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Abstract

With increasingly powerful large language models (LLMs) and LLM-based agents
tackling an ever-growing list of tasks, we envision a future where numerous LLM
agents work seamlessly with other Al agents and humans to solve complex prob-
lems and enhance daily life. To achieve these goals, LLM agents must develop
collaborative skills such as effective persuasion, assertion and disagreement, which
are often overlooked in the prevalent single-turn training and evaluation of LLMs.
In this work, we present Collaborative Reasoner (Coral &), a framework to
evaluate and improve the collaborative reasoning abilities of language models. In
particular, tasks and metrics in Coral necessitate agents to disagree with incorrect
solutions, convince their partners of a correct solution, and ultimately agree as a
team to commit to a final solution, all through a natural multi-turn conversation.
Through comprehensive evaluation on six collaborative reasoning tasks covering
domains of coding, math, scientific QA and social reasoning, we show that cur-
rent models cannot effectively collaborate due to undesirable social behaviors,
collapsing even on problems that they can solve singlehandedly. To improve the
collaborative reasoning capabilities of LLMs, we propose a self-play method to gen-
erate synthetic multi-turn preference data and further train the language models to
be better collaborators. Experiments with Llama-3.1, Ministral and Qwen-2.5
models show that our proposed self-improvement approach consistently outper-
forms finetuned chain-of-thought performance of the same base model, yielding
gains up to 16.7% absolute. Human evaluations show that the models exhibit more
effective disagreement and produce more natural conversations after training on
our synthetic interaction data.

1 Introduction

Modern large language models (LLMs) and LLM-based agents are tackling a wide-range of tasks,
spanning from virtual assistants [20, [53]] and online shopping [50, [60], to autonomous software
engineering [32, 45, |56]] and the mastering of strategic games [10} 44, [62]]. As these individual
LLM-agents become more powerful, we foresee a future where Al and human agents with differ-
ent specialties and information access work seamlessly with each other, all through the common
communication media of natural language conversations. To realize this vision, our goal is to
develop conversational agents that can collaborate with other Al agents and humans to complete tasks
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I'm trying to solve this math problem: “Jason has a phone plan of 1000 mins per month.
) Everyday he has a 15-min call with his boss, and he has extra 300 mins of call this month
to other people. How many minutes does Jason have left if this month has 30 days?

Let’s think step by step. | think we can calculate the mins he has spent calling his
boss this month. Since it has 30 days and it’s 15 mins per day, it should be 450 mins. 1 L4
So Jason should have 1000 - 450 = 550 mins left. [ 10X ]

Q That is correct, if we assume there are only 30 days for the month. But shouldn’t we
consider the case where there are 28, 29 or 31 days for the month?

550
mins

1 4
[ X)) )

550

But the question made the assumption that this month only has 30 days .'. ." Py ’
Q But | think we’ve made another mistake here. Jason also used 300 minutes to call other
people which also counts into his phone plan, thus it should be 550 - 300 = 250 mins
©_9
Ly
Ah yes, | forgot about that. That is correct, the answer should be 250 minutes indeed. ) |
An example conversation on solving a reasoning problem between two agents Beliefs of the agents

Figure 1: An illustration of two agents solving a reasoning problem collaboratively. Besides
answer correctness, we also track social behaviors such as agreement throughout the conversation.

effectively, in free-form multi-turn conversations [7,[11]. While the communication format is simple
and intuitive, these collaborations can be challenging as in addition to problem-solving abilities,
they require social skills such as effective communication, providing feedback, having empathy and
theory-of-mind, inter alia.

Current LLMs, however, are predominantly trained and evaluated for single-turn question-answering
or problem-solving tasks [[13, 124} 29]], instead of collaborative and interactive problem-solving sce-
narios. Consequently, there is a gap in understanding how well current frontier language models
can collaborate with other agents and humans in a natural conversation. Moreover, while explo-
rations exist for multi-agent teams of LLMs with different roles, capabilities, and communication
architectures [6} 14, |61], little progress has been made in developing generalist agents that possess
all the necessary reasoning and social skills for effective in-the-wild collaboration through natural
conversations with humans [20,57]. On the other hand, developing such agents is challenging owing
to lack of conversational collaboration data. Such data remains expensive to collect, and can be
domain-specific and limited, making both training and evaluation difficult. Motivated by the lack of
evaluation, training data, and training methods that can enable LLMs to collaborate over multiple
turns of conversations in goal-oriented tasks, we present Collaborative Reasoner in this work, which
we also refer as Corali

Coralt is a comprehensive framework focused on evaluating and enhancing the collaborative
reasoning skills of language models. More specifically, given a reasoning problem (e.g., math,
physics, theory-of-mind), Coral emulates human-AlI collaboration and requires two agents to work
together on the problem through a multi-turn conversation. Along with solving the problem correctly,
it also requires agents to agree with each other before committing to a final solution of a given
problem. Consequently, learning to disagree to incorrect solutions, i.e., assertiveness, asking clarifying
questions, and convincing the partner of a correct solution, i.e., persuasiveness, are required to
succeed. We evaluate several frontier open and closed sourced LLMs on 6 reasoning tasks under this
collaborative setting, spanning domains across coding, math, scientific question answering and social
story comprehension. Compared with single-agent approaches such as chain-of-thought prompting,
we find even these frontier models are inconsistent at leveraging collaboration to better approach
these tasks. Further analysis on social behaviors via our designed social metrics reveals a tendency
for agents to be overly agreeable (> 90% agreement score), regardless of reasoning correctness,
limiting their ability to challenge incorrect solutions and reducing collaboration efficacy.

To rectify these undesirable social behaviors of current LLMs, we propose to leverage synthetic
conversations collected from simulated self-collaborations with an LLM itself. We perform tree
sampling to diversify the model responses and obtain pairs of responses for preference-based learning.
Different from single-model and single-turn workflows, however, synthesizing conversational data

2Coral is short for collaborative reasoning models



at scale poses its own engineering challenges (e.g., network congestion). To that end, we build
Matrix, a robust, versatile and high-performance model serving framework, which allows thou-
sands of conversations being generated in parallel over hundreds of model instances. With a large
pool of tree-structured, collaborative conversational data generated by Matrix, we employ both
conversation-level and turn-level filtering methods to obtain preference-finetuning data for training
collaborative reasoners. Experiments on L1ama-3.1, Qwen-2.5 and Ministral models show that our
proposed self-improvement approach consistently improves collaboration performance, and outper-
forms single-agent CoT finetuning baseline by up to 16.7% absolute. Moreover, the trained 70B
collaborative reasoners can rival strong reasoning models such as 01 and Gemini-Pro on MMLU-Pro
and ExploreToM benchmarks. Further analysis also show that the models trained on our synthetic
data can generalize to different partner models and can be directly applied to a different dataset in a
similar domain. Human annotations suggest that the collaborative reasoners display more effective
disagreement and the generated conversations are more natural after training with our method.

