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Abstract

Can large language model (LLM) agents reproduce the complex social dynamics1

that characterize human online behavior—shaped by homophily, reciprocity, and2

social validation—and what memory and learning mechanisms enable such dy-3

namics to emerge? We present a multi-agent LLM simulation framework in which4

agents repeatedly interact, evaluate one another, and adapt their behavior through5

in-context learning accelerated by a coaching signal. To model human social be-6

havior, we design behavioral reward functions that capture core drivers of online7

engagement, including social interaction, information seeking, self-presentation,8

coordination, and emotional support. These rewards align agent objectives with em-9

pirically observed user motivations, enabling the study of how network structures10

and group formations emerge from individual decision-making. Our experiments11

show that coached LLM agents develop stable interaction patterns and form emer-12

gent social ties, yielding network structures that mirror properties of real online13

communities. By combining behavioral rewards with in-context adaptation, our14

framework establishes a principled testbed for investigating collective dynamics15

in LLM populations and reveals how artificial agents may approximate or diverge16

from human-like social behavior.17

1 Introduction18

Have you ever been convinced by an AI? A recent study on Reddit [34]—where AI-generated19

content was used to test how effectively agents could persuade users—sparked public backlash.20

Conducted without users’ consent, the experiment was widely condemned for crossing ethical and21

legal boundaries. But why would anyone pursue such a study? And why does the scientific community22

remain deeply invested in modeling human behavior online?23

The short answer is that social media has permeated nearly every aspect of society. It shapes how24

information flows, blurs the line between public and private spheres, and serves simultaneously as25

a news source, marketplace, and social infrastructure. This raises a fundamental question: can we,26

without compromising individual privacy, construct a digital twin that authentically captures the27

behavior of real social media users?28

While the linguistic, psychological, and cognitive capabilities of individual large language model29

(LLM) agents have been demonstrated [6, 28, 36], their collective behavior in networked environments30

remains far less understood. The implications of building such digital twins are far-reaching [4].31

Policymakers could use them to test the effects of moderation strategies—such as content removal32

[37]—before deploying them at scale. Researchers could simulate the spread of opinions, the33

formation of online communities, or the contagion of consumer behavior. Security analysts could34

explore how to defend against manipulation or detect coordinated influence operations [2].35
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In this paper, we introduce a framework for multi-agent LLM conversations designed to simulate36

both private and public user discussions. By equipping agents with reward-based tasks, we move37

beyond the recently demonstrated agent-based modeling (ABM) capabilities of LLMs and leverage38

their cognitive abilities to study the emergence of social ties within dynamic simulations.39

1.1 Unique Challenges40

Although prior work has explored multi-agent LLM frameworks, simulating social media conversa-41

tions raises three distinct challenges:42

Agentic Personas. LLMs are trained to minimize prediction error in text generation, but this does not43

guarantee realistic user personas. Poorly specified personas often exhibit similar linguistic patterns,44

failing to reflect the diversity of real online users. Authentic simulations require agents that vary45

in values, norms, and cognitive styles, supported by memory structures that track interactions and46

evolve over time.47

Learning Mechanisms. Games and other structured environments provide explicit rewards that48

guide agents toward effective strategies. Social media, by contrast, involves open-ended exchanges49

where memory must approximate the human ability to retain recent interactions while integrating50

longer conversational histories. Because engagement spans a spectrum—from passive awareness51

(viewing) to active participation (commenting, sharing)—agents need memory architectures that52

enable adaptive learning across contexts.53

Social Topology. Users with shared interests tend to cluster, reinforcing in-group favoritism and54

out-group aversion that drive polarization and echo chambers. Structural features such as follower55

networks shape the spread of information. Yet a central open question remains: what network56

structures emerge when LLM agents interact at scale?57

1.2 Our Contributions58

To address these challenges, we introduce a multi-agent LLM platform that advances the modeling of59

online social dynamics through three core contributions:60

Conversation Room. We build an interactive environment that integrates both public and private61

communication channels. This design enables agents to deploy distinct strategies across contexts and62

allows systematic analysis of how channel choice shapes conversational dynamics.63

Reward Structures. We formalize reward functions that translate empirically grounded human64

motivations—including self-presentation, social interaction, coordination, and emotional support—65

into agent objectives. This framework establishes a principled bridge between behavioral theory and66

multi-agent LLM learning.67

Tie Formation. We design mechanisms that allow social ties to emerge endogenously from conversa-68

tional interactions, without relying on pre-defined network structures. This enables systematic study69

of how support, alignment, and homophily drive the formation of group structures.70

2 Preliminaries71

Multi-agent LLMs. Early work established that LLM agents can display human-like routines72

when equipped with memory and cognitive mechanisms. Park et al. [35] introduced the observa-73

tion–planning–reflection cycle, showing that agents embedded in interactive environments develop74

coherent daily behaviors. Subsequent studies demonstrated that LLM populations can approximate75

human-level attitudes and sociodemographic effects, reproducing patterns found in surveys and76

experiments [1, 3]. Beyond reproducing individual or population-level behavior, frameworks such77

as CAMEL [25] and orchestration stacks like LangChain and AutoGen [41] enable coordination,78

specialization, and standardized multi-agent dialogues. Recent surveys synthesize these design79

patterns and emphasize the need for systematic evaluation against human baselines [18, 14].80

Personas and diversity. A central challenge in simulation is ensuring credible heterogeneity across81

agents. Simple prompting often yields homogeneous responses, whereas personality induction82

methods, such as Big Five personality prompting, can generate stable stylistic variation [21]. The83

PERSONA benchmark extends this approach, offering pluralistic alignment across diverse profiles84

[8]. At the same time, persona prompts may inadvertently surface reasoning biases [19], underscoring85

the importance of careful evaluation. More recent approaches move beyond prompting to train86

agents in simulated societies, allowing them to internalize social norms and polarization dynamics87
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through interaction [26]. Together, these studies highlight both the promise and pitfalls of persona88

diversification for multi-agent LLM simulations.89

From interactions to social structure. A key question is whether agent collectives reproduce90

network-level regularities. Emerging studies have examined LLM-generated networks, link forma-91

tion, and paradoxes of visibility such as the friendship paradox [9, 33]. These experiments connect92

directly to canonical findings in human networks, including assortative mixing [30], modular commu-93

nity structure [13], and diffusion dynamics such as emotional contagion, misinformation spread, and94

echo chambers [24, 39, 10]. The ability of LLMs to produce persuasive or deceptive content further95

raises the stakes for safety-aware evaluation [43].96

Our focus. Building on these streams of research, our framework centers on sequential, socially97

motivated behavior—spanning interaction, information seeking, self-presentation, coordination, and98

emotional support—operationalized through rewards, in-context coaching, and memory. We exam-99

ine how such behavior gives rise to social ties, which form through micro-level signals (approval,100

reciprocity, latency) and aggregate into macro-level network structures (clustering, modularity, tie101

persistence). By allowing ties to emerge endogenously, without reliance on a fixed graph, we provide102

a testbed for studying phenomena such as homophily, community formation, and echo chambers.103

3 Methodology104

Figure 1 provides an overview of our multi-agent LLM platform for simulating social media conver-105

sations. The framework is organized into two main components: persona creation (A) and the social106

media simulation process (B). In the sections that follow, we describe how agents are initialized,107

outline the progression of the simulation, present the core of our learning paradigm—the task-specific108

reward structures of individual agents—and demonstrate how network structures emerge.
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(A) Persona Creation (B) Social Media Simulation
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Agentic Persona
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Repeat per 
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Figure 1: Multi-agent LLM social media conversation framework.

109

3.1 Persona Creation110

Building agent-personas requires the design of psychologically grounded and behaviorally coherent111

profiles. To avoid randomly sampling attributes from a population of observed users, we begin by112

instantiating a planner agent. This agent orchestrates the creation of inherited persona data, drawing113

on corpora extracted from real-world online discussions on a specific topic. With the growing114

prevalence of platforms where users remain largely anonymous, many features commonly leveraged115

in frameworks such as [8]—including age, sex, race, or education—are no longer observable, even116

though people in real interactions might infer them from user profiles. Instead, we focus on features117

that can be reliably inferred from the content itself: role, persona description, topic stance, and118
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communication style. These attributes are directly grounded in the observed communications within119

the selected dataset.120

Building on these content-based inferences, we construct agentic personas through a three-layer121

structure detailed below:122

Personality. The first layer captures personality features derived from text data. We draw on the Big123

Five traits and their cross-cultural stability [11, 27], complemented by more granular facets (e.g.,124

sociability as an Extraversion facet; stubbornness as an Agreeableness facet) and constructs beyond125

the Five (e.g., risk preference; interpersonal openness). High Extraversion is reflected in linguistic126

markers such as frequent emoji use and elevated conversational activity, whereas low Agreeableness127

is associated with increased negation and critical language. To assess these dimensions, we administer128

the Mini-IPIP, a concise Big Five inventory [12, 15].129

Task. Why individuals engage on social media platforms is shaped by a range of underlying motives.130

Whiting and Williams [40] draw on gratification theory to explain such engagement, identifying131

key drivers such as social interaction, information seeking, and entertainment. Assigning a persona132

a specific task based on these motivations results in markedly different behaviors that often align133

with the platform’s social engagement hierarchy—ranging from passive users (often referred to as134

lurkers) to highly active content creators. Related social media phenomena, such as agents exhibiting135

stubbornness and resistance to opinion change, can likewise be integrated into the simulation. For136

clarification of specific task formulations, we refer to Sec. 3.3, where we define the reward structures.137

Memory. The role of memory in agents is essential for capturing the dynamics of evolving discussions.138

We structure persona memory across three components: conversation memory, which records all139

prior interactions; relationship memory, which tracks information about other agents the persona has140

interacted with; and opinion memory, which abstracts the content of a conversation into a singular141

entry representing a stance or belief. Together, these form a lightweight analog to long-term human142

memory (i.e. [42]) and enable agents to exhibit path-dependent behavior in extended dialogues.143

3.2 Conversation Simulation144

Once the personas are initialized and their distinct personalities verified through a pre-survey assess-145

ment, we initiate the simulation. Each agent engages in a conversation on a predefined topic. At146

time t = 0, we observe the social network G0 = (V, E0, A0) with E0 = ∅, indicating that there are147

no edges and no prior knowledge among users in V; the adjacency matrix satisfies [A0]uv = 0 for148

all u, v ∈ V . Our objective is to characterize the network structure GT that emerges after the agents’149

interactions. Messaging occurs through both direct (user-to-user) and public channels (visible to150

all agents), consistent with prior work showing that channel choice depends on privacy concerns,151

audience size, and message sensitivity. By incorporating both modes, we allow agents to adapt152

communication strategies to their emotional grounding and negotiation context.153

In the opening round (t = 1), agents are unaware of one another and therefore required to make a154

public post (POST). In subsequent rounds, they may choose to post (POST), comment (COM), send a155

direct message (DM), or take no action (NOT). The per-round procedure unfolds in three phases.156

Plan–Execute–Reflect. Each agent u plans a pre-specified number of actions N based on the batch157

of content from the previous round Bt−1
1, the reward Rt−1(u), and additional side information158

(see Sec. A). Actions are selected from A = {POST, COM, DM, NOT}. Planning is non-trivial: each159

action requires further specification (e.g., which post to comment on or which user to message) in160

addition to the strategic objective of maximizing future reward. As an optional step, we test whether161

a “coach” can simplify this process by providing a tip, enabling the agent to focus on constructing a162

well-structured response. Once a valid plan is constructed, the agent executes each action, generating163

content consistent with the action type (e.g., a DM reply is based on the specific message received in164

the prior round). Executed actions are stored in the agent’s memory, and this procedure is repeated165

for all agents.166

Vote. Social validation is central to how individuals perceive support or friendship online. Accord-167

ingly, for all publicly visible content (POST, COM), we enable agents to cast votes by liking, disliking,168

or remaining neutral toward the content.169

Reweighting. After each round, agents update tie strengths by reweighting their relationships. This170

process leverages multiple behavioral signals to inform decisions about whether and how to adjust171

connections.172

1For each user u, this includes all public content plus direct messages addressed to u.

