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Lossless, Fine-Tuning-Free Low-Rank Factorization Algorithms
for Weight Compression

ABSTRACT

Zhang Boyang Cheng Daning

Low-rank factorization techniques are a popular technique for
model compression. The optimization objective of these methods
is to minimize the squared error in approximating the original
matrix, and then rely on fine-tuning to avoid loss rise. However,
from the optimization objective, the optimization of the approxi-
mated low-rank matrix is inconsistent with the optimization of the
model performance. And the fine-tuning process cannot be ana-
lyzed uniformly. This directly leads to model performance degra-
dation when not fine-tuned. We analyze this currently unexplored
problem and propose for the first time a lossless low-rank weight
factorization strategy without fine-tuning. First, we analyze the
correlation between low-rank factorization and the model opti-
mization objective via mathematical calculus, and experimentally
establish the perturbation range of the matrix factorization error
regarding the model performance. We redefine it as a numerical
rank-defect problem under inequality constraints and propose a
new goal that comprehensively considers matrix factorization er-
ror and model performance. To solve this problem, we propose
two optimization algorithms, lossless and compact optimization
algorithms under numerical rank-defect. The lossless optimization
algorithm aims to greedily optimize the model loss function while
ensuring model compression. The compact optimization algorithm
aims to optimize greedily the model size while keeping the model
lossless. Our algorithm corrects the goal of low-rank factorization
optimization during inference, and can directly compress the model
of a specific task without fine-tuning to obtain a lossless model.
The effectiveness of our method is validated on a wide range of
vision, language tasks and datasets.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Lossless, Low-Rank, Weight Compression, Factorization

1 INTRODUCTION
Deep neural networks have remarkable performance in language
and vision tasks. A common problem is the significant increase in
the number of parameters, which creates challenges for deployment
and inference. Many works have been proposed for compressing
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Figure 1: The left subfigure shows the process of factorization,
𝛿 is the noise error introduced by the factorization process.
The right subfigure shows the Loss comparison between our
algorithm and existing factorization algorithms. Our algo-
rithm factorize models losslessly. 𝐿 is the model loss.

deep models. For example, model pruning, the main idea is to re-
move all connections with weights lower than a threshold from
the deep network. The model quantization technique converts the
floating-point computation to fixed-point computation in neural
networks. Matrix factorization is also considered a promising com-
pression method. The idea of matrix factorization is to decompose a
weight matrix into two or more smaller matrices and use both small
matrices when actually storing and computing. Common matrix
factorization methods in neural networks include singular value
decomposition(SVD)[7], CP decomposition of kernel tensors and
Tucker decomposition, all of which are friendly to linear layers.

Currently popular matrix factorization strategies are divided into
two categories: factorization in training and factorization in infer-
ence. Factorization in training involves training a compact low-rank
model or a compact layer from scratch. Zhang et al.[22] use multiple
low-rank matrices to approximate a complete gated recurrent unit
weight matrix and retrain. Yu et al.[20] considered weight structure
information and combined low-rank weight matrix and feature
map reconstruction to reduce fully connected layer parameters. Xu
et al.[17] integrated low-rank approximation and regularization
into training, resulting in less performance loss. Yang et al.[18] pro-
posed SVD training, which decomposes each layer into a full-rank
form and then directly trains the decomposed weights. However,
as the model size grows, the computing power, and the privacy
of the training data, it becomes increasingly challenging to train
low-rank factorization methods. Decomposing a pretrained model
in this situation has attracted much attention in the community, i.e.,
factorization during the inference. Hsu et al. [4] used Fisher infor-
mation to weigh the importance of model parameters and weighted
them into singular value decomposition. Yu et al.[19] use small
amount of training samples to adaptively determine the structure
of the compression model, thus compressing the output features
of each linear layer. Among large language models, LORA[5] is
a recently popular fine-tuning technology that introduces a low-
rank approximation matrix into the transformer[14] architecture,
significantly reducing trainable parameters.
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Most of these works follow the paradigm of ’𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 +
𝐹𝑖𝑛𝑒𝑡𝑢𝑛𝑖𝑛𝑔’ to compress the model and ensure the performance of
the model. However, they concentrate on optimizing the approxima-
tion error in factorization, i.e., minimizing the distance between the
factorization matrix and the original weight matrix. As shown in
Fig.1, when the above paradigm is separated from fine-tuning, stan-
dard factorization technology to approximate the original weights
will often cause the performance of the model to decrease and the
loss to increase. This is because the optimization goal of factoriza-
tion is different from the task model optimization goal (loss value
reduction). Therefore, fine-tuning is needed to reduce performance
loss in actual experiments. This shows that factorization relies heav-
ily on fine-tuning, but fine-tuning is not included in the analysis of
optimization goals. Therefore, whether in theoretical analysis or ex-
periment, factorization and fine-tuning are separated, which results
in the inability to minimize the loss of the fine-tuned model when
the approximation error is minimized. Existing factorization meth-
ods fail to establish a link with task model performance and the two
have different optimization objectives. This limits the performance
of the model after factorization.

Based on the above analysis, we reconsider the factorization pro-
cess to develop the linkage for model performance, and propose a
lossless low-rank weight factorization strategy without fine-tuning.
We first determined the perturbation range of the loss caused by
the factorization error in each layer of the model. And taking this
perturbation range as the calculus neighborhood, the connection
between the low-rank factorization and the optimization of the
original model is mathematically established. Then by imposing
error constraints, the factorization optimization problem is con-
verted into a numerical rank-defect optimization problem under
inequality constraints, and a new objective related to model per-
formance is proposed. For different requirements, we design two
algorithms to solve this problem, lossless optimization and compact
matrix optimization algorithms under numerical rank-defect. The
lossless optimization algorithm aims to find the lowest loss model
for the current layer under model compression. The compact matrix
optimization algorithm aims to find the most compact model for
the current layer under lossless conditions. It is worth noting that
both algorithms do not require fine-tuning and are able to obtain
lossless layers or models.

In summary, the contributions of this paper are as follows: 1)
mathematically analyze and establish the connection between fac-
torization and model optimization objectives, and propose a loss-
less low-rank weight factorization strategy without fine-tuning.
2) convert the traditional factorization optimization problem into
a numerical rank-defect optimization problem under inequality
constraints, and propose two algorithms for different requirements.
3) Extensive experimental results show that our method can ensure
compression while obtaining lossless models.

2 BACKGROUND
2.1 Neural Networks and Optimization
We present the analysis of neural networks as composite functions.
Because it provides a simple description and all our conclusions are
independent of the structure of the neural network. First, for an
n-layer neural network model, the loss of the model is optimized

according to the following formula,

min
𝑊

𝑓 (𝑊 ) = E𝑆𝑎𝑚𝑝𝑙𝑒 ℓ (𝑊,𝑆𝑎𝑚𝑝𝑙𝑒) = 1
𝑚

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

ℓ (𝑊,𝑥𝑖 , 𝑦𝑖 )

ℓ (𝑊,𝑥𝑖 , 𝑦𝑖 ) = 𝐿(𝑚𝑜𝑑𝑒𝑙𝑛 (𝑥𝑖 ,𝑊 ), 𝑦𝑖 ),
𝑚𝑜𝑑𝑒𝑙𝑛 = ℎ1 (ℎ2 (ℎ3 (ℎ4 (· · · (ℎ𝑛+1,𝑤𝑛) · · · ,𝑤4),𝑤3),𝑤2),𝑤1)

(1)

where 𝑓 (·) represents the loss of the model on a dataset, E stands
for expectation,𝑚 is the size of the dataset, ℓ (·) is the loss function
for a sample, and (𝑥𝑖 , 𝑦𝑖 ) denotes a sample in the dataset along with
its corresponding label, 𝐿(·) represents the loss function, such as
the cross-entropy function; ℎ𝑖 , with 𝑖 ∈ [1, ..., 𝑛], represents the
(𝑛−𝑖 +1)th layer in the neural network;𝑊 = (𝑤𝑇

𝑛 ,𝑤
𝑇
𝑛−1, · · · ,𝑤

𝑇
1 )

𝑇 ,
where𝑤𝑖 is the parameter in ℎ𝑖 (·); and for the reason of a unified
format, ℎ𝑛+1 denotes the sample 𝑥 .

2.2 Low-rank Factorization and Optimization
Low-rank factorization can be adopted to reduce redundancy in
weights. For the weight matrices𝑊 ∈ R𝑁×𝑀 , the low-rank factor-
ization is achieved by two low-rank matrices:

𝑊 ≈ 𝐿𝑅𝑇 (2)

where 𝐿 ∈ R𝑁×𝑘 , 𝑅 ∈ R𝑘×𝑀 , 𝑘 is the rank of𝑊 , denoted as an
integer between 1 and𝑚𝑖𝑛(𝑁,𝑀). Given input data 𝑥 ∈ R1×𝑁 , a
linear layer in the neural network can be represented as:

𝑌 =𝑊𝑥 + 𝑏 ≈𝑊𝑥 + 𝑏 = 𝐿𝑅𝑇 𝑥 + 𝑏 (3)

where 𝑏 is the bias, 𝑌 is the output of the linear layer, and the
factorization of𝑊 is obtained from Eq. 1. With Eq. 2, we can store
and compute 𝐿 and 𝑅 instead of𝑊 . The total number of parameters
of 𝐿 and 𝑅 is 𝑁𝑘 +𝑀𝑘 . The reduced parameters and computation
are 𝑁𝑀 − (𝑁𝑘 +𝑀𝑘). When the weight matrix𝑀 = 𝑁 , the rank 𝑘
is less than 0.5𝑀 and the model size will be reduced. Similarly, for
singular value decomposition,𝑊 is approximated as𝑊 = 𝑈𝑆𝑉𝑇 ,
where𝑈 and 𝑉 are orthonormal, and 𝑆 is diagonal.

The optimization objective of the low-rank factorization is to
minimize the Frobenius norm under the rank is at most 𝑘 .

min
𝐿,𝑅

| |𝑊 −𝑊 | |𝐹 (4)

it implies that we can find a basis set for an optimal 𝑘 rank approx-
imation in a greedy way.

Although this optimization objective gives the best approxima-
tion of a weight matrix, it does not ensure that the model achieves
the lowest loss value. This is because the optimization objective of
low-rank factorization is not the same as model optimization, as
in Eqs. 1 and 4. Moreover, in the existing work, factorization re-
quires fine-tuning operation to ensure the model performance, and
the fine-tuning cannot be represented in the above optimization
objective formulation.

3 LOSSLESS LOW-RANK FACTORIZATION
OPTIMIZATION

3.1 Theoretical optimization
The premise of lossless factorization optimization is how to analyze
model optimization and low-rank factorization. As shown in Fig. 1,
mathematically, the nature of low-rank factorization is a process
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that introduces noise to the weight parameters in the original model
or layer. After factorization, for a sample, the model loss ℓ̄ during
inference is reformulated as the following equation:

ℓ̄𝑘 (𝑤, 𝑥 𝑗 , 𝑦 𝑗 ) = 𝐿(ℎ1 (ℎ2 (· · ·ℎ𝑛 (𝑥𝑖 ,𝑤𝑛+𝛿𝑘𝑛 ) · · · ,𝑤2+𝛿𝑘2 ),𝑤1+𝛿𝑘1 ), 𝑦𝑖 )
(5)

where 𝛿𝑘
𝑖
, 𝑖 ∈ [1, · · · , 𝑛] denotes the noise error on the weights

after the rank 𝑘 factorization. Then, through the definition of total
differential[10], for the differentiable function ℓ with the small
variable 𝛿 , the following formula is established:

ℓ̄𝑘 (𝑤, 𝑥𝑖 , 𝑦𝑖 ) − ℓ (𝑤, 𝑥𝑖 , 𝑦𝑖 ) =
𝑛∑︁
𝑖=1

𝜕ℓ𝑘

𝜕𝑤𝑖
· 𝛿𝑘𝑖 (6)

where · is inner product. For the loss on the entire dataset, the
optimization objective is written as:

min
𝛿∈Δ

𝑓 (𝑤) − 𝑓 (𝑤) = 1
𝑚

𝑛∑︁
𝑖=1

∑︁
(𝑥 𝑗 ,𝑦 𝑗 ) ∈D

𝜕ℓ

𝜕𝑤𝑖
· 𝛿𝑘𝑖 (7)

where 𝑓 (𝑤) = 1
𝑚

∑
ℓ̄𝑘 (·), Δ is the full set of 𝛿 . This optimization

objective incorporates the noise error from the factorization into
the model loss. When the inner product is negative in the right-
hand side of the equation, i.e.

∑
(𝑥 𝑗 ,𝑦 𝑗 ) ∈D

𝜕ℓ
𝜕𝑤𝑖

· 𝛿𝑘
𝑖
< 0, the model

loss after factorization will be less than the original model. Thus,
the goal of lossless low-rank factorization is achieved.

3.2 Theoretical Conditions and Practical
Mapping

Theoretically, conditions are required for the establishment of Equa-
tion 7. Equation 7 requires certain mathematical differentiation
guarantees. Therefore, we need to discuss the size of the neigh-
borhood when differentiable functions are differentially expanded.
Usually in mathematics, a neighborhood is a sufficiently small range
𝜖 around the point of expansion. So in theory, Equation 7 needs to
satisfy the neighborhood𝑈𝛿𝑘 (𝑥𝑖 ) : |𝛿𝑘 | < 𝜖 .

In practice, how to obtain this neighborhood is the prerequisite
for the effectiveness of our method. Therefore we calculated the gap
between the loss values in Equation 7 under theoretical analysis
and in practical engineering.

𝑈𝛿𝑘 (𝑥𝑖 ) : |ℓ (𝑤 ± 𝛿𝑘𝑖 , 𝑥𝑖 , 𝑦𝑖 ) − (ℓ (𝑤, 𝑥𝑖 , 𝑦𝑖 ) +
𝑛∑︁
𝑖=1

𝜕ℓ𝑘

𝜕𝑤𝑖
· 𝛿𝑘𝑖 ) | (8)

The meaning of the above formula is to verify under what range
of neighborhoods the theoretical derivation of Eq. 6 can be imple-
mented in practical experiments. The left side of the minus sign is
the loss under practical engineering for a specific layer with param-
eters added to the factorization noise 𝛿𝑘 , and the right side is the
loss in the theoretical analysis for the weight gradient perturbation,
corresponding to Equation 6. We consider using the above formula
to determine what the rank is, the noise 𝛿𝑘 caused by the factoriza-
tion can make this difference small enough, so that Equation 6 or 7
holds true. Through multiple rounds of experiments, we find that
this theoretical and practical difference is sufficiently small to be
less than 0.0001 when the introduced noise is 𝛿𝑘 ≤ 𝜖 ∈ O(10−3).
This ensures that our analysis is valid. See the experimental section
for specific values.

3.3 Practical Constraints
In our optimization objective, lossless low-rank factorization needs
to guarantee two conditions called the compression condition and
the lossless condition. The compression condition is generated to
efficiently compress the model, i.e., the number of parameters of the
original matrix in Eq. 2 is smaller than the number of parameters
of the approximation matrix, 0 < 𝑘 < 𝑁𝑀/(𝑁 +𝑀). The lossless
condition is generated to efficiently reduce the loss of the model,
which corresponds to the condition for the differentiation to hold.
The noise 𝛿𝑘 after factorization should be less than 𝜖 , i.e. {∥𝑤𝑖 𝑗 −
𝑙𝑖 𝑗𝑟𝑖 𝑗 ∥}𝑖, 𝑗 ≤ 𝜖 , where represented by the set of matrix elements,
𝑙𝑖 𝑗𝑟𝑖 𝑗 represents the 𝑖, 𝑗 th element of the approximation matrix 𝐿𝑅𝑇 .
This restriction means that every element in the difference set of
all original matrices and approximate matrices needs to be smaller
than 𝜖 . It is worth noting that our goal is still to compress the
model. So the compression condition should be satisfied before the
lossless condition. And the rank deficit-k factorization noise in the
lossless condition 𝛿𝑘 is generated after the compression condition
is satisfied. Lossless low-rank factorization optimization needs to
satisfy these two inequality constraints at the same time, which is
updated to the following formula:

min
𝛿𝑘 ∈Δ

𝑓 (𝑤) − 𝑓 (𝑤) = 1
𝑚

𝑛∑︁
𝑖=1

∑︁
(𝑥 𝑗 ,𝑦 𝑗 ) ∈D

𝜕ℓ

𝜕𝑤𝑖
· 𝛿𝑘𝑖 (9)

s.t. {∥𝑤𝑖 𝑗 − 𝑙𝑖 𝑗𝑟𝑖 𝑗 ∥𝐹 }𝑖, 𝑗 ≤ 𝜖, ∀𝑖, 𝑗 (9a)

0 < 𝑘 <
𝑁𝑀

𝑁 +𝑀
(9b)

Gradient andHigher-order Terms.When optimizing Equation 9,
we also need to analyze gradients and higher-order terms. Theoreti-
cally, for a well-trained model, the expectation of ℓ (·)’s gradient for
parameters is ideally zero, i.e., for the

∑
(𝑥 𝑗 ,𝑦 𝑗 ) ∈D

𝜕ℓ
𝜕𝑤 components,

𝜕ℓ
𝜕𝑤𝑖

= 0. But in practice, we find it difficult to train a model so well
that its gradient is 0. So the gradient of the model for factorization
is usually not 0. This also ensures the feasibility of our algorithm.
Moreover, the second-order term is influenced by the infinitesimal
higher-order term. From Taylor’s theorem, the first-order term is
the main factor that causes the change compared to the higher-
order term. So we focus on first-order elements, and higher-order
terms will not cause major performance changes when they are
ignored.

From Eq. 7 to Eq. 9, we analyze each term in Eq. 7 both theoreti-
cally and practically, finishing the complete mapping from theory
to practical engineering.

4 LOSSLESS AND COMPACT MATRIX
OPTIMIZATION ALGORITHMS

Based on the above analysis and optimization strategies, we pro-
pose two algorithms with different strategies, lossless and compact
matrix optimization algorithms. Lossless and compressive factoriza-
tion algorithms are aggressive probabilistic algorithms that do their
best. The lossless factorization algorithm focuses on minimizing
the loss function value while keeping the model size no larger than
a full-precision model. The compressed matrix algorithm aims to
minimize the model size while ensuring that the loss function value
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Algorithm 1 Lossless Optimization Algorithm
Input: Neural network𝑀 , lossless rank list 𝐴.
Output: Loss-minimization model 𝑀̂ after decomposition.
1: for 𝐿𝑎𝑦𝑒𝑟𝑎 in𝑀 do
2: Compute the maximum rank 𝑟𝑎𝑛𝑘𝑚𝑎𝑥 in compression con-

ditions
3: if 𝐿𝑎𝑦𝑒𝑟𝑎 is decomposed then
4: continue
5: end if
6: for 𝑐 = 1, 2, 3, ..., 𝑟𝑎𝑛𝑘𝑚𝑎𝑥 do
7: Initialize 𝐿𝑐 , 𝑅𝑐
8: Compute the error 𝛿𝑖 of ℎ𝑖+1 under 𝑟𝑎𝑛𝑘𝑐 level on

dataset
9: if {∥𝑤𝑖 𝑗 − 𝑙𝑖 𝑗𝑟𝑖 𝑗 ∥𝐹 }𝑖, 𝑗 ≤ 𝜖, ∀𝑖, 𝑗 then
10: if 𝜕ℓ

𝜕𝑤𝑖
· 𝛿𝑖 < 0 then

11: {𝐿𝑐 , 𝑅𝑐 , 𝐿𝑜𝑠𝑠} append to list 𝐴
12: end if
13: end if
14: Update 𝐿𝑐 , 𝑅𝑐
15: end for
16: Search for the minimized Loss in the List 𝐴.
17: 𝑊𝑎 = 𝐿𝑎 𝑅𝑎
18: Return ˆ𝐿𝑎𝑦𝑒𝑟𝑎
19: end for
20: Return 𝑀̂

is not larger than that of the full precision model. Both algorithms
are greedy algorithms to achieve the goal of minimizing the loss
function value or model size.

In Algorithm 1 and Algorithm 2, our goal is to find the noise
introduced by low rank that is opposite to the gradient direction, so
that the inner product of the two is negative and reduce the model
loss. In Algorithm 1, the priority is to achieve a low loss function
value to obtain the best performance factorization model. Therefore,
in the specific implementation, we decompose each Linear layer of
the model, save the approximate matrix that meets the restrictive
conditions, and finally select the approximate low-rank matrix 𝐿, 𝑅
with the lowest loss function. When no approximate matrix meets
the constraints, then this layer is not losslessly factorized.

In Algorithm 2, priority is given to choosing a lower rank to
obtain a smaller factorization model. Therefore, in the specific im-
plementation, we calculate the inner product of the weight gradient
and the factorization noise in order from small to large ranks. When
the inner product is less than 0, the current rank is the minimum
rank and corresponds to the minimum size model. Secondly, in or-
der to speed up the algorithm, our algorithm can also be optimized
with binary search.

5 EXPERIMENTS
We conduct extensive comparative experiments on vision and lan-
guage processing tasks, and prove that the algorithmworks through
ablation.

Algorithm 2 Compact Optimization Algorithm
Input: Neural network𝑀 .
Output: Rank-minimization model 𝑀̂ after decomposition.
1: for 𝐿𝑎𝑦𝑒𝑟𝑎 in𝑀 do
2: Compute the maximum rank 𝑟𝑎𝑛𝑘𝑚𝑎𝑥 in compression con-

ditions
3: if 𝐿𝑎𝑦𝑒𝑟𝑎 is decomposed then
4: continue
5: end if
6: for 𝑐 = 1, 2, 3, ..., 𝑟𝑎𝑛𝑘𝑚𝑎𝑥 do ⊲ Binary search optimization
7: Initialize 𝐿𝑐 , 𝑅𝑐
8: Compute the error 𝛿𝑖 of ℎ𝑖+1 under 𝑟𝑎𝑛𝑘𝑐 level on

dataset
9: if {∥𝑤𝑖 𝑗 − 𝑙𝑖 𝑗𝑟𝑖 𝑗 ∥𝐹 }𝑖, 𝑗 ≤ 𝜖, ∀𝑖, 𝑗 then
10: if 𝜕ℓ

𝜕𝑤𝑖
· 𝛿𝑖 < 0 then

11: 𝑊𝑎 = 𝐿𝑎 𝑅𝑎
12: end if
13: end if
14: Update 𝐿𝑐 , 𝑅𝑐
15: end for
16: Return ˆ𝐿𝑎𝑦𝑒𝑟𝑎
17: end for
18: Return 𝑀̂

5.1 Datasets and Details.
Datasets. The ImageNet-1K dataset[9] consists of 1.28 million train-
ing and 50K validation images. Those images have various spatial
resolutions and come from 1K different categories. ImageNet-1K
is usually used as the benchmark for model compression. SWAG
dataset[21] consists of 113kmultiple choice questions about grounded
situations. Each question is a video caption from LSMDC or Ac-
tivityNet Captions, with four answer choices about what might
happen next in the scene. The Stanford Question Answering Dataset
(SQuAD)[11] is a collection of question-answer pairs derived from
Wikipedia articles. In SQuAD, the correct answers of questions can
be any sequence of tokens in the given text. SQuAD 1.1 contains
107,785 question-answer pairs on 536 articles. MNLI[15] is a dataset
for natural language reasoning tasks. Its corpus is a collection of tex-
tual implication annotations of sentences through crowdsourcing.
The corpus is given a premise sentence and a hypothesis sentence.
The task is to predict whether the premise sentence and the hypoth-
esis sentence are logically compatible (entailment, contradiction,
neutral). CoNLL-2003[12] is a named entity recognition dataset re-
leased as a part of CoNLL-2003 shared task: language-independent
named entity recognition. The data consists of eight files covering
two languages: English and German. For each of the languages
there is a training file, a development file, a test file and a large file
with unannotated data.

Details. Our method does not require fine-tuning and training.
Use the same optimization settings for all experiments in this paper
and avoid any hyperparameter filtering to ensure a fair comparison.
In all comparisons of factorizationmethods, the same rankwas used.
The original models are all from Pytorch. The code is implemented
in Pytorch and will be released after publication.
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Table 1: Accuracy and loss results on Imagenet for popular
few-layer or multi-layer models. Where -SVD is SVDmethod,
-Ours(L) is the lossless factorization result, -Ours(C) is the
compression factorization algorithm result.

Model Top-1 Top-5 Loss

VGG19_BN[8] 74.218 91.842 1.042591

VGG19_BN-SVD 74.222 91.864 1.042603

VGG19_BN-Ours(L) 74.222 91.892 1.021449

VGG19_BN-Ours(C) 74.112 91.715 1.042593

Resnet101[3] 77.374 93.546 0.911946

Resnet101-SVD 77.246 93.514 0.912570

Resnet101-Ours(L) 77.258 93.510 0.911230

Resnet101-Ours(C) 77.259 93.506 0.912539

Resnet152 78.312 94.046 0.876225

Resnet152-SVD 78.204 94.032 0.876378

Resnet152-Ours(L) 78.180 94.062 0.852449

Resnet152-Ours(C) 78.185 94.041 0.875998

Resnext101_32x4d[16] 79.312 94.526 0.926616

Resnext101_32x4d-SVD 78.154 94.012 0.870145

Resnext101_32x4d-Ours(L) 78.160 94.018 0.869111

Resnext101_32x4d-Ours(C) 76.308 91.482 0.924511

Resnext50_32x4d 77.618 93.698 0.940085

Resnext50_32x4d-SVD 76.300 93.112 0.934977

Resnext50_32x4d-Ours(L) 77.008 93.420 0.920947

Resnext50_32x4d-Ours(C) 76.284 93.114 0.938988

Inception v3[13] 69.538 88.654 1.829029

Inception v3-SVD 66.262 87.258 1.554306

Inception v3-Ours(L) 67.872 87.866 1.526568

Inception v3-Ours(C) 60.784 84.242 1.823540

Densenet161[6] 77.138 93.560 0.943676

Densenet161-SVD 77.076 93.504 0.945033

Densenet161-Ours(L) 77.036 93.546 0.909673

Densenet161-Ours(C) 76.172 93.260 0.943185

Densenet169 75.600 92.806 0.997792

Densenet169-SVD 75.426 92.802 1.001437

Densenet169-Ours(L) 75.446 92.790 0.971887

Densenet169-Ours(C) 74.790 92.572 0.994877

Densenet201 76.896 93.370 0.926975

Densenet201-SVD 76.846 93.300 0.928765

Densenet201-Ours(L) 76.768 93.304 0.919823

Densenet201-Ours(C) 76.582 93.210 0.924847

5.2 Comparative Experiments
Image Classification. Table 1 shows the accuracy and loss re-
sults of our algorithm on Imagenet. We factorize all linear weight
matrices in the visual classifier. These models are characterized
by high rank and deep depth. Experiments show that both our
lossless factorization method and compressed factorization method
can decompose the model in a lossless manner. At the same time,
although the SVD algorithm can approximate the original matrix
and reduce the approximation error, it will increase the loss of the
final model. The loss value of our algorithm is not only smaller

Original Model Loss

Compression 

Rank
LossLess 

Rank

Figure 2: Loss performance of our algorithm on Densenet169
model. Our algorithms have lower losses than the original
model under the condition that 0 < 𝑟𝑎𝑛𝑘 < 𝑁𝑀

𝑁+𝑀 is satisfied.

than the SVD method, but also smaller than the original model
loss, and our accuracy is almost the same as the original model. On
high-rank and deep models such as VGG19_BN and Resnet152, our
lossless optimization algorithm is not only lower in loss than the
original model, but even the accuracy is higher than the original
model. This is due to the establishment of our lossless optimization
goal and the effectiveness of the two algorithms.

Table 2: Comparison with other quantization compression
methods. Our method enables lossless decomposition and is
flexible.

Model Top-1 Top-5 Loss Drop rate
resnext50_32x4d 77.618 93.698 0.940085
+ ACIQ [1] 77.14 93.382 0.940222 − 73.00%
+ Ours(L) 77.008 93.420 0.920947 − 68.00%
+ Ours(C) 76.284 93.114 0.938988 − 78.00%

Table 2 shows the comparison between our algorithm and quanti-
zation method. ACIQ[1] uses int8 for quantization, which improves
the loss of the model. Our algorithm is able to reduce model size
similar to ACIQ while reducing loss. At the same time, compared
with other compression methods, our algorithm is more flexible and
practical, and different decomposition strategies can be selected
according to needs. For example, compression optimization algo-
rithms can be used in mobile devices to reduce the model size as
much as possible while maintaining the same loss.

Figure 2 shows our lossless factorization strategy in inference
when 0 < 𝑟𝑎𝑛𝑘 < 𝑁𝑀

𝑁+𝑀 is satisfied. The red line in the figure
represents the loss-rank curve of our algorithm, and the orange
line represents the loss-rank curve of the SVM algorithm. As the
rank decreases, the loss shows an increasing trend. The intersection
point of the model loss straight line and our algorithm curve is the
lowest rank when the model loss is almost the same. The compres-
sion factorization optimization algorithm does its best to compress
the model while ensuring that the loss remains unchanged. And,
under the constraints of compression conditions, the lowest point
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Table 3: Performance of our algorithm after compressing parameters. The Drop rate represents the rate of drop compared to
the original model parameters.

