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ABSTRACT

Neural-symbolic AI (NeSy) methods allow neural networks to exploit symbolic
background knowledge. NeSy has been shown to aid learning in the limited data
regime and to facilitate inference on out-of-distribution data. Neural probabilistic
logic programming (NPLP) is a popular NeSy approach that integrates probabilistic
models with neural networks and logic programming. A major limitation of
current NPLP systems, such as DeepProbLog, is their restriction to discrete and
finite probability distributions, e.g., binary random variables. To overcome this
limitation, we introduce DeepSeaProbLog, an NPLP language that supports discrete
and continuous random variables on (possibly) infinite and even uncountable
domains. Our main contributions are 1) the introduction of DeepSeaProbLog and
its semantics, 2) an implementation of DeepSeaProbLog that supports inference
and gradient-based learning, and 3) an experimental evaluation of our approach.

1 INTRODUCTION

Neural-symbolic AI (NeSy) (Garcez et al., 2002; De Raedt et al., 2021) focuses on the integration of
symbolic and neural methods. The advantage of NeSy methods is that they combine the reasoning
power of logical representations with the learning capabilities of neural networks. Such methods have
been shown to converge faster during learning and to be more robust (Rocktäschel and Riedel, 2017;
Xu et al., 2018; Evans and Grefenstette, 2018). The challenge of NeSy lies in combining discrete
symbols with continuous and differentiable neural representations. So far this has been accomplished
by interpreting the outputs of neural networks as the weights of Boolean variables. These weights
can either be given a fuzzy semantics (Donadello et al., 2017; Diligenti et al., 2017) or a probabilistic
semantics (Manhaeve et al., 2018; Yang et al., 2020). The latter is also used in neural probabilistic
logic programming (NPLP) (De Raedt et al., 2019), where neural networks parametrize probabilistic
logic programs.

A shortcoming of traditional probabilistic NeSy approaches is that they fail to capture models that
integrate continuous random variables and neural networks – a feature that has already been achieved
with mixture density networks (Bishop, 1994) and also more generally within a deep probabilistic
programming (DPP) setting (Tran et al., 2017; Bingham et al., 2019). Despite the expressiveness of
these methods, they have so far focused on efficient probabilistic inference in continuous domains,
e.g., Hamiltonian Monte Carlo or variational inference. It is unclear whether they can be generalised
to enable logical and relational reasoning. This exposes a gap between DPP and NeSy as reasoning
is, after all, a fundamental component of the latter. We close the DPP-NeSy gap by introducing
DeepSeaProbLog1. DeepSeaProbLog is an NPLP language with support for discrete-continuous
random variables that retains logical and relational reasoning capabilities. More concretely, we allow
for neural networks to parameterize arbitrary and differentiable probability distributions. We achieve
this using the reparameterization trick (Ruiz et al., 2016) and continuous relaxations (Petersen et al.,
2021). This stands in contrast to DeepProbLog (Manhaeve et al., 2018) where only finite categorical
distributions are supported.

Our main contributions are (1) the well-defined probabilistic semantics of DeepSeaProbLog, a differ-
entiable discrete-continuous NPLP language, (2) an implementation of inference and gradient-based
learning algorithms, and (3) an experimental evaluation showing the necessity of discrete-continuous
reasoning and the efficacy of our approach.

1‘Sea’ stands for the letter C, as in continuous random variable.
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2 LOGIC PROGRAMMING CONCEPTS

A term t is either a constant c, a variable V or a structured term of the form f(t1,...,tK),
where f is a functor and each ti is a term. Atoms are expressions of the form q(t1,...,tK).
Here, q/K is a predicate of arity K and each ti is a term. A literal is an atom or the negation of
an atom ¬q(t1,...,tK). A definite clause (also called a rule) is an expression of the form h:-
b1,...,bK where h is an atom and each bi is a literal. Within the context of a rule, h is called
the head and the conjunction of bi’s is referred to as the body of the rule. Rules with an empty body
are called facts. A logic program is a finite set of definite clauses. If an expression does not contain
any variables, it is called ground. Ground expressions are obtained from non-ground ones by means
of substitution. A substitution θ = {V1 = t1, . . . ,VK = tK} is a mapping from variables Vi to
terms ti. Applying a substitution θ to an expression e (denoted eθ) replaces each occurrence of Vi

in e with the corresponding ti.

While pure Prolog (or definite clause logic) is defined using the concepts above, practical imple-
mentations of Prolog extend definite clause logic with an external arithmetic engine (Sterling and
Shapiro, 1994, Section 8). Such engines enable the use of system specific routines in order to handle
numeric data efficiently. Analogous to standard terms in definite clause logic, as defined above,
we introduce numeric terms. A numeric term ni is either a numeric constant (a real, an integer, a
float, etc.), a numeric variable Ni, or a numerical functional term, which is an expression of the form
φ(n1,...,nK) where φ is an externally defined numerical function. The difference between a
standard logical term and a numerical term is that ground numerical terms are evaluated and yield a
numeric constant. For instance, if add is a function, then add(3, add(5, 0)) evaluates to the
numerical constant 8.

Lastly, numeric constants can be compared to each other using a built-in binary comparison operator
▷◁ ∈ {<,=<,>,>=,=:=,=\=}. Here we use Prolog syntax to write comparison operators, which
correspond to {<,≤, >,≥,=, ̸=} in standard mathematical notation. Comparison operators appear
in the body of a rule, have two arguments, and are generally written as φl(nl,1,...,nn,K) ▷◁
φr(nr,1,...,nr,K). They evaluate their left and right side and subsequently compare the results,
assuming everything is ground. If the stated comparison holds, the comparison is interpreted by the
logic program as true, else as false.

3 DEEPSEAPROBLOG

3.1 SYNTAX

While facts in pure Prolog are deterministically true, in probabilistic logic programs they are annotated
with the probability with which they are true. These are the so-called probabilistic facts (De Raedt
et al., 2007). When working in discrete-continuous domains, we need to use the more general
concept of distributional facts (Zuidberg Dos Martires, 2020), inspired by the distributional clauses
of Gutmann et al. (2011).

Definition 3.1 (Distributional fact). Distributional facts are expressions of the form x ~
distribution(n1,...,nK), where x denotes a term, the ni’s are numerical terms and
distribution expresses the probability distribution according to which x is distributed.

The meaning of a distributional fact is that all ground instances xθ serve as random variables that
are distributed according to distribution(n1,...,nK)θ. All variables appearing on the
right-hand side of a distributional fact must also appear on its left-hand side.

Definition 3.2 (Neural distributional fact). A neural distributional fact (NDF) is a distributional
fact in which a subset {fj}Lj=1 ⊆ {ni}Ki=1 of the set of numerical terms in the distributional fact is
implemented by neural networks that depend on a set of neural parameters {λj}Lj=1.

Example 3.1 (DeepSeaProbLog program). Consider the DeepSeaProbLog program below where
humid(Data) denotes a Bernoulli random variable that takes the value 1 with probability p given
by the output of a neural network humidity_detector. temp(Data) denotes a normally
distributed variable whose parameters are predicted by a network temperature_predictor.
The program further contains two rules that deduce whether we have good weather or not.
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humid(Data) ~ bernoulli(humidity_detector(Data)).
temp(Data) ~ normal(temperature_predictor(Data)).
snowy_weather ~ beta(2, 7). sunny_weather ~ beta(5, 3).

good_weather(Data, Degree) :-
humid(Data) =:= 1, temp(Data) < 0, snowy_weather < Degree.

good_weather(Data, Degree) :-
humid(Data) =:= 0, temp(Data) > 15, sunny_weather > Degree.

query(good_weather(data1, degree1)).

The query atom at the end declares the probability of the atom we would like to compute and also
tells us which ground term to replace the logic variables with.

Notice that the random variables humid(Data) and temp(Data) appear in the body of the logical
rule with comparison operators. So far, these comparisons were interpreted by the logic program
as deterministically true or false. In the probabilistic setting, the truth value of the comparison
depends on the value of the random variable and is thus random itself. Furthermore, to obtain
well-defined probability distributions, we need to restrict these comparison operators to being
Lebesgue-measurable.

Definition 3.3. (Probabilistic comparison formula) A probabilistic comparison formula (PCF) is an
expression of the form (g(x) ▷◁ 0), where g is a function applied to the set of random variables x
and ▷◁ ∈ {<,=<,>,>=,=:=,=\=} is a comparison operator. A valid PCF defines a measurable set
as {x | g(x) ▷◁ 0}.

Note that in Definition 3.3, we write the general form of a PCF with a 0 on the right-hand side. This
is without loss of generality, as we can always obtain this form by subtracting the right hand-side
from both sides of the relation. With the definitions of NDFs and PCFs, a DeepSeaProbLog program
can now be formally defined.

Definition 3.4 (DeepSeaProbLog program). A DeepSeaProbLog program consists of a finite set of
NDFs FD (defining random variables), a finite set CM of valid PCFs and a set of logical rules RL

that can use any of those valid PCFs in their bodies.

DeepSeaProbLog generalises a range of existing PLP languages. For instance, if we were to
remove the distributional facts on temp(Data), snowy_weather and sunny_weather and
all the PCFs using them, we would obtain a DeepProbLog program (Manhaeve et al., 2018). If
we additionally replace the neural network in humid with a fixed probability p, we end up with a
probabilistic logic program (De Raedt et al., 2007). Alternatively, replacing the constant probability
p by a constant 1 yields a non-probabilistic Prolog program. Similarly, considering all rules and facts
in Example 3.1 but replacing the neural parameters of the normal distribution with numeric constants
results in a Distributional Clauses program (Gutmann et al., 2011). We discuss the connection of
DeepSeaProbLog to these related languages further in Appendix A, where we also formally state and
prove the reduction from DeepSeaProbLog to DeepProbLog.

3.2 SEMANTICS

DeepSeaProbLog programs are used to answer probabilistic queries of ground atoms, i.e. to compute
the probability with which a ground atom q is satisfied. The probability itself follows from the
semantics of the DeepSeaProbLog program. As is custom in (probabilistic) logic programs, we will
define the semantics of DeepSeaProbLog with regard to ground programs.