We open-source our code for Coral and Matrix to support future research on developing social
agents that can partner with humans and other agents. And we hope to extend our research to include
evaluation and data collection of human-AlI interactions to further foster research in this area.

2 Collaborative Reasoning over Multi-turn Conversations

Unlike existing framework that structure agent interaction via fixed roles and curated prompts [22} 23|
40]], Coralt evaluates general-purpose models in free-form multi-turn conversations. This way it
reveals the true limitations in their collaborative skills under the most natural format of collaborations.
We use the questions from existing reasoning tasks as the conversation starters and use exact match
of the answers to measure solve rate. But unlike single-turn settings, where the performances solely
depend on the correctness of the generated solution, collaborative reasoning requires agents to agree
on a solution as a team. As shown in[Fig. I} we also record social metrics during the multi-turn
conversations, and we introduce these metrics in more detail in the following sections.

2.1 Problem Definition

Given a reasoning problem {z, y*}, where x denotes the task input (e.g., “Jason has a phone plan
of ... How many minutes does Jason have left if this month has 30 days?” as in and y*
denotes the gold-standard task output (e.g., “250 mins”), collaborative reasoning entails two language
model agents A and B engaging in a conversation to discuss how to solve this problem. To initiate
the conversation, the first utterance a; is generated through a template of “I’m trying to solve
this problem: [insert problem] ’ﬂ And the whole conversation C' = {aq, b1, az, ba, ...} will be
generated interleavingly with agents {a, b} and their corresponding system prompt. The conversation
will stop when an agreement is reached between the agents (e.g., [Fig. 1), or the maximum number of
20 turns is reached. To evalute such interactions, we define agreement and social behavior metrics in
the following section.

2.2 Coral Metrics

When modeling reasoning problems in a single-turn, it is common to first generate a sequence that
represents the thinking process (e.g., chain-of-thought) followed by the final answer. However, in
a multi-turn conversational setting, each turn may not conclude with a clear final answer, as the
agents may be planning the steps, debating on a fact, or as in asking a clarification question.
Moreover, agreement can be partial (e.g., “I agree that X, but that doesn’t mean Y.”) or of higher
order (e.g., “I agree that my previous disagreement is unwarranted.”), which makes measuring
of agreement between agents in a multi-turn setting quite challenging. These metrics below are
automatically derived using belief extraction without human annotation, enabling scalable analysis of
social behaviors.

Measuring agent beliefs and agreement. To address these challenges, we refrain from using
superficial verbal cues on agreement, but instead try to track the beliefs of the agents on the final

SWithout loss of generality, we note A to be the agent that starts the conversation.



MATH MMLU-Pro GPQA ExploreToM
CoT Coral CoT Coral CoT Coral CoT Coral
Llama-3.1-8B-Instruct 514 47.2 44 .4 45.6 27.1 31.0 60.8 424

Llama-3.1-70B-Instruct 64.0 63.8 63.8 65.8 39.5 35.7 71.3 72.9
Llama-3.1-405B-Instruct | 71.9  71.7 679  69.7 47.1 48.4 804 795

Models

GPT-40 72.6 78.7 67.3 69.5 43.3 429 74.6 76.5
01 94.1 89.2 80.6 82.8 70.8 741 86.3 86.8
Gemini-1.5-Pro 843 820 | 727 697 | 542 482 | 706  67.1
Gemini-2.5-Flash 84.3 91.7 67.6 81.0 46.4 69.4 85.8 87.3
Claude-3.7-Sonnet 74.4 79.1 75.7 79.1 59.8 65.6 86.3 84.3

Table 1: CoT Correctness vs. Coral Agreement Correctness for Llama-3.1 and close-source
frontier models. For each model and task, the worse performance between the two is marked in red.

answer and measure agreement by comparing such beliefs. Inspired by recent works on LLM-as-
judge [58]], after each turn, we feed the response of the agents to an extractor to extract the belief of
this agent at this time, or say “not sure” if not clear answer is presented in the response. ['| Then
for each conversation C, agreement measures whether the latest beliefs of the agents, i.e., {5, BB 1
which are updated after every turn, matches each other. And agreement correctness, which is the
main metrics we aim to evaluate and improve in this work, measures whether the answer the agents
agreed on is correct. More specifically,

agreement : a(C) = I(84 = P # ¢)
agreement correctness: a*(C)=I(a(C)=1& 8 =y") > (main metric)

where I(z) is the indicator function, y* is the gold answer and 5 = ¢ denotes “not sure” per

Turn-level social behavior metrics. In addition to conversation-level agreement, inspired from
social science [[12,[19}52]], we also design turn-level metrics which focus on measuring two critical
social collaborative behaviors — persuasion and assertion. An agent’s response in a turn is considered
persuasive if it changes its partner’s response to match its own. Persuasiveness thus measures the
influence or impact of an agent on its partner. Likewise, an agent’s response in a turn is considered
assertive if it remains unchanged from the agent’s response in its previous turn, irrespective of
its partner’s response. Assertiveness captures whether an agent’s partner influences the agent and
whether the agent is able to maintain its belief under its partner’s influence. In addition to evaluating
whether turns are persuasive or assertive, we also measure the quality of persuasion i.e., whether an
agent’s persuasion changed its partner’s belief towards a more accurate solution of the given problem.
Detailed definitions of these metrics and can be found in the Appendix [Bl More broadly, such metrics
may also be useful in understanding and improving human-Al interactions such as persuasion for
social good [46] and reducing polarization [4]].

3 Are Current LLMs Good Collaborative Reasoners?

To understand how frontier open- and closed-source LLMs fare at collaborative reasoning com-
pared to single-turn CoT reasoning, we evaluate Llama-3.1-Instruct series [24], GPT-4o [29],
01 [30], Gemini-1.5, Gemini-2.5 [8]] and Claude-3.7 [2]. We choose these models owing to their
strong results in single-turn reasoning performance in various tasks, and the post-trained versions
(e.g.,-Instruct) also demonstrate good conversational skills needed for collaborative reasoning.
We instantiate these models to collaborate with themselves for 4 reasoning tasks covering different
domains: MATH [16] (math reasoning), MMLU-Pro [47] (general), GPQA [34] (scientific QA), and
ExploreToM [36] (social reasoning). The details of these benchmarks can also be found in[§ 5] Here
we draw important insights from this analysis.

Models are inconsistent at leveraging collaboration to improve performance, unlike humans.
While human collaboration often enables better solutions to difficult problems [35] 41} 48], we

*We use a different system prompt (see[Tab. 11) for belief extraction for more robust performance.
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Figure 2: Illustration of our self-training pipeline, with steps of sampling — filtering — training.

During tree sampling, we track the beliefs of all turns using methods described in|§ 2.2f, and we note
d

the turns in holds the correct beliefs while the ones with (red boxes] are incorrect.

make different observations for LLMs from Unlike humans, LLMs typically struggle to
consistently outperform the equivalent CoT performance, despite using more inference compute. In
particular, LLama3. 1-8B-Instruct exhibits a performance drop of 18.4% on ExploreToM and 4.2%
drop on MATH. Likewise, the 01 model performance drops 4.9% on MATH, while Gemini-1.5-Pro
consistently under-performs in Coral compared to CoT. Although larger and more powerful models
including LLama3.1-405B-Instruct and Gemini-2.5-Flash models are relatively better at leveraging
collaboration, overall models are unable to consistently achieve better performance in coral settings.