4



3.3 Rewards for In-Context Learning173

In the absence of explicit reward signals, agent behaviors tend to collapse toward purely greedy174

actions, failing to capture the diversity and goal-directed reactivity characteristic of real-world social175

systems. To address this limitation, we define reward functions that align agent learning with task176

objectives reflecting user motivations.177

Social Interaction (SOC). Interacting with others and maintaining social ties are primary drivers of178

user engagement on social media platforms. To formalize this, we define the set of direct-exchange179

actions as ADIR ⊂ A, ADIR = {DM, COM}, corresponding to direct messages and comments. Let Bt be180

the set of all actions taken by users in the network V in round t, and let BDIR
t = {a ∈ Bt : TYPE(a) ∈181

ADIR} denote the subset of actions in round t that involve direct exchanges. We define the social182

interaction reward RSOC
t : V → [0, 1] as183

RSOC
t (u) = (1− βSOC)

Isentt (u)

N
+ βSOC I

rec
t (u)

|BDIR
t |

,

where Isentt (u) :=
∑

a∈BDIR
t
1{a : u → ·}, and Irect (u) :=

∑
a∈BDIR

t
1{a : · → u}, with βSOC ∈ [0, 1].184

Here, Isentt (u) counts the number of direct exchanges sent by user u in round t (i.e., actions with185

sender u and any recipient, denoted u → ·), while Irect (u) counts the number of direct exchanges186

received by user u. Both terms are normalized to ensure RSOC
t (u) ∈ [0, 1], where N = |Bt(u)|187

denotes the constant number of actions by any user u ∈ V per round. The hyperparameter βSOC trades188

off receiving and sending.189

Information-Seeking Reward (INF). Users on social platforms often seek to discover new topics190

while maintaining a diverse information consumption. To formalize this behavior, we assume that191

each content item cut presented to user u at time t carries a single topic label τ(c) ∈ {1, 2, . . . ,K(τ)},192

where K(τ) denotes the total number of topics available on the platform. Let Ct(u) denote the set of193

items recommended to user u in round t, and define the set of topic labels encountered by u up to194

round t−1 as Hτ
t−1(u)=

{
τ(c) : c ∈ Ht−1(u)

}
. We define topic novelty as the number of previously195

unseen topics in the current recommendation Tt(u) = |{τ(c) : c ∈ Ct(u)} \ Hτ
t−1(u)|, capturing196

the user’s opportunity to encounter new information. In addition, we measure topic diversity using197

the empirical entropy over the topic distribution in Ct(u). Let pt,k(u) := |{ c ∈ Ct(u) : τ(c) =198

k }|/|Ct(u)| for k = 1, . . . ,K(τ) denote the empirical frequency of topic k. The corresponding199

Shannon entropy is Ht(u) := −
∑K(τ)

k=1 pt,k(u) log pt,k(u), which satisfies 0 ≤ Ht(u) ≤ logK(τ).200

The per-round, per-user information-seeking reward is then defined as201

RINF
t (u) = (1− βINF)

Tt(u)
K(τ)

+ βINF Ht(u)

logK(τ)
,

where βINF ∈ [0, 1] controls the trade-off between novelty and diversity. This ensures RINF
t (u) ∈ [0, 1],202

where βINF = 0 prioritizes the discovery of new topics, while βINF = 1 encourages consuming a203

broad mix of content within the current topic space.204

Self-Presentation Reward (PRE). Self-presentation is a fundamental motive for user participation on205

social media, where individuals share content to express identity, gain visibility, and seek validation206

through social feedback. To formalize this, we consider that in each round t, agent u executes a batch207

of actions Bt(u) ⊂ Bt, Bt(u) = {at,1(u), . . . , at,N (u)}, where each action belongs to the action set208

A. We define the subset of self-presentation actions as BPOST
t (u) =

{
a ∈ Bt(u) : TYPE(a) = POST

}
,209

representing all posts created by user u in round t. The cardinality |BPOST
t (u)| measures the quantity210

of self-generated content.211

Beyond the act of posting, users also derive utility from feedback received on their content, reflecting212

community approval or disapproval. For each post a ∈ BPOST
t (u), let ℓ+t (a) and ℓ−t (a) denote213

the number of likes and dislikes received, respectively. The total positive and negative feedback214

accumulated by v on their posts during round t are then given by215

L+
t

(
BPOST
t (u)

)
=

∑
a∈BPOST

t (u)

ℓ+t (a), L−
t

(
BPOST
t (u)

)
=

∑
a∈BPOST

t (u)

ℓ−t (a).

The self-presentation reward combines the incentive to post content with the desire to receive positive216

social feedback. Formally, we define217

RPRE
t (u) = (1− βPRE)

|BPOST
t (u)|
|Bt(u)|

+ βPREL
+
t

(
BPOST
t (u)

)
− L−

t

(
BPOST
t (u)

)
(|V| − 1)N

,
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where βPRE ∈ [0, 1] controls the trade-off between the intrinsic motivation to share content and the218

extrinsic motivation to receive social approval. The first term captures the relative frequency of219

self-presentation actions, while the second term measures net community feedback, normalized by220

the maximum possible number of other agents and actions per round to ensure scale consistency221

across simulations.222

Coordination Reward (COORD). Coordination captures user behaviors that foster direct interaction223

and reciprocity within a social network, such as responding to others and explicitly mentioning peers224

to engage them in discussions. This reward models two forms of coordination: visibility through225

mentions and reciprocity through replies. We first define mentions as explicit references to other226

users (e.g., using “@user”) in posts or comments. Let BCOORD
t =

{
a ∈ Bt : TYPE(a) ∈ {COM, POST}

}
227

denote the set of all comments and posts created during round t. We define the number of times user228

v is mentioned in round t as U@
t (u) = |{a ∈ BCOORD

t : u ∈ MENTIONS(a)}|, where MENTIONS is a229

helper function that extracts the set of users explicitly mentioned in action a. The second form of230

coordination involves reciprocity through direct messaging. We identify the set of users who sent a231

direct message (DM) to user v in the previous round,232

Ut−1(u) =
{
v : ∃ a ∈ Bt−1, SNDR(a) = v, RCPT(a) = u, TYPE(a) = DM

}
,

where SNDR and RCPT return the sender and recipient of action a, respectively. We then define the233

number of direct replies user v sends back to those who messaged them in the previous round as234

U DM
t (u) =

∣∣∣{a ∈ Bt : TYPE(a) = DM, SNDR(a) = u, RCPT(a) ∈ Ut−1(u)
}∣∣∣.

