 8: Ablation study on the number of feature dimensions on F3Dc. The performance decreases
as the number of feature dimensions drops.

dim EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓
all all all all non-occ non-occ non-occ non-occ

32 0.073 83.04 91.32 21.07 0.044 88.36 95.07 17.56
64 0.051 89.64 94.57 13.68 0.029 93.79 97.32 10.93
128 0.040 92.64 95.84 10.34 0.022 95.94 98.06 8.13

represent the warped source point cloud toward the target point cloud. As we see in the figure, the
blue points align very well with the green points, which demonstrates the effectiveness of our method.

Figure 3: Visualization results on FlyingThings3D. Two scenes from the FlyingThings3D dataset
are given. Red, blue, and green points represent the source, target, and warped source point cloud,
respectively. Part of the point cloud is zoomed in for better visualization.

5 Conclusion

We propose to solve scene flow estimation from point clouds by a simple single-scale one-shot global
matching, where we show that reliable feature similarity between point pairs is essential and sufficient
to estimate accurate scene flow. To extract high-quality feature representations, we introduce a
hybrid local-global-cross transformer architecture. Experiments show that both the presence of
local information in the tokenization step and the stack of global-cross transformers are essential to
success. GMSF shows state-of-the-art performance on the FlyingThings3D, KITTI Scene Flow, and
Waymo-Open datasets, demonstrating the effectiveness of the method.

Limitations: The global matching process in the proposed method needs to be supervised by the
ground truth, which is difficult to obtain in the real world. As a result, most of the supervised scene
flow estimations are trained on synthetic datasets. We plan to extend our work to unsupervised
settings to exploit real data.
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