Models often exhibit undesirable social behaviors. Upon inspection of the social metrics, we
discover a consistently high agreement rate (i.e., ranging from 74.3% to 99.3%) despite a much
lower agreement correctness rate (see in the appendix for detailed numbers). This suggests
that the models lack the ability of effective disagreement, resulting in a large percentage of the
conversations ends with agreeing on an incorrect answer. The aforementioned lack of assertiveness is
also highlighted in[Tab. 7] which shows that models irrespective of their sizes struggle to be assertive
— average percentage of assertive turns range from 0.2 — 5.5% in the collaborative conversations.
Models thus tend to get carried away under their partner’s influence, even when they are correct. We
hypothesize that this undesirable behavior is a result of RLHF post-training, which makes the model
very polite and agreeable, thus less assertive when pointing out the mistakes or standing their own
grounds [31,137]. We aim to rectify these behaviors via additional training on synthetic conversation
data, which we will introduce in the next section.

4 Self-Improving Collaborative Reasoning through Synthetic Conversations

To improve the collaborative reasoning abilities of LLMs, we generate synthetic multi-turn conversa-
tions via self-play, enabling scalable training without human annotation.

4.1 Self-Training Method

For training the language model, we formulate it as a next-turn prediction problem. More specifically,
we construct training examples with input (i.e., prompts) of {s,,, a1, b1, - - - u;_, } and output of next
turn u; for agent u, where s,, is its system prompt. As illustrated in our self-improvement
pipeline consists of three steps: 1) tree sampling; 2) belief filtering; and 3) preference finetuning.

Tree sampling. To generate diverse and informative responses for training, especially for preference
tuning, we need more than a single deterministic dialog path per problem. Thus we adopt a tree
sampling approach (as shown in [Fig. 2): For each round of conversation ¢, we sample a set of d
responses {u}, u?, ...,ul} ~ P,(u;|C;_1). Next, we randomly select a response u to append to the
conversation prefix C;_1, as this recovers the independent next turn sampling process while retaining



its sibling nodes {uZ |7 # 7'} for the construction of preference data This strategy improves
coverage over possible collaborative behaviors. To boost diversity at the conversation-level, we also
independently sample 5 such conversation trees.

Belief filtering. To convert the sampled conversation turns into preference training data, we need a
reliable way to label each turn as high or low quality. We do this by extracting the belief expressed
by the agent at each turn (i.e., what the agent currently thinks the final answer is, and comparing it to
the gold answer for the problem). Specifically, for each candidate turn u!, we extract its belief, 37. If
the belief matches the gold answer y*m we label ut as a positive turn (uf); otherwise, it is labeled
negative (u; ). These labels are then used to create preference pairs between correct and incorrect
turns that form training examples for preference tuning. Since some problems are much easier than
others, we cap the number of preference pairs per problem and per turn to avoid biasing the model
toward easy examples. This ensures diverse and proper supervision across the dataset.

Preference finetuning. As shown in after such tree sampling and correctness-based belief
filtering, each training example consists of a prompt {s,,, C;_1 } with the system prompt s,, for agent

u, the conversation prefix C;_1, and a preference pair {(u],u] )|u} € uj",u] € u; }. For preference

finetuning, we use the DPO algorithm [33], which relieves the dependency on a separate reward
model and allow directly learning of this preference from our synthetic conversations. Although our
self-training algorithm allows multiple rounds of training, we did not find additional benefit from
iterative DPO training.

4.2 Scaling Up Synthetic Conversation Generation with Matrix

Generating high-quality collaborative data at scale is computationally intensive. To address this, we
built Matrix, a scalable and versatile model serving framework designed for multi-agent synthetic
data generation. Matrix can be scaled up to serve hundreds of models and complete thousands of
requests per second (i.e., QPS) consistentlyﬂ We hope Matrix serves as a drop-in tool for teams
studying multi-agent LLMs, where data generation remains a bottleneck.

Why does Matrix matter to the community? /) Versatile backend: Matrix uses a variety of
backends, including vLLM [21]], SGLang [39], and various API-based services (e.g., OpenAl GPT,
Google Gemini, efc), thus it supports a wide range of models; 2) Built-in scalability: Thanks to the
integration with Ray [27]], Matrix can perform auto-scaling and load-balancing based on the current
workload of each LM service. To avoid network congestion, Matrix uses gRPC for higher throughput,
while maintaining support for http. 3) Robust to interruptions: Matrix also integrates with Slurm,
the most popular resource management tool for research environments. This allows us to spawn Ray
workers with various priority and yet robust to job preemption, resulting in higher cluster utilization
while providing an uninterrupted services.

When compared with the best open-source alternatives, we found Matrix to be up to 1.87x faster.
More detailed design of Matrix and comparison with existing frameworks are shown in[Appendix C]|
due to space limit. We release Matrix to support future research on multi-agent collaboration, with
plans to extend it for human-AlI interactive evaluation and data collection.

S Experiments

5.1 Experiment Setup

Tasks. We consider six different reasoning tasks, spanning over math [[16], coding [3ll, scientific
QA [34]), theory-of-mind [15,[36], and general [47] reasoning domains. Approaching these tasks
in a multi-turn conversational setting tests both pure reasoning ability and the models’ ability to
collaborate via free-form conversations. In particular, to measure the code reasoning abilities, we

SNote the we do not continue expanding on the sibling nodes (i.e., MCTS) due to exponential growth of
required compute. But we leave them as important future work, see more discussions in

SThis is the largest scale that we have tested for our use case, so it is possible that Matrix is able to handle
even higher volume.
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Figure 3: Comparison between collaborative reasoners (Coralt) and various baselines based
on Llama-3.1 8B and 70B models. The y-axis denotes final answer correctness for CoT methods
and agreement correctness for Coral methods. Details about these baselines can be found in[§ 5.1}

created the MBPP-CR dataset, by first sampling solutions for the original MBPP [3]] dataset, then
use these solutions and their gold correctness labels to transforms it into a code correctness reasoning
tasks with binary outputs. For the detailed setups for MBPP-CR, as well as other datasets used in this
work, we refer the readers to[§ D.I|due to space limit.

Baselines. While our main goal is to improve the collaborative reasoning skills of LLMs, using
synthetic data, we also consider the following baselines to further show the effectiveness of our
training data and methods:

> Strong reasoning models. We use a set of strong reasoning models, including OpenAl 01 and
Gemini-2.5-Flash [8]], as well as a much larger Llama model, L1ama-3.1-405B-Instruct
to set the context for the collaborative reasoning capabilities for frontier models;

> CoT (+ SFT / DPO). To measure against single-agent performance, we not only compare with
(CoT) baselines, but also the same-sized models that are further trained on the single-agent CoT
reasoning traces to the problems using rejection sampling (i.e., CoT + SFT) and preference tuning
with single-level tree sampling (i.e., CoT + DPO);

> Coral + SFT. In addition to preference turning, we also explore a simple SFT baseline to improve
collaborative reasoning abilities. Specifically, individual conversations are independently sampled,
and the turns with correct beliefs will be used as target while the partial conversation history as
prompt for the fully-supervised training.

5.2 Main Results

We compare self-trained collaborative reasoners against various baselines with the same base model
in[Fig. 3|and[Tab. 2} And on the two datasets where llama-based models yield the best performance
(i.e., MMLU-Pro and ExploreToM), we further compare them with strong reasoning models in [Fig. 4]

Training on synthetic conversations leads to large improvements in collaboration performance.
From we can observe consistent performance improvements in coral performance after
preference finetuning on the synthetic conversations. Using Llama-3.1 as the base model, on the
MBPP-CR, MMLU-Pro and ExploreToM datasets, it improves 11.2% ~ 29.5% absolute for 8B and
11.0% ~ 19.0% for 70B size. While we do not observe improvements on MATH for Llama-3.1
models, experiments on Qwen-2.5 and Ministral models, as shown in yields 2.1% ~ 7.2%
improvements on MATH and 3.1% ~ 30.5% gains across other datasets. By comparing the self-
trained collaborative reasoners with the frontier reasoning models (i.e., as in , we can see that
after the Llama-3.1 models are trained with the self-synthesized collaborative conversations, the gaps
of coral performance decreased significantly. These results show that training on self-collaborative
conversations greatly improves collaborative reasoners skills to reach those of frontier LLMs.



Base Model Methods MBPP-CR MATH MMLU-Pro ExploreToM

CoT 75.6 70.9 47.5 59.8
+DPO 80.4_,_4‘8 69.6—13 49.5+2A0 78.9+1941
Qwen-2.5-7B-Instruct 79.0 72.0 53.6 573
. +DPO_ 821451 741421 584445 8784305
CoT 74.1 45.8 37.5 55.4
. e +DPO 78 3+4 2 48.9+3 1 38 0+0 5 74 5+19 1
Ministral-8B-Instruct Coral 746 427 344 551

+DPO 835,50 499,75 548.004  83.1i050

Table 2: Coral finetuning results on more open-source models. The best performance across
different method is bolded, and subscripts indicate the performance delta compared to the row above.
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Collaborative reasoners outperform single-agent CoT finetuning methods. When compared
with single-agent reasoning baselines in[Fig. 3|and [Tab. 2 we can see that Coral + DPO consistently
outperforms CoT methods with the same base model, even after the model is trained with SFT or
DPO. Concretely, Coral + DPO outperforms CoT + DPO methods by up to 14.7% and 16.7% for
Llama-3.1 8B and 70B models, respectively. And such advantages of coral preference finetuning
are consistent for Qwen-2.5 and Ministral models, yielding performance gains of 1.0% ~ 16.8%
across all datasets. This shows the potential of collaborative reasoners being used in a multi-agent
system to achieve better reasoning accuracy than single-agent CoT methods.

5.3 Analysis

To better understand the advantages and limitations of our methods, here we show analysis on model
generalization and conversation quality. Additional analysis can be found in[Appendix E}

Collaborative reasoners generalize to different collaborators and datasets at test-time. While
previous evaluations mostly focus on the self-collaboration setting, in [Tab. 3] we show the results
for “cross-collaborator generalization”, where we pair the collaborative reasoners, which are trained
via self-play, with a committee of models consisting of 4 LLMs of various sizes and capabilities.
Compared with the vanilla L1ama-3.1 models, we can see that coral-trained versions not only exhibit
better performance when evaluated in a self-collaborative setting, but also show stronger performance
when paired with other models. On average, it improves 4.9% ~ 32.2% across different models and
datasets. Moreover, in[Tab. 5| we show how the trained collaborative reasoners can collaborate with
the version before training. And similarly, we observe consistent improvements of 6.7% ~ 41.7%
over two vanilla (i.e., not trained with our method) agents.

Collaborative reasoners also generalize to different datasets in the same domain. On the other
hand, when switching to a different dataset in a similar domain, our collaborative reasoners can also
generalize at test time, as shown in[Tab. 4] Concretely, different-sized L1lama-3.1 models trained on
MMLU-Pro yield gains of 5.2% and 9.2% when directly applied to the much harder GPQA dataset.



Models GPQA Hi-ToM Agents Datasets

Base Models A B MMLUPro ExploreToM
Gemini-1.5-Pro 48.2 64.5 -kro Xplorelo.
GPT-40 429 55.8 O O 456 424
Claude-3.7-Sonnet 65.6 86.0 Llama-3.1-8B-Instruct W O 57.0411.4 76.5434.1
Llama-3.1-405B-Instruct 46.2 71.7 O | 5944138 84.1441.7
Llama-3.1-8B-Instruct 31.0 401 T 0 ) 7E7| N ;3g S 57737 -
+ Coral DPO on MMLU-Pro 36.245.2 - Qwen-2.5-7B-Instruct | ] O 60.446.8 87.0429.7
+ Coral DPO on ExploreToM - 50.049.9 O ] 60.316.7 90.8.33.5
Llama-3.1-70B-Instruct 35.7 68  -- - - - - - - - - - - - - - - - - == ===
+ Coral DPO on MMLU-Pro 44949.2 . U O 344 55.1
+ Coral DPO on ExploreToM _ 69-34»2‘5 Ministral-8B-Instruct | | O 48 5+14 1 67,5+12_4
O | 4754131 75.0419.9

Table 4: Out-of-distribution generaliza- . .
tion results of MMLU-Pro %éPQ A and Table 5: Asymmetric collaboration results between

Explore ToM—sHi-ToM models before ([J) and after (M) coral training. Agent
p ' A starts the conversation with the question.

Similar observation can be made for the transfer of ExploreToM to Hi-ToM, with up to 9.9% absolute
gain. The results in[Tab. 4]indicate that collaborative reasoners can effectively generalize its reasoning
and collaboration skills to other in-domain tasks, and we leave the exploration of out-of-domain
generalization to future work.

Agent B
Dataset Agent A Llama-3.1-8B-Instruct Llama-3.1-70B-Instruct
- + Coral DPO - + Coral DPO

Qwen2.5-7B-Instruct  52.9 65.1 +12.2 58.1 72.2+14,1
GPT-40 69.7 71.2415 71.7 77.7+6.0

MMLU-Pro  Gemini-1.5-Pro 68.7 732445 73.2 751419
Claude-3.7-Sonnet 79.3 80.84+1.5 76.6 82.545.9
Avg. Perf. 67.7 72.644.9 69.9 76.947.0
Qwen2.5-7B-Instruct ~ 43.9 82.6138.7 64.1 93.1429.0
GPT-40 47.6 79.6432.0 72.6 89.1416.5

ExploreToM  Gemini-1.5-Pro 50.6 7194213 69.6 84.5414.9
Claude-3.7-Sonnet 442 81.8437.6 82.5 89.246.7
AVg Perf 46 6 78.8+32 2 72.2 89 0+16 8

s

Table 3: Cross-collaborator generalization results. We pair Llama-3.1 models with a “committee’
of models (e.g., Qwen, Gemini, etc) as collaborators and compare their collaborative reasoning
performance before and after coral training on the MMLU-Pro and ExploreToM datasets.

Collaborative reasoners exhibit more effective disagreement while being more verbose. While
our designed social metrics can help us quickly discover behavioral pattern of the models, hu-
man evaluation is still irreplaceable in understanding the true quality of the collaboration through
the conversations. We recruit human annotators to compare 100 conversations generated by the
Llama-3.1-70B-Instruct models before and after collaborative training, on the same set of questions
from MMLU-Pro. From the results in we can observe a clear advantage of collaborative
reasoners in effective disagreement, which is one of the key reasons why current LLMs fail found
in[§ 3] In addition, the improved naturalness suggests that the generated conversations are more
human-like, which shows the potential of adapting to human-Al collaboration. These improvements,
however, seem to be at the cost of increased verbosity. Given this observation, we leave improving
the efficiency of collaboration as exciting future work.

Collaborative reasoners show strong performance even when used in a single-agent chain-of-
thought setting. Curious about whether the coral training also improves the reasoning capabilities
in general, we evaluate the coral trained models under the CoT setting, and show the results in
From this table we can observe that the coral training (i.e., “+ Coral DPO”) also improves the CoT
evaluation results, suggesting the training process not only improve the collaboration skills, but the
reasoning skills as well. On the right half of we also show how the CoT-trained models
perform under the collaborative settings. And similarly with the findings in it does not improve



CoT Eval. Coral Eval.

Model
MMLU-Pro ExploreToM MMLU-Pro ExploreToM

Llama-3.1-8B-Instruct 44 4 60.8 45.6 42.4

+ CoT DPO 44.0_¢.4 75.5414.7 523467 422 _p.2

+ Coral DPO 46.74,.2,3 91.94,-31‘1 59.8+ 14.2 90-2+47.8
Llama-3.1-70B-Instruct  63.8 71.3 65.8 72.9

+ CoT DPO 65.3+1,5 78.3+7,0 71.5+5,7 90.0+17‘1

+ Coral DPO 67.2+3,4 93.5+22A2 75.2+9A4 95.04,22‘1

Table 6: Evaluating coral-trained models under CoT settings and vice versa. We report correctness
for “CoT Eval.” and agreement correctness for “Coral Eval”.

the coral performance consistently. And when it does improve the coral performance, it is not as
significant as coral training.

6 Related Work

Self-refinement for reasoning. There has been rapid development on using self-refinement to
improve LLM reasoning, which resembles the self-collaboration setting in this work, albeit only
a single agent is involved. Notably, self-refine [25] proposes to use the same LLM to provide
feedback to iteratively improve itself. Specific self-refinement framework such as ReAct [51] and
Reflexion [38]] are proposed to improve various reasoning tasks. Such self-refinement can also be
done iteratively, as STaR [54] improves the efficiency of iterative rejection sampling with answer
rationalization. The main goal of our work is to develop multi-agent systems that can engage in a
natural conversations to complete reasoning tasks, with the aim to improve human-Al interaction
in the long run. Moreover, works such as [[17] also suggest that the self-correct methods are quite
limited, pointing to multi-agent systems as a potential solution.

Improving multi-agent reasoning with synthetic data. With the advent of increasingly capable
LLMs, various frameworks that study LLM-agents collaborating through natural conversations have
emerged. For example, frameworks such as Chain-of-Agents [11] and Agentverse [7]] demonstrate
how LLM:s can collaborate effectively using distinct roles and dynamic conversational interactions.
To deal with the data scarcity problem, researchers have used synthetic conversations created au-
tomatically for improving multi-agent interactions. For instance, AutoGen [49] and MIND [1]
generate synthetic conversations among multiple agents to improve performance. Similarly, Malt [28]]
generates focused synthetic dialog using agents with specialized roles and capabilities like verifiers.
The focus of our work is to produce generalist agents (e.g., no separation of generators and verifiers)
that can engage in natural conversations to solve reasoning problems.

Social skills of LLMs. While effective collaboration requires social intelligence, including persuasion,
assertiveness, theory of mind etc., these remain challenging to incorporate in LLMs [42]55]. Recent
work using debate-style collaboration [9, [18| |40] has show how the structured nature of debate,
combined with careful prompting, could enable assertiveness and effective argumentation leading to
improved reasoning in LLMs. Likewise, [39]] highlight how models can use persuasion positively to
improve their answers. Inspired by these works, we particularly focus on persuasion and assertiveness
for effective AI-Al or human-AlI collaboration, and our social metrics are also unique owning to the
multi-turn nature of conversations.

7 Conclusion

In this work we present Corali, a framework to evaluate and improve collaborative reasoning
capabilities of language models. We propose a self-improvement method to train the models on
turn-based synthetic conversational data, for which we build Matrix to support data generation at
scale. Our self-improvement approach yields consistent improvements over CoT finetuning baselines,
and the trained models can generalize to different collaborators and datasets at test time.
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Appendix

A Limitations

Robustness of belief extraction. In this work, in order to maintain a natural conversation, we use
the same LLM with a different prompt to extract the belief of each turn as described in Such
believes are later used to measure correctness thus construct the preference pairs for learning, and
they are also used to measure social metrics such as agreement and persuasiveness. While we found
that the majority of such extracted believes are reasonable and consistent with human judgment, the
process is not perfect. This is especially the case with reasoning models (e.g., Gemini-2.5, OpenAl
0O1) as they have a strong tendency to output long CoT thus not following our extraction prompt to
directly extract the answer. Besides the method of LLM-as-judge belief extraction, we have also
attempted other methods, such as instructing the LLMs to output in a structured format (e.g., “<CoT>

Final Answer: <answer>‘), or use the function calls to submit the answer. However, none
of these methods works as well as the LLM-as-judge extraction method we eventually used for this
work, especially as the instruction following ability drastically drops when the context starts to get
lengthy due to the conversational format.

Measuring agreement for generation tasks. The reasoning tasks in this work typically have an
answer of only a handful of tokens by length, i.e., “(A)” or “\frac{2}{5}”, which makes it easier to
measure agreement since we can simply perform a (normalized) string match. However, measuring
agreement is challenging for reasoning tasks with answers that are grammatically rich and complex,
such as code. For code generation tasks, for example, measuring agreement would require going
beyond the textual form and comparing the semantics of two code snippets, which is a known hard
problem. For this reason, to measure the collaborative reasoning abilities on coding tasks, we opt to
deduce the problem into a code correctness classification problem to avoid such issue. For future
work, it would be interesting to again resort to LLM-as-judge method to measure the agreement
between the blieves of the two agents.