This quantity captures the extent to which v reciprocates by responding to direct messages. The235

coordination reward is then defined as236

RCOORD
t (u) = (1− βCOORD)

U@
t (u)

|BCOORD
t |

+ βCOORD U DM
t (u)

|Ut−1(u)|
,

where βCOORD ∈ [0, 1] controls the trade-off between prioritizing visibility through mentions and237

reciprocity through direct replies. This formulation incentivizes agents to balance being seen by238

others and actively maintaining responsive communication within the network.239

Emotional Support Reward (EMO). Emotional support is a core element of social interactions,240

reflecting the encouragement, affirmation, or criticism that users receive during their engagements.241

We define BDIR
t as the set of all direct messages (DM) and comments (COM) exchanged in round t.242

For each action a ∈ BDIR
t , let RCPT(a) denote the recipient and let s(a) ∈ [−1, 1] be the sentiment243

score, where positive values indicate supportive content and negative values indicate hostility. We244

compute the total positive and negative sentiment directed toward user v in round t as245

U+
t (u) =

∑
a∈BDIR

t

RCPT(a)=u

max{0, s(a)}, U−
t (u) =

∑
a∈BDIR

t

RCPT(a)=u

max{0,−s(a)}.

To capture the role of sentiment in shaping user experience, we define the emotional support reward246

using a trade-off parameter βEMO ∈ R and a small constant ε > 0 for numerical stability:247

REMO
t (u) =

1

2

(
1 +

U+
t (u) + βEMOU−

t (u)

U+
t (u) + |βEMO|U−

t (u) + ε

)
.

This formulation ensures that REMO
t (u) remains within the unit interval. The parameter βEMO allows248

the model to reflect different platform dynamics: positive values imply that negative sentiment249

contributes to engagement, negative values penalize negative sentiment more strongly, and setting250

βEMO = 1 treats positive and negative sentiment symmetrically. Under this formulation, interactions251

dominated by a single sentiment polarity yield rewards close to one, while balanced sentiment or the252

absence of interactions result in a value near one half, indicating a neutral emotional environment.253

Compositional Reward. User motivations on social platforms rarely stem from a single objective254

but instead reflect a blend of social interaction (SOC), information seeking (INF), self-presentation255

(PRE), coordination (COORD), and emotional support (EMO). To capture this complexity, we define256

the overall reward as a weighted combination of these components, allowing the simulation to reflect257

diverse user goals and the interplay among engagement drivers. Formally, we write the compositional258

reward as259

Rt(u) =
∑
r∈R

λr R
r
t (u),

∑
r∈R

λr = 1, λr ≥ 0,

6



where the set R = {SOC, INF, PRE, COORD, EMO} denotes the included reward components. The coeffi-260

cients λr specify the relative importance of each component, enabling the model to represent users261

with distinct goals or to reflect platform designs that emphasize particular forms of engagement.This262

compositional framework ensures that while each reward remains interpretable and bounded, their263

aggregation can flexibly capture the multidimensional objectives underlying behavior in online264

environments.265

3.4 Mechanisms of Social Tie Formation266

We model the evolution of directed social ties over time by representing the interaction structure267

at each round t as a weighted, directed network Gt = (V, Et, At), where diag(At) = 0. The entry268

[At]uv ∈ [0, 1] stores the strength of the directed tie from user v to user u. Ties are initialized at269

zero and strengthened or weakened over time in response to interaction, allowing us to separate the270

formation of a tie from its subsequent development. This approach builds on actor-oriented models271

for dynamic social networks [38] and is consistent with empirical evidence that the persistence of272

communication ties depends strongly on the frequency and recency of interaction [32, 23].273

To determine whether a directed tie should be updated in a given round, we introduce a binary274

activation denoted as ζt(v → u) ∈ {0, 1} that encodes whether user v actively interacted with user275

u in round t. We operationalize this by defining two directed interaction channels. The ADDRESS276

channel activates when v directly addresses u—either by sending a private message or by publicly277

mentioning u. The ENGAGE channel activates when v interacts with content created by u—either278

through commenting or voting. Formally, let Bt be the batch of all actions in round t, then279

ADDRESSv→u(t) := 1{∃ a ∈ Bt : isDmTo(a, u, v) ∨ isMention(a, u, v)} ,
ENGAGEv→u(t) := 1{∃ a ∈ Bt : isComTo(a, u, v) ∨ isVoteFor(a, u, v)} ,

and we define the overall activation as ζt(v → u) := ADDRESSv→u(t) ∨ ENGAGEv→u(t). Once280

activation is determined, the tie strength is updated using a gated update rule that differentiates281

between active and passive rounds. On active rounds, the tie is strengthened based on a scalar282

evidence score et(v → u) ∈ [0, 1], which aggregates the quality of the interaction. On passive283

rounds—when no directed interaction from v to u occurs—the tie strength decays. The update is284

defined as285

[At+1]uv :=

{
[At]uv +min {∆max, (1− [At]uv)[et(v → u)− ξ]+} , if ζt(v → u) = 1,

(1− δ) · [At]uv, if ζt(v → u) = 0,
(1)

where ξ ∈ [0, 1) is a minimum-evidence threshold, ∆max ≥ 0 caps the per-round increase, δ ∈ [0, 1)286

controls decay, and [x]+ = max{0, x}. The scaling term 1− [At]uv ensures that increases become287

smaller as the tie approaches its maximum value, while decay acts multiplicatively to gradually fade288

inactive ties. To interpret δ, one can parameterize it via a half-life h such that δ = 1− 2−1/h.289

The evidence score et(v → u) is computed by aggregating several dyadic signals that capture distinct290

social mechanisms. These include: the novelty of the interaction—capturing whether v introduces291

new information to u, drawing on theories of brokerage and weak ties [17, 7]; the reciprocity of292

interactions [16, 31]—captured by the symmetry of feedback between users—and the approval293

expressed through likes and other positive evaluations [29]; and the affective tone of communication—294

measured by the sentiment of direct messages, reflecting relational support [20]. Each signal is295

bounded and passed through a monotone mapping Gθ, which ensures that stronger combinations of296

signals yield higher evidence scores. Further details on the construction of individual signals and the297

specification of Gθ are provided in the Supplementary Materials.298

An alternative approach to constructing signals heuristically is to score the text from interactions in299

each round, as demonstrated in the prompt in Appendix A. In this approach, we replace the evidence300

score et(v → u) with a normalized score obtained from the prompt to update the ties.301

For reporting purposes, we optionally export the final adjacency matrix in an undirected form, defined302

as [Aud
t ]uv = 1

2 ([At]uv + [At]vu), which symmetrizes tie strength for visualization and summary303

statistics. After the final simulation round T , we apply a threshold θ to Aud
T to obtain a binarized304

undirected graph, which is used in the network analysis. This transformation is used only for reporting305

and does not affect the directed tie dynamics or update rules described above.306
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4 Results307

We propose an overall framework for studying the formation of social ties. Our experiments were308

conducted with |V| = 30 agents over T = 15 simulation rounds, with discussions centered on309

climate change, where the persona planner utilized data from [22].2 We present preliminary findings,310

beginning with an evaluation of whether specific tasks, referred to here as policies, can be learned.311

In Fig. 2, we observe that performance generally increases over simulation rounds, both with and
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Figure 2: Comparison between augmenting in-context learning with coach.

312
without the coach. The information-seeking (INF) policy is typically the easiest to learn, as it is313

primarily driven by exposure to new content. Emotional support (EMO) also achieves relatively314

high values, reflecting the generally positive behavior of most agents. Self-presentation (PRE) can315

be partially controlled through personal posts, but policies that depend on coordination are more316

difficult to learn. Comparing Fig. 2a to Fig. 2b, we find that the coach accelerates learning in the317

early stages for some policies. However, in the long run, the simulation without the coach performs318

better. Binding agents to tips provided by the coach appears to reduce exploration, consistent with our319

earlier observation that optimality depends not only on the agent’s own actions but also on targeting320

the right users. Further testing is therefore required to identify the root causes of these results. While321

having the coach generate strategies and guide the plan stage provided some structure, it yielded only322

limited improvements.323

Next, we examine the reweighting step when it is performed via (i) a heuristic based on predefined324

signals versus (ii) a LLM text-based approach. After constructing the directed weighted graph at the325

final simulation step T = 15, we convert it into an undirected unweighted graph. The conversion326

threshold θ plays a central role in this process. We also allow ties to decay, and bound tie strength327

updates at each step by ∆max. The main evaluation metrics are outlined in Appendix C. These328

metrics, together with baseline statistics from real networks reported in [9], serve as benchmarks.329

Comparing the two reweighting methods, we find that the heuristic shows divergence, for example330

in average clustering and average shortest path length. By contrast, the LLM-based text approach331

yields results that are more stable and more closely resemble real networks, largely independent of332

the threshold θ.333

We acknowledge that the analysis presented here is an initial step. Further work is required, par-334

ticularly since the generated graphs are dynamic and the interplay between agent relationships, tie335

strength updates, and topical alignment remains to be fully understood.336

5 Conclusion337

We present a platform that endogenously learns social ties among interacting LLM agents from their338

private and public exchanges. Each agent optimizes a task-specific behavioral reward grounded in339

gratifications theory [40] and adapts via a plan-execute-reflect loop with bandit-style updates. We340

show that these rewards are learnable in practice, with varying difficulty under bounded rationality341

and strategic influence, and that some objectives are unattainable in principle because achieving342

2Due to API rate limits, the experiments presented in this work were conducted using OpenAI’s gpt-4.1-mini.
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Figure 3: Network metrics for heuristic tie formation.
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Figure 4: Network metrics for text-based tie formation.

them would require control over other agents. Using the evaluation protocol of [9], the emergent343

networks match key statistics of real social graphs, establishing the platform as a controlled testbed for344

studying echo-chamber formation, the dynamics of niche communities, and the design of mitigating345

interventions. The study is conservative in scale (|V| = 30, T = 15), uses limited replications,346

and starts from empty networks; scaling to larger cohorts and horizons, seeding pre-existing ties,347

and running intervention stress tests are clear next steps to strengthen external validity and policy348

relevance. Finally, with a small number of actions per round, the coaching component did not yield349

consistent gains; its efficacy should be re-evaluated in larger settings with more agents and richer350

action budgets.351
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A Prompt Specifications455

In this section, we present the prompts underlying our multi-agent LLM simulation: Coach, Plan, Vote, and456

Tie-Update. As detailed in the methodology, the Coach prompt provides action recommendations that streamline457

the planning of N actions in each simulation round t. Although the Plan prompt contains nearly all required458

information on its own, planning remains nontrivial—particularly when integrating private (direct messages) and459

public (posts and comments) channels—and can overload the agent. Producing a valid, executable action list is460

therefore essential.461

The Plan prompt can run with or without the coach’s tip. If a candidate plan fails our validation checks, we462

re-prompt (up to three times) until a valid plan is produced. Finally, we present the Vote prompt, a key component463

of the social-media simulation that captures how each agent, given its personality parameters, evaluates other464

users’ content.465

Coach Prompt

System: You are a strategy coach in a multi-round social media game. Your job is to
help the agent maximize long-term rewards by closing the gaps between their current
reward scores and their target weights. Priorities are ordered by importance,
so the first items need the most improvement. Output 3-5 one-sentence bullet
tips that are concrete, executable, and encourage variety in partners and topics
across rounds to promote diversity and exploration. No preamble, no explanations.
Remember: the total reward per round is capped at 1, and many reward components
depend on how others engage with the agent, so your tips should encourage responses
and collaboration.