We will assume that the set of distributional facts FD is valid, which means that the random variables
it defines must all be unique, i.e., each distributional fact must define a different random variable.
Notice also that the resulting ground distributional facts will contain the inputs to the neural functions.
In a sense, a DeepSeaProbLog program is conditioned on these neural network inputs.

To define the semantics of ground DeepSeaProbLog programs, we first introduce the possible worlds
over the PCFs. Every subset CM of a set of PCFs CM defines a possible world ωCM

= {CM ∪ hθ |
RL ∪ CM |= hθ and hθ is ground}. Intuitively speaking, the comparisons in such a subset are
considered to be true, and all others are false. A rule with a comparison in its body that is not in this
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subset can hence not be used to determine the truth value of atoms. Both the deterministic rules RL

and the subset CM together define a set of all ground atoms hθ that are derivable, i.e., entailed by the
program, and thus considered true. Such a set is called a possible world. We refer the reader to the
paper of De Raedt and Kimmig (2015) for a detailed account of possible worlds in a PLP context.
Following the distribution semantics of Sato (1995) and by taking inspiration from Gutmann et al.
(2011), we define the probability of such a possible world.

Definition 3.5 (Probability of a possible world). Let P be a ground DeepSeaProbLog program and
CM = {c1, . . . , cH} ⊆ CM a set of PCFs whose elements depend on the random variables declared
in the set of distributional facts FD. The probability of a world ωCM

is then defined as

P (ωCM
) =

∫ [(∏
ci∈CM

1(ci)
)(∏

ci∈CM\CM
1(c̄i)

)]
dPFD

. (3.1)

Here the symbol 1 denotes the indicator function, c̄i expresses the complement of the comparison
ci and dPFD

represents the joint probability measure of the random variables defined in the set of
distributional facts FD.

Example 3.2 (Probability of a possible world). Given P as in Example 3.1, where
temperature_predictor(Data) predicts the tuple (µ(Data), σ(Data)), the probability
of the possible world ω{temp(data1)>20} is given by∫

1(x>20) 1√
2πσ(data1)

exp
(
− (x−µ(data1))2

2σ2(data1)

)
dx. (3.2)

Indeed, the measure dPFD
decomposes into a probability distribution w(x) and a differential dx. In

Example 3.1, this distribution w(x) is exactly the normal distribution, while the product of PCFs in
Equation 3.1 reduces to just a single indicator of the PCF (x > 20).

Definition 3.6 (Probability of query atom). The probability of a ground atom q is given by

P (q) =
∑

CM⊆CM :q∈ωCM
P (ωCM

). (3.3)

Proposition 3.1 (Measureability of query atom). Let P be a valid DeepSeaProbLog program, then P
defines, for an arbitrary query atom q, the probability that q is true.

Proof. See Appendix B.

4 INFERENCE AND LEARNING

4.1 INFERENCE VIA REDUCTION TO WEIGHTED LOGIC

A popular technique to perform inference in probabilistic logic programming uses a reduction to
so-called weighted model counting (WMC); instead of computing the probability of a program, one
computes the weight of a propositional logical formula (Chavira and Darwiche, 2008; Fierens et al.,
2015). For DeepSeaProbLog, the equivalent approach is to map a ground program onto a satisfiability
modulo theory (SMT) formula (Barrett and Tinelli, 2018). The analogous concept to WMC for these
formulas is weighted model integration (WMI) (Belle et al., 2015; Morettin et al., 2021), which can
handle infinite sample spaces. In all that follows, for ease of exposition, we assume that all joint
probability distributions are continuous. This can, however, be generalised to discrete distributions
by either allowing for Dirac delta distributions or taking a measure theoretic approach (Miosic and
Zuidberg Dos Martires, 2021).

Proposition 4.1 (Inference as WMI). Let us assume that the measure dPFD
decomposes into a joint

probability density function w(x) and a differential dx. The probability of a query atom can then be
expressed as the weighted model integration problem

P (q) =
∫ [∑

CM⊆CM :q∈ωCM

∏
ci∈CM∪CM

1(ci(x))
]
w(x) dx, (4.1)

where CM := {c̄i | ci ∈ CM\CM} .

Proof. See Appendix C.
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Being able to express the probability of a queried atom in DeepSeaProbLog as a weighted model
integral allows us to adapt and deploy inference techniques developed in the weighted model integra-
tion literature to perform inference in DeepSeaProbLog. More concretely, the approximate inference
algorithm Sampo presented in (Zuidberg Dos Martires et al., 2019) will be used. The idea is to take
the sum of products of indicator functions present in Equation 4.1 and rewrite it as recursively nested
sums of products. This process is also referred to as knowledge compilation (Darwiche and Marquis,
2002), a state-of-the-art technique for probabilistic inference (Chavira and Darwiche, 2008; Fierens
et al., 2015). Furthermore, as the integral, i.e., the expected value of the sums of products of indicator
functions, is usually intractable, we approximate it by sampling values from the joint probability
distribution as

P (q) =
∫

SP(x) · w(x) dx ≈ 1
|X |
∑

x∈X SP(x) (4.2)

where X denotes a set of samples drawn from w(x) and SP(x) denotes the sum of products of
indicator functions (cf. the sum-product expression inside the brackets of Equation 4.1).

Note that the Sampo algorithm only samples random variables whose expected value with respect
to the function SP(x) cannot be computed exactly. Hence, DeepSeaProbLog is able to perform
exact symbolic inference for random variables with finite sample spaces, e.g., Boolean random
variables. In turn, this means that in the absence of random variables with infinite sample spaces
an implementation of DeepSeaProbLog using Sampo coincides with DeepProbLog on a semantics
level (Proposition A.1) as well as on an inference level. In Appendix D we provide a diagrammatic
representation of the function SP(x) for the query in Example 3.1 where we also perform exact
symbolic inference for the discrete variable.

4.2 DIFFERENTIATING A WEIGHTED MODEL INTEGRAL

Neural networks in a DeepSeaProbLog program depend on a set of parameters Λ := ∪i{λi}Ki=1 (cf.
Definition 3.2). In order to perform learning in DeepSeaProbLog, we need to take the gradient of
a loss function that compares the probability P (q) to a training signal. More precisely, we need to
compute the derivative

∂λL(PΛ(q)) = ∂PΛ(q)L(PΛ(q)) · ∂λPΛ(q), (4.3)
where we now explicitly indicate the dependency of the probability on Λ and where λ ∈ Λ. This
means that we need to be able to differentiate the probability of a query of interest PΛ(q) with respect
to λ, which presents two obstacles. First, the question of differentiating through the sampling process
of Equation 4.2 and second, the non-differentiability of the indicator functions in SP(x).

The non-differentiability of sampling is tackled using the reparametrization trick (Ruiz et al., 2016).
Reparametrization offers better estimates than other approaches, such as REINFORCE (Williams,
1992) and is readily utilised in modern probabilistic programming languages such as Tensorflow
Probability (Tran et al., 2017) and Pyro (Bingham et al., 2019). In particular, the reparametrization
x = r(u,Λ), with u ∼ p(u), allows us to write ∂λPΛ(q) as

∂λPΛ(q) = ∂λ
∫

SP(x) · wΛ(x) du = ∂λ
∫

SP(r(u,Λ)) · p(u) du. (4.4)
Conversely, the non-differentiability of the indicator functions prevents us from swapping the order
of differentiation and integration, following Leibniz’ integral rule (Flanders, 1973). We resolve this
technical issue by applying continuous relaxations of the indicator functions following the work
of Petersen et al. (2021). These relaxations then yield the approximation

∂λPΛ(q) ≈ ∂λ
∫

SPs(r(u,Λ)) · p(u) du ≈
∫
[∂λSPs(r(u,Λ))] · p(u) du, (4.5)

where the subscript s in SPs(x) denotes the continuously relaxed or ‘softened’ version of SP(x).
For example, the indicator of a PCF (g(x) > 0) is relaxed into the sigmoid σ(β · g(x)). Here. the
coolness parameter β ∈ (0,+∞) is the inverse of the temperature of the relaxation and determines
the strictness of the relaxation: for β→+∞ we recover the hard indicator function. In Appendix E
we provide a more detailed account covering relaxations of further PCFs. Note that the relaxation of
the indicator functions results in a biased expression for ∂λPΛ(q) that only vanishes in the infinite
coolness limit.
Proposition 4.2 (Unbiasedness in the infinite coolness limit). Let P be a DeepSeaProbLog program
and q a query atom with PCFs (gi(x) ▷◁ 0) and corresponding coolness parameters βi. If ∂λ(gi ◦ r)
is locally integrable over Rk and every βi → +∞, then

∂λP (q) =
∫
∂λSPs(r(u,Λ)) · p(u) du. (4.6)
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Proof. The proof makes use of the mathematical theory of distributions (Schwartz, 1957), which
generalise the concept of functions, and is given in Appendix F.

Petersen et al. (2021) already stated in their work that, in the infinite coolness limit, a relaxed function
coincides with the non-relaxed one. Proposition 4.2 extends this result by stating that this property
also holds for the derivatives of relaxed and non-relaxed functions.

Finally, we estimate the derivative ∂λPΛ(q) using a set of samples U drawn from p(u).

∂λP (q) ≈
∫
[∂λSPs(r(u,Λ))] · p(u) du ≈ 1

|U|
∑

u∈U ∂λSPs(r(u,Λ)). (4.7)

Note how Equation 4.7 is just the derivative of the original inference approximation from Equation 4.2,
but with reparametrization and continuous relaxations applied.