Binary learning signal at turn-level. The way to determine “good” and “bad” conversation turns
in this work is by checking whether that specific turn contains belief that matches the gold answer.
While the empirical results show this simple method to be quite effective, it also mimics the outcome
supervision thus not giving any procedural supervision for correct reasoning and social behaviors. As
a binary learning signal, the turns that are making meaningful progress towards the final answer but
not necessarily has the correct final answer yet would be given the same score (i.e., zero) with the
turns that are on completely wrong path. This would not help the models to learn to truly decompose
the problem into individual steps for collaboration, but instead encourage the models to collaborate in
more of a “versioning” approach, where at the end of each turn, an answer will need to be given. For
future work, we would like to explore methods with monte-carlo roll-outs to estimate the progress for
the turns that do not have the final answer yet.

B Social Metrics

Apart from the conversation-level metrics defined in[§ 2.1] we introduce custom metrics to evaluate
turn-level responses of agents in conversations. We design these metrics to be straightforward and
computationally efficient, to enable their application in large-scale conversational analysis.

Persuasiveness in communication refers to the ability of a speaker to influence the attitudes, beliefs,
or behaviors of listeners. For our analysis, we define persuasiveness at the turn level as the extent to
which an agent’s utterance leads to a measurable change in the other agent’s subsequent responses.

Assertiveness is characterized by the confident and direct expression of one’s thoughts, feelings,
and needs while respecting the rights and perspectives of others [26}43]]. In our work, assertiveness
at the turn level is defined as the extent to which an agent maintains its beliefs or responses when
challenged by its partner. This metric evaluates the agent’s ability to resist persuasion and uphold its
original stance during interactions.

We leverage the belief of agents computed using the ground truth answers (as defined in[§ 2.1)) to
compute these metrics. Formally, given the i turn utterance for the agent u, the persuasiveness
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MATH MMLU-Pro GPQA ExploreToM
a(C) Pu) Alw) | a(C) Plu) Al | aC) Pl) A) | o(C) Pu) Alu)

GPT-40 97.1  46.7 0.4 958  46.5 0.7 91.7 433 0.7 99.0 463 1.0
01 93.4 457 1.7 98.8 488 0.2 989 376 4.0 99.3  48.0 0.9
Gemini-1.5-Pro 985 47.1 1.0 96.4 269 5.5 958 46.6 8.9 972 453 1.3

Llama-3.1-8B-Instruct 89.9  38.7 2.4 932 402 2.0 89.7 362 2.9 743 30.0 54
Llama-3.1-70B-Instruct | 92.2 422 1.3 97.0 456 0.7 84.8  38.1 2.1 99.2 483 0.4
Llama-3.1-405B-Instruct | 97.8  47.2 0.2 98.7 485 0.2 982 177 3.1 99.6 485 0.7

Table 7: Social metrics. We evaluate agreement o between the agents over the conversation C' in
addition to persuasiveness P and assertiveness .A at turn-level.

P(u;) and assertiveness A(u;) of u are defined as follows:

Plu;) =18 = B ABY Y # BY) (1)
Alus) = 1(B = By ABY, # BEy) @)

where u’ represents the partner agent and /3 represents an agent’s belief of the answer as defined
in To the best of our knowledge, our evaluation paradigm and metrics are first-of-their-kind,
paving way for evaluating and developing truly collaborative Al agents. provides these
metrics for the self-collaboration experiments reported in Overall, we find that models lack
assertiveness and persuasiveness for effective collaboration.

C Details on Matrix

Matrix, short for “Multi-agent data generation infra and experimentation framework”, is a scalable,
robust and versatile model serving framework drastically improving multi-agent conversational data
generation.

More specifically, it is designed to handle these infra challenges:

* Challenges in generating conversational data: unlike single-turn synthetic data generation
workloads, which can benefit from batched inference, for conversational data generation,
typically multiple different models need to be served at the same time with interleaved
generation, which results in idle time or constant model loading and offloading with batched
inference;

* Scalability challenges: running multiple models, each with multiple replicas that can
spread across the cluster poses challenges in efficient network communication and resource
management. The new framework should be able to scale to thousands of conversations
being generated simultaneously on hundreds of nodes with the throughput of millions of
multi-turn data continuously synthesized each day.

Key features of Matrix. Matrix is a high-performance model serving engine designed for large
scale inference. It integrates S1lurm for resource management and Ray for distributed job execution.
It leverages lower-level model serving engines such as vLLM, SGLang for efficient LLM inference,
and support API-based services such as OpenAl (through Azure). Here are some of the key features
that makes Matrix efficient and easy to use:

* Deploy model replicas to hundreds of GPUs and serve thousands of requests in parallel,;
* Fully pythonic, no more sbatch scripts to start the service;

* Modular design to easily plug into existing workflows;

* Support deploying multiple models at the same time;

* Easy to share deployed model endpoints with others;

* Auto scale serving replicas;

16



=@- lIm-swarm

Matrix
80

Matrix shows better
scaling with replicas

60 -

Performance gap
widens at 32+ replicas

40 A

lim-swarm plateaus
at higher replica counts

QPS (Queries Per Second)

20 A

0 T T T T T T T T T T
8 16 24 32 40 48 56 64 72 80

Number of Replicas

Figure 6: QPS of Matrix vs. llm-swarm. We compare QPS using SK MATH evaluation with
different number of replicas of Llama-3.1-8B-Instruct.

Frameworks Slurm vLLM HTTP gRPC Auto-scaling OSS

vector-inference v v v X X v
litellm X v v X X v
ollama X X v X X v
SageMaker X v v X v X
IIm-swarm v v v X X v
Matrix (ours) v v v v v v

Table 8: Matrix vs. existing frameworks. Feature comparison between Matrix and other open-
source or closed source model serving frameworks highlights the versatility of Matrix.

Comparison with existing frameworks. shows a comparison of Matrix with existing
frameworks for the key features that allows large-scaling generation of multi-agent, conversational
data in a typical research environment. Among these frameworks, the 11m-swarm developed by
huggingface is probably the most similar option, albeit lacking features as gRPC and Auto-scaling.
Moreover, when compared with Matrix on the wall-time to finish a fixed workload on conversation
generation, we found Matrix to be up to 1.87x faster than 11m-swarm, especially when we scale up
the resources given to these two frameworks. Note that this is achieved when using the same backend,
and we hypothesize that the gRPC support for Matrix greatly helped reducing network congestion
thus achieving higher efficiency.

With all the features and efficiency gains provided by Matrix, we are able to drastically scale up the
synthesis of collaborative conversations for the self-training method in
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Model MBPP-CR MATH MMLU-Pro ExploreToM

Llama-3.1-8B-Instruct 33.8K 85.1K 160.6K 100.1K
Llama-3.1-70B-Instruct 33.3K 88.5K 99.8K 89.7K

Table 9: The size of the synthetic training data (by # of turns). The same respective models are used
to generate these data and trained (i.e., a self-training setting).

D Experiment Details

D.1 Task Setups

We consider 5 tasks for Coral, spanning math problems, STEM question answering, graduate-level
science reasoning, and theory-of-mind reasoning. As described in[§ 2.1] two agents aim to solve
problems from these tasks over a multi-turn conversation in Coral.

* MATH [16] consists of 12.5K challenging competition-level mathematics problems and
exact match is used to measure the correctness. We train with the 7.5k training examples
and evaluation on the first 1k test examples;

* MMLU-Pro [47] contains approximately 12k questions from 14 STEM disciplines. MMLU-
Pro uses multiple choice question answering format, where an answer must be chosen from
10 options. Since there is not a dedicated split for training, we re-split the original 12K test
data into 10.8K examples for training and 1.2K examples for testing;

* GPQA [34] is a graduate-level multiple choice question answering benchmark containing
448 questions across physics, chemistry, and biology. While MMLU-Pro offers the challenge
of reasoning across a breadth of diverse topics, GPQA focuses on depth and advanced
reasoning in graduate-level science subjects, thus we use GPQA as an evaluation-only
dataset to test out-of-domain generalization capabilities of collaborative reasoners;

* ExploreToM [36] is a theory-of-mind reasoning benchmark containing complex stories
involving multiple characters. The task involves answering theory of mind reasoning
questions focused on tracking character beliefs and actions based on the given story. And
we split the dataseﬂ 10.4K/1.5K/1.5K train/val/test sets.

* Hi-ToM [15] is a benchmark consisting of 600 examples that evaluates higher-order theory-
of-mind reasoning capabilities, where the models need to recursively reason about the
beliefs of the characters in a story. We also use Hi-ToM as a eval-only dataset for models
that are trained with ExploreToM data. To elicit a more challenging setting, we ignore the
multiple choices in Hi-ToM and ask the model to produce an answer and use exact match
for evaluation.

* MBPP-CR is a code reasoning benchmark adapted from [3]], which originally consists of 974
entry-level programming tasks. To facilitate collaborative settings for solving programming
tasks, we transform the code generation task into a binary choice task on code correctness.
Specifically, we use ‘Llama-3.1-405B-Instruct’ to sample code solutions for each task and
execute the generated code to get a true or false answer as to whether it passes the assertions
provided in the MBPP dataset. For the train split, we generate 10 solution samples per task,
and 2 samples per task for the test split, resulting in 4k training and 1k test examples for
MBPP-CR.

For different tasks, we (lightly) engineered some task-specific prompts, which are shown in
We also show the size of the synthetic data used to train the best L1ama-3.1 models using DPO as
[Tab. 9l

"https://github.com/VectorInstitute/vector-inference
Shttps://github.com/BerriAIl/litellm
‘https://github.com/ollama/ollama
""https://aws.amazon.com/sagemaker
"https://github.com/huggingface/11m- swarm
https://github.com/facebookresearch/matrix
"https://huggingface.co/datasets/facebook/ExploreToM
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Figure 7: Annotation interface for human evaluation of conversation quality shown in

D.2 Hyperparameters.

For both evaluation and synthetic conversation generation, we limit the conversation to be at most
20 turns (i.e., 10 rounds), and end the conversation early when agreement is reached. During tree
sampling, we set the turn-level beam size d = 5 and independently sample 5 trees for each problem,
and we set sample size = 25 for SFT methods to ensure fair comparison. Subsequently during
filtering, we limit at most 2 pairs of preference pairs generated from the same level (i.e., turn) and
at most 20 preference pairs generated across all trees for the same problem, in order to balance the
amount of examples from different problems as discussed in[§ 4.1} For both SFT and DPO, we use
the fairseq2 [5)] and TRL ﬂ to fully-parameterized train the models for 1,000 ~ 3,000 steps with
batch size of 20 ~ 50. We limit the sequence length (input + output) to be 8, 192, which is able to
accommodate > 90% of the sequences in the turn-based training data. For DPO, we start training
from the instruction-tuned version of L1ama-3.1/Qwen-2.5/Ministral series and use the same
model for the reference model. All experiments are conducted on AWS p5.48x1large instances, each
with 8x H100 80GiB GPUs.

D.3 Human Annotation Details

The annotations are conducted on 100 examples on the MMLU-Pro dataset for the
Llama-3.1-70B-Instruct model before and after it is trained with synthetic data generated via
self-play. To remove the bias of correctness and only focus on the conversation quality and social
behaviors, we select 50 examples where both models (i.e., before and after training) achieved agree-
ment correctness of 1 and another 50 examples where both models scored 0. Each of the pairwise
comparisons are annotated by 3 annotators, and the average score is calculated when doing the final
comparison. Our annotator pool consists of annotators of at least C2 level English proficiency, with
55% of them being native speakers. The annotators are paid more than minimum wage in their
respective countries. During annotation, we give the two conversations generated by two models
side by side as shown in|Fig. 7| and their orders are randomized to ensure fair comparison. The gold
answer is also given to the annotators to better understand the problem.

E Additional Results and Discussions

E.1 Qualitative Analysis

Here we show an example conversation, i.e., between two agents consisting of two
Llama-3.1-8B-Instruct models self-trained with the synthetic data using DPO.

Collaborative reasoners are able to spot errors and persuade partner to change its answer.
From this example, we can see that agent B initially made an error in its calculation in the first turn

%https://huggingface.co/docs/trl/en/index
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which led to an incorrect choice “(E)”. However, agent A is able to spot this error in its response, and
persuade its partner (i.e., agent B) of the correct answer “(C)”.

Collaborative reasoners are still too polite and generate overly verbose outputs. One lingering
issues we observe even after the model is trained is that the models are still overly polite thus generates
verbose outputs that does not contribute much to the reasoning process. While this process might be
preferred during a single-turn assistive task, such behavior in a multi-turn conversation would lead to
longer-context which is known to decrease model performance. Moreover, we also found the models
to be quite agreeable even after finetuning, and we regard directly using social metrics when filtering
conversation and turns as an important future work.

Example on MMLU-Pro
Agent A:

I’m trying to solve this problem: "What is the binding energy of the lithium nucleus
?" And the choices are: (A) 42.1 MeV (B) 34.8 MeV (C) 39.2Mev (D) 40.5Mev (E) 38.7Mev
(F) 36.5 MeV (G) 37.6 MeV (H) 33.9 MeV (I) 35.2Mev (J) 41.3 MeV

Agent B:

To calculate the binding energy of a lithium nucleus, we first need to know the mass
defect of the nucleus. The lithium nucleus is composed of 3 protons and 4 neutrons.
The mass of a proton is approximately 1.007276 atomic mass units (amu), and the mass
of a neutron is approximately 1.008665 amu. The atomic mass of lithium is 6.94 amu.