Model Loss Drop Rate Model Loss Drop Rate

VGG19_BN 1.042591 - Resnext101_32x4d 0.926616 -

VGG19_BN-Ours(L) 1.021449 − 2.00% Resnext101_32x4d-Ours(L) 0.869111 − 75.00%

VGG19_BN-Ours(C) 1.042593 − 43.00% Resnext101_32x4d-Ours(C) 0.924511 − 81.00%

Resnet101 0.911946 - inception v3 1.829029 -

Resnet101-Ours(L) 0.911230 − 2.00% inception v3-Ours(L) 1.526568 − 68.00%

Resnet101-Ours(C) 0.912539 − 3.00% inception v3-Ours(C) 1.823540 − 82.00%

Resnet152 0.876225 - Densenet161 0.943676 -

Resnet152-Ours(L) 0.852449 − 2.00% Densenet161-Ours(L) 0.909673 − 2.00%

Resnet152-Ours(C) 0.875998 − 8.00% Densenet161-Ours© 0.943185 − 52.00%

Resnext50_32x4d 0.940085 - Densenet169 0.997792 -

Resnext50_32x4d-Ours(L) 0.920947 − 68.00% Densenet169-Ours(L) 0.971887 − 2.00%

Resnext50_32x4d-Ours(C) 0.938988 − 78.00% Densenet169-Ours(C) 0.994877 − 52.00%

Densenet201 0.926975 - BERT_base 0.057902 -

Densenet201-Ours(L) 0.919823 − 2.00% BERT_base-Ours(L) 0.056642 − 6.00%

Densenet201-Ours(C) 0.924847 − 25.00% BERT_base-Ours(C) 0.057655 − 17.00%

of our algorithm is the minimum loss of the curve. The lossless fac-
torization method does its best to reduce model loss while ensuring
compression.

Table 3 further shows the difference between our two factor-
ization algorithms. The lossless compression algorithm does its
best to minimize the model loss while ensuring compression. The
compression algorithm compresses the model as much as possible
while ensuring that the loss remains unchanged. For example, in
Resnext101_32x4d, the loss of the model after lossless factorization
is reduced compared with the original model, and the compression
is completed. Compared with the original model, the compact op-
timization algorithm (Ours-C) can reduce 81% of parameters and
is less than the loss of the original model. Our lossless optimiza-
tion algorithm (Ours-L) uses the rank < 𝑁𝑀

𝑁+𝑀 under compression
conditions to ensure model compression while minimizing the loss.

Table 4: Performance of the algorithm in multiple choice
tasks on the SWAG dataset.

SWAG Accuracy loss

BERT_base 79.11 0.057902

BERT_base-SVM 77.53 0.060070

BERT_base-CP 78.01 0.062011

BERT_base-Ours(L) 78.57 0.056642

BERT_base-Ours(C) 78.31 0.057655

Natural language processing. In order to verify the generaliza-
tion and effectiveness of our algorithm, we perform lossless factor-
ization of the Bert model on natural language processing tasks. And
decompose all transformer blocks in the Bert model[2] that meet the
algorithm requirements. The performance error ranges given in the

Table 5: Performance of algorithms on language processing
tasks. The test set includes SQuAD, MNLI, CoNLL-2003.

SQuAD Accuracy on val Loss EM F1

BERT_base[2] 85.74 0.446100 80.49 88.14

BERT_base-SVM 83.78 0.516815 79.04 86.87

BERT_base-CP 84.05 0.584582 77.84 87.14

BERT_base-Ours(C) 85.67 0.448200 80.43 88.16

MNLI Accuracy on val Loss on val Acc on test Loss on test

BERT_base 82.77 0.028946 82.90 0.028556

BERT_base-SVM 81.69 0.030200 81.66 0.029865

BERT_base-Ours(C) 82.78 0.028948 82.92 0.028566

CoNLL-2003 NER Precision Recall F1-score Loss

BERT_base 89.94 91.69 90.79 8.568476

BERT_base-SVM 89.32 90.97 90.13 8.645811

BERT_base-Ours(L) 89.52 91.24 90.36 7.995014

BERT_base-Ours(C) 89.30 90.99 90.12 8.548734

table are within a reasonable range. Tables 4 and 5 show the perfor-
mance of the algorithm on SQuAD, MNLI, SWAG and CoNLL-2003.
Our algorithm exceeds the SVM method and CP method in accu-
racy and loss, and is similar to the original model. Our algorithm
is a best-effort effort. In the SQuAD and MNLI datasets, the Bert
model cannot satisfy the constraints of the lossless factorization op-
timization algorithm, so lossless factorization cannot be performed.
However, when the loss is almost unchanged, our compact optimiza-
tion algorithm can still compress the original model and maintain
an accuracy similar to the original model. In the SWAG dataset,
both of our algorithms can be factorized losslessly, and when the
compressed model sizes are similar, our factorization algorithm also
exceeds other factorization methods in accuracy. This also verifies
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that our algorithm can compress according to different needs and
ensure that the loss is almost unchanged. In terms of parameter
size, our algorithm can reduce the parameters of the Bert model by
17% and ensure no loss.

Algorithm Speed and Time. The two algorithms proposed are
best effort. Therefore, both algorithms are faster. After averaging
multiple rounds of experiments, the running time of our algorithm
is less than 10 minutes. At the same time, our algorithm does not
require any fine-tuning, so compared with other methods, the fine-
tuning time is 0. In terms of inference speed, our algorithm can
achieve 2%-10% reduction in inference on image classification or
natural language processing tasks. time while ensuring lossless
performance.

Table 6: Ablation of gradients in lossless factorization.

Ablation Accuracy Loss

Densenet161 77.138 0.943676

Densenet161-w/o gradient 77.014 0.949644

Densenet161-w/ gradient 77.036 0.909673

Densenet169 75.600 0.997792

Densenet169-w/o gradient 75.442 0.997122

Densenet169-w/ gradient 75.446 0.971887

BERT_base 79.111 0.057902

BERT_base-w/o gradient 78.421 0.058137

BERT_base-w/ gradient 78.566 0.056642

Table 7: Ablation of asymptotic upper bounds on noise 𝜖

introduced in low-rank factorizations in exponential form.

Layer 𝜖 Δ 𝐿𝑜𝑠𝑠

Layer 1
O(1e-4) O(9e-5)
O(5e-4) O(3e-4)
O(1e-3) O(2e-3)

Layer 2
O(1e-4) O(6e-4)
O(5e-4) O(6e-4)
O(1e-3) O(1e-3)

Layer 3

O(1e-4) O(9e-6)
O(5e-4) O(7e-5)
O(1e-3) O(3e-3)
O(1e-2) O(5e-2)
O(1e-1) O(7e-1)

5.3 Ablation
In this section, we conduct an ablation study on the relevant pa-
rameters and experimental settings of the algorithm.

Optimization Objective. When the algorithm optimizes for
objectives that do not contain gradients, the loss increases. This
illustrates the fact that approximating the weights through the
original optimization objective increases the loss. The lossless fac-
torization algorithm uses differential analysis to establish a relation-
ship between model performance loss and traditional factorization

optimization, and identifies a new optimization objective. It also
demonstrates the effectiveness of our optimization objective.

Theory to Practice Mapping and Constraints.We focus on
whether the noise introduced by practical low-rank factorization
satisfies our differential neighborhoods theory analysis. Our dif-
ferential theory conditions that the neighborhoods needs to be
sufficiently small, and this corresponds to the performance impli-
cations of the actual factorization. We factorize the transfomer
layer. From Table 7, factorization noise of the model’s layers with
different ranks leads to different upper bounds on the noise, and
the variation in losses Δ 𝐿𝑜𝑠𝑠 due to this noise are very small. This
satisfies our analysis of differential neighborhoods. When too much
noise is introduced, the change in loss Δ 𝐿𝑜𝑠𝑠 is too large, which is
also beyond the analytical scope of mathematical differentiation.
Low rank introduces noise well beyond our lossless constraints. As
shown in Figure 2, when the rank is too low, the noise introduced
by factorization is too large, and the lossless restriction conditions
in the optimization objective fail, causing the loss to rise beyond
the original model. This makes our algorithm incapable of lossless
factorization at current very low ranks.

Higher-Order Term Effects and Weight Gradients. In the
theoretical analysis, we found that the first-order term is the main
change causing model loss, while the influence of the second-order
term is infinitesimal higher-order terms. We confirm this in our
experiments, where the effect of the second-order term on the loss is
generally less than O(1e-5),when the same 1e-3 noise is introduced
into the second-order term, while the effect of the first-order term
on the loss is roughly 100 times more than the second-order term.
Also, the second-order term causes a change in accuracy in the
range of about 0.001. So we mainly analyze the first order term.
According to the theoretical analysis, the ideal trainedmodel weight
gradient should be 0, but in practice it is difficult to train a model
so well that the gradient is 0. We experimentally found that in
Densenet201, for example, about 99% of the model gradient weight
gradients are not 0, and most of them have to be less than 0.001. So
our optimization objective’s analysis of the gradient is effective in
practical engineering.

Discussion. In fact, we can further expand the optimization
objective into the following equation:

min𝐺 (𝑙𝑖 𝑗 , 𝑟𝑖 𝑗 ) (10)

s.t. {∥𝑤𝑖 𝑗 − 𝑙𝑖 𝑗𝑟𝑖 𝑗 ∥𝐹 }𝑖, 𝑗 ≤ 𝜖, ∀𝑖, 𝑗 (10a)

0 < 𝑘 <
𝑁𝑀

𝑁 +𝑀
(10b)

Where 𝐺 () represents the set of functions that satisfy the con-
straints. In order to solve this problem, we need to construct a
concrete function to describe𝐺 (). At this point, we utilize Equation
7 to describe this function.

6 CONCLUSION
This paper establishes the connection between the optimization
of low-rank factorization and model optimization, and converts
the low-rank factorization problem into a numerical rank-defect
problem under inequality constraints. To address this problem, we
propose a lossless optimization algorithm and a compressed matrix
optimization algorithm that do not require fine-tuning. Experiments
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demonstrate the effectiveness and generalization of our lossless
algorithm on a variety of tasks. In the future, we will apply our
work to large language models and explore more.
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