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ABSTRACT

Modern data collection methods routinely provide uncertainty estimates alongside
point measurements, yet standard statistical tests typically ignore this valuable in-
formation. We introduce UKAT (Uncertainty-aware Kernel Association Test), a
general framework for testing associations between variables while explicitly in-
corporating measurement uncertainties. UKAT treats each observation as a distri-
bution characterized by its mean and uncertainty, then applies the Hilbert-Schmidt
Independence Criterion (HSIC) to compare these distