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Abstract
We consider uncertain multi-agent optimization problems that are formulated as Mixed Integer Lin-
ear Programs (MILPs) with an almost separable structure. Specifically, agents have their own cost
function and constraints, and need to set their local decision vector subject to coupling constraints
due to shared resources. The problem is affected by uncertainty that is only known from data. We
introduce a data-driven decentralized scheme for handling the combinatorial complexity of the re-
sulting MILP, while providing a probabilistic feasibility certificate that depends on the size of the
data-set. The proposed approach rests on a decentralized multi-agent MILP resolution algorithm
recently introduced in the literature, which is extended here to an uncertain framework by using
tools from statistical learning theory.
Keywords: Multi-agent MILP, data-driven optimization over distributed systems, decentralized
optimization.

1. Introduction

We address decision making in systems composed of a large number of interacting agents. We focus,
in particular, on those problems that can be formulated as optimization programs where each agent
has its own decision variables, local cost and constraints, and the goal of the overall (cooperative)
system is to minimize the sum of the local costs, compatibly with the local constraints, and subject
to coupling constraints modeling the agents’ interaction.

These constraint-coupled multi-agent optimization problems are encountered in various do-
mains and, in particular, in modern infrastructures. In transportation systems, for example, the orga-
nization in platoons of autonomous vehicles calls for a coordination strategy to optimize their fuel
consumption while satisfying individual capabilities, maintaining an appropriate pairwise safety
distance, and allowing lane change and merging maneuvers involving discrete decision variables,
Bevly et al. (2016). In the power grid, where the penetration of generation from renewable energy
sources is growing, ancillary services can be introduced through the aggregation of multiple res-
idential prosumers offering some flexibility in terms of both power consumption and generation.
This requires some coordination strategy, which can be determined by solving a multi-agent opti-
mization problem with local integer and continuous variables (e.g., shift/not shift some load and
amount of load shifted), and coupling constraints due to the amount of flexibility requested by the
grid, Mhanna et al. (2016); Kim and Giannakis (2013).
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Distributed/decentralized iterative algorithms have been studied to address the scalability issue
arising in large scale multi-agent constraint-coupled optimization problems by exploiting their par-
tially decomposable structure. Convergence to an optimal (and hence also feasible) solution has
been proven in the convex case (see, e.g., Chang (2016); Liang et al. (2019); Falsone et al. (2017) to
name a few). The mixed integer case has been addressed only recently in Falsone et al. (2019) and
Falsone et al. (2018), which provide decentralized and distributed algorithms converging in a finite
number of iterations to a feasible – though sub-optimal – solution of constraint-coupled multi-agent
Mixed Integer Linear Programs (MILPs). This is fundamental to defeat the combinatorial complex-
ity of the problem, which may hamper its resolution, despite of its linear structure. In particular,
in Falsone et al. (2019) the presence of a central unit that is in charge of imposing the coupling
constraints eases the implementation of the stopping criterion, since the central unit can halt the
algorithm as soon as a feasible solution is found.

A further source of complexity is possibly given by the presence of endogenous (model pa-
rameters) and/or exogenous (disturbance signals) uncertainty, which is typically known only from
data. Neglecting uncertainty and solving the multi-agent MILP with reference to nominal operat-
ing conditions may lead to a solution that is infeasible for the actual uncertainty realization. One
should then head for a solution with feasibility guarantees with respect to the possible uncertainty
realizations, as it is the case in either the scenario (Calafiore and Campi (2006); Campi et al. (2009);
Campi and Garatti (2008, 2011)) or the statistical learning (Vidyasagar (1998); Alamo et al. (2007);
Alamo et al. (2009); Chamanbaz et al. (2014)) approach to optimization in the presence of uncer-
tainty. In both approaches uncertainty is viewed as a stochastic quantity, and a-priori probabilistic
guarantees of feasibility are provided for a solution that is robust against the available uncertainty
instances in the data-set (called in this paper data-driven solution), subject to some suitable bound
on the data-set size. The good news is that, in a constraint-coupled multi-agent MILP setting, the
data-driven optimization problem to determine such a solution can be addressed via the compu-
tationally efficient methods introduced in Falsone et al. (2019); Falsone et al. (2018). However,
neither the scenario-based nor the statistical learning theoretical approach applies directly to the
resulting multi-agent MILP solution, either because guarantees hold for the optimal solution while
only feasibility is guaranteed through the methods in Falsone et al. (2019); Falsone et al. (2018) (this
is the case for the scenario-based approach) or because an extension to a decentralized/distributed
framework is needed (this for the statistical learning theoretical methods).

Our goal is to extend the results in Alamo et al. (2009) to decentralized optimization in order
to provide a data-driven algorithm for handling the combinatorial complexity of multi-agent MILPs
with a constraint-coupled structure while providing probabilistic feasibility guarantees with respect
to the uncertainty affecting the agents. This enlarges the domain of applicability of data-driven
methods for distributed optimization from a convex setting (see, e.g., Margellos et al. (2018); Fal-
sone (2018); Falsone et al. (2020)) to the non-convex case with discrete variables.

We trust that our work represents an important step forward in handling large scale MILPs in a
realistic framework, since we are able to cope jointly with the following complexity aspects:

Uncertainty: uncertainty entering the optimization problem is known only from data, and a data-
driven solution is determined with probabilistic guarantees on its feasibility with respect to all
uncertainty realizations except for a set of probability ε. A bound on the size of the data-set
is given, which depends ε and on the desired confidence 1− β on the feasibility result.
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Combinatorial complexity: the combinatorial complexity of a multi-agent MILP is determined by
the number of integer optimization variables that typically scales linearly with the number m
of the agents, thus making the problem intractable asm grows. In our decentralized approach,
the MILP problem is divided intom smaller MILPs, each one involving the decision variables
of a single agent, which makes the problem scalable in the number of agents.

Privacy requirements: in the proposed decentralized solution scheme, agents need to communi-
cate to the central unit only a limited amount of information regarding their local optimization
problem. This feature makes our method attractive in all those applications where agents are
willing to cooperate to find a solution satisfying the coupling constraints but not to share their
private information.

2. Uncertain multi-agent MILP

We address decision making problems involving m agents, each one with a local cost function and
local decision variables to be set, subject to both local and global constraints due to, e.g., limited
individual actuation capabilities and the use of shared resources.

We consider the case when the decision variables xi of each agent i, i = 1, . . . ,m, include
both continuous and discrete variables and denote their number as nc,i and nd,i, respectively, i.e.,
xi = [x>c,i x

>
d,i]
> ∈ Rnc,i×Znd,i . The local cost of agent i is assumed to be linear and given by c>i xi.

We consider a cooperative set-up where the agents are aiming to set their decision variables so as to
minimize the overall cost

∑m
i=1 c

>
i xi, which clearly has a separable structure. Agents’ decisions are

coupled via linear constraints expressed in vectorial form thorough the inequality
∑m

i=1Aixi ≤ b,
that has to be interpreted component-wise, with Ai ∈ Rp × Rni , i = 1 . . .m, and b ∈ Rp called
resource vector. As for the local constraints, the decision variable of agent i must belong to a
polyhedral set of the form

Xi(δ) = {xi ∈ Rnc,i × Znd,i : Di(δ)xi ≤ di(δ)} (1)

which is affected by uncertainty represented by parameter δ taking values in some possibly unknown
set ∆1. Uncertainty is present in each realistic setting and must be accounted for in the decision
making problem formulation so as to provide a solution that has some robustness properties. We
suppose that a data-set DN = {δ(1), . . . , δ(N)} of uncertainty instances extracted independently
according to some probability P over ∆ is available, with P and ∆ unknown.

We then look for a solution that is robust with respect to the available uncertainty instances
formulating the following Data-Driven Program:

min
x1,...,xm

m∑
i=1

c>i xi (DDPN )

subject to:
m∑
i=1

Aixi ≤ b

xi ∈
⋂

δ∈DN

Xi(δ), i = 1, . . . ,m.