5 RELATED WORK

From a NeSy perspective the formalism most closely related to DeepSeaProbLog is that of Logic
Tensor Networks (LTNs) (Donadello et al., 2017; Badreddine et al., 2022). The main difference
between LTNs and DeepSeaProbLog is the fuzzy logic semantics of the former and the probabilistic
semantics of the latter. Interestingly, both systems use similar continuous relaxations when dif-
ferentiating through comparisons of continuous variables, which is also in line with other NeSy
approaches based on fuzzy logics (Marra et al., 2019). However, fuzzy-based approaches require
these relaxations at the semantics level, in contrast to DeepSeaProbLog. LTNs’ fuzzy semantics do
also exhibit drawbacks on a practical level. Unlike DeepSeaProbLog with its probabilistic semantics,
LTNs are not capable of performing neural-symbolic generative modelling (cf. Section 6.2) or density
estimation (cf. Section 6.3). For a broader overview of the field of neural-symbolic AI, we refer
the reader to a series of survey papers that have been published in recent years (Garcez et al., 2019;
Marra et al., 2021; Garcez et al., 2022; Giunchiglia et al., 2022).

From a probabilistic programming perspective, DeepSeaProbLog is related to languages that handle
discrete and continuous random variables such as BLOG (Milch, 2006; Wu et al., 2018), Distributional
Clauses (Gutmann et al., 2011) and Anglican (Tolpin et al., 2016; Staton et al., 2016), which have
all been given declarative semantics, i.e., the meaning of the program does not depend on the
underlying inference algorithm. Treating discrete variables as first-order citizens comes with the
drawback of non-differentiability, which is a desirable property for neural-symbolic programming. In
DeepSeaProbLog we circumvent non-differentiability by introducing continuous relaxations, while
at the same time retaining declarative semantics. We stress that DeepSeaProbLog’s semantics do not
only define the meaning of a probabilistic query in a declarative fashion (Equation 3.3) but also the
meaning of its gradient (Equation 4.5). This stands in stark contrast to end-to-end (deep) probabilistic
programming languages such as Pyro (Bingham et al., 2019) or Tensorflow Probability (Dillon et al.,
2017), which have only been equipped with operational semantics.

An interesting direction for future research is the adaption of advanced inference techniques already
present in deep probabilistic programming languages and which usually require differentiability, e.g.,
stochastic variational inference (Hoffman et al., 2013) or NUTS Hamiltonian Monte Carlo (Hoffman
et al., 2014) inference. As our current implementation of DeepSeaProbLog already uses TensorFlow
Probability as its arithmetic engine in the back-end, this should be an attainable objective that we
leave for future work.

6 EXPERIMENTAL EVALUATION

We have two main experimental questions. (Q1) Is learning, which includes inference, with continu-
ous relaxations and reparametrizations possible? (Q2) Does DeepSeaProbLog bridge the DPP-NeSy
gap? We answer (Q1) on the newly-introduced MNIST subtraction task (cf. Section 6.1) and a
neural hybrid Bayesian net (cf. Section 6.3). (Q2) will be answered by introducing neural-symbolic
variational auto-encoders, inspired by the work of Misino et al. (2022).

The details of our experimental setup, such as the used hardware, the annealing scheme used for the
coolness, and hyperparameters used for the neural networks are given in Appendix G.
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6.1 NEURAL-SYMBOLIC OBJECT DETECTION

It is difficult to compare the performance of DeepSeaProbLog to other, existing methods. Hence, we
introduce the MNIST subtraction task, which can be solved by other neural-symbolic systems and
purely neural approaches. Given a single image containing two MNIST digits, the task is to predict
the correct value of the subtraction of those digits. It is similar to the MNIST addition experiment
of Manhaeve et al. (2018), yet we introduce an additional difficulty by requiring segmentation
of the given images. The segmentation problem will be solved by combining the localisation
and classification power of a simple, two-stage object detector inspired by Ren et al. (2015) with
DeepSeaProbLog’s continuous reasoning capabilities. Specifically, since the subtraction is non-
commutative and so location dependent, continuous and discrete knowledge can be intertwined by
connecting spatial reasoning on the given image with the discrete digit predictions (Listing 1). We
will see that DeepSeaProbLog provides better detections by exploiting the full support of its predicted
bounding boxes for spatial reasoning, in contrast to the usual point estimates of other methods .

region(Im, ID, XY) ~ generalisednormal(region_dimensions(Im, ID, XY)).
object(Im, ID) ~ bernoulli(region_score(Im, ID)).
digit(Im, ID) ~ categorical(d_classifier(Im, ID), [0,...,9]).

subtraction(Im, Diff, Dist) :-
object(Im, ID1), object(Im, ID2), ID1 =\= ID2,
region(Im, ID1, y) =:= region(Im, ID2, y),
distance(Im, ID1, ID2, PredDist), PredDist =:= Dist,
region(Im, ID1, x) < region(Im, ID2, x),
Diff is digit(Im, ID1) - digit(Im, ID2).

Listing 1: The first NDF represents the x or y location of bounding box ID as a generalised normally
distributed random variable (Nadarajah, 2005) with mean and scale being the center and width of
the box, respectively. object(Im, ID) indicates whether there is an object in box ID while
digit(Im, ID) classifies the content of box ID into the possible digit classes. The predicate
subtraction(Im, Diff) looks at all combinations of different bounding boxes that contain
an object and uses spatial reasoning via multiple PCFs to determine which box corresponds to which
digit, after which a prediction for Diff can be given.

Notice that the supervision on the coordinates of the bounding boxes is underspecified, as the distance
and left-right relation between two digits is only sufficient to deduce relative positions. No additional
learning signal from the classifier can resolve this underspecification due to the discontinuity between
the box regression and classification networks of two-stage object detectors (Ren et al., 2015). We
solve this issue by borrowing an idea from the continual learning community (De Lange et al., 2021)
and include a small set of memory samples with direct supervision on the coordinates of both digits
in the images. The memory is small enough such that its optimisation alone is insufficient to solve
the overall problem.

Alternatively, DeepSeaProbLog can offer a possible solution to the problem of joint approximate
training which has plagued two-stage object detection approaches (Ren et al., 2015) through proba-
bilistic masking. For instance, in Listing 1 we use the generalised normal distribution that allows
us to pass a gradient signal through the masking operation. This is not possible with the usual hard
masking. Results show that probabilistic masking leads to a significant increase in accuracy and IoU
for (E2). These results and more details on the experimental setup can be found in Appendix G.1.

We compare DeepSeaProbLog to a neural baseline and LTNs on two experimental cases. In the first,
(E1), we train on a data set containing all 100 possible differences between two digits and giving
their subtraction results as supervision. The test and validation data also contain all 100 possible
differences. In (E2), we only provide 70 out of the 100 possible differences during training while
distributing the remaining 30 among the validation (10) and test data (20).

The most striking observation in our results (Table 1) is the poor performance of the neural baseline,
especially when considering experiment (E2). In essence, the neural baseline fails to generalise the
learned knowledge. While both NeSy methods are able to generalise, DeepSeaProbLog distinguishes
itself by better accuracies. The reason seems also clear; DeepSeaProbLog can exploit the full support
of its continuous distributions to reason over the bounding boxes, leading to higher IoU values. Since
classification depends on good bounding boxes, the higher IoU can explain the increase in accuracy.
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Table 1: Median accuracy and Intersection-over-Union (IoU) for classifying the result of the difference
of two digits in one image. The sub- and superscripts indicate 25% and 75% quantiles, respectively,
taken over 10 training runs. The quantiles represent the boundaries between which the middle 50%
of observed accuracy values lie. Do note that the results of (E1) and (E2) should not be compared, as
they are computed on different test sets. All results are reported in percentages.

Experiment DeepSeaProbLog LTN Neural baseline

acc. IoU acc. IoU acc. IoU

(E1) 88.16+0.22
−1.88 55.70+3.50

−1.82 72.88+1.72
−1.12 52.29+0.94

−0.39 72.20+2.78
−1.44 52.46+1.81

−1.61

(E2) 87.09+1.81
−1.09 56.10+2.32

−3.00 76.73+1.36
−1.18 52.30+1.75

−1.44 0.27+0.09
−0.07 54.23+2.88

−1.43

6.2 NEURAL-SYMBOLIC VARIATIONAL AUTO-ENCODER

In the previous experiment we predicted the difference between two digits by regarding it as a
classification problem. Now we would like to run this experiment in reverse: generate two MNIST
digits given a subtraction result. Inspired by the work of Misino et al. (2022), we opt for a conditional
variational auto-encoder approach (CVAE) (Kingma and Ba, 2015; Sohn et al., 2015). A diagrammatic
overview is given in Figure 1.

Diff is 6 - 3

6

3

recon_loss

recon_loss

vae_latent digit

shape

shape

Figure 1: Each image is encoded into a multivariate normal NDF (shape) and a latent vector
by vae_latent. The latter forms the input to the NDF digit, while a sample of the former
is combined with the outcome of digit to form the input of the decoder. Doing so for both
images yields two reconstructions, which are compared to the original images in a probabilistic
recon_loss. Note that the values of digit for both images also have to comply to the value of
the given difference.

The flexibility of DeepSeaProbLog allows to declaratively encode the architecture presented in
Figure 1 as a neural probabilistic logic program. The probabilistic aspect is crucial as other NeSy
frameworks, such as LTNs, lack the probabilistic semantics needed to express such deep, relational
generative models. Details on our NeSy-VAE implementation can be found in Appendix G.2.

We jointly train the encoder, decoder and digit classifier using the input images themselves as
supervision in a reconstruction loss. Additionally, the result of the difference between the digits has
to comply with a given value. For instance, if images and are given, then we give the label 3
as additional supervision.

8
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After the training phase, pairs of digits that result in a specific subtraction result can
now be generated. To do this, we first sample from the normally distributed latent
space of the NeSy-VAE, which generates two latent representations for two digits.
Next, the logic deduces which digits comply with the given subtraction result and
attaches these to the two latent representations. Finally, these representations are
passed through the learned decoder, which constructs two images that satisfy the
subtraction result ?−? = 5 (right).

While our NeSy-VAE is inspired by the VAEL architecture of Misino et al. (2022), conceptual
differences exist. Most notably, for VAEL, the image generation resides outside of the probabilistic
logic program. This is in contrast to DeepSeaProbLog where the VAE latent space is an integral part
of the deep relational model.

As such, DeepSeaProbLog easily generalises to conditional generative queries that
differ significantly from the original optimisation task. More precisely, without
performing any retraining, we query the DeepSeaProbLog program to generate a
subtrahend given a minuend (top) and the subtraction result, i.e., fill in the blank
in −? = Diff (bottom row). Additionally, we will demand that the generated
image is in the same style of writing as the given image through DeepSeaProbLog’s
reasoning capabilities. From left to right, generated subtrahend images for a Diff
value of 0, -5 and -7 respectively.

Having demonstrated the generative and reasoning capabilities of the presented NeSy-VAE, we
conclude that DeepSeaProbLog bridges the DPP-NeSy gap and we affirmatively answer (Q2) as well.

6.3 NEURAL HYBRID BAYESIAN NETWORKS

Hybrid Bayesian networks (Lerner, 2003) are probabilistic graphical mod-
els that combine discrete and continuous random variables logically.
DeepSeaProbLog allows for the introduction of neural components to such mod-
els, as shown in Example 3.1. We further extend this example (right) such that
the parameters of the variables humid (H), cloudy (C) and temperature
(T) are determined by neural networks from sub-symbolic inputs. We opt for the
most distant supervision by only giving the probability of enjoy_weather
(E) being true or false. The temperature is made inherently probabilistic
through the addition of Gaussian noise, which we can model explicitly as a
learnable parameter in DeepSeaProbLog.

THC

R G

D E

Our optimised neural Bayesian model can be evaluated in to ways. First, the accuracy scores of the
networks utilised in cloudy and humid, which were 99.46+0.13

−0.17 and 99.20+0.40
−0.00, respectively. Sec-

ond, the MSE between the true and predicted mean values for temperature, being 0.0877+0.0268
−0.0177.

Importantly, DeepSeaProbLog was able to get close to the correct amount of noise on temperature
from the distant supervision, deviating by 1.10+0.14

−0.12.

Note how this neural and hybrid Bayesian model is a prototypical example of how to exploit the
complex dependencies of a probabilistic world. It can be seen as the first step towards being able to
successfully apply neural-symbolic principles to domains such as robotics, which involves logical
reasoning over discrete and continuous random variables. While DeepSeaProbLog currently lacks
the capacity to deal with the dynamics of such an application, it is a promising language in which to
symbolically model the uncertain environment of such an autonomous agent.

7 CONCLUSION

We presented DeepSeaProbLog, a novel neural-symbolic probabilistic logic programming language
that integrates hybrid probabilistic logic and neural networks. Inference is dealt with efficiently
through approximate weighted model integration while learning is facilitated by reparametrization
and continuous relaxations of non-differentiable logic components. Our experiments illustrated
how DeepSeaProbLog is capable of intricate probabilistic modelling allowing for meaningful weak
supervision while maintaining strong out-of-distribution performance. Moreover, they showed how
hybrid probabilistic logic can be used as a flexible structuring formalism for the neural paradigm that
can effectively optimise and reuse neural components in different tasks.
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A SPECIAL CASES OF DEEPSEAPROBLOG

The syntax and semantics of DeepSeaProbLog generalise a number of probabilistic logic program-
ming dialects. For instance, if we assume no dependency of the distributional facts on input data or
external neural functions, we obtain a language equivalent to Gutmann et al.’s Distributional Clauses
(DC) (Gutmann et al., 2011) when restricted to distributional facts. Finally, if we allow for data
dependent neural functions in the NDFs but restrict them to Bernoulli and categorical distributions,
we obtain Manhaeve et al.’s DeepProbLog (Manhaeve et al., 2018) as a special case.
Proposition A.1 (DeepSeaProbLog strictly generalises DeepProbLog). DeepProbLog is a strict sub-
set of DeepSeaProbLog where the set of comparison predicates is restricted to {=:=}, comparisons
involve exactly one random variable and the measure dPFD

factorizes as a product of independent
Bernoulli measures

∏
i:xi~bi∈FD

dPbi . The subscript on dPbi explicitly identifies the measure as the
ith Bernoulli measure and the indices of the product go over all the (Bernoulli) random variables
defined in the set of distributional facts FD.
Proof. We prove Proposition A.1 by showing that applying the restrictions on the constraints and
measure in a DeepSeaProbLog program leads to possible worlds that have the same probability of
being true as in DeepProbLog. First we write down the definition of the probability of a possible
world in a DeepSeaProbLog program.

P (ωCM
) =

∫ ( ∏
ci∈CM

1(ci)

) ∏
ci∈CM\CM

1(c̄i)

 dPFD
(A.1)

Now observe that, since there are only Bernoulli distributions, we only need to consider two possible
outcomes of a random variable xi, either zero or one. Therefore, only two kinds of comparisons
are present in the program, xi=:=0 or xi=:=1 (remember that we restrict ourselves to univariate
comparisons). Now note that the following equivalence xi=:=1 ↔ ¬(xi=:=0) holds, which means
that we can arbitrarily limit comparisons to one of the two possible outcomes of a random variable,
e.g., xi=:=0.

This equivalence can be used to replace the constraints ci in Equation A.1 by equality constraints
involving comparisons to the zero outcome, i.e.,

P (ωCM
) =

∫ ( ∏
i:ci∈CM

1(xi=0)

) ∏
i:ci∈CM\CM

1(xi ̸=0)

 ∏
i:xi~bi∈FD

dPbi , (A.2)

where the factorisation of the measure was also applied. Next, we introduce the following notation
for the random variables present in the set of constraints CM and CM \ CM :

x+ := xi : ci ∈ CM (A.3)

x− := xi : ci ∈ CM \ CM (A.4)

Note that we only need to consider the case where x+ ∩ x− = ∅, as otherwise the probability of the
possible world would simply be zero and would not contribute to the overall probability of the query
atom. Because of this, we can further factorize the measure as

∏
i:xi~bi∈FD

dPbi =

( ∏
i:ci∈CM

dPbi

)
︸ ︷︷ ︸

=:dP+

 ∏
i:ci∈CM\CM

dPbi


︸ ︷︷ ︸

=:dP−

, (A.5)

so the integral of a product in Equation A.2 can be rewritten as the product of integrals

P (ωCM
) (A.6)

=

[∫ ( ∏
i:ci∈CM

1(xi=0) dP+

)]∫  ∏
i:ci∈CM\CM

1(xi ̸=0) dP−

 ,
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We have two integrals with integrands that are a product of univariate comparisons. In other words,
the factors are all independent. Furthermore, we have a Bernoulli product measure, which means that
we can again push the integral inside the product to yield

P (ωCM
) = (A.7)[ ∏

i:ci∈CM

(∫
1(xi=0) dP+

)] ∏
i:ci∈CM\CM

(∫
1(xi ̸=0) dP−

) . (A.8)

At this point we can simply perform the integrations and obtain

P (ωCM
) =

∏
i:ci∈CM

pi
∏

i:ci∈CM\CM

(1− pi), (A.9)

which coincides with the probability of a possible world in DeepProbLog (cf. (Manhaeve et al., 2021a,
Section 3)).

Proposition A.1 can easily be extended to also allow for measures of finite categorical distributions,
which then translates to (neural) annotated disjunctions. Consequently, as DeepProbLog is a strict
superset of ProbLog (Fierens et al., 2015), DeepSeaProbLog also strictly generalises ProbLog.

B PROOF OF PROPOSITION 3.1

Proposition 3.1 (Measureability of query atom). Let P be a valid DeepSeaProbLog program, then P
defines, for an arbitrary query atom q, the probability that q is true.
Proof. DeepSeaProbLog is in essence a subset of the probabilistic logic programming language
defined by Gutmann et al. (2011) – the only difference being that the parameters on the right-hand
side of a neural distributional fact are not limited to numerical constants any more but can be arbitrary
numeric terms. Under the condition that all NDFs and PCFs are valid, this does, however, not violate
any of the assumptions made in (Gutmann et al., 2011, Proposition 1) (proving the measurability of
a program). We can, hence, conclude that a valid DeepSeaProbLog program induces a probability
measure for q.

Note that, similar to ProbLog and DeepProbLog, the semantics for DeepSeaProbLog are only defined
for so-called sound programs (Riguzzi and Swift, 2013), which means that all programs become
ground eventually when queried.

C PROOF OF PROPOSITION 4.1

Proposition 4.1 (Inference as WMI). Let us assume that the measure dPFD
decomposes into a joint

probability density function w(x) and a differential dx. The probability of a query atom can then be
expressed as the weighted model integration problem

P (q) =
∫ [∑

CM⊆CM :q∈ωCM

∏
ci∈CM∪CM

1(ci(x))
]
w(x) dx, (4.1)

where CM := {c̄i | ci ∈ CM\CM} .
Proof. First, let us consider the indices of the two product expressions in Equation 3.1. We define

CM := {c̄i | ci ∈ CM\CM}
such that Equation 3.1 can be rewritten as

P (ωCM
) =

∫  ∏
ci∈CM∪CM

1(ci(x)

 dPFD
(C.1)

Furthermore, decomposing the measure into a probability distribution w(x) and the differential dx
of the integration variables yields∫  ∏

ci∈CM∪CM

1(ci(x))

 · w(x) dx. (C.2)

15



Under review as a conference paper at ICLR 2023

We can now plug this last expression into Equation 3.3 resulting in

P (q) =

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · w(x) dx. (C.3)

Note that we changed the order of the integration and summation. This operation was shown to be
valid in Zuidberg Dos Martires et al. (2019) using de Finetti’s theorem. Zuidberg Dos Martires et al.
(2019) also showed that the expression in Equation C.3 is indeed a weighted model integral as defined
by Belle et al. (2015). Specifically, line P2 in the proof of Theorem 2 in Zuidberg Dos Martires et al.
(2019) corresponds to C.3, which is shown to be equal to an instance of WMI.

D SYMBOLIC INFERENCE AND DISCRETE VARIABLES

The inference algorithm of DeepSeaProbLog converts queried probabilistic logic programs to arith-
metic circuits (Darwiche and Marquis, 2002). This mechanism is similar to the one present in the
implementations of ProbLog2 (Fierens et al., 2015) and DeepProbLog. The circuit then represent the
function SP(x) of recursively nested sums of products. We exemplify this conversion on the example
program in Listing 2.
humid(Data) ~ bernoulli(humidity_detector(Data)).
temp(Data) ~ normal(temperature_predictor(Data)).
snowy_weather ~ beta(2, 7). sunny_weather ~ beta(5, 3).

good_weather(Data, Degree) :-
humid(Data) =:= 1, temp(Data) < 0, snowy_weather < Degree.

good_weather(Data, Degree) :-
humid(Data) =:= 0, temp(Data) > 15, sunny_weather > Degree.

query(good_weather(data1, degree1)).

Listing 2: Our running good_weather example, repeated.

Figure D.2 shows the computation graph obtained from converting the queried program above into an
arithmetic circuit. The top ‘+’ node corresponds to the two succeeding branches of good_weather.
Each of these branches depends on a conjunction of three conjuncts, leading to the three ‘×’ nodes.
Each branch terminates at three leaves, two of which contain PCFs with continuous random variables
that are being approximated by reparametrised sampling (in orange). The other PCF is replaced by its
expected probability obtained via exact symbolic inference, which is again differentiable. Below the
leaves, we can see how data1 forms the input to the neural networks that predict the distributional
parameters of temp(data1) and the probabilities of humid(data1).

E DETAILS ON DERIVATIVE ESTIMATE

To give further details on estimating the derivative we will write the expression ∂λPΛ(q) in terms of
indicator functions

∂λPΛ(q) = ∂λ

∫
SP(x) · wΛ(x) ∂x (E.1)

= ∂λ

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · wΛ(x) dx, (E.2)

where the dependency of the probability on the neural parameters Λ is again made explicit.
Reparametrizing the distribution wΛ(x) yields

∂λPΛ(q) = ∂λ

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(r(u,Λ))

 · p(u) du. (E.3)
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+

× ×

[T < 0] [SnW < d1] [T < 15][T < 15][SuW > d1]

× ×p(H = 1) p(H = 0)

data1
Figure D.2: The result of applying our symbolic inference to the query in Listing 2. The blue boxes
are discrete variables, while the orange ones are PCFs with continuous variables. Note that we
have abbreviated temp(data1) as T, data1 as d1, humid(data1) as H, snowy_weather
as SnW and sunny_weather as SuW.

Explicitly writing out the indicators clearly illustrates the non-differentiability of SP(x), which
prevents us from applying Leibniz’ integral rule (Flanders, 1973) to swap the order of integration and
differentiation. To obtain the necessary differentiability of the integrand, the continuous relaxations
introduced by Petersen et al. (2021) are utilised. These relaxations allow for comparison formulae of
the form

(g(x) ▷◁ 0), with ▷◁ ∈ {<,≤, >,≥,=, ̸=} (E.4)

to be relaxed. We write the continuous relaxation of an indicator function 1(ci(x)) = 1(gi(x) ▷◁ 0)
as si(x). Four specific cases of relaxations arise, depending on the comparison operator used.
Specifically, we define

si(x) =


σ(βi · gi(x)) if ▷◁ ∈ {>,≥},
σ(−βi · gi(x)) if ▷◁ ∈ {<,≤},
σ(βi · gi(x)) · σ(−β′

i · gi(x)) if ▷◁ ∈ {=},
1− σ(βi · gi(x)) · σ(−β′

i · gi(x)) if ▷◁ ∈ {≠},

(E.5)

where βi and β′
i are the coolness parameters of the continuous relaxations and σ denotes the sigmoid

function. Note that all four cases originate from the root choice of approximating the step function as
a sigmoid function. Additionally, this choice is sound as we have that

lim
βi→+∞

σ(βi · gi(x)) = 1(gi(x) ≥ 0). (E.6)

Continuously relaxing indicator functions using the definition of Equation E.5 renders the integrand
differentiable, allowing the application of Leibniz’ integral rule and yielding

∂λPΛ(q) ≈
∫

∂λ
∑

CM⊆CM :
q∈ωCM

 ∏
i:ci∈CM∪CM

si(r(u,Λ))

 · p(u) du. (E.7)

The derivative ∂λPΛ(q) can now be computed using off-the-shelf automatic differentiation software
such as PyTorch (Paszke et al., 2019) or TensorFlow (Abadi, 2016), which entails that estimating
the gradient ∇ΛP (q) = (∂λP (q))λ∈Λ is computationally as expensive as computing the probability
itself, up to a constant factor (Griewank and Walther, 2008).
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F PROOF OF PROPOSITION 4.2

Proposition 4.2 (Unbiasedness in the infinite coolness limit). Let P be a DeepSeaProbLog program
and q a query atom with PCFs (gi(x) ▷◁ 0) and corresponding coolness parameters βi. If ∂λ(gi ◦ r)
is locally integrable over Rk and every βi → +∞, then

∂λP (q) =
∫
∂λSPs(r(u,Λ)) · p(u) du. (4.6)

Proof. First we express P (q) using Equation C.3, which we then rewrite without loss of generalisa-
tion using only Heaviside distributions2.

P (q) =

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · w(x) dx (F.1)

=

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
gi∈ΣCM∪CM

H(gi(r(u,Λ)))

 · p(u) du. (F.2)

In the Equation above, H(x) denotes the Heaviside distribution and ΣCM∪CM
denotes the set of all

sigmoid functions involved in the continuous relaxations of the set CM∪CM .

This rewrite is possible as the indicator function of any PCF c(x) is either a step function or
decomposes into a product of step functions. Indeed, if the c(x) is of the form g(x) ≥ 0, then
1(c(x)) = H(g(x)). If it is of the form g(x) = 0, then 1(c(x)) = H(g(x)) ·H(−g(x)). The other
cases with different comparison operators follow from these two.

Differentiating in a distributional sense and applying Leibniz’ integral rule (Flanders, 1973) then
yields

∑
CM⊆CM :
q∈ωCM

 ∑
gj∈ΣCM∪CM

∫
∂λH(gj(r(u,Λ))) ·

∏
i ̸=j

H(gi(r(u,Λ))) · p(u) du

 . (F.3)

We can reduce the discussion by considering each term in this equation separately, because of the
linearity of the integral. In other words, to prove our statement, it suffices to show that∫

∂λH(gj(r(u,Λ))) ·
∏
i̸=j

H(gi(r(u,Λ))) · p(u) du (F.4)

is equal to

lim
β1,...,βn→+∞

∫
∂λσ(βj · gj(r(u,Λ))) ·

∏
i ̸=j

σ(βi · gi(r(u,Λ))) · p(u) du. (F.5)

For brevity’s sake, we will write the products∏
i̸=j

H(gi(r(u,Λ))) and
∏
i̸=j

σ(gi(r(u,Λ))), (F.6)

as πj(u) and πσ
j (u), respectively.

Next, using distributional notation, Equation F.4 can be further simplified as

⟨∂λ(H ◦ gj ◦ r), πj · p⟩ = ⟨δ ◦ gj ◦ r, ∂λ (g ◦ r) · πj · p⟩ . (F.7)

Note that this expression utilises the assumption that ∂λ(gj ◦ r) ∈ L1
loc(Rk), i.e., ∂λ(gj ◦ r) is locally

integrable over Rk. This is not a strong assumption, since distributions (generalised functions) are
2Here we use the term distribution in the sense of a generalised function (Schwartz, 1957) and not in the

sense of a probability distribution.
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only well-defined when acting on functions that are at least locally integrable. Equation F.5 can
similarly be rewritten and simplified to obtain the equality

lim
β1,...,βn→+∞

〈
∂λ(σ ◦ gj ◦ r), πσ

j · p
〉

(F.8)

= lim
β1,...,βj−1,βj+1,...,βn→+∞

〈
δ ◦ gj ◦ r, ∂λ(g ◦ r) · πσ

j · p
〉
. (F.9)

More explicitly,

(F.5) = lim
β1,...,βn→+∞

∫
∂λσ(βj · gj(r(u,Λ))) · πσ

j (u) · p(u) du (F.10)

= lim
β1,...,βn→+∞

∫
l · e−g(r(u,Λ))·βj

(1 + e−g(r(u,Λ))·βj )2
∂λgj(r(u,Λ)) · πσ

j (u) · p(u) du (F.11)

= lim
β1,...,βj−1,βj+1,...,βn→+∞

∫
δ(gj(r(u,Λ))) · ∂λgj(r(u,Λ)) · πσ

j (u) · p(u) du. (F.12)

The transition from Equation F.11 to Equation F.12 uses the fact that

lim
βj→+∞

βj · e−g(r(u,Λ))·βj

(1 + e−g(r(u,Λ))·βj )2
= δ(g(r(u,Λ))), (F.13)

in the distributional sense. In addition, we also have (again in the distributional sense) that

lim
βi→+∞

σ(βi · gi(r(u,Λ))) = H(gi(r(u,Λ))). (F.14)

This final equation allows us to simplify πσ
j (u) in Equation F.11 to πj(u) by repeating the above

steps for each index i separately. Hence, we can conclude that our relaxation of ∂λP (q) is indeed
unbiased in the infinite coolness limit.

G EXPERIMENTAL DETAILS

This section will introduce the DeepSeaProbLog programs, neural network architectures and elabo-
rated figures for each of the experiments present in the main body of the paper. All experiments were
run on an HP ZBook Power G8 (NVIDIA T1200 GPU, Intel i9-11900H @ 2.50GHz, 16 GB RAM),
except the LTN comparison in Section 6.1. Note that the optimisation of any hyperparameters, such
as learning rate, dropout rate or number of training epochs, was done via a grid search on a separate
validation set for 10 independent runs.

