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ABSTRACT

Graph structure expression plays an important role in distinguishing various
graphs. In this work, we propose a Structure-Sensitive Graph Dictionary Em-
bedding (SS-GDE) framework to transform input graph into the space of graph
dictionary for the graph classification task. Instead of a naive use of base graph
dictionary, we propose variational graph dictionary adaptation (GDA) to generate
a personalized dictionary (named adapted graph dictionary) for catering each in-
put graph. In particular for the adaptation, the Bernoulli sampling is introduced to
adjust substructures of base graph keys, which increases the expression capacity of
base dictionary tremendously. To make cross-graph measurement sensitive as well
as stable, multi-sensitivity Wasserstein encoding is proposed to produce the em-
beddings by designing multi-scale attention on optimal transport. To optimize the
framework, we introduce mutual information as the objective, which just deduces
to variational inference of adapted graph dictionary. We perform our SS-GDE on
multiple datasets of graph classification, and the experimental results demonstrate
the effectiveness and the superiority over the state-of-the-art methods.

1 INTRODUCTION

Graph is usually composed of one node set and one edge set, where nodes represent individual
objects and edges denote relationships among them. Due to rather flexible structures, graphs have
been widely-used to model ubiquitous irregular data in various real-world and scientific fields, such
as biological graphs Duvenaud et al. (2015); Hamilton et al. (2017) and social networks. To obtain
powerful representation ability on graphs, graph deep learning is flourishing in recent years, and
has made many milestone progresses on several graph-related tasks including community detec-
tion, document classification, et al. Among them, an essential issue is graph classification, which
endeavors to learn the most discriminant representation of graphs in certain measurement metrics.

The existing graph classification methods generally fall into two main streams: graph kernel-based
algorithms and graph neural networks (GNNs). As the traditional and classical representative, graph
kernels Shervashidze et al. (2009); Borgwardt & Kriegel (2005) measure similarities of graphs in
a lifting high-dimensional space of structure statistics quantified by graphlets, where structural in-
formation is well preserved. As a contrast, GNNs Kipf & Welling (2016); Veličković et al. (2017);
Xu et al. (2018) attempt to extract high-level and discriminative features by stacking multiple neural
network layers, wherein the adjacent information is aggregated in an iterative manner. Hence, GNNs
are capable of exploiting local structures of graph to some extent, and have achieved better results
in graph classification due to the essence of deep architecture.

Even though much considerable progress has been made by GNNs in graph classification, the over-
smoothness Xu et al. (2018) limits the expression ability of features because of the structure con-
fusion during information aggregation. When retrospecting graph kernels again, the good preser-
vation ability of graph structures is really fascinating to GNNs. Hereby, we naturally pose such an
issue why not assemble the powerful abilities of GNN for deep representation and graph kernel for
structure preservation. Probably inspired from this idea, recently, an interesting work, deep graph
dictionary learning Zhang et al. (2021), raised a novel solution by encoding input graph with graph
dictionary in a GNN architecture, and meantime achieved promising performance. For graph dic-
tionary learning, however, two major problems remain to be addressed: i) a fixed graph dictionary
usually has limited capacity to express a giant amount of graphs, as combinatorial-explosive graph
structures with exponential-order magnitude would be overwhelming for such a dictionary; ii) the

1



Under review as a conference paper at ICLR 2023

similarity measurement across input graph and graph dictionary key should be stable, also sensitive
to local structural variations, which guarantees high representation ability on graph dictionary.

To tackle the two issues above, in this work, we propose a Structure-Sensitive Graph Dictionary Em-
bedding (SS-GDE) framework to facilitate graph representation modeling for graph classification.
To fully liberate graph dictionary, we propose variational graph dictionary adaptation (VGDA) to
conduct individual structure selections from graph dictionary keys for each input graph. Such a se-
lective adjustion tremendously expands the capacity of original fixed graph dictionary (called base
graph dictionary, BGD), and generates a personalized specific dictionary adapted for each input
graph, which we call adapted graph dictionary (AGD) versus base graph dictionary. To effectively
choose the corresponding substructures from base graph keys, we introduce a Bernoulli sampling
to be learnt during the variational inference in VGDA. For the measurement between input graph
and adaptive dictionary keys, we employ cross-graph Wasserstein distance, which is rather stable
as verified in Zhang et al. (2021). But to increase the sensitivity for cross-graph correlation, we
propose multi-sensitivity Wasserstein encoding (MS-WE) by introducing multi-scale attention on
optimal transport, which could adaptively capture those important local correlation patterns for the
final accurate representation of input graph. To optimize the proposed framework, we introduce
mutual information as the objective, which just deduces to variational inference of adapted graph
dictionary. To evaluate the SS-GDE framework, extensive experiments are conducted on multiple
graph classification datasets, and the experimental results validate the effectiveness and the superi-
ority over the state-of-the-art methods.

