
Published as a conference paper at ICLR 2024

INITIALIZING MODELS WITH LARGER ONES

Zhiqiu Xu1, Yanjie Chen2, Kirill Vishniakov3, Yida Yin2, Zhiqiang Shen3,
Trevor Darrell2, Lingjie Liu1, Zhuang Liu4

1University of Pennsylvania 2UC Berkeley 3MBZUAI 4Meta AI Research

ABSTRACT

Weight initialization plays an important role in neural network training. Widely
used initialization methods are proposed and evaluated for networks that are trained
from scratch. However, the growing number of pretrained models now offers new
opportunities for tackling this classical problem of weight initialization. In this
work, we introduce weight selection, a method for initializing smaller models by
selecting a subset of weights from a pretrained larger model. This enables the
transfer of knowledge from pretrained weights to smaller models. Our experiments
demonstrate that weight selection can significantly enhance the performance of
small models and reduce their training time. Notably, it can also be used together
with knowledge distillation. Weight selection offers a new approach to leverage the
power of pretrained models in resource-constrained settings, and we hope it can be
a useful tool for training small models in the large-model era. Code is available at
https://github.com/OscarXZQ/weight-selection.

1 INTRODUCTION

The initialization of neural network weights is crucial for their optimization. Proper initialization
aids in model convergence and prevents issues like gradient vanishing. Two prominent initialization
techniques, Xavier initialization (Glorot & Bengio, 2010) and Kaiming initialization (He et al., 2015),
have played substantial roles in neural network training. They remain the default methods in modern
deep learning libraries like PyTorch (Paszke et al., 2019).

Figure 1: Large pretrained models offer new op-
portunities for initializing small models.

These methods were developed for training neu-
ral networks from random initialization. At that
time, it was the common practice. However,
the landscape has changed. A variety of pre-
trained models are now readily available, thanks
to collective efforts from the community (Wolf
et al., 2019; Wightman, 2019). These mod-
els are trained on large datasets like ImageNet-
21K (Deng et al., 2009) and LAION-5B (Schuh-
mann et al., 2022) and are often optimized by
experts. As a result, fine-tuning from these
pretrained models (Kolesnikov et al., 2020; Hu
et al., 2022) is usually considered a preferred option today, rather than training models from scratch.

However, these pretrained large models can be prohibitive in their resource demand, preventing their
wide adoption for resource-constrained settings, e.g., on mobile devices. For many pretrained model
families, even the smallest model instance can be considered extremely large in certain contexts. For
example, masked autoencoders (MAE) (He et al., 2022) and CLIP (Radford et al., 2021) both provide
ViT-Base (Dosovitskiy et al., 2021), a 80M-parameter architecture, as their smallest pretrained
Transformer model. This is already too large for applications on edge devices, and the smallest
LLaMA (Touvron et al., 2023) model is even another 100 times larger, with 7B parameters. With
few small pretrained models available, developers would have to train them from scratch on target
datasets to suit their needs. This approach misses the opportunity to utilize large pretrained models,
whose knowledge is learned from extensive training on large data.

1

https://github.com/OscarXZQ/weight-selection

Published as a conference paper at ICLR 2024

In this work, we tackle this issue by introducing a weight initialization method that uses large
pretrained models to train small models. Specifically, we introduce weight selection, where a subset
of weights from a pretrained large model is selected to initialize a smaller model. This allows for
knowledge learned by the large model to transfer to the small model through its weights. Thanks to the
modular design of modern neural networks, weight selection involves only three simple steps: layer
selection, component mapping, and element selection. This method can be applied to any smaller
model within the same model family as the large model. Using weight selection for initializing
a small model is straightforward and adds no extra computational cost compared to training from
scratch. It could also be useful even for large model training, e.g., initializing a LLaMA-7B with
trained weights from LLaMA-30B.

We apply weight selection to train small models on image classification datasets of different scales.
We observe significant improvement in accuracy across datasets and models compared with baselines.
Weight selection also substantially reduces the training time required to reach the same level of
accuracy. Additionally, it can work alongside another popular method for knowledge transfer from
large models – knowledge distillation (Hinton et al., 2015). We believe weight selection can be a
general technique for training small models. Our work also encourages further research on utilizing
pretrained models for efficient deployment.

2 RELATED WORK

Weight initialization. Weight initialization is a crucial aspect of model training. Glorot & Bengio
(2010) maintain constant variance by setting the initial values of the weights using a normal distri-
bution, aiming to prevent gradient vanishing or explosion. He et al. (2015) modify it to adapt to
ReLU activations (Nair & Hinton, 2010). Mishkin & Matas (2016) craft the orthogonality in weight
matrices to keep gradient from vanishing or exploding. Saxe et al. (2014) and Vorontsov et al. (2017)
put soft constraints on weight matrices to ensure orthogonality.

There are methods that use external sources of knowledge like data distribution or unsupervised
training to initialize neural networks. A data-dependent initialization can be obtained from performing
K-means clustering or PCA (Krähenbühl et al., 2015; Tang et al., 2017) on the training dataset.
Larochelle et al. (2009), Masci et al. (2011), Trinh et al. (2019), and Gani et al. (2022) show training
on unsupervised objectives can provide a better initialization for supervised training.

Utilizing pretrained models. Transfer learning (Zhuang et al., 2020) is a common framework for
using model weights pretrained from large-scale data. Model architecture is maintained and the model
is fine-tuned on specific downstream tasks (Kolesnikov et al., 2020). Knowledge distillation involves
training a usually smaller student model to approximate the output of a teacher model (Hinton et al.,
2015; Tian et al., 2019; Beyer et al., 2022). This allows the student model to maintain the performance
of a teacher while being computationally efficient. Another alternative approach for using pretrained
models is through weight pruning (LeCun et al., 1990; Han et al., 2015; Li et al., 2017b; Liu et al.,
2019). It involves removing less significant weights from the model, making it more efficient without
significantly compromising performance.

Lin et al. (2020) transform parameters of a large network to an analogous smaller one through
learnable linear layers using knowledge distillation to match block outputs. Sanh et al. (2019) and
Shleifer & Rush (2020) create smaller models by initializing with a subset of layers from a pretrained
BERT (Devlin et al., 2018). This method requires the smaller model to have the same width as
teacher’s. Czyzewski et al. (2022) borrow weights from existing convolutional networks to initialize
novel convolutional neural networks. Chen et al. (2016) and Chen et al. (2021) transform weights from
smaller networks as an effective initialization for larger models to accelerate convergence. Trockman
et al. (2023) initialize convolutional layers with Gaussian distribution according to pretrained model’s
covariance. Similarly, Trockman & Kolter (2023) initialize self-attention layers according to observed
diagonal patterns from pretrained ViTs. These two methods use statistics from but do not directly
utilize pretrained parameters. The concurrent work, Xia et al. (2023), applies structured pruning
to reduce existing large language models to their smaller versions and uses the pruned result as an
initialization. Zhong et al. (2024) explores knowledge transfer between transformer-based LLM
through parameters. Weight selection, in contrast, directly utilizes pretrained parameters, does not
require extra computation, and is suitable for initializing any smaller variants of the pretrained model.

2

Published as a conference paper at ICLR 2024

3 WEIGHT SELECTION

Given a pretrained model, our goal is to obtain an effective weight initialization for a smaller-size
model within the same model family. Borrowing terminology from knowledge distillation, we refer
to the pretrained model as teacher and the model we aim to initialize as student.

3.1 APPROACH

Modern neural network architectures often follow a modular approach: design a layer and replicate
it to build the model (He et al., 2016; Vaswani et al., 2017; Tolstikhin et al., 2021; Dosovitskiy
et al., 2021; Liu et al., 2022). This design ethos promotes scalability: models can be widened by
increasing the embedding dimension or the number of channels in each block, and deepened by
stacking more layers. It also enables us to perform weight selection following three steps: layer
selection, component mapping, and element selection.

Figure 2: Weight selection. To initialize a smaller variant of a pretrained model, we uniformly select
parameters from the corresponding component of the pretrained model.

Layer selection. Selecting layers from teacher is the first step. For each layer in student, a layer
from teacher is selected as the source for initialization. The procedure for layer selection is slightly
different for isotropic architectures and hierarchical architectures. An isotropic architecture refers to
the neural network where each layer exhibits a consistent and uniform layerwise design throughout
the model. ViT (Dosovitskiy et al., 2021) and MLP-mixer (Tolstikhin et al., 2021) belong to isotropic
architectures. A hierarchical architecture is characterized by multi-scale representations and a
hierarchy in embedding dimensions. Hierarchical architectures typically have stages with varying
scales and embedding dimensions. For example, classic convolutional networks like VGG (Simonyan
& Zisserman, 2014) progressively decrease spatial dimensions while increasing channel dimensions,
capturing multi-scale features. Modern architectures like Swin-Transformer (Liu et al., 2021) and
ConvNeXt (Liu et al., 2022) also employ this hierarchical design.

For isotropic architectures, we select the first N layers from the teacher, where N represents the
student’s layer count, denoted as first-N selection. When dealing with hierarchical structures like
ConvNeXt (Liu et al., 2022), first-N selection is applied at each individual stage. An alternative
method is uniform layer selection, where evenly-spaced layers in teacher are selected. Empirical
results in Section 4.3 and Appendix B show that first-N layer selection is ideal for weight selection.

Component mapping. In the second step, we map components between student and teacher. From
the previous step, we obtained layer mapping from teacher to student. The task is then reduced
to initializing one student layer with one teacher layer. Thanks to the modular approach adopted
by modern neural network design, layers in models of the same family have an identical set of
components which only differ in their width. The process for matching the corresponding components
is thus a natural one-to-one mapping.

Element selection. Upon establishing component mapping, the next step is to initialize student’s
component using its larger counterpart from teacher. The default method for element selection is

3

Published as a conference paper at ICLR 2024

uniform selection, where evenly-spaced elements are selected from teacher’s tensor as shown in figure
2. Details on uniform selection and other element selection methods will be introduced next part.

3.2 METHODS FOR ELEMENT SELECTION

In this part, we formulate element selection and introduce different selection criteria. Consider a
weight tensor Ws from student that we seek to initialize with teacher’s weight tensor Wt. If Wt

has shape t1, t2, ..., tn, then Ws, which is of the same component type with Wt, will also span n
dimensions. Our goal is to select a subset of Wt’s elements to initialize Ws. Several possible methods
for element selection are discussed as follows. We compare the performance of these element
selection methods in Section 4.3. We find that as long as consistency is maintained (as explained
in the paragraph Random selection with consistency, weight selection can achieve a similar level of
performance. We propose using uniform selection as default for weight selection in practice.

Uniform selection (default). For each dimension i of Wt, select evenly-spaced si slices out of ti.
For example, to initialize a linear layer Ws of shape 2 × 3 with a linear layer Wt of shape 4 × 6,
we select 1st and 3rd slice along the first dimension, and 1st, 3rd, and 5th slice along the second
dimension. We present pseudocode for uniform selection in Algorithm 1. The algorithm starts with
a copy of teacher’s weight tensor Wt and iteratively performs selection on all dimensions of Wt to
reach the desired shape for student. Notably, in architectures that incorporate grouped components —
such as the multi-head attention module in ViTs and the grouped convolution in ResNeXt (Xie et al.,
2017) — uniform selection absorbs information from all groups. For example, when applied to ViTs,
uniform selection will select parameters from all heads in the attention block, which is likely to be
beneficial for inheriting knowledge from the pretrained ViTs.

Algorithm 1 Uniform element selection from teacher’s weight tensor

Input: Wt ▷ teacher’s weight tensor
Input: s ▷ desired dimension for student’s weight tensor
Output: Ws with shape s

1: procedure UNIFORMELEMENTSELECTION(Wt, s)
2: Ws ← Copy of Wt ▷ student’s weight tensor
3: n← length of Wt.shape
4: for i = 1→ n do
5: dt ←Wt.shape[i]
6: ds ← s[i]
7: indices← Select ds evenly-spaced numbers from 1 to dt
8: Ws ← Select indices along Ws’s ithdimension
9: end for

10: return Ws

11: end procedure

Consecutive selection. For each dimension i of Wt, select consecutive si slices out of ti. In contrast
to uniform selection, for architectures with grouped components, consecutive selection selects some
entire groups while omitting the contrast. For architectures without such grouped components,
consecutive selection is equivalent to uniform selection.

Random selection (with consistency). For all weight tensors, and for each dimension i of Wt,
select the same randomly-generated set of si slices out of ti. Through empirical experiments in
Section 4.3, we find that consistency (selecting the same indices for all weight matrices) is key for
weight selection to reach its best performance. Motivation for maintaining consistency stems from
the existence of residual connections — neurons that are added in the teacher model should have
their operations preserved in the student. Furthermore, maintaining consistency preserves complete
neurons during element selection, since only consistent positions are selected. It is worth noting that
uniform selection and consecutive selection inherently preserve consistency, which are both special
instances of random selection with consistency.

Random selection (without consistency). Along every dimension i of Wt, randomly select si slices
out of ti. Unlike random selection w/ consistency, this method does not require selecting the same
indices for every weight tensor. We design this method to examine the importance of consistency.

4

Published as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 SETTINGS

Datasets. We evaluate weight selection on 9 image classification datasets including ImageNet-
1K (Deng et al., 2009), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Flowers (Nilsback & Zisserman,
2008), Pets (Parkhi et al., 2012), STL-10 (Coates et al., 2011), Food-101 (Bossard et al., 2014)),
DTD (Cimpoi et al., 2014), SVHN (Netzer et al., 2011) and EuroSAT (Helber et al., 2019; 2018).
These datasets vary in scales ranging from 5K to 1.3M training images.

Models. We perform experiments on ViT-T/16 (Touvron et al., 2021a) and ConvNeXt-F (Liu et al.,
2022), with ImageNet-21K pretrained ViT-S/16 and ConvNeXt-T as their teachers respectively. We
obtain weights for ImageNet-21K pretrained ViT-S/16 from Steiner et al. (2021) and ImageNet-21K
pretrained ConvNeXt-T from Liu et al. (2022). We present the detailed configurations in Table 1.

configuration student teacher
model ViT-T ConvNeXt-F ViT-S ConvNeXt-T
depth 12 2 / 2 / 6 / 2 12 3 / 3 / 9 / 3

embedding dimension 192 96 / 192 / 384 / 768 384 48 / 96 / 192 / 384
number of heads 3 - 6 -

number of parameters 5M 5M 22M 28M

Table 1: Model Configurations. We perform main experiments on ConvNeXt and ViT, and use
student that halve the embedding dimensions of their corresponding teacher.

Training. We follow the training recipe from ConvNeXt (Liu et al., 2022) with adjustments to batch
size, learning rate, and stochastic depth rate (Huang et al., 2016) for different datasets. See Appendix
A for details. To ensure a fair comparison, we adapt hyperparameters to baseline (training with
random initialization), and the same set of hyperparameters is used for training with weight selection.

Random initialization baseline. We utilize the model-specific default initialization from timm
library (Wightman, 2019), a popular computer vision library with reliable reproducibility. Its default
initialization of ViT-T and ConvNeXt-F employs a truncated normal distribution with a standard
deviation of 0.02 for linear and convolution layers. The truncated normal distribution, designed to
clip initialization values, is adopted to develop modern neural networks (Liu et al., 2022).

4.2 RESULTS

Experiment results are presented in Table 2. Across all 9 image classification datasets, weight
selection consistently boosts test accuracy, especially for smaller datasets. Notably, weight selection
addresses the well-known challenge of training ViT on small datasets, which likely contributes to the
significant accuracy improvement for ViT. Training curves for ImageNet-1K are shown in Figure 3.
Both models benefit from weight selection early on and maintain this advantage throughout training.
dataset (scale ↓) random init weight selection change

ImageNet-1K 73.9 75.6 ↑ 1.6
SVHN 94.9 96.5 ↑ 1.6

Food-101 79.6 86.9 ↑ 7.3
EuroSAT 97.5 98.6 ↑ 1.1
CIFAR-10 92.4 97.0 ↑ 4.6

CIFAR-100 72.3 81.4 ↑ 9.1
STL-10 61.5 83.4 ↑ 21.9
Flowers 62.4 81.9 ↑ 19.5

Pets 25.0 68.6 ↑ 43.6
DTD 49.4 62.5 ↑ 13.1

(a) ViT-T

random init weight selection change
76.1 76.4 ↑ 0.3
95.7 96.9 ↑ 1.2
86.9 89.0 ↑ 2.1
98.4 98.8 ↑ 0.4
96.6 97.4 ↑ 0.8
81.4 84.4 ↑ 3.0
81.4 92.3 ↑ 10.9
80.3 94.5 ↑ 14.2
72.9 87.3 ↑ 14.4
63.7 68.8 ↑ 5.1

(b) ConvNeXt-F

Table 2: Test accuracy on image classification datasets. On all 9 datasets, employing weight
selection for initialization leads to an improvement in test accuracy. Datasets are ordered by their
image counts. Weight selection provides more benefits when evaluated on datasets with fewer images.

5

Published as a conference paper at ICLR 2024

0 50 100 150 200 250 3000

20

40

60

80

ac
cu

ra
cy

 (%
)

3

4

5

6

tra
in

 lo
ss

random init test acc
weight selection test acc
random init train loss
weight selection train loss

(a) ViT-T

0 50 100 150 200 250 3000

20

40

60

80

ac
cu

ra
cy

 (%
)

3

4

5

6

tra
in

 lo
ss

random init test acc
weight selection test acc
random init train loss
weight selection train loss

(b) ConvNeXt-F

Figure 3: Training curves on ImageNet-1K. When initialized using weight selection from ImageNet-
21K pretrained models, both ViT-T (from ViT-S) and ConvNeXt-F (from ConvNeXt-T) exhibit
superior performance compared to their randomly-initialized counterparts.

4.3 COMPARISONS

Advantage over classic initialization. We compare weight selection and its variants with two
widely-adopted initialization methods: Xavier initialization (Glorot & Bengio, 2010) and Kaiming
initialization (He et al., 2015) and present results on CIFAR-100 as shown in Table 3. All variants of
weight selection yield considerably better results than classic initialization methods.

Comparison of selection methods. Consistency is the key for weight selection to reach its best
performance. For both model architectures, uniform selection, consecutive selection, and random
selection with consistency achieve a similar level of performance. Note that uniform selection and
consecutive selection inherently maintain consistency. When removing consistency, a sharp drop in
performance is observed. For random selection experiments, we report the median performance of
three different selection results.

init ViT-T ConvNeXt-F
timm default (trunc normal) 72.3 81.4
Xavier (Glorot & Bengio, 2010) 72.1 82.8
Kaiming (He et al., 2015) 73.0 82.5
weight selection (uniform) 81.4 84.4
weight selection (consecutive) 81.6 84.0
weight selection (random w/ consistency) 81.7 83.9
weight selection (random w/o consistency) 77.4 82.8

Table 3: Comparison with classic initialization methods. We present CIFAR-100 test accuracy
for weight selection’s variants and classic initialization methods. Weight selection methods with
consistency outperform classic initialization methods by a large margin.

4.4 COMPATIBILITY WITH KNOWLEDGE DISTILLATION

Weight selection transfers knowledge from pretrained models via parameters. Another popular
approach for knowledge transferring is knowledge distillation (Hinton et al., 2015), which utilizes
outputs from pretrained models. Here we explore the compatibility of these two techniques.

Settings. We evaluate the performance of combining weight selection with two different approaches
in knowledge distillation – logit-based distillation and feature-based distillation by using weight
selection as initialization for student in knowledge distillation. Logit-based distillation uses KL-
divergence as the loss function for matching student’s and teacher’s logits. Denote student’s output
probabilities as ps, and teacher’s output probabilities as pt, the loss for logit-based distillation can be
formulated as

L = Lclass + α ·KL(pt||ps) (1)

where Lclass is supervised loss, and α is the coefficient for distillation loss. Note that matching logits
requires teacher to be trained on the same dataset as student. For logit-based distillation, We train
ViT-T on ImageNet-1K while using the ImageNet-1K pretrained ViT-S model from DeiT (Touvron
et al., 2021a) as the teacher for both knowledge distillation and weight selection. α is set to 1.

6

Published as a conference paper at ICLR 2024

Feature-based distillation steps in when a classification head of the target dataset is not available.
Denote teacher’s output as Ot, and student’s as Os. Feature-based distillation can be formulated as

L = Lclass + α · L1(Ot,MLP (Os)) (2)
An MLP is used to project student’s output to teacher’s embedding dimension, and L1 loss is used to
match the projected student’s output and teacher’s output. For feature-based distillation, we perform
CIFAR-100 training experiments on ViT-T, using ImageNet-21K pretrained ViT-S as the teacher for
both knowledge distillation and weight selection. We tune α on distillation trials and use the same
value for α for trials that combine distillation and weight selection.

Results. Table 4 provides results for knowledge distillation and weight selection when applied
individually or together. These results show the compatibility between weight selection and different
types of knowledge distillation. Without incurring additional inference costs, employing weight selec-
tion alone produces a better result than vanilla logit-based distillation and feature-based distillation.
More importantly, the combination of weight selection and knowledge distillation delivers the best
results, boosting accuracies to 76.0% on ImageNet-1K and 83.9% on CIFAR-100. These results
further confirm weight selection’s usefulness as an independent technique and the compatibility
between weight selection and knowledge distillation.

setting ImageNet-1K (logit-based distillation) CIFAR-100 (feature-based distillation)
test acc change test acc change

baseline 73.9 - 72.3 -
distill 74.8 ↑ 0.9 78.4 ↑ 6.4
weight selection 75.5 ↑ 1.6 81.4 ↑ 9.1
distill + weight selection 76.0 ↑ 2.1 83.9 ↑ 11.6

Table 4: Compatibility with knowledge distillation. Weight selection is useful as an independent
technique, and can be combined with knowledge distillation to achieve the best performance.

5 ANALYSIS

In this section, we perform a comprehensive analysis of weight selection. Unless otherwise specified,
the standard setting (for comparison) of weight selection is initializing ViT-T with uniform selection
from the ImageNet-21K pretrained ViT-S, trained and evaluated on CIFAR-100.

Reduction in training time. We find weight selection can significantly reduce training time. We
directly measure the reduction in training time by training ViT-T with weight selection for different
numbers of epochs and present the results in Figure 4a. The number of warmup epochs is modified to
maintain its ratio with the total epochs for each trial. With weight selection, the same performance on
CIFAR-100 can be obtained with only 1/3 epochs compared to training from random initialization.

50 100 150 200 250 30060

70

80

90

ac
cu

ra
cy

 (%
)

62.7

73.0
77.2

79.0 80.3 81.4

train with weight selection
train from random init

training epochs

(a) Comparison with random initialization

0 10 20 40 60 80 30060

70

80

90

ac
cu

ra
cy

 (%
)

72.3
76.3 77.2

80.0 81.5 82.5
85.7

pretraining + finetuning
weight selection

pretraining epochs

(b) Comparison with pretraining + finetuning

Figure 4: Faster training. Compared to random initialization, ViT-T can reach the same performance
on CIFAR-100 with only 1/3 epochs compared to training from random initialization. When compared
to pretraining (on ImageNet-1K) + finetuning, weight selection is able to match the accuracy at 60
epochs of pretraining, saving 6.12x training time.

Comparison with transfer learning. We conduct experiments to find the training budget needed
for pretraining to match the accuracy of weight selection. For this experiment, we train ViT-T on

7

Published as a conference paper at ICLR 2024

ImageNet-1K with different numbers of epochs and then fine-tune on CIFAR-100 for 300 epochs.
As shown in Figure 4b, it takes 60 epochs of pretraining on ImageNet-1K to achieve the same
performance on CIFAR-100. Under this setting, weight selection is 6.12x faster compared to reaching
the same performance with pretraining, without need to access the dataset used for pretraining.

Pretrained models. We study the effect of using different pretrained models as weight selection
teacher. Models with supervised pretraining turn out to be the best teacher. We evaluate the
performance of ViT-B as teacher under different pretraining regimes: CLIP (Radford et al., 2021),
MAE (He et al., 2022), and DINO (Caron et al., 2021). Table 5 presents the results. Initializing with
pretrained weights consistently outperforms random initialization. ImageNet-21K pretrained teacher
provides the most effective initialization. Note that for this experiment, we use ViT-B as teacher for
weight selection, since it is the smallest model that MAE and CLIP provide.

Pretrained models CIFAR-10 CIFAR-100 STL-10
supervised (ImageNet-21K) 95.1 77.6 73.1
CLIP (Radford et al., 2021) 94.9 77.3 66.0
MAE (He et al., 2022) 95.9 77.2 71.0
DINO (Caron et al., 2021) 95.0 75.7 69.4

Table 5: Different pretrained models. Supervised pretraining makes the best teacher.

Layer selection. Shleifer & Rush (2020) select evenly-spaced layers from BERT to initialize small
models. We compare two layer selection methods: first-N layer selection and uniform layer selection.
To evaluate different layer selection methods, we create ViT-A of 6 layers (half of the ViT-T depth),
with other configurations identical to ViT-T. In this experiment, we use ViT-A and ConvNeXt-F
as student, and ImageNet-21K pretrained ViT-S and ConvNeXt-T as their weight selection teacher.
From the results presented in Table 6, we find first-N layer selection performs consistently better
than uniform layer selection. Presumably, since layers initialized by first-N selection are naturally
contiguous and closer to input processing, they offer a more effective initialization for smaller models.

setting ViT-A ConvNeXt-F
random init 69.6 81.3

first-N layer selection 77.6 84.4
uniform layer selection 76.7 83.2

Table 6: Layer selection. First-N layer selection performs better than uniform layer selection.

Comparison with pruning. We test the existing structured and unstructured pruning methods on
reducing pretrained ViT-S to ViT-T. An important thing to note is that our setting is different from
neural network pruning. Structured pruning (Li et al., 2017a) typically only prunes within residual
blocks for networks with residual connections, and unstructured pruning (Han et al., 2015) prune
weights by setting weights to zero instead of removing it. Despite that these pruning methods are not
designed for our setting, we can extend structured and unstructured pruning methods to be applied
here. Specifically, we can adopt L1 pruning and magnitude pruning for element selection. For L1

pruning, we use L1 norm to prune the embedding dimension. For magnitude pruning, we squeeze the
selected parameters into the required shape of student.

We present results in Table 7. L1 pruning yields better results compared to random initialization
baseline. However, since L1 norm inevitably breaks consistency, it could not reach the same
performance with weight selection. Magnitude pruning only produces marginally better results over
random initialization, presumably due to the squeezing operation which breaks the original structure.

setting ViT-T ConvNeXt-F
random init 72.3 81.4

weight selection 81.4 84.4
L1 pruning 79.5 82.8

magnitude pruning 73.8 81.9

Table 7: Comparison with pruning. L1 and magnitude
pruning performs worse than weight selection.

teacher params test acc
ViT-S 22M 81.4
ViT-B 86M 77.6
ViT-L 307M 76.9

Table 8: Teacher’s size. Smaller teacher
provides better initialization.

Teacher’s size. We show that initializing from a teacher of closer size produces better results. A
larger teacher means a higher percentage of parameters will be discarded, which translates to more

8

Published as a conference paper at ICLR 2024

information loss during weight selection. We present results for using ViT-S, ViT-B, and ViT-L as
weight selection teacher to initialize ViT-T in Table 8. Interestingly, even a 5M-parameter subset
from 301M parameters in ViT-L is an effective initialization, increasing accuracy by 4.5%.

Linear probing. We use linear probing to directly measure the raw model’s ability as a feature
extractor, which can be a good indicator of the initialization quality. Linear probing is a technique
used to assess a pretrained model’s representations by training a linear classifier on top of the fixed
features extracted from the model.

Following the recipe in He et al. (2022), we apply linear probing on CIFAR-100 to evaluate ViT-T
and ConvNeXt-F initialized with weight selection from their ImageNet-21K pretrained teachers,
ViT-S and ConvNeXt-T respectively. We compare between random initialization and weight selection
as shown in Table 9. Without any training, weight selection performs significantly better than random
initialization in producing features.

setting ViT-T ConvNeXt-F
random init 13.5 7.1

weight selection 28.2 23.6

Table 9: Linear probing on CIFAR-100. Weight selection produces a non-trivial feature extractor.

Mimetic initialization. Mimetic initialization (Trockman & Kolter, 2023) uses the diagonal properties
observed in the pretrained self-attention layer’s weights to initialize ViTs. We present results for
mimetic initialization in Table 10. By directly utilizing pretrained parameters, weight selection
outperforms mimetic initialization by a large margin. In addition, we visualize the product of WqW

T
k

and VWproj the first head in the first attention block of ViT-T with random initialization, pretrained
ViT-S, and ViT-T with weight selection. As shown in Figure 5, weight selection enables small models
to inherit the desirable diagonal properties in their self-attention layers, which typically only exist in
pretrained models.

setting CIFAR-10 CIFAR-100 STL-10
random init 92.4 72.3 61.5
mimetic init 93.3 74.7 67.5
weight selection 97.0 81.4 83.4

Table 10: Comparison with mimetic initialization. Weight selection significantly outperforms
mimetic initialization by directly utilizing pretrained parameters.

(a) random init (b) pretrained ViT-S (c) weight selection

Figure 5: Visualization of self-attention layers. Visualization of WqW
T
k (left) and VWproj (right)

for ViT-T with random initialization, pretrained ViT-S, and ViT-T with weight selection. Weight
selection can inherit the diagonal property of self-attention layers that only exists in pretrained ViTs.

6 CONCLUSION

We propose weight selection, a novel initialization method that utilizes large pretrained models. With
no extra cost, it is effective for improving the accuracy of a smaller model and reducing its training
time needed to reach a certain accuracy level. We extensively analyze its properties and compare it
with alternative methods. We hope our research can inspire further exploration into utilizing large
pretrained models to create smaller models.

Acknowledgement. We would like to thank Haodi Zou for creating illustrative figures, and Mingjie
Sun, Boya Zeng, Chen Wang, Jiatao Gu, Maolin Mao for valuable discussions and feedback.

9

Published as a conference paper at ICLR 2024

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers.
In ICLR, 2022.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov.
Knowledge distillation: A good teacher is patient and consistent. In CVPR, 2022.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In ECCV, 2014.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv preprint
arXiv:2110.07143, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. In ICLR, 2016.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
CVPR, 2014.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. ELECTRA: Pre-training
text encoders as discriminators rather than generators. In ICLR, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshops, 2020.

Maciej A Czyzewski, Daniel Nowak, and Kamil Piechowiak. Breaking the architecture barrier: A
method for efficient knowledge transfer across networks. arXiv preprint arXiv:2212.13970, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Hanan Gani, Muzammal Naseer, and Mohammad Yaqub. How to train vision transformer on
small-scale datasets? In BMVC, 2022.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

10

Published as a conference paper at ICLR 2024

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. In IGARSS, 2018.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In ECCV, 2020.

Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. Data-dependent initializations
of convolutional neural networks. In ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networks. Journal of machine learning research, 2009.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NeurIPS, 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ICLR, 2017a.

Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional instance-aware
semantic segmentation. In CVPR, 2017b.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du, Tong Xiao, and Jingbo Zhu. Weight distillation:
Transferring the knowledge in neural network parameters. arXiv preprint arXiv:2009.09152, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. 2021.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In ICLR, 2019.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, and Trevor Darrell. Dropout reduces underfitting.
In ICML, 2023.

Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In Artificial Neural Networks and Machine Learning–
ICANN, 2011.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In ICLR, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML, 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NeurIPS, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. 2008.

11

Published as a conference paper at ICLR 2024

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. In ICLR, 2014.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. NeurIPS, 2022.

Sam Shleifer and Alexander M Rush. Pre-trained summarization distillation. arXiv preprint
arXiv:2010.13002, 2020.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. In NeurIPS, 2014.

Andreas Steiner, Alexander Kolesnikov, , Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016.

JingLei Tang, Dong Wang, ZhiGuang Zhang, LiJun He, Jing Xin, and Yang Xu. Weed identification
based on k-means feature learning combined with convolutional neural network. Computers and
electronics in agriculture, 2017.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. In NeurIPS, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML, 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In ICCV, 2021b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pretraining for image
embedding. arXiv preprint arXiv:1906.02940, 2019.

Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. In ICML, 2023.

Asher Trockman, Devin Willmott, and J Zico Kolter. Understanding the covariance structure of
convolutional filters. In ICLR, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

12

Published as a conference paper at ICLR 2024

Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learning
recurrent networks with long term dependencies. In ICML, 2017.

Ross Wightman. GitHub repository: Pytorch image models. https://github.com/
rwightman/pytorch-image-models, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In CVPR, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018.

Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural nuggets:
Knowledge transfer in large language models from a parametric perspective. In ICLR, 2024.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In AAAI, 2020.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a conference paper at ICLR 2024

APPENDIX

A TRAINING SETTINGS

Training recipe. We provide our training recipe with configurations in Table 11. The recipe is
adapted from ConvNeXt (Liu et al., 2022).

Training Setting Configuration
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 50
warmup schedule linear
layer-wise lr decay (Clark et al., 2020; Bao et al., 2022) None
randaugment (Cubuk et al., 2020) (9, 0.5)
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
random erasing (Zhong et al., 2020) 0.25
label smoothing (Szegedy et al., 2016) 0.1
layer scale (Touvron et al., 2021b) 1e-6
head init scale (Touvron et al., 2021b) None
gradient clip None

Table 11: Our basic recipe.

Hyper-parameters. Table 12 and Table 13 record batch size, warmup epochs, and training epochs
of ConvNeXt-F and Vit-T, respectively, for each dataset. The batch size of each dataset is chosen
proportional to its total size. The warmup epochs are set as around one-fifth of the total training
epochs. Base learning rates for ConvNeXt-F and ViT-T are 4e-3 and 2e-3 respectively.

C-10 C-100 Pets Flowers STL-10 Food101 DTD SVHN EuroSAT IN1k
batch size 1024 1024 128 128 128 1024 128 1024 512 4096
warmup epochs 50 50 100 100 50 50 100 10 50 50
training epochs 300 300 600 600 300 300 600 50 300 300
drop path rate 0.1 0.1 0.1 0.1 0 0.1 0.2 0.1 0.1 0

Table 12: Hyper-parameter setting on ConvNeXt-F.

C-10 C-100 Pets Flowers STL-10 Food101 DTD SVHN EuroSAT IN1k
batch size 512 512 512 512 512 512 512 512 512 4096
warmup epochs 50 50 100 100 50 50 100 10 50 50
training epochs 300 300 600 600 300 300 600 50 300 300

Table 13: Hyper-parameter setting on ViT-T.

14

Published as a conference paper at ICLR 2024

B ADDITIONAL ANALYSIS

Layer selection. To further confirm the first-N layer selection’s superiority, we conduct experiments
that rule out the effect of element selection. Specifically, we evaluate the results of directly fine-tuning
different subsets of 6 layers out of 12 layers of a pretrained ViT-T model. We present the results in
Table 15. There is a clear trend favoring shallow layers, with first-N layers better than mid-N layers,
and both of them have better performance than last-N layers. Uniform layer selection is slightly
worse than first-N layer selection. Based on this empirical result, we find first-N layer selection a
suitable method for weight selection.

setting CIFAR-100 test acc
first-N layer selection 81.6
mid-N layer selection 68.3
last-N layer selection 62.0

uniform layer selection 76.3

Table 14: Layer selection. First-N layer selection performs significantly better than uniform layer
selection when ruling out the effect of element selection.

We also find that empirical experiments from ViT-L (which has 24 layers) to ViT-S has different
preference over layer selection. Under this setting, uniform layer selection achieves slightly better
performance than first-N layer selection. Our main approach would still adopt first-N layer selection
as the default method, for the reason that in the case of a smaller teacher (which is favored in weight
selection), first-N layer selection consistently outperforms its alternatives.

setting CIFAR-100 test acc
first-N layer selection 76.9
mid-N layer selection 75.9
last-N layer selection 77.1

uniform layer selection 77.5

Table 15: Layer selection (ViT-L as teacher). Uniform layer selection yields slightly better results
than first-N layer selection when student’s ratio to teacher is small.

Weight components. We conduct ablation studies on ViT-T to understand the influence of distinct
model components on performance. In particular, we evaluate the performance of weight selection
without one of the following particular types of layers: patch embedding, position embedding,
attention block, normalization layer, or MLP layer. As illustrated in Table 16, excluding component
from initialization leads to substantial drops in accuracy for all datasets. The results confirm that
initializing with all components from pretrained models is necessary.

Setting CIFAR-10 CIFAR-100 STL-10
random init 92.4 72.3 61.5
weight selection 97.0 81.4 83.4
w/o patch embed 96.8 79.5 77.1
w/o pos embed 95.6 78.4 80.2
w/o attention 96.2 77.3 80.5
w/o normalization 96.2 79.0 79.8
w/o mlp 95.6 78.8 74.2

Table 16: ViT component ablation. Using all components from pretrained models is the best.

Longer training on ImageNet-1K. To assess if weight selection remains beneficial for extended
training durations, we use the improved training recipe from Liu et al. (2023). Specifically, the total
epochs are extended to 600, and mixup / cutmix are reduced to 0.3. The results, as displayed in Table
17, affirm that our method continues to provide an advantage even under extended training durations.
Both ViT-T and ConvNeXt-F, when initialized using weight selection, consistently surpass models
with random initialization. This confirms that weight selection does not compromise the model’s
capacity to benefit from longer training.

15

Published as a conference paper at ICLR 2024

setting ViT-T ConvNeXt-F
test acc change test acc change

random init 73.9 - 76.1 -
weight selection 75.5 ↑ 1.6 76.4 ↑ 0.3
random init (longer training) 76.3 - 77.5 -
weight selection (longer training) 77.4 ↑ 1.1 77.7 ↑ 0.2

Table 17: Longer training. Weight selection’s improvement is robust under stronger recipe.

C RESULTS ON MORE ARCHITECTURES

We present results on additional architectures, namely ResNet (He et al., 2016) and MLP-mixer
(Tolstikhin et al., 2021). Model configurations are provided in Table 18 and the detailed results on
image classification datasets are presented in 19. Notably, MLP-mixer enjoys more benefits from
weight selection. We speculate that it is due to different inductive bias among different architectures.

configuration student teacher
model Mixer-b16-half ResNet-18 Mixer-b16 ResNet-34
depth 12 2 / 2 / 2 / 2 12 3 / 4 / 6 / 3

embedding dimension 384 64 / 128 / 256 / 512 768 64 / 128 / 256 / 512
number of parameters 15.8M 11M 59.9M 63.5M

Table 18: Model Configurations. We perform experiments on Mixer-MLP and ResNet, and use
student that halve the embedding dimensions of their corresponding teacher.

dataset (scale ↓) random init weight selection change
SVHN 95.9 96.2 ↑ 0.3

Food-101 83.8 85.9 ↑ 2.1
EuroSAT 97.5 98.6 ↑ 1.1
CIFAR-10 96.4 97.1 ↑ 0.7

CIFAR-100 80.3 82.5 ↑ 2.2
STL-10 84.3 94.1 ↑ 9.8
Flowers 78.1 95.8 ↑ 17.7

Pets 78.2 87.8 ↑ 9.6
DTD 49.5 64.6 ↑ 15.1

(a) ResNet

random init weight selection change
87.9 93.3 ↑ 5.4
77.5 83.7 ↑ 6.2
98.4 98.8 ↑ 0.4
93.5 96.1 ↑ 2.6
73.4 79.8 ↑ 6.4
73.3 82.0 ↑ 8.7
69.1 83.2 ↑ 14.1
50.4 69.6 ↑ 19.2
42.9 49.3 ↑ 6.4

(b) MLP-mixer

Table 19: Test accuracy on image classification datasets. Weight selection shows consistent
improvements on other architectures across all 9 image classification datasets.

16

	Introduction
	Related Work
	Weight Selection
	Approach
	Methods for element selection

	Experiments
	Settings
	Results
	Comparisons
	Compatibility with Knowledge Distillation

	Analysis
	Conclusion
	Training Settings
	Additional Analysis
	Results on more architectures