G.1 NESY OBJECT DETECTION

Setup details and DeepSeaProbLog program. We write the full DeepSeaProbLog program used
for the subtraction experiment below. The query subtraction is called and optimized for 15 000
training samples of images containing two MNIST digits. Moreover, a set of 100 memory samples
with direct supervision on the locations of the bounding boxes of the two digits is used to optimise
location_supervision in parallel to calibrate the underspecified location predictions. The
same set of 100 samples is initially used in a separate curriculum learning phase with additional
supervision on the class labels, in order to avoid degenerate solutions. As for validation and test sets,
the number of samples in each depends on which concrete setting is considered. For the in-distribution
setting, validation and test sets consist of 1000 and 5000 samples, respectively. Conversely, in the
out-of-distribution case, the validation set has 1000 samples while the test set has 2000 available.

width ~ normal(0, boxwidth).
region(Im, ID, XY) ~ generalisednormal(region_dimensions(Im, ID, XY)).
object(Im, ID) ~ bernoulli(region_score(Im, ID)).
digit(Im, ID) ~ categorical(d_classifier(Im, ID), [0,...,9]).

subtraction(Im, Diff, Dist) :-
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object(Im, ID1), object(Im, ID2), ID1 =\= ID2,
region(Im, ID1, y) =:= region(Im, ID2, y),
distance(Im, ID1, ID2, PredDist), PredDist =:= Dist,
region(Im, ID1, x) < region(Im, ID2, x),
Diff is digit(Im, ID1) - digit(Im, ID2).

location_supervision(Im, X1, X2, Y1, Y2) :-
object(Im, ID1), object(Im, ID2), ID1 =\= ID2,
region(Im, ID1, x) < region(Im, ID2, x),
region(Im, ID1, x) =:= X1 + width, region(Im, ID2, x) =:= X2 + width,
region(Im, ID1, y) =:= Y1 + width, region(Im, ID2, y) =:= Y2 + width.

curriculum(Im, N1, N2, X1, X2, Y1, Y2 ) :-
object(Im, ID1), object(Im, ID2), ID1 =\= ID2,
region(Im, ID1, x) < region(Im, ID2, x),
digit(Im, ID1) =:= N1, digit(Im, ID2) =:= N2,
region(Im, ID1, x) =:= X1 + width, region(Im, ID2, x) =:= X2 + width,
region(Im, ID1, y) =:= Y1 + width, region(Im, ID2, y) =:= Y2 + width.

Parameters and neural architectures. A schematic overview of the neural architecture used for
all different methods can be seen in Figure G.3. In the case of the neural-symbolic methods, the
output of this architecture is immediately used in further logic. In the case of the neural baseline,
the logic part is replaced by a 4-layer fully connected network with 128, 96, 64 and 19 hidden units
followed by a softmax activation function. For LTN, the only architectural difference is the output
of the location network, which only provides a single point estimate for the position. Finally, the
Adam optimiser (Kingma and Ba, 2015) was utilised with a learning rate of 10−3. DeepSeaProbLog
was run for 4 epochs, LTNs were run for 10 epochs while the neural baseline was given 30 epochs,
all with a batch size of 10. All methods optimised the cross-entropy loss function, in this and all
following experiments. Finally, an annealing scheme for the coolness parameters of our comparison
formulae was also used. Specifically, we used a hyperbolic tangent function to scale the coolness
parameter between 1 and 8 for the equality comparisons. The inequality comparisons ranged from 1
to 24. Both these values were determined through a grid search on the separate validation set. We
performed an annealing step after every batch for 1000 batches after which the maximum coolness (8
or 24) was reached. Once the maximum coolness was reached it stayed constant. Recall that these
coolness parameters determine the strictness of the comparisons and, consequently, also control the
learning signal that can flow through the comparisons.

Complications. The weak supervision on just the result of the difference of two digits can lead
to a number of logically equivalent, yet degenerate solutions that do not correspond to our human
intuition. For example, if the neural digit classifiers would reverse the order of their classification, e.g.,
classifying a true 8 as a 1 or a true 5 as a 4, then a correct subtraction result is still given because of the
symmetry of the subtraction. Analogously, only knowing the distance between the bounding boxes
allows for an infinite amount of correct relative coordinate predictions on the continuous side of the
logic. However, these boxes will not correspond to the locations of the digits and are also undesirable
solutions. In other words, the distant supervision leaves both the discrete and continuous components
underspecified. Such degenerative solutions not only do not align with our human interpretation, but
they might also induce a degree of volatility in the learning process. These issues are the reason why a
phase of curriculum learning and multi-predicate optimisation as described in our setup was included,
as it forces the neural networks into a direction that is consistent with our usual interpretations of
the digits and their absolute locations. Similar behaviour was observed by Manhaeve et al. (2021b)
where a brief pre-training phase gave a sufficient direction for learning while using their approximate
probabilistic inference techniques. The pre-training phase was given 50 epochs using a batch size of
2 for DeepSeaProbLog and the neural baseline. LTNs trained for 100 epochs because of a slower rate
of convergence.

Additional results and interpretations. Figures G.4 and G.5 show a more detailed evolution of
the training process of the different methods. First, they illustrate the flexibility of NeSy methods
since the pre-trained networks seemed to have little effect on the neural baseline. In particular, these
networks only seem to affect the initial learning stages of the neural baseline, as can be seen from a
couple of early peaks in validation accuracy. However, because of the lack of a proper function for
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Figure G.3: Overall neural architecture for the subtraction experiment. The initial convolutions are
shared by both the classification and regression networks. To get two box predictions, we apply the
same 3-layer regression network on each half of the final convolutional output by flattening that
output. This can be easily generalised to more boxes for more objects. Given the box predictions, the
initial image is masked with these boxes. Both masked images then go to the same convolutional
layers again and their full outputs are then put through the classification network to obtain the class
predications of every box. All activations functions are set to the ReLU function, except the output of
the classification network, which is a softmax function.

the networks, a purely neural optimisation can not fully exploit these pre-trained states. Second, the
evolution itself seems to be more consistent for both NeSy methods due to lower variability. Note
however that, while LTNs can solve this tasks, they only provide a point estimate without any further
indication to the uncertainty on this estimate. DeepSeaProbLog on the other hand models the location
with inherent uncertainty. It also has to be mentioned that DeepSeaProbLog and LTNs are still a
lot quicker than the neural baseline when looking at actual computation time. Roughly speaking,
every 100 iterations took about 20 seconds for DeepSeaProbLog while the neural baseline took
around 10 seconds. Given the rate of convergence of both methods (Figure G.4), DeepSeaProbLog
is still significantly faster than the neural baseline even though it includes probabilistic logic in its
architecture.

0 10000 20000 30000 40000
Iterations

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

0 2000 4000 6000 8000 10000 12000 14000
Iterations

0

10

20

30

40

50

60

Tr
ai

ni
ng

 lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

0 1000 2000 3000 4000 5000 6000
Iterations

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Figure G.4: Neural baseline (left), LTNs (middle) and DeepSeaProbLog (right) training evolution for
the in-distribution setting. Note that the neural baseline still requires far more optimisation updates to
reach acceptable performance, while still not reaching the same level as DeepSeaProbLog or LTNs.
Note that the LTN loss is different in scale as its objective is satisfaction maximization (maxSAT) (Li
and Manya, 2021).

Joint approximate training for two-stage object detectors. As mentioned in Section 6.1,
DeepSeaProbLog can mitigate the discontinuity between the box regression and classification com-
ponents of a two-stage object detector through probabilistic masking. Specifically, we consider the
indices of every pixel as their x and y coordinates. Our predicted generalised normal distributions
expresses a two-dimensional probability distribution on the image, hence we can evaluate every pixel
according to this distribution. By normalising these evaluations such that the maximum value is 1,
we can use them as masking values. In other words, we can apply our two-dimensional generalised
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Figure G.5: Training evolution for the neural baseline (left) compard to LTNs (middle) and
DeepSeaProbLog (right) in the out-of-distribution setting. The neural baseline fails outright to
generalise to the validation and test set.

normal distribution representing our bounding box directly as a mask on the image. Importantly,
this procedure is completely differentiable as we evaluate the pixel coordinates according to the
parametrized distribution. Moreover, it implies that the continuous reasoning that DeepSeaProbLog
does on the distributions corresponds soundly to spatial reasoning on the boxes. Probabilistic mask-
ing avoids having to use a specific memory set of samples with direct supervision on the absolute
coordinates of the desired bounding boxes, since if the predicted coordinates do not align with the
actual digits, the learning signal of the classifier will correct that. Of course, to prevent that the
regression predicts a distribution that covers the whole image, we have to regularise the scale of the
distributions. This is done by including a PCF that expresses that a generalised normal centered at
zero with the predicted scale of the boxes is equal to a generalised normal with a scale value equal to
half the width of the desired box. It yields a noticeable improvement to both accuracy and IoU. In the
out-of-distribution setting, classification accuracy of the difference is 93.00+0.91

−0.37 while the IoU is
62.463.53−0.82.

G.2 NEURAL-SYMBOLIC VARIATIONAL AUTOENCODER

Setup details and DeepSeaProbLog programs. Each data sample consists of 2 regular MNIST
digits and the result of their subtraction. The first digit takes the place of the minuend while the second
one is interpreted as the subtrahend. The training, validation and test sets had 30 000, 1 000 and 1
000 samples of this form, respectively. Encoding a VAE without additional logic in DeepSeaProbLog
is straightforward (Listing 3), while adding logic involves more engineering freedom (Listing 4). We
opted for the simplest use of a conditional variational auto-encoder by only using the classified digit
as additional input to the decoder. Note that during optimisation, both the VAE and digit classifier are
trained jointly.

prior ~ normal(0, 1).
vae_latent(Image) ~ normal(vae_encoder(Image)).

good_image(Image) :-
(vae_latent(Image) =:= prior),
reconstruction_loss(vae_decoder(vae_latent(Image)), Image).