1. Introducing uncertainty only in the local constraints (1) is without loss of generality, since in the case when the global
constraint and/or the cost functions are subject to uncertainty, an epigraphic reformulation can be adopted to recover
the formulation where uncertainty is affecting only local constraints.

3



DATA-DRIVEN DECENTRALIZED SOLUTION TO UNCERTAIN MULTI-AGENT MILPS

The idea is that if theN available data δ(1), . . . , δ(N) are representative enough of the underlying
P, then, the optimal solution x?N = [x∗>1,N · · · x∗>m,N ]> to DDPN will be feasible also for unseen
uncertainty instances. Intuitively, this will be the case if N is sufficiently high, and feasibility will
be possibly violated but over a set of δ’s whose probability decreases as N grows. This intuition
is posed on a solid ground by the scenario theory developed originally in Calafiore and Campi
(2005, 2006); Campi and Garatti (2008) for convex problems, and then extended to a non-convex
framework with integer variables in Esfahani et al. (2014). More specifically, a bound on the multi-
sample size N is established in Esfahani et al. (2014) as a function of the violation probability
ε ∈ (0, 1) and the confidence parameter β ∈ (0, 1), such that with probability at least equal to 1−β
the solution x?N to DDPN satisfies the chance-constraint P

{
x?i,N ∈

⋂
δ∈∆Xi(δ), i = 1, . . . ,m

}
≥

1−ε. The result is probabilistic because x?N depends on the extracted multi-sampleDN and is hence
a random variable defined on ∆N endowed with the product probability measure PN . However,
the dependence of N on β is logarithmic so that β can be chosen as small as 10−5 (thus making
the statement almost deterministic) without having a large impact on N . The dependence on the
violation parameter ε is instead proportional to its inverse, with a rescaling factor that scales linearly
with the number of discrete optimization variables entering DDPN .

The problem is that DDPN becomes computationally intractable when m grows, due to its
combinatorial complexity. As suggested in Vujanic et al. (2016), one can resort to decomposition
methods exploiting its partially separable structure to obtain a solution which is at least feasible, but
not necessarily optimal. Unfortunately, this makes the results in Esfahani et al. (2014) not applicable
since they hold for the optimal solution to DDPN .

The idea developed in this paper is to adopt the approach in Alamo et al. (2009) to prove chance-
constrained feasibility of a – not necessarily optimal – solution to the non-convex data-driven op-
timization problem DDPN , using tools from statistical learning theory. The resulting bound on N
is more conservative with respect to the bound in Esfahani et al. (2014) since it scales with ε as
1/ε ln(1/ε) instead of 1/ε, but this is the price to pay for its applicability to a feasible (not neces-
sarily optimal) solution. In the next section we describe a decentralized algorithm that exploits the
decomposition suggested in Vujanic et al. (2016), to find in a finite number of iterations a feasible
solution to the constraint-coupled multi-agent MILP DDPN .

3. Decentralized solution with probabilistic feasibility guarantees

We start by briefly revising the main results in the literature about methods for efficiently solving
large scale MILPs of the constraint-coupled form of DDPN . A widely adopted choice to cope with
the structural complexity of DDPN is first dualizing the coupling constraint introducing a vector of
Lagrange multipliers λ ∈ Rp and solving the dual program

max
λ≥0

− λ>b+
m∑
i=1

min
xi∈Xi

(
c>i + λ>Ai

)
xi. (D)

where we set Xi :=
⋂
δ∈DN Xi(δ), i = 1, . . . ,m, for ease of notation. The value of λ? that

solves D can be used to recover the primal solution x(λ?) = [x1(λ?)> · · · xm(λ?)>]> by solving
independently the m local programs

xi(λ) ∈ arg min
xi∈Xi

(c>i + λ>Ai)xi. (2)
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Unfortunately, such a procedure does not guarantee to find a solution that satisfies the coupling
constraint in DDPN . Lately, Vujanic et al. (2016) proposed to first introduce a modified primal
problem obtained by reducing the resource vector b of a quantity ρ ∈ Rp, ρ ≥ 0, thus tightening the
coupling constraint in DDPN , and then use the solution λ?ρ of the corresponding dual problem

max
λ≥0

− λ>(b− ρ) +

m∑
i=1

min
xi∈Xi

(
c>i + λ>Ai

)
xi (Dρ)

to recover a primal solution xi(λ?ρ). Under appropriate conditions on the existence and uniqueness
of the solutions to the primal and dual restricted problems, xi(λ?ρ) is proven to be feasible for DDPN
if ρ is set equal to ρ̃ whose j-th component is set equal to

[ρ̃]j = p max
i=1...m

{
max
xi∈Xi

[Ai]jxi − min
xi∈Xi

[Ai]jxi

}
(3)

being [Ai]j the j-th row of Ai (see (Vujanic et al., 2016, Theorem 3.1)).
In the more recent work Falsone et al. (2019), an iterative decentralized algorithm inspired by

Vujanic et al. (2016) is proposed, which performs a less conservative tightening of the coupling
constraints, thus making the method applicable to a wider class of problems. In fact, since the
tightening performs an apparent reduction of the global resources available to all agents, being
more cautious in performing this reduction entails that the resulting program with limited resource
is more likely to remain feasible during computations, whereas a stronger tightening action may
compromise its solution. Whereas the tightening in equation (3) is computed among all possible
values of xi ∈ Xi, i = 1, . . . ,m, at every iteration k of the algorithm in Falsone et al. (2019) the
tightening is adaptively updated as follows

[ρ(k)]j = p max
i=1...m

{
max
r≤k

[Ai]jxi(r)−min
r≤k

[Ai]jxi(r)
}

(4)

by considering only the past and present candidate solutions xi(r), r ≤ k, till convergence to a
feasible solution for the primal problem DDPN is found, which is guaranteed to occur in a finite
number of iterations (see (Falsone et al., 2019, Theorem 1)). The tightening obtained through (4) is
smaller or at most equal to the one computed with (3).

In Algorithm 1 we propose a variant of the iterative method in Falsone et al. (2019), while pre-
serving its properties of determining a feasible solution to DDPN in a finite number of iterations,
under appropriate conditions on the existence and uniqueness of the solutions to the primal and dual
restricted problems. As described next, a less conservative tightening is performed, thus further
enlarging the applicability of Falsone et al. (2019) to settings where a limited restriction of the cou-
pling constraint is admissible. At iteration k of Algorithm 1, each agent i determines a tentative
solution for its optimization variables xi (step 8) by using the value of the dual variable λ(k) that
has been updated by some central unit based on the tentative agents’ solutions at the previous iter-
ation (step 18). Steps 11-14 perform the aforementioned adaptive update of the tightening vector ρ
(min/max operator are meant to be applied component-wise). However, differently from the original
algorithm in Falsone et al. (2019), the tightening vector is updated according to a less conservative
rule, since each element ρi(k + 1) of the tightening vector is computed as the sum of the p largest
terms of [si(k + 1) − si(k + 1)]j (step 14) instead of p times the largest one as in (4). Also, the
adaptive tightening at steps 11– 14 is activated only after the dual variable λ of the problem with

5



DATA-DRIVEN DECENTRALIZED SOLUTION TO UNCERTAIN MULTI-AGENT MILPS

no tightening (step 16) has converged, and better candidate solutions are explored by the agents.
Convergence is monitored through a threshold condition on the relative and absolute convergence
parameters γrel and γabs (step 22), with the threshold value γT set according to the adopted solver.

Algorithm 1 Data-driven decentralized algorithm for uncertain constraint-coupled MILPs

1: λ(0) = 0
2: si(0) = −∞, i = 1, . . . ,m
3: si(0) = +∞, i = 1, . . . ,m
4: k = 0
5: EN← false
6: repeat
7: for i=1 to m do
8: xi(k + 1)← arg min

xi∈
⋂

δ∈DN
Xi(δ)

(c>i + λ(k)>Ai)xi

9: end for
10: if EN then
11: si(k + 1) = max{si(k), Aixi(k + 1)}, i = 1, . . . ,m
12: si(k + 1) = min{si(k), Aixi(k + 1)}, i = 1, . . . ,m
13: ρi(k + 1) = si(k + 1)− si(k + 1), i = 1, . . . ,m
14: [ρi(k + 1)]j =

∑
p-largest{[ρi(k + 1)]j , i = 1, . . . ,m}, j = 1, . . . , p

15: else
16: ρ(k + 1) = 0
17: end if
18: λ(k + 1) = λ(k) + α(k) max{

∑m
i=1Aixi(k + 1)− b+ ρ(k + 1), 0}

19: γabs =
∥∥λ(k + 1)− λ(k)

∥∥
2

20: γrel =
∥∥λ(k + 1)− λ(k)

∥∥
2
/
∥∥λ(k)

∥∥
2

21: if min(γabs, γrel) < γT then
22: EN← true
23: end if
24: k ← k + 1
25: until

∑m
i=1Aixi(k + 1) ≤ b.

We next state in Theorem 1 the main theoretical result of this paper regarding the probabilistic
feasibility of the solution of the data-driven MILP DDPN obtained via Algorithm 1. The proof of
Theorem 1 is based on some results provided in Alamo et al. (2009), where uncertain optimization
problems are addressed via randomization and probabilistic feasibility guarantees are shown using
statistical learning methods. These results are tailored in this work to uncertain MILPs and extended
to a decentralized optimization framework.

Theorem 1 Suppose that N , ε ∈ (0, 1) and β ∈ (0, 1) satisfy the following inequality:

N ≥ 5

ε

[
2nc log2(4ekc) ln

(
40

ε

)
+ ln

(
4

β

)
+ ln

(
kd
)]

where nc is the number of continuous optimization variables, kd is the number of possible com-
binations for the discrete variables, and kc the number of linear inequality constraints involving
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continuous variables and affected by the uncertainty δ in the MILP DDPN . Then, with confi-
dence no smaller than 1 − β, either problem DDPN is infeasible or is feasible and the solution
xN = [x>1,N · · · x>m,N ]> provided by Algorithm 1 satisfies

P
{
δ ∈ ∆ : xi,N ∈ Xi(δ), i = 1, . . . ,m

}
≥ 1− ε.

Proof Let g : Xc×Xd×∆→ {0, 1} withXc = Rnc,1×· · ·×Rnc,m andXd = Znd,1×· · ·×Znd,m
be a binary measurable function describing the violation of the local constraints defined as

g(xc, xd, δ) :=

{
0 if xi ∈ Xi(δ), i = 1, . . . ,m

1 otherwise
(5)

where xc = [x>c,1 . . . x
>
c,m]> and xd = [x>d,1 . . . x

>
d,m]> are vectors collecting the continuous and

discrete components of the local decision variables xi = [x>c,i x
>
d,i]
>, i = 1, . . . ,m. The violation

probability of vector x = [x>1 . . . x>m]> with components xc and xd can be defined as

V (x) = V (xc, xd) := P
{
δ ∈ ∆ : g(xc, xd, δ) = 1

}
. (6)

Our goal is to estimate the probability of extracting a data-set DN = {δ(1), . . . , δ(N)} such that
there exists a feasible solution x for the corresponding DDPN with a violation probability larger
than ε: PN

{
DN ∈ ∆N: ∃ x that is feasible for DDPN and satisfies V (x) > ε

}
.

Since the set of x that are feasible for DDPN is included in the set of x that satisfies the local
constraints only, then, the probability of interest is upper bounded by

pg(N, ε) = PN
{
DN ∈ ∆N: ∃xc, xd :

(
g(xc, xd, δ) = 0, δ ∈ DN

)
∧
(
V (xc, xd) > ε

)}
. (7)

Now, if we fix the discrete component xd and define

pgxd (N, ε) = PN
{
DN ∈ ∆N: ∃xc :

(
gxd(xc, δ) = 0, δ ∈ DN

)
∧
(
V (xc, xd) > ε

)}
with gxd(xc, δ) = g(xc, xd, δ), we can then upper bound probability (7) as follows

pg(N, ε) ≤
∑
xd

pgxd (N, ε),

where summation is meant to be over all possible values for xd. By following analogous steps
of the proof of Theorem 7 in Alamo et al. (2009), we first exploit Theorem 1 in Alamo et al.
(2009) and upper bound pgxd (N, ε) with the probability of relative difference failure rgxd (N,

√
ε)

(see Definition 4 in Alamo et al. (2009)) thus obtaining pg(N, ε) ≤
∑

xd
rgxd (N,

√
ε). Then, by

Theorem 5 Alamo et al. (2009), we get

pg(N, ε) <
∑
xd

4πgxd (2N) e−Nε/4, (8)

where πgxd (k) is the growth function and expresses the supremum with respect to {δ(1), . . . , δ(k)} ∈
∆k of the cardinality of the set {

(
gxd(xc, δ

(1)), . . . , gxd(xc, δ
(k))
)

: xc ∈ Xc}.
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Lemma 1 in Alamo et al. (2009) allows to bound the growth function term as follows

πgxd (2N) ≤
(

2eN

VC gxd

)VC gxd

where VC gxd
is the Vapnik-Chervonenkis dimension (or VC-dimension) of the family of functions

G = {gxd(xc, ·), xc ∈ Xc}. If we plug this bound into (8), we get

pg(N, ε) <
∑
xd

4

(
2eN

VC gxd

)VC gxd

e−Nε/4. (9)

In order to get the desired result

PN
{
DN ∈ ∆N: ∃ x that is feasible for DDPN and satisfies V (x) > ε

}
≤ β,

we need to choose N such that

4

(
2eN

VC gxd

)VC gxd

e−Nε/4 ≤ β

kd
,

where kd is the number of possible combinations for the discrete variable xd. By making explicit
the bound in N (see Theorem 7 in Alamo et al. (2009)), we get

N ≥ 5

ε

[
VC gxd

ln

(
40

ε

)
+ ln

(
4kd
β

)]
which concludes the proof by plugging in the bound VC gxd

≤ 2nc log2(4ekc) of Lemma 2 in
Alamo et al. (2009), where nc is the number of continuous variables and kc is equal to the number
of linear inequality constraints that contain continuous variables and are affected by uncertainty.

4. Conclusions

We developed novel theoretical results that extend the applicability of data-driven methods for deal-
ing with uncertainty to a class of large-scale non-convex optimization problems requiring suitable
decomposition methods to become computationally tractable. In the considered MILP framework,
such methods allow to determine a solution that is feasible through a decentralized iterative approach
where each agent has to solve a smaller optimization problem for a finite number of iterations. Re-
sults from statistical learning theory are used to determine a bound on the number of data that are
needed to provide probabilistic guarantees of feasibility of the obtained decentralized solution.

To the best of our knowledge, no other algorithm available in the literature is able to handle
combinatorial complexity of MILPs while guaranteeing probabilistic feasibility.

The proposed scalable approach exploits the partially separable structure of the problem which
naturally arises from its multi-agent nature. Scalability can however be an issue also for MILPs that
are not related to a multi-agent system but originate in the context of optimization and control of a
single-agent (complex) system modeled as a Mixed Logical Dynamical (MLD) system (Bemporad
and Morari (1999). MLD systems are described by linear equations and inequalities involving
both discrete and continuous inputs and state variables. Our current research effort is devoted to
investigate how to recover from a monolithic MILP description the partially separable structure that
is suitable for our computationally efficient decentralized solution method. This has potential also
in view of the development of model predictive control schemes for large scale MLD systems.
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