First, we calculate the total mass of the protons and neutrons:

3 * 1.007276 amu = 3.021828 amu 4 * 1.008665 amu = 4.03466 amu Total mass of protons
and neutrons = 3.021828 + 4.03466 = 7.056488 amu

Then, we find the mass defect:

Mass defect = Total mass of protons and neutrons - Mass of lithium nucleus Mass
defect = 7.056488 - 6.94 = 0.116488 amu

Next, we use Einstein’s mass-energy equivalence formula (E=mc~2) to convert the mass
defect to binding energy. We use 1 amu = 931.5 MeV:

Binding energy = Mass defect * 931.5 MeV Binding energy = 0.116488 * 931.5 Binding
energy = 38.7 MeV but let’s check (E) 38.7 MeV and the other options.

Comparing our result with the options, the closest answer is indeed (E) but it is
possible that it might have rounding error, but this is more likely the answer than
the other options.

However , if you need to do more precision or use another method, you may use it, but
with the calculation we’ve done so far,

The correct answer is (E) but with that said, I also expect a more precise answer of
around 38.5 MeV given more precise values and method of calculation, however with the
method used here, (E) 38.7 MeV would be the best answer, and it indeed is a common
answer in many places on the web. But that said, let me know if you have a more

precise method of calculation or if you have any questions about this answer.

Agent A:

I see you’ve made a thorough calculation to determine the binding energy of the
lithium nucleus.

Your approach is mostly correct, and I appreciate the effort you put into explaining
each step.

However, I do have a minor concern regarding the precision of your calculation. You’
ve used approximate values for the mass of a proton (1.007276 amu) and the mass of a
neutron (1.008665 amu). While these values are close enough for a rough estimate,
they might not be precise enough to yield an exact answer.

Upon reviewing your calculation, I notice that you’ve correctly converted the mass
defect to binding energy using Einstein’s mass-energy equivalence formula. However, I
think it’s essential to acknowledge that the binding energy of 38.7 MeV might have

some rounding error, as you’ve mentioned.

To verify your answer, I’ve rechecked the calculation using more precise values for
the masses of the proton and neutron. After recalculating, I obtained a binding
energy of approximately 39.25 MeV, which is close to option (C) 39.2 MeV.

While your initial answer (E) 38.7 MeV is plausible, I believe that option (C) 39.2
MeV might be a more accurate answer given more precise calculations. However, without
knowing the exact method used to determine the binding energy in the problem, it’s

difficult to say for certain.
The correct answer is (C) but note that both (E) and (C) are plausible answers
depending on the precision of the calculation method used.

Agent B:
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Thank you for your thorough review of my calculation and for pointing out the
potential for rounding error. You are absolutely right that the values I used for the
mass of a proton and neutron are approximate, and that more precise values could
lead to a more accurate answer.

I appreciate you rechecking the calculation using more precise values and obtaining a

binding energy of approximately 39.25 MeV, which is indeed close to option (C) 39.2
MeV. This is a great example of how important it is to consider the precision of the
values used in a calculation and how it can affect the final answer.

You make a great point that without knowing the exact method used to determine the
binding energy in the problem, it’s difficult to say for certain which answer is
correct. However, based on your recheck of the calculation, it seems that option (c)
39.2 MeV is a plausible answer, and potentially more accurate than my initial answer
(E) 38.7 MeV.

After careful consideration, I agree with you that the correct answer is indeed (C)
39.2 MeV, although I acknowledge that both (E) and (C) are plausible answers

depending on the precision of the calculation method used.

The correct answer is (C).

Table 10: An example conversation from two self-trained L1ama-3.1-8B-Instruct models.

E.2 Additional Discussions

Filtering based on social behavior. While we can also simply filter the data based on the social
metrics, however, the purpose of social metrics is for observing and analyzing the behavior of the
models under different scenarios (e.g., before/after training, different tasks, pairing different models,
etc), so that they provide different perspectives than reasoning correctness. Thus we refrain ourselves
from constructing training examples based on such social metrics so we can observe the change of
behaviors in a neutral way.

Computation cost of Coral vs. CoT. To compare the computation cost between Coral and CoT
training, we calculated the average prompt / response length for Coral and CoT training data by the
number of tokens. We found that for single-agent CoT, the prompt/response lengths are 289.0/372.2
on average, while those numbers are 533.3/318.9 on average for the Coral setting. While the prompt
length under Coral setting is 89% longer than the CoT setting, the response length is 15% shorter. All
combined, we do anticipate more training compute being used for coral training than CoT training
due to longer context.

Self-collaboration settings for synthetic data generation and evaluation. The reason we mainly
use the same model to collaborate (i.e., self-collaboration setting) is in two folds. First, to create
single-source, distillation-free training data. To create the training data, we opt for self-play using
the same model as the model we train, so all the data comes from a single-source/model. In this
way, we avoid the confounder that a different model brings in the training process. And second, to
construct fair comparison with single-agent methods. Albeit a minor reason, the self-collaboration
setting during evaluation also allows us to have a direct comparison with single-agent methods since
no other models are used.
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F Prompts

Here we list all the prompts we used for this work for reproducibility.

System Prompt for Conversational Agents

General Instruction:

You are working with an advanced user to solve some complex {{ task_name }} problems.

Here is how you should proceed:

* Starting on the problem, first lay out a plan and ask for confirmation on the plan;
* When the user proposes a plan, an actual solution, or a partial solution, look
carefully at each of the step, and ask clarification questions if you are unsure
about the correctness of a certain step;

* When you notice an error, be precise and direct, over-politenss will not help
anyone;

* When the user asks you questions about your solution, try to unravel certain steps
and explain how they work, correct your mistake if you think you’ve made one, but
stand your ground if you think it’s actually correct;

* Always stay on topic and work towards a solution to the original problem;

* {{ task_specific_inst }}

Task-Specific Instructions:

MATH:

To give a final answer to the question (e.g., "\\sqrt{3}"), put your answer in an
LaTex box like $\\boxed{\\sqrt{3}}$

MBPP-CR:

You only need to judge the correctness of the original code; You do not need to fix
the code; Do the reasoning step by step and give a definitive answer

MMLU-Pro / GPQA:

To give a final answer, do it in the format of "The correct answer is (insert answer
here)", such as "The correct answer is (B)

ExploreToM / Hi-ToM:

Put your final answer to the question at the end as "Short Answer: {answer}"

System Prompt for Belief Extractors

You are an assistant that is helping an user to identify the intention of certain
responses in a conversation. More specifically, you will help extracting which answer
the response is submiting as the final answer, or say "not sure yet" if it seems
like there is no explict answer included in the response.

Table 11: System prompts and task-specific instructions we used in this work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims match the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in[Appendix A]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results are presented in this work.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Hyperparameters are reported in[§ D.2] and the exp code will be submitted as
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All data is public and the code will be submitted in supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Hyperparameters are reported in
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Providing error bars will be too computationally expensive due to the size of
experiments in this work. However, we note that the variance is around 1% for the same
runs with different random seed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is reported in[Appendix D}

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper aims to improve reasoning abilities of LLMs, and we do not feel
there are potential societal impacts that should be highlighted.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All models and data are public, and also currently we do not have plans to
release them.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assetts are linked or cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code will be documented upon release.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The annotation details are shown in[§ D.3]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Proper precautions are in place in accordance to regulations when doing the
human annotions.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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