Listing 3: Prototypical implementation of a VAE in DeepSeaProbLog. The encoder and decoder have
distinct identifiers, vae_encoder and vae_decoder. The outputs of the encoder are the means
and variances of the latent distributions of the VAE, which are modelled explicitly in DeepSeaProbLog
as a series of normally distributed continuous random variables. The definition of a good image is
given as an image with a standard normal latent representation and whose decoding unifies with itself.

prior1(ID) ~ normal(0, 1). prior2(ID) ~ normal(0, 1).
digit(Latent) ~

categorical([0, ..., 9], digit_classifier(Latent)).
vae_latent(Image, Component) ~

normal(vae_encoder(Image, Component)).
vae_reconstruction(Latent) ~

normal(vae_decoder(Latent), 0).
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good_subtraction_image(Image1, Image2, Difference) :-
vae_latent(Image1, ID) =:= prior1(ID),
vae_latent(Image2, ID) =:= prior2(ID),
LeftDigit is digit(vae_latent(Image1, logic)),
RightDigit is digit(vae_latent(Image2, logic)),
Difference is LeftDigit - RightDigit,
concat(vae_latent(Image1, shape), LeftDigit, LeftEmb),
concat(vae_latent(Image2, shape), RightDigit, RightEmb),
reconstruction_loss(vae_reconstruction(LeftEmb), Image1),
reconstruction_loss(vae_reconstruction(RightEmb), Image2).

Listing 4: Combining subtraction logic with a VAE in DeepSeaProbLog. The latent distribution for
each of the two images is split into a shape and logic component. The logic component is reg-
ularised and used as input to the digit classifier digit_classifier while the shape component
is only regularised and then attached to the most likely prediction of digit_classifier. This
combination forms the input to the decoder, i.e., the decoder will generate an image of the attached
digit. Note that the predicted digits also have to match the given subtraction result, which is how the
digit classifier itself can be optimised.

Parameters and neural architectures. The NeSy VAE has two main neural components (Figure
G.6), one for the VAE itself and another that handles the digit classification used in the subtraction
logic. In contrast to the subtraction experiment, since the images are now separated, there is no need
to determine the location of the digits. Similar to the subtraction experiment, a small set of 256
samples with direct supervision on the digit labels is again used to pre-train the classification portion
of the overall network. All training utilised Adam as optimiser with a learning rate of ·10−3 and took
20 epochs using a batch size of 10. The pre-training was given 1 epoch with a batch size of 4.

Conv2D(32, 3, 2)

Conv2D(64, 3, 2) Logic

Shape
Sampling

Dense(1568)

Dense(32) + Dense(24) + Dense(10) + Softmax

7

Figure G.6: VAE encoder-decoder architecture. The decoder is, apart from an initial dense layer,
equal to the transpose of the encoder. Note how the latent distributions are split into a logic and shape
component and the most likely prediction of the classifier is attached to the shape sample, which
is then taken as input to a dense layer. All layers use ReLU activation functions, except the final
convolutional one, which applies a hyperbolic tangent.

Complications. Regular VAE optimisation has two components: a Kullback-Leibler (KL) diver-
gence term and a reconstruction loss term. Since DeepSeaProbLog requires probabilistic values,
i.e., between 0 and 1, a probabilistic translation of these terms is necessary for optimisation in
DeepSeaProbLog. The KL divergence term compares the latent distribution of the VAE to a standard
normal prior and can as such be replaced by a =:= comparison in the logic. The reconstruction loss is
chosen to be the exponentiation of a negated average L1 loss function, as it yields a value between 0
and 1 that can be interpreted as the probability that two images match. Specifically, the loss between
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Figure G.7: Additional conditional query examples. 3 random difference values were given for 5
random minuends. All generated subtrahends were correct. Note the preservation of the style of the
given minuends.

two such images I1, I2 ∈ R768 is given by

exp

(
− 1

768

768∑
i=1

|I1i − I2i|

)
. (G.1)

The latter can be interpreted as a form of soft unification (Rocktäschel and Riedel, 2017). While the
usual function for soft unification is often chosen as a radial basis function, it is an average L1 in our
case. This loss function was chosen as it gave better and more crisp generations in comparison to a
radial basis function.

Additional results and interpretations. Emphasis has to be put on the flexibility of generation
in DeepSeaProbLog, as the generation of MNIST digits can be carried out in a range of different
contexts without further optimisation. Indeed, one needs only construct a new predicate describing
the logical context. The generative query that yields an image of a minuend and subtrahend that
subtract to a given value is given in Listing 5. The conditional query that generates an image of
a subtrahend given an image of a minuend and a difference value is given in Listing 6. Note in
particular that the latter query generates subtrahends in the same ‘style’ as the given minuend, as can
be visually confirmed by looking at the generations in Section 6.2. Additional conditional generations
are given below in Figure G.7.

generate_subtraction(Difference, Generation1, Generation2) :-
member(D1, [0, ..., 9]), member(D2, [0, ..., 9]),
Difference is D1 - D2,
attach(prior, D1, LeftEmb), attach(prior, D2, RightEmb),
Generation1 is vae_reconstruction(LeftEmb),
Generation2 is vae_reconstruction(RightEmb).

Listing 5: Given a difference value, generate images of a minuend and subtrahend that subtract to that
value. The logic deduces all possible combinations for D1 and D2 that meet the subtraction evidence
and attaches these to two random samples of the shape component. These two combinations lead to
the two desired generations.

generate_conditional_subtraction(RightIm, Diff, LeftGen) :-
member(D1, [0, ..., 9]),
D2 is digit(vae_embedding(RightIm, logic)),
Diff is D1 - D2,
attach(vae_embedding(RightIm, shape), D1, LeftEmb),
LeftGen is vae_reconstruction(LeftEmb).

Listing 6: Given an image of a subtrahend and a difference value, generate an image of a subtrahend.
The subtrahend image is classified such that the logic can deduce the value of D1 that meets the given
difference. By attaching that value of D1 to the shape component of the given subtrahend image, the
VAE can generate an image of the correct minuend in the same ‘style’ of handwriting.
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G.3 NEURAL HYBRID BAYESIAN NETWORK

Setup details and DeepSeaProbLog program. Our encoding of the neural hybrid Bayesian
network of experiment 6.3 is given in Listing 7. The goal is to optimise the neural networks
responsible for the classification of humid and cloudy conditions, as well as the network that
predicts the temperature value. Additionally, we explicitly model the noise present on the true
temperature labels as an learnable program parameter. To achieve this, a set of 1200 triples (Im1,
Im2, X) is used as training set, where Im1 is an MNIST digit of 0, 1 or 2 while Im2 is an MNIST
digit 8 or 9. In other words, we use MNIST digits as proxies for real imagery data. X is a set of
25 numerical meteorological features sampled from a publicly available Kaggle dataset (Cho et al.,
2020). The label of each triple is the probability that the weather, as described by the correct labels
of humid, cloudy and temperature, is good following our rules. Computing this probability
label is non-trivial in and of itself. We utilised a large set of 1000 samples to approximate the correct
underlying distributions and to obtain an approximate probability label.

humid(Im) ~ bernoulli(humid_detector(Im)).
cloudy(Im) ~ categorical(cloud_detector(Im), [0, 1, 2]).

temperature(X) ~ normal(temperature_detector(X), t(_)).
snowy_pleasant ~ beta(11, 7). rainy_pleasant ~ beta(1, 9)
cold_sunny_pleasant ~ beta(1, 1). warm_sunny_pleasant ~ beta(9, 2).

rainy(I1, I2) :-
cloudy(I1) =\= 0, humid(I2) =:= 1.

good_weather(I1, I2, X) :-
rainy(I1, I2) =:= 1, temperature(X) < 0, snowy_pleasant > 0.5.

good_weather(I1, I2, X) :-
rainy(I1, I2) =:= 1, temperature(X) >= 0, rainy_pleasant > 0.5.

good_weather(I1, I2, X) :-
rainy(I1, I2) =:= 0, temperature(X) > 15, warm_sunny_pleasant > 0.5.

good_weather(I1, I2, X) :-
rainy(I1, I2) =:= 0, temperature(X) <= 15, cold_sunny_pleasant > 0.5.

P :: depressed(I1) :-
cloudy(I1) =:= N, P is N * 0.2.

enjoy_weather(I1, I2, X) :-
\+depressed(I1), good_weather(I1, I2, X).

Listing 7: The NDFs humid(Im) and cloudy(Im) classify a given sensory image as describing
humid and cloudy conditions, respectively. temperature(X) takes a set of 25 numerical features
X and predicts a mean temperature from those. Depending on the value of the temperature, 4 different
cases of weather and their degree of pleasantness are described by beta distributions. We define
good_weather as being true if the degree of pleasantness of any case is larger than 0.5. Finally,
a person can be depressed with probability 0.2 or 0.4 depending on the degree of cloudy.
Both then determine whether a person can enjoy the weather, if they are not depressed and
good_weather is the case.

Parameters and neural architectures. We utilise a simple MNIST classifier (Figure H.8) in the
NDFs cloudy and humid, while the network in the neural predicate temperature is a 3-layer,
fully connected network with layers of size 35, 35 with ReLU activations and 1 with linear activation.
Note that our classifiers share a common set of convolutional layers, requiring the learning of features
that generalise to both classification problems. Additionally, the noise on the temperature prediction
is modelled explicitly as a learnable TensorFlow variable with an initial value of 10. This choice is
not arbitrary, as the initial neural parameter estimate will hover around the middle of the possible
temperature values and a choice of 10 as initial standard deviation allows covering the entire range
of temperature values with a non-insignificant probability mass. In this way, gradient information
across the entire temperature domain can be accumulated during learning. Finally, DeepSeaProbLog
was trained for 20 epochs using Adam with learning rate 10−3 and batch size of 10.
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Complications. Ideally, simple 0-1 labels of enjoy_weather would be more intuitive, as
we often do not observe the probability of an event but single cases where it is either true or false.
However, our experiments have showed that our small dataset is insufficient to find an optimal solution
using such labels in conjunction with the very distant supervision. To show that DeepSeaProbLog is
still able to find solutions in cases where the supervision is slightly less distant using only 0-1 labels,
we added a different neural hybrid Bayesian network experiment in Section H based on the famous
burglary-alarm example of probabilistic logic (Listing 8).

Additional results and interpretations. We want to stress that learning to predict the right mean
temperature from the distant supervision is not straightforward. The only learning signal for the
temperature has to pass through PCFs with a very wide range, meaning they do not specify the
exact temperature value immediately. Additionally, these PDFs still do not directly influence the
supervision of enjoy_weather, only good_weather. The Gaussian noise that renders the
temperature into a continuous random variable only further convolutes the task of determining the
temperature. We conclude that DeepSeaProbLog can really extract meaningful learning signals from
reasonably distant supervision.

H ADDITIONAL EXPERIMENT

As briefly mentioned in the experimental section G.3, one more experiment was performed to show
the promise of neural probabilistic logic programming in discrete-continuous domains in a more
practical setting of 0-1 observations.

H.1 NEURAL-CONTINUOUS BURGLARY ALARM

Setup details and DeepSeaProbLog program. The neural-continuous burglary alarm (Listing 9)
extends the classic example from Bayesian network literature (Listing 8).
0.1 :: earthquake.
0.3 :: burglary.
0.9 :: hears.

0.7 :: alarm :- earthquake.
0.9 :: alarm :- burglary.

calls :- alarm, hears.

Listing 8: Classical burglary-alarm ProbLog program. Three probabilistic facts for the events
earthquake, burglary and hears are given with their probabilities. The neighbour calls when
hearing an alarm, while an alarm can go off because of an earthquake or a burglary.

Each data sample is a triple (E,B,L), where E can be an MNIST digit 0, 1 or 2 while B can be
an MNIST 8 or 9. Values for E of 0, 1 and 2 correspond to no earthquake, a mild earthquake or a
heavy earthquake respectively. If B is an MNIST 8, then there is no burglary. If it is 9, then there is
a burglary. L can have either the value 0 or 1, indicating whether the neighbour called or not. Our
dataset contains 12 000 such triples for training, while having 1 000 for validation and 2000 for testing
purposes. Obtaining the weak supervision L is done by taking the true probability of calling given
the input and then randomly sampling according to that probability. To compute that true probability,
a single sample is taken from the neighbour’s true distribution. This true distribution has respective
means of 6 and 3 for the horizontal and vertical Gaussian while both directions have a standard
deviation of 3. Additionally, there are two possible ways to express that the distance of the neighbour
should be smaller than 10 distance steps before hearing the alarm. One can use either the squared
distance or the true distance in the rule hears. A separation is often maintained in the weighted
model integration literature (Zuidberg Dos Martires et al., 2019) between comparison formulae that
are polynomial and those that are generally non-polynomial. To illustrate that DeepSeaProbLog
can deal with both classes of formulae, we will perform experiments for both the squared distance
(polynomial, Listing 9) and the true distance (non-polynomial, Listing 10).
earthquake(Im) ~ categorical([0, 1, 2], earthquake_detector(Im)).
burglary(Im) ~ categorical([8, 9], burglary_detector(Im)).
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neighbour_x ~ normal(t(µx), t(σx)).
neighbour_y ~ normal(t(µy), t(σy)).

hears :-
neigbour_x * neighbour_x + neighbour_y * neighbour_y < 100.

P :: alarm(EarthquakeIm, _) :-
earthquake(EarthquakeIm) =:= N, P is N * 0.35.

0.9 :: alarm(_, BurglaryIm) :-
burglary(BurglaryIm) =:= 9.

calls(EarthquakeIm, BurglaryIm) :-
alarm(EarthquakeIm, BurglaryIm), hears.

Listing 9: Our extension of the burglary alarm example has two neural detectors responsible for
detecting earthquakes, earthquake_detector, and burglaries, burglary_detector. Ad-
ditionally, whether or not the neighbour can hear the alarm if it goes off depends on the spatial
distribution of this neighbour that is modelled as a two-dimensional Gaussian distribution. This
distribution is randomly initialised and its parameters also need to be optimised. Note that t(_) is
ProbLog notation for a single optimisable parameter. In DeepSeaProbLog, these are also considered
to be within the set of neural parameters Λ.

hears :-
sqrt(neighbour_x*neighbour_x + neighbour_y*neighbour_y) < 10.

Listing 10: Using the true distance in the hears predicate as a case of a non-polynomial comparison
formula. Note that DeepSeaProbLog has support for advanced operators, such as sqrt.

Parameters and neural architectures. The complete neural architecture of both the earthquake
and burglary classifiers is given in Figure H.8. Note that, even though their input consist of different
sets of MNIST digits, we enforce a shared set of convolutional layers. In addition to the neural
parameters in these networks, four independent parameters are present in the program. These are
used as the means and standard deviations for the neighbour’s spatial distribution and are randomly
initialised. Specifically, the means are sampled uniformly from the interval [0, 10] while the standard
deviations were sampled from [2, 10]. All optimisation was performed using regular stochastic
gradient descent with a learning rate of 8 · 10−2 for two epochs using a batch size of 10.

Conv2D(6, 5)

Conv2D(16, 5) Conv2D(2, 2) + Softmax

Burglary

classifier

Earthquake

classifier

Right 

Digit

GlobalAvgPool

Figure H.8: Overview of the architecture of the earthquake and burglary networks. Both share two
convolutional layers on top of which each then applies their own final convolutional layer followed
by a global average-pooling operation that reduces the dimension to the number of classes. Finally,
a softmax activation translates the output to probabilities. All other activation functions are ReLU
functions.

27



Under review as a conference paper at ICLR 2023

Complications. Because of the difference in nature between the parameters in the neural networks
and the four independent parameters in the Gaussian distribution, the latter required a boosted learning
rate to provide consistent convergence. Specifically, the gradients for these four parameters were
multiplied by a value of 20, which was found by a hyperparameter optimisation on the validation set.

Results and interpretation. Initial learning progress of the neural networks seems volatile (Figure
H.9), which is likely due to the unoptimised state of the neighbour’s spatial distribution. Two epochs
of training proves to be sufficient to optimise both the neural detectors and the distribution. In
fact, the earthquake and burglary classifiers converge to respective test accuracies of 98.73+0.22

−0.16

and 98.43+0.66
−0.50 when using the squared distance and very similar results for the true distance. The

4 parameters of the neighbour’s distribution do not converge to the true values, but that is to be
expected as they are underspecified. However, they do converge to values that provide satisfaction
rates of the comparison formula in hears that are close to those of the true underlying distribution.
All in all, three conclusions can be drawn. First, this experiment indicates that DeepSeaProbLog is
capable of jointly optimising neural parameters and independent, distributional parameters. Second,
DeepSeaProbLog seems to be able to fully exploit both polynomial and more general non-polynomial
comparison formulae. This shows the strength of our approximate approach, as exact methods often
fail to efficiently deal with non-polynomial formulae (Zuidberg Dos Martires et al., 2019). Third,
DeepSeaProbLog can deduce meaningful probabilistic information from weak labels. Indeed, in order
to optimise the neural detectors and the distribution, DeepSeaProbLog had to aggregate meaningful
update signals from the 0-1 labels across the given training data set to approximate the underlying
probability of calls.

To illustrate the strength of this final conclusion, consider the following. Assume
that a burglary occurs and that the neural detector correctly classify this occur-
rence, then the absolute difference in P (alarm(EarthquakeIm, BurglaryIm))
between a mild earthquake(EarthquakeIm) =:= 1 or a heavy earthquake
earthquake(EarthquakeIm) =:= 2 is only

|0.9 + 0.35− 0.9 · 0.35− (0.9 + 0.7− 0.9 · 0.7)| = 0.035, (H.1)

using Bayes’ rule. Hence, a mild earthquake only has a very small effect on the overall probability,
let alone in the case where the supervision itself is not even probabilistic.
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Figure H.9: Evolution of the training loss and validation accuracy of the neural ‘earthquake’ and
‘burglary’ detectors. For both squared (left) and true distance (right), the discrete supervision seems
to be sufficient to facilitate meaningful learning.

I LIMITATIONS

The main limitation of DeepSeaProbLog is one that it inherits from probabilistic logic in general, com-
putational tractability. Efficiently representing a probabilistic logic program is done via knowledge
compilation, which is #P -hard. Once the probabilistic program is knowledge compiled, evaluating
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the compiled structure is linear in the size of this structure. Inference remains linear in the size of
the compiled structure after the addition of continuous random variables as all samples can be run in
parallel with the current inference algorithm.

Although our sampling strategy is efficient in the sense that it is linear in the number of samples and it
can be executed in parallel for each sample, it remains very simple. At its core, we utilise importance
sampling to estimate the integration and this is known to not scale well to high dimensional spaces.
More intricate inference strategies exist within the field of weighted model integration (Morettin et al.,
2021), yet they currently lack the differentiability property to be integrated in DeepSeaProbLog’s
gradient-based optimisation. Conversely, our examples illustrate that our naive strategy is sufficient
to solve basic tasks. Moreover, more intricate sampling strategies do not always scale well under
logical or algebraic constraints and so importance sampling techniques are still considered state-of-
the-art (Nitti et al., 2016; Tolpin et al., 2016). It is still an open question how to perform successful
joint inference and gradient-based learning under such constraints.

Orthogonal to the estimation of the integral during inference, exact knowledge compilation also
prevents the scaling of DeepSeaProbLog to larger problem instances. Approximate knowledge
compilation is the field of research that deals with tackling this issue. While it contains interesting
recent work (Fierens et al., 2015; Huang et al., 2021; Manhaeve et al., 2021b), it was highlighted
by Manhaeve et al. that the introduction of the neural paradigm does lead to further complications.
As such, we opted for exact knowledge compilation, but it has to be noted that we will be able
to benefit from any future advances in the field of approximate inference. Alternatively, different
semantics (Winters et al., 2022) can simplify inference, but they lead to a degradation of expressivity
of the language.

A potential future avenue for scaling up DeepSeaProbLog inference would be the use of further
continuous relaxation schemes. More specifically, replacing discrete random variables with relaxed
categorical variables (Maddison et al., 2017; Jang et al., 2017) might allow us, for instance, to forego
the knowledge compilation step while still being able to pass around training signals.
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