In summary, the contributions of our work are four-fold: i) propose a structure-sensitive graph
dictionary embedding framework to promote deep graph learning for graph classification; ii) propose
variational graph dictionary adaptation to release the potential capacity of base graph dictionary; iii)
design multi-sensitivity Wasserstein encoding to guarantee the sensitivity as well as stability of
cross-graph measurement; iv) report new state-of-the-art results on some datasets.

2 RELATED WORK

In this section, we first review the previous methods of graph classification, then introduce works
related to inherently interpretable models and Wasserstein distance learning.

Graph Classification. Many recent techniques have been proposed to solve the graph classifica-
tion problem. Some early approaches dedicated to building kernel functions to measure similarities
among graphs. These kernel-based methods decompose graphs into sub-structure such as random-
walks (Gärtner et al., 2003), shortest path (Borgwardt & Kriegel, 2005), graphlets (Shervashidze
et al., 2009) and subtrees (Shervashidze et al., 2011). GNN can directly operate on graph-structured
data to extract expressive graph-level representation by stacking multiple neural network layers,
which can aggregate neighbor node features and have achieved promising performance in the graph
classification task. Besides, various convolution (Kipf & Welling, 2016; Niepert et al., 2016; Luo
et al., 2017) and pooling operations were proposed to learn robust node features and graph repre-
sentations in recent years. Graph Convolutional Network(GCN) (Kipf & Welling, 2016) proposed a
layer-wise propagation rule based on a first-order approximation of spectral convolution on graphs
via the Chebyshev polynomial iteration. Graph Attention Network (GAT) (Veličković et al., 2017)
highlighted more information nodes by assigning different weights to different nodes in the neigh-
borhood. In addition to the above-mentioned methods, many pooling strategies have emerged, which
can be categorized as node selection (Lee et al., 2019; Li et al., 2020; Nouranizadeh et al., 2021),
graph coarsening (Ying et al., 2018; Yuan & Ji, 2020) and other methods (Baek et al., 2021; Li
et al., 2019). SAGPool (Lee et al., 2019) employed self-attention mechanism, which uses graph
convolution to calculate the attention scores to distinguish the nodes that should be dropped and the
nodes that should be retained. DiffPool (Ying et al., 2018) learned a differentiable soft assignment
to cluster nodes at each layer.

Wasserstein Distance learning. Wasserstein distance measures the difference between two prob-
ability distributions defined on a given metric space by leveraging the OT principle and has been
widely used in machine learning and pattern matching fields. Numerous algorithms (Frogner et al.,
2015; Titouan et al., 2019; Chen et al., 2020) were proposed to learn representation from graphs
or measure this distance. For instance, (Togninalli et al., 2019) proposed that calculate the Wasser-
stein distance between the node feature vector distributions of two graphs to find subtler differences.
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Fused Gromov-Wasserstein (FGW) (Titouan et al., 2019) was introduced to consider both features
and structure information in the optimal transport problem. Some other works (Schmitz et al., 2018;
Rolet et al., 2016; Vincent-Cuaz et al., 2021) attempted to conduct dictionary learning in W-space,
e.g., using W-distance for fitting data term.

Inherently Interpretable models. The interpretability of models refers to understanding their inter-
nal mechanism. Many works have been proposed to extract meaningful data patterns for prediction
by post-hoc methods (Ying et al., 2019; Luo et al., 2020) as well as inherently interpretable models
(Wu et al., 2022b; Miao et al., 2022). However, To make the model more interpretable, it may need
to sacrifice prediction performance. DIR (Wu et al., 2022b) proposed to create multiple distributions
by conducting interventions to the training distribution and to filter out the spurious and unstable pat-
terns. GSAT (Miao et al., 2022) introduced stochastic attention to block the task-irrelevant graph
components information while learning stochasticity-reduced attention to select task-relevant sub-
graphs to provide the interpretability of the model.