User: Priority this round (high→low): {focus}
Guidelines: {guidelines}

Context:
• Users: {users}
• DM senders last round: {dm_last_senders}
• Recent partners: {recent_partners}
• Known topics so far: {seen_topics}
• Recent topics (last 3): {last_recent}

Each tip must include:
• action type (POST/COM/DM),
• target user (from lists) or ‘top-liked post’,
• topic (choose a relevant or new topic; exploring new topics helps INF),
• whether you invite them to @mention you back (only if aiming at COORD),
• tone (supportive/neutral/critical).

Focus items are ordered by how far below target the corresponding reward is; design
actions to improve the highest-priority components. Vary topics and partners to
support learning and social diversity.

Return ONLY the bullets.
466

Plan Prompt

System: You are {name}, a user participating in a multi-round social media game. In
each round you will execute exactly {n_actions} actions and your choices accumulate
across rounds, affecting future relationships, topics seen and rewards. Recall past
interactions and relationships from your memory when planning your actions.

467
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Your best was round {best_round} with score {best_reward} when you did
{best_summary}.
Your only goal is to grow what you value most-{active_comps}-in these proportions:
{active_weights}.
[You got this coaching tip: {tip}]

Here are the reward definitions and how they translate into behaviours:
{selected_reward_docs}
Here’s how they combine:
Your total score is a mix of these parts (SOC, INF, PRE, COORD, EMO), weighted
by λ’s that sum to 1. Each λ decides a component’s importance. Current weights:
{active_weights}

Reward-aware rules (apply when the corresponding λ is large):
• COORD: For POST/COM, set “mention_flag”: true when you plan to include a literal

@mention (e.g., @post_author or a user from Users).
• SOC: Balance COM/DM between initiating and replying; if someone messaged you last

round, reply.
• INF: Prefer topics not seen recently; otherwise keep a diverse mix from Topics.
• PRE: Include at least one POST (keep it concise and end with a clear question).
• EMO: Set “tone”: “supportive” for COM/DM to elicit supportive replies.

Plan exactly {n_actions} actions and respond with a raw JSON array only (no code
fences, no comments, no extra keys, no trailing commas).
Each action must be an object with EXACTLY these keys:
• “type”: one of “POST”,“COM”,“DM”,“NOT”
• “recipient”: user ID for DM, otherwise null
• “topic”: string for POST/COM/DM, null for NOT
• “target_id”: COM → a post ID from the list; DM → a DM reply ID (reply mode) or

null (cold DM); null for POST and NOT
• “mention_flag”: boolean; true only if you will include an @mention (POST/COM only;

must be false for DM and NOT)
• “tone”: one of “supportive”,“neutral”,“critical”

CONSTRAINTS:
• POST: recipient=null, target_id=null
• COM: recipient=null, target_id MUST be a valid post ID from the list
• DM: two modes:

- Reply DM: recipient MUST be the author of a listed DM reply AND target_id MUST
be that DM id

- Cold DM: recipient MUST be a valid user ID from the list AND target_id MUST
be null

• NOT: recipient=topic=target_id=null

Topic guidance:
• For COM: use the target post’s topic if provided; otherwise pick a relevant

engaging topic.
• For POST/DM: choose any topic likely to engage the audience or recipient; exploring

new topics can increase INF reward.
• There is no fixed allowed topic list; you may introduce new topics.

User: Last actions (most recent round): {last_actions},
Last observed reward scores: {observed_rewards},
Users you can interact with: {users},
Known topics so far: {topics} (you may introduce new topics),
DM replies (users who DM’d you last round):
- author: {dm_author} (DM id: {dm_id}, topic: {dm_topic}, content: {dm_content})
- . . .
Commentable posts (choose a target_id from this list ONLY):
- target_id: {p_id} (POST author: {p_author}, topic: {p_topic}, content:
{p_content})

- . . .
Based on the above context, decide on {n_actions} actions that best improve your
priority rewards. For Reply DM, use the listed DM IDs; cold DM can be sent to any
user in the list. For COM, you must supply a valid post ID from the list above.
Remember: replies help SOC, mentions help COORD, and supportive tone helps EMO.

468
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The Vote prompt allows a user to express either liking or disliking of exposed content.469

Vote Prompt

System: You are {name}, a user in a multi-round social media game. You are a
{persona_type} with {personality} personality - use these traits to guide your
voting.
Your choices to “like” (1), “dislike” (-1), or remain neutral (0) on each piece
of content affect how others perceive you (PRE) and the emotional tone of your
interactions (EMO), and therefore influence your future rewards. Use your persona
traits[ and your relationship history] to decide which content to support, oppose,
or ignore. A neutral vote (0) means you have no strong opinion or the relationship
context is neutral.

Respond ONLY with a JSON array of objects. Each object must have:
• id: the content ID (integer)
• vote: 1 for “like”, -1 for “dislike”, or 0 for “no vote”
Example output:
[
“id”: 42, “vote”: 1,
“id”: 73, “vote”: -1,
“id”: 99, “vote”: 0
]
No extra keys, no free-form text, no explanation.

User: Here are the latest items to vote on (id, sender, content[, relationship]):

• {id} {sender} {content} {relationship}

• {id} {sender} {content} {relationship}

• {id} {sender} {content} {relationship}

• · · ·
Vote on each according to your persona[ and the context of your relationships].
Remember: liking or disliking influences your reputation and future interactions;
use 0 (“no vote”) when you have no strong opinion or the relationship context is
neutral.

470

The Tie-Update prompt is used to reweigh social ties after each round. It presents the peers interacted with,471

along with the corresponding text.472

Tie-Update Prompt

System: You are {name}, a user in a multi-round social media game. Your task is to
judge the strength of evidence for increasing your social connection to each peer
based SOLELY on the interactions in the latest round.

SCORING GUIDE: Assign an integer score from 0 to 5 to each peer based on these
criteria:
• 5: Exceptional — repeated warmth/help/coordination; clear constructive alignment.
• 4: Strong — mutual positivity or clear support/assistance.
• 3: Good — polite/positive tone with some constructive exchange.
• 2: Weak — minor positive cues; limited substance.
• 1: Very Weak — faint positivity; likely noise.
• 0: None – mixed/negative/insufficient; do NOT increase.

RULES:
• Base decisions on LAST-ROUND transcript only; do not infer beyond text.
• Be conservative; if unsure, choose 0.
• One rating per peer. Reason must be factual and ≤1 sentence

OUTPUT FORMAT: You MUST output STRICT JSON. Include a score and a concise reason
for every peer provided.
{{

473
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"ratings": [
{{
"peer": "PeerName",
"score": 0|1|2|3|4|5,
"reason": "≤ 1 sentence."
}}

]
}}

User: Here are your peers for this round: {peer_list}.
Transcript of the last round: {transcript_text}.
Rate each peer according to the rules above.

474

B Extended Formulation of the Social Tie Mechanism475

In Sec. 3.4, we outlined the main mechanism by which directed social ties evolve over time as agents interact476

across rounds. That formulation left implicit the precise logic used to determine whether a directed interaction477

from user v to user u should be considered active in a given round. Moreover, we did not formally define the478

logic underlying the evidence score. We now address both points by first detailing the interaction activation479

criteria.480

Interaction Activation. Each action a ∈ Bt is annotated with structured metadata, including the action type481

TYPE(a) ∈ {DM, COM, POST, NOT}, the sender SNDR(a) ∈ V , the recipient RCPT(a) ∈ V (for direct messages),482

and the set of mentioned users MENTIONS(a) ⊆ V . Based on this metadata, we define a series of logical483

conditions to detect directed interactions between users.484

To determine whether user v has sent a direct message to user u, we define485

isDmTo(a, u, v) :=
(
TYPE(a) = DM

)
∧
(
SNDR(a) = v

)
∧
(
RCPT(a) = u

)
.

To identify whether user v mentioned user u in a public message—such as a post or a comment—we define:486

isMention(a, u, v) :=
(
TYPE(a) ∈ {POST, COM}

)
∧ (SNDR(a) = v) ∧

(
u ∈ MENTIONS(a)

)
.

These two conditions jointly define the ADDRESS interaction channel, which is triggered when user v explicitly487

addresses user u through either a private message or a public mention.488

To define the ENGAGE channel—capturing interactions with content authored by user u—we rely on two489

additional metadata fields. The field TARG(a) ∈ V denotes the author of the content that action a targets. Based490

on this, we define whether user v comments on content created by u as491

isComTo(a, u, v) :=
(
TYPE(a) = COM

)
∧
(
SNDR(a) = v

)
∧
(
TARG(a) = u

)
.

To capture positive or negative evaluation of content, we include voting behavior. The field VOTE(a) ∈492

{−1, 0,+1} indicates a downvote, no vote, or an upvote, respectively. We define493

isVoteFor(a, u, v) :=
(
VOTE(a) ̸= 0

)
∧
(
SNDR(a) = v

)
∧
(
TARG(a) = u

)
.

Together, these logical definitions specify whether a directed interaction from user v to user u is considered494

active in round t. Specifically, the binary activation variable ζt(v → u) is set to 1 if either the ADDRESS or495

ENGAGE channel is triggered by any action in Bt.496

Evidence Score. The evidence score et(v → u) aggregates four distinct dyadic signals that capture different497

dimensions of social interaction between users v and u.498

Novelty. This signal quantifies the introduction of new information from v to u. Let Tt(v→u) denote the set of499

topics introduced by v to u during round t, and let Hτ
t−1(u) represent u’s historical topic exposure up to time500

t− 1. The novelty signal is defined as:501

SNov
t (v→u) = 1{∃τ ∈ Tt(v→u) : τ /∈ Hτ

t−1(u)}
which indicates whether v introduced any topics novel to u’s experience.502

Approval. This signal captures explicit evaluative feedback from v on u’s content. Let L+
t (v → u) and503

L−
t (v→u) denote the counts of likes and dislikes, respectively, that v assigned to u’s content during round t.504

The approval signal is computed as:505

SAppr
t (v → u) =


0, L+

t (v→u) + L−
t (v→u) = 0,

L+
t (v→u)− L−

t (v→u)

max{1, L+
t (v→u) + L−

t (v→u)}
, otherwise.
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This measures the net approval normalized by total engagement, ranging from -1 to 1.506

Reciprocity. This signal quantifies the balance in positive engagement between users over time. Using an507

exponential moving average to smooth temporal fluctuations:508

L̂+
t (v→u) = βrecL̂+

t−1(v→u) + (1− βrec)L+
t (v→u)

where βrec ∈ (0, 1) controls the memory persistence. The reciprocity signal then measures the symmetry in509

smoothed like exchanges:510

Srec
t (v → u) = 1−

∣∣∣∣∣ L̂+
t (v → u)− L̂+

t (u → v)

L̂+
t (v → u) + L̂+

t (u → v) + ϵ

∣∣∣∣∣
where ϵ > 0 ensures numerical stability. This formulation yields values near 1 for balanced relationships and511

near 0 for highly asymmetric engagement.512

Affective Tone. This signal captures the emotional valence of private communication when explicit feedback is513

absent. Let s(a) ∈ [−1, 1] represent the sentiment score of action a. The affective tone signal is defined as:514

SAff
t (v → u) =

{
avg{ s(a) : a ∈ Bt, SNDR(a) = v, RCPT(a) = u, TYPE(a) = DM}, if L+

t + L−
t = 0 ∧ ∃ DM

0, otherwise.

This ensures that emotional tone is only considered when no explicit evaluations (likes/dislikes) are present,515

capturing the unique contribution of affective communication.516

C Social Network Characteristics517

C.1 Evaluation Metrics518

In accordance with the network science literature (see [5]), we define the following standard notation relevant to519

the analysis of social networks.520

Let G = (V, E , A) be a (possibly weighted) directed network with |V| nodes and adjacency matrix A ∈ R|V|×|V|
≥0 ,521

with522

Auv =

{
> 0, if (u → v) ∈ E ,
0, otherwise,

and let the out-degree of node u be defined by kout
u =

∑
v Auv , and the in-degree of node u be given by523

kin
u =

∑
v Avu. When G is undirected, the matrix A is symmetric, with Auv = Avu, and we write simply524

ku =
∑

v Auv .525

Degree distribution. The out-degree sequence {kout
u : u ∈ V} induces the empirical probability mass function526

P (k) =

∣∣{u : kout
u = k}

∣∣
|V| .

Alternatively, one may work with the normalized degree k̃u = kout
u /(|V| − 1) ∈ [0, 1], and analyze its527

distribution via the scaling relation P (k̃) ∝ k̃−γ , with the exponent γ estimated through statistical inference on528

the empirical distribution. By the same logic, the in-degree distribution can be determined.529

Density. Assume the edge weights satisfy w : E → [0, 1]. The density of the directed network G is defined as530

ρ(G) =
∑

u̸=v Auv

|V| (|V| − 1)
,

which lies in [0, 1] and measures the average weight across all possible directed edges. In the unweighted case,531

the numerator simplifies to |E|, the number of directed edges. In the undirected case, the analogous quantity is532

ρ(Gud) =
2
∑

u<v Auv

|V| (|V| − 1)
,

where the factor of 2 ensures normalization, and ρ(Gud) similarly lies in [0, 1].533

Clustering Coefficient. For each vertex u ∈ V in the directed network G, assume Auu = 0 (no self-loops). Let534

the out-degree be kout
u =

∑
v∈V Auv . The local directed clustering coefficient, which quantifies the likelihood535

that the out-neighbors of u are interconnected in a directed sense, is defined by536

κG
u =

∑
v,v′∈V
v ̸=v′

Auv Avv′ Av′u

kout
u (kout

u − 1)
,
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and the global clustering coefficient is κ(G) = (1/|V|)
∑

u∈V κG
u . In the undirected network Gud, where537

Auv = Avu, let ku =
∑

v∈V Auv and define the neighborhood N (u) = {v ∈ V : Auv > 0}. Let538

Eu =
∣∣{{v, v′} ⊂ N (u) : Avv′ > 0}

∣∣ denote the number of edges between neighbors of u. The local539

undirected clustering coefficient is then540

κGud
u =

2 Eu

ku (ku − 1)
,

and the global clustering coefficient is κ(Gud) = 1
|V|

∑
u∈V κGud

u . The clustering coefficient quantifies the541

tendency of the network to form triangles, providing insight into local connectivity patterns that complement542

degree-based summaries.543

Largest Weakly Connected Component. Given a directed graph G = (V, E), let Gud = (V, Eud) be its544

underlying undirected graph Eud =
{
{u, v} : (u → v) ∈ E or (v → u) ∈ E

}
. A weakly connected component545

is a maximal subset X ⊆ V in which every u, v ∈ X is joined by a path in Gud. Denote by Xmax the largest546

such component; its relative size is547

LCC(G) = |Xmax|
|V| ,

computed in O(|V|+ |E|) time using any standard linear-time algorithm for connected components.548

Average Shortest Path Length. Restrict to the largest weakly connected component Xmax. Define d(v, u) as549

the length of a shortest directed path from v to u, with the convention d(v, u) = ∞ if no such path exists. By550

averaging only over reachable pairs, we obtain the typical directed-path length within the LCC,551

L(G) =
∑

v ̸=u d(v, u)1{d(v, u) < ∞}∑
v ̸=u 1{d(v, u) < ∞} ,

where 1{·} is the indicator function.552

Community Modularity. Given a partition g(Q) : V → {1, . . . , C(Q)} of the nodes into C(Q) communities,553

and denoting the total edge-weight by E =
∑

u,v Auv , the modularity of G with respect to g(Q) is defined as554

Q(G, g(Q)) =
1

E

|V|∑
u,v=1

(
Auv − kout

u kin
v

E

)
δ
(
g(Q)(v), g(Q)(u)

)
,

where δ denotes the Kronecker delta function. For clarity, in the unweighted case, E = 2|E| for undirected555

graphs and E = |E| for directed graphs.556

Homophily. Let g(ϕ) : V → {1, . . . , C(ϕ)} assign each node to one of C(ϕ) groups, and denote by |Vr| =557

|{i : g(ϕ)(i) = r}| the size of group r, such that
∑C(ϕ)

r=1 |Vr| = |V|. Denoting the total edge-weight by558

E =
∑

u,v Auv , we define the observed cross-group weight as559

Ŵ (G, g(ϕ)) =
|V|∑

u,v=1

Auv 1{g(ϕ)(u) ̸= g(ϕ)(v)},

and the expected cross-group weight under random mixing as560

E[W (G, g(ϕ))] = E
(
1−

C(ϕ)∑
r=1

( |Vr|
|V|

)2)
.

The homophily function ϕ is then defined by561

ϕ(G, g(ϕ)) = Ŵ (G, g(ϕ))
E[W (G, g(ϕ))]

,

where ϕ(G, g(ϕ)) < 1 indicates homophily (fewer cross-group ties than expected under random mixing),562

ϕ(G, g(ϕ)) = 1 indicates random mixing, and ϕ(G, g(ϕ)) > 1 indicates heterophily.563

C.2 Degree Distributions564

In Sec. 4, we presented a set of network characteristics for graphs obtained from the multi-agent LLM simulation.565

For the coach evaluation, we primarily relied on reward maximization and average network statistics as evaluation566

metrics for the tie mechanism. Here, we further examine the degree distributions of the final undirected graphs567

GT after applying the conversion threshold θ. Figure 5 shows the degree distributions under the heuristic tie568

mechanism without the coach in the planning process, whereas Fig. 6 presents the same mechanism with the569

coach. Likewise, Fig.7 reports the distributions under the LLM text-based tie mechanism without the coach, and570

Fig. 8 with the coach in the tie reweighting process. The results suggest that the presence of the coach leads571

agents to engage with a smaller set of peers—taking more targeted steps—and thereby shifts the probability572

mass of the degree distribution towards lower degrees.573
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Figure 5: Degree distributions for heuristic tie formation without coach.
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Figure 6: Degree distributions for heuristic tie formation with coach.
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Figure 7: Degree distributions for LLM text-based tie formation without coach.
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Figure 8: Degree distributions for LLM text-based tie formation with coach.
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