Compared to those existing methods above, our SS-GDE has apparently different aspects: (1) In-
stead of a naive use of base graph dictionary, we introduce the Bernoulli sampling to adjust sub-
structures of base graph keys to generate a personalized dictionary adapted for each input graph.
Such a selective adjustion significantly expands the capacity of original fixed graph dictionary. Fur-
thermore, we introduce mutual information as objective, which deduces to the variational inference
of adapted graph dictionary. (2) We design the MS-WE module to use cross-graph Wasserstein dis-
tance for the stability of embedding and further introduce multi-sensitivity regularization to improve
the sensitivity of structure variations. Hence, those important local correlation patterns could be
well captured for the accurate representation of input graphs.

3 THE PROPOSED METHOD

In the following parts, vectors/matrices are denoted with lowercase/uppercase letters in boldface, and
□⊺ represents the transpose. A calligraphic symbol may either indicate a tuple, e.g. the graph tuple
Gi consisting of node/edge sets, or simply a set, e.g. a node set Vi. □D means that the matrix/vector
corresponds to the graph dictionary, e.g. the graph dictionary denoted as D = {GD

1 , · · · ,GD
K} (K

is the number of the graph keys). In this section, we first overview the whole architecture of our
proposed SS-GDE framework, then describe those main learning processes in detail.

3.1 OVERVIEW

The whole architecture of the proposed SS-GDE framework is shown in Fig. 1. In general, it
contains two main learning modules: variational graph dictionary adaptation (VGDA) and multi-
sensitivity Wasserstein encoding (MS-WE). Before VGDA, a base graph dictionary (BGD) D̃ is
first constructed to support the subsequent embedding representation of input graph. For the rough
graphs in dictionary or input set, graph convolution neural network (GCNN) may be used to learn
primary expression of each node. Given an input graph G, the VGDA learns an adapted graph dic-
tionary D from base dictionary through learning Bernoulli sampling during cross-correlating input
and dictionary keys. Such a process generates more expressive structural dictionaries for the next
embedding representation. The detail of VGDA could be found in Section 3.2. The adapted graph
dictionary D is fed into the MS-WE module to produce the embedding of input graph. To make bet-
ter cross-graph embedding, in MS-WE, we use cross-graph Wasserstein distance for the stability of
embedding and introduce multi-sensitivity regularization for the sensitivity of structure variations.
The detail of VGDA could be found in Section 3.3. Finally, the resulting embeddings pass through
fully-connected layers for low-dimensional representations. To optimize the SS-GDE framework,
mutual information is introduced as the objective, which deduces the variational inference of the
AGD, as derived in Section 3.4. In the training process, the whole architecture as well as the base
graph dictionary can be optimized in an end-to-end tuning mode through back-propagation.

3.2 VARIATIONAL GRAPH DICTIONARY ADAPTATION

We use Gi = (Vi,Xi,Ai) {Xi ∈ Rn×d,Ai ∈ Rn×n} to denote the i-th input graph, and G̃D
j =

(ṼD
j , X̃D

j , ÃD
j ) {X̃D

i ∈ Rnd×d, ÃD
i ∈ Rnd×nd} to denote the j-th dictionary key in the BGD D̃.
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Figure 1: The architecture of the proposed SS-GDE framework. It contains two main modules
named the variational graph dictionary adaptation (VGDA) and multi-sensitivity Wasserstein encod-
ing (MS-WE). Given one input graph, as the first step, a base graph dictionary (BGD) is constructed
to support the subsequent embedding. Then, the input graph and BGD are fed into the VGDA mod-
ule to learn the adapted graph dictionary (AGD) corresponding to each input. In this process, the
Bernoulli sampling is learned to extract substructures from the BGD by cross-correlating input and
its dictionary keys. Next, the learned AGD is fed into the MS-WE module to produce the embedding
of the input graph. To make better cross-graph embedding, the MS-WE employs the multi-sensitivity
regularization before the optimal transport to improve the sensitivity of structure variations, and fur-
ther introduces the attention mechanism to capture salient structural patterns. Finally, the obtained
embeddings pass through fully-connected layers for low-dimensional representations to facilitate
the classification. More details can be found in the main body.

After GCNN for primary encoding, the learned features corresponding to Xi and X̃D
j are denoted as

Fi and F̃D
j . For each input graph, the VGDA aims to learn a more suitable AGD denoted as D from

the BGD D̃. This is done by learning Bernoulli sampling factors that adaptively select substructures
from the BGD. Formally, given Gi and G̃D

j , together with the sampling factor zij , the selection
function for generating the corresponding graph GD

ij ∈ Rn×d in D can be denoted as:

GD
ij = s(G̃D

j , zij), s.t. zij = gϕ(Fi, F̃
D
j ), p(zij) ∼ B(pij). (1)

Specifically, zij conforms to the Bernoulli distribution based on the probability vector pij , and the
elements in zij are either 0 or 1. Based on the selection function s(·) with zij , a certain number (i.e.
n) of nodes, together with the corresponding edges, can be selected from G̃D

j . gϕ(·) is the function
to learn the sampling factor zij with the parameters denoted as ϕ.

Here, a crucial step is to derive zij based on Fi and FD
j . Rather than learning zij in a deterministic

way, e.g. constructing networks with the attention mechanism, we infer zij through a probabilistic
manner. Compared to the deterministic way, this stochastic learning endows the framework better
generalization ability and interpretability. However, it’s rather non-trivial to infer zij through the
Bayes rule p(zij |Fi,F

D
j ) = p(zij)p(Fi,F

D
j |zij)/p(Fi,F

D
j ) due to the intractability. Hence, we

resort to the variational inference to approximate the intractable true posterior p(zij |Fi,F
D
j ) with

qϕ(zij |Fi,F
D
j ) and meanwhile constrain the KL-divergence DKL(qϕ(zij |Fi,F

D
j )||p(zij |Fi,F

D
j ))

between them. Specifically, in Section 3.4, we describe how this KL-divergence can be deduced
from the mutual information in detail. As a result, for the input Fi and BGD D̃, the corresponding
AGD Di = {GD

i1 ,GD
i2 , · · · ,GD

iK} can be obtained.

3.3 MULTI-SENSITIVITY WASSERSTEIN EMBEDDING

In the MS-WE module, we use the Wasserstein metric for cross-graph correlation across input graph
and adapted graph keys. Moreover, the multi-sensitivity regularization is introduced to improve the
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sensitivity to structure variations. Formally, given the input graph Gi, the cross-graph correlation
with the adapted graph key GD

j can be formularized as:

hλ
ij = Wλ(Fi,F

D
ij) = ⟨Tλ

ij ,Mij⟩. (2)

Each element in Mij calculates pair-wise squared Euclidean distances between cross-graph nodes
from Gi and GD

ij , respectively. ⟨A,B⟩ = tr(A⊺B). Tλ
ij represents the OT matrix between Fi and

FD
ij based on Mij , and the OT problem can be solved by the Sinkhorn’s fixed point iterations:

Tλ
ij = uij1N1 ⊙Kij ⊙ 1N2v

⊺
ij , s.t. Kij = e−λMij . (3)

uij and vij are initialized as all-1 vectors and kept updating during the Sinkhorn iteration. More
details can be found in (Cuturi, 2013). Hence, given the AGD Di = {GD

i1 ,GD
i2 , · · · ,GD

iK}, the
corresponding embedding hλ

i = [hλ
i1, · · · , hλ

iK ] can be obtained for Gi.

Specifically, the regulation λ controls the sensitivity of local information between nodes across two
graphs. The larger value of λ, the less sensitive to the local correlation across graphs. As large
structural variation exists among graphs, one unified λ may not well handle it for all graph samples.
To address this issue, we conduct the MS-WE through two steps: (1) to calculate multi-sensitivity
(e.g. C-sensitivity) embeddings denoted as [hλ1

i , · · · ,hλC
i ] based on Eqn. (2); (2) aggregating multi-

sensitivity embeddings with the attention mechanism:

ĥi =

C∑
j=1

αjh
λj

i , s.t. αj =
e(h

λj
i )⊺wm∑C

l=1 e
(h

λl
i )⊺wm

. (4)

Specifically, wm denotes the projection parameter for the attention mechanism.

3.4 THE FRAMEWORK OPTIMIZATION

To train our model, we employ the mutual information to measure the relationship between
the obtained embeddings and their corresponding labels based on the whole embedding process
fΨ,ϕ(·) : (G, D̃) → Y . Here, ϕ denotes the parameter set for learning the Bernoulli sampling set
Z = {zi1, · · · , ziK}, and Ψ denotes the set of the other parameters involved in the learning process.
Then, the optimization is as follows:

Ψ̃, ϕ̃ = argmax I(y, fΨ,ϕ(G, D̃))

= argmax −H(y|fΨ,ϕ(G, D̃)) +H(y)

= argmax −H(y|fΨ,ϕ(G, D̃))

= argmax Ey|G,D̃(log pΨ,ϕ(y|G, D̃))

= argmax Ey|G,D̃(log

∫
pΨ(y|G, D̃,Z)pϕ(Z|G, D̃)dZ)

≥ argmax Ey|G,D̃(Eqϕ(Z)(log pΨ(y|G,D))

−DKL(qϕ(Z)||pϕ(Z|G, D̃)). (5)

Here, I(·) means the mutual information. H(y) is the constant entropy for the random variable of
labels. Specifically, for each input Gi, we assume that those sampling factors zi1, · · · , ziK are in-
dependent and identically distributed, and each of them conforms the Bernoulli distribution. Hence,
the KL divergnecy can be rewritten as:

DKL(qϕ(Z)||pϕ(Z|G, D̃)) =
∑
i

K∑
j=1

DKL(qϕ(zij)||pϕ(zij |Gi, G̃D
j ))

=
∑
i

K∑
j=1

pij log
pij

p̂ij
+ (1− pij) log

1− pij

1− p̂ij
. (6)

qϕ(zij) is the expected Bernoulli distribution, i.e. qϕ(zij) ∼ B(p̂ij) where p̂ij denotes the pre-
defined probability vector, and pij denotes the learned probability vector. For the intractable
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pϕ(zij |Gi, G̃D
j ), to make the variational inference optimizable, we introduce the reparameterization

trick to derive pϕ(zij |Gi, G̃D
j ) ∼ B(pij) with the following formulation:

pij = σr(M
⊺
ijwr), (7)

where wr ∈ Rn is the projection vector, and Mij calculates the pairwise squared Euclidean distance
between two cross-graph nodes from Gi and G̃D

j .

By applying the reparameterization, the whole framework can be optimized through back-
propagation according to Eqn. (5). Specifically, the first term (denoted as Ly) in Eqn. (5) constraints
the accuracy for the classification task, while the second term (denoted as LKL) in Eqn. (5) mini-
mizes the distribution difference between qϕ(Z) and pϕ(Z|G,D). To better balance the influence of
the two terms, we introduce a trade-off coefficient β in Eqn. (5) to transform the whole optimization
objective as:

L = Ly − βLKL. (8)

4 EXPERIMENTS

In this section, we first introduce the public datasets used to evaluate our model, as well as describe
the implementation details. We then compare the proposed SS-GDE model with multiple state-of-
the-art methods. Finally, we conduct ablation analysis to dissect the SS-GDE.

4.1 DATASETS

Table 1: Summary of Graph Datasets

Datasets Graphs Num Average Nodes Average Edges Node labels Classes
MUTAG 188 17.9 2.2 7 2

PTC 344 25.6 2.0 19 2
PROTEINS 1113 39.1 3.7 3 2

IMDB-BINARY 1000 19.8 9.8 - 2
IMDB-MULTI 1500 13.0 10.1 - 3

COLLAB 5000 74.5 65.9 - 3

To comprehensively evaluate the effectiveness of SS-GDE, we conduct experiments on six widely
used public datasets in the graph classification task. These datasets can be divided into two cate-
gories: bioinformatics datasets (MUTAG (Debnath et al., 1991), PTC (Helma et al., 2001), PRO-
TEINS (Borgwardt et al., 2005)) and social network datasets (COLLAB, IMDB-BINARY and
IMDB-MULTI (Yanardag & Vishwanathan, 2015)). The corresponding summary can be found in
Table 1.

Bioinformatics datasets. MUTAG is a nitro compounds dataset containing 188 samples with seven
discrete node labels. These samples are divided into two classes. PROTEINS comprises 1113
protein structures of secondary structure elements (SSEs) with three discrete node labels. PTC
consists of 344 chemical compound networks divided into two categories, showing carcinogenicity
for male and female rats. Moreover, each node is annotated with 19 labels.

Social Network Datasets. IMDB-BINARY and IMDB-MULTI are both movie collaboration
datasets derived from IMDB, where each graph represents a movie with nodes corresponding to
actors/actresses. If two actors appear in the same film, there will be an edge between their corre-
sponding nodes. BINARY and MULTI stand for the number of classes. COLLAB is a scientific
dataset where each graph represents a collaborative network between an affiliated researcher and
other researchers from 3 physical domains, labeled as the researcher’s physical field.

4.2 EXPERIMENT SETUP

Implementation Details. For input graph initialization, each node of the input graph is described
with a one-hot vector according to its node label, and the edges are set the same as those pre-defined
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in the datasets. For the base graph dictionary construction, multiple groups of graph keys, where
each group corresponds to a fixed number of samples from each class, are randomly selected from
the training set. In this experiment, the fixed number of keys is set to 14 for all datasets. To learn
primary expression with GCNN, two encoders with the same structure, i.e. the three-layer GCNs,
are employed for input samples and the base graph dictionary, respectively. Specifically, the output
dimensions of the three layers are 256,128,32. In the MS-WE module, 8-sensitivity regularization
is employed. Then, the output embeddings of the MS-WE module further pass two fully connected
layers for classification. In the training stage, the framework is trained for 500 epochs with a learning
rate of 0.001 and the weight decay of 10−4. In this process, almost all the parameters in the frame-
work, together with the base graph dictionary, are optimized through backpropagation by using the
Adam optimizer. One exception is the three-layer GCN that corresponds to the base dictionary.
Specifically, its parameters are optimized according to the three-layer GCN of the inputs through
the momentum mechanism. The momentum coefficient is set to 0.999. The trade-off parameter β
in Eqn. (8) is set to 0.001, while the pre-defined probability vector p̂ij in Eqn. (6) is set to all-0.5
vectors.

Protocol. According to the previous literature, the same 10-fold cross-validation protocol is strictly
followed to evaluate the classification performance of our proposed method for a fair comparison.
Specifically, We randomly split the dataset into ten sections, where nine sections are the training set,
and the remaining one section is the testing set. We use the average accuracy and stand deviation of
the ten folds as the final reported performance.

4.3 EXPERIMENT RESULTS

We compare the SS-GDE framework with a range of state-of-the-art methods as follows: (1) graph
kernel-based methods: GK (Shervashidze et al., 2009), DGK (Yanardag & Vishwanathan, 2015),
WL (Shervashidze et al., 2011), (2) Neural network based methods: PSCN (Niepert et al., 2016),
GCN (Kipf & Welling, 2016), NgramCNN (Luo et al., 2017), HRN (Wu et al., 2022a), GIN-0 (Xu
et al., 2018), U2GNN (Nguyen et al., 2022), GNTK (Du et al., 2019), PPGN (Maron et al., 2019),
SLIM (Zhu et al., 2022), CAL (Sui et al., 2022), GLA (Yue et al., 2022), and WGDL (Zhang et al.,
2021).

Table 2 shows the experimental results of SS-GDE and the comparison with other approaches on
the six public datasets. We have the following observations:

1. Generally, the performance of graph kernel-based methods (GK, DGK, WL) is usually
lower than those GNN-based methods. This may be attributed to the low expression power
caused by the usually employed hand-crafted features, and the limited feature learning abil-
ity of the two-stage learning process instead of the global optimization. Among the graph
kernel-based methods, WL achieves relatively high performance on most datasets with the
average performance gain of 3% over GK and DGK, as it defines a family of efficient ker-
nels based on Weisfeiler-Lehman sequences of graphs. However, its performance is still
lower than those of GNNs that stack neural network layers into a deep architecture.

2. GNNs, especially GCN variants involved methods, achieve good experimental for the clas-
sification task. Specifically, several recent works improve GCN by either developing the
pooling algorithm or introducing the attention mechanism for structure modeling, which
further promotes the performance. According to Table 2, our SS-GDE model achieves the
state-of-the-art performances on five public datasets, and also a comparable performance
on the left COLLAB dataset. This demonstrates the robustness of our framework against
graph variation. In contrast, previous methods cannot perform well on all the six datasets,
while the second highest performances on different datasets are obtained by six different
methods. Compared with the GNTK on the other five datasets, the average performance
gain of more than 4% is obtained by our SS-GDE. Moreover, compared to the WGDL using
a naive fixed graph dictionary and single-regularization in cross-graph modeling, the im-
provement of 2% on average is obtained by the SS-GDE. All above verify the effectiveness
of our framework.
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Table 2: Comparsion with the state-of-the-art-methods. The best accuracies are in bold. ∗ indicates
the second highest performance.

Datasets MUTAG PTC PROTEINS IMDB-BINARY IMDB-MULTI COLLAB
GK 81.66±2.11 57.26±1.41 71.67±0.55 65.87±0.98 43.89±0.38 72.84±0.28

DGK 82.66±1.45 57.32±1.13 71.68±0.50 66.96±0.56 44.55±0.52 73.09±0.25
WL 82.72±3.00 56.97±2.01 73.70±0.50 72.86±0.76 50.55±0.55 79.02±1.77

PSCN 92.63±4.21 62.29±5.68 75.89±2.76 71.00±2.29 45.23±2.84 72.60±2.15
NgramCNN 94.99± 5.63∗ 68.57±1.72 75.96±2.98 71.66±2.71 50.66±4.10 -

GCN 87.20±5.11 - 75.65±3.24 73.30±5.29 51.20±5.13 81.72±1.64
GIN-0 89.40±5.60 64.60±7.00 76.20±2.80 75.10±5.10 52.30±2.80 80.20±1.90
GNTK 90.00±8.50 67.90±6.90 75.60±4.20 76.90±3.60 52.80±4.60 83.60 ± 1.22
PPGN 90.55±8.70 66.17±6.54 77.20±4.73 73.00±5.77 50.46±3.59 81.38±1.42

U2GNN 89.97±3.65 69.63±3.60 78.53± 4.07∗ 77.04±3.45 53.60± 3.53∗ 77.84±1.48
SLIM 83.28±3.36 72.41± 6.92∗ 77.47±4.34 77.23±2.12 53.38±4.02 78.22±2.02
CAL 89.24±8.72 - 76.28±3.65 74.40±4.55 52.13±2.96 82.08±2.40
HRN 90.4±8.9 65.7±6.4 - 77.5±4.3 52.8±2.7 81.80±1.2
GLA 91.05±0.86 - 77.45±0.38 - - 81.54±0.14

WGDL 94.68±2.63 70.89±5.15 77.29±2.91 79.70± 3.59∗ 53.45±4.96 80.50±1.17
SS-GDE 96.78 ± 2.77 72.96 ± 6.39 80.42 ± 4.29 80.70 ± 4.72 55.60 ± 3.54 82.36± 1.44∗

4.4 ABLATION STUDY

As our SS-GDE framework has achieved superior performance compared to existing state-of-the-art
methods, it is also meaningful to conduct additional experiments to make clear how each module
promotes the classification task as well as the sensitivity of the hyper-parameters in our framework.
For this purpose, we set the variant of our SS-GDE framework, which uses just the fixed base graph
dictionary without dictionary adaptation, and meantime only single regularization for cross-graph
modeling, as the baseline. Then, we conduct the following ablation study.

1. The effectiveness of the VGDA module. To make clear the benefit of our designed VGDA
module, we just remove the VGDA module from the SS-GDE (i.e. “BaseLine+MS-WE”
in Table 3), and compared the performance.

2. The effectiveness of the MS-WE module. To verify the effectiveness of the MS-WE, we
remove the MS-WE module from the SS-GDE framework, resulting in the variaint named
“BaseLine+VGDA” in Table 3). The single regularization λ is set to 0.1.

3. The influence of the parameter β. β plays an essential role in balancing cross-entropy loss
and Kullback-Leibler divergence for framework optimization. To quantify its influence, we
vary the ratio in {0, 0.001, 0.01, 0.1, 1, 10}.

4. The influence of pre-defined probability vector p̂ij in Eqn. (6). p̂ij represents the ex-
pected probability for the Bernoulli sampling. For easy implementation, we set the ele-
ments in p̂ij to be the same value. Hence, the value actually means the expected sam-
pling ratio of nodes from the base dictionary keys. Here, we set the value in the range of
{0.1, 0.25, 0.5, 0.75, 0.9}

5. The influence of the sensitivity number C in the MS-WE module. We
vary the value of C in the range in [0, 12]. For each C, the regulariza-
tion parameters {λ1, · · · , λC} in Eqn. (4) are selected uniformly from the range
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 20, 100}. Specifically, when C is 0, only the
pair-wise squared Euclidean distances across graph are calculated, without the optimal
transport.

Table 3: The results of the ablation study

BaseLine BaseLine+VGDA Baseline+MS-WE Baseline+VGDA+MS-WE (SS-GDE)
PROTEINS 77.29±2.91 78.35±4.30 79.25±3.69 80.42 ± 4.29

IMDB-MULTI 53.45±4.96 55.20±3.97 54.47±4.37 55.60 ± 3.54

The results are shown in Fig. 2 and Table 3. We have the following observations:
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Figure 2: (a) The influence of parameter β, (b) the influence of pre-defined probablity vector p̂ij ,
(c)the influence of C (i.e. number of λ)

1. Our designed VGDA module plays an important role in promoting the graph learning for
classification. In Table 3, on the PROTEINS and IMDB-MULTI datasets, additionally us-
ing the VGDA effectively improves the accuracy of more than 1% (“BaseLine” vs “Base-
Line+VGDA”, “BaseLine+MS-WE” vs “SS-GDE”). This verifies the importance of con-
ducting individual substructure selection from the base graph dictionary.

2. According to Table 3, the designed MS-WE module further promotes the graph classifica-
tion performance. The average performance gain of additionally using the MS-WE (“Base-
Line” vs “BaseLine+MS-WE”, “BaseLine+VGDA” vs “SS-GDE”) on the two datasets is
also more than 1%. This verifies the necessity of using the MS-WE to improve the sensi-
tivity for cross-graph correlation.

3. Setting the trade-off parameter β in an appropriate range also improves the performance of
our SS-GDE framework. As Fig. 2 (a) shows, the best performance is obtained when β is
0.001. In this situation, the trade-off parameter well balances the first accuracy-related term
and the KL-divergence in Eqn. 8. When β is set to 0, it means no distribution constraint for
the VGDA. In contrast, when β is set to 10, the KL-divergence may dominate the network
optimization, while weakening the accuracy-related term.

4. According to Fig. 2 (b), the pre-defined probability vector p̂ij also influences the perfor-
mance, and should be set appropriately. The best performance is obtained when we set
the value to 0.5. The large value of p̂ij , e.g. 1, means approximately using all the nodes
in the base dictionary, degrades the influence of the variational inference. In contrast, the
small value of 0.1 means only about 10% nodes are selected to form the AGD, which is
insufficient in structure modeling.

5. As it is shown in Fig. 2 (c), the appropriate sensitivity number can improve the sensitivity
of the cross-graph correlation. The highest performance is obtained when C is set to 8.
Specifically, when C is 0, low performance is achieved no optimal transport is conducted
to optimize the structure in the Wasserstein space. However, not higher value of C surely
achieves better performance, as too many redundant cross-graph correlations are involved.

CONCLUSION

This paper proposed an SS-GDE framework to transform input graph into the space of graph dic-
tionary for the graph classification task. Considering the limited expression capacity of a fixed
graph dictionary for a giant amount of graphs, we propose variational graph dictionary adaptation
(VGDA) to conduct individual structure selections from graph dictionary keys and generate a per-
sonalized dictionary adapted for each input graph. Besides, Bernoulli sampling is introduced to
effectively choose the corresponding substructures. To increase the sensitivity and stability of cross-
graph measurement,multi-sensitivity Wasserstein encoding is proposed to produce the embeddings
by designing multi-scale attention on optimal transport. To optimize the proposed framework, we
introduce mutual information as objective, which deduces to variational inference of adapted graph
dictionary. We evaluated the SS-GDE on multiple datasets and dissected the framework with abla-
tion analysis. The experimental results demonstrate the effectiveness and superiority of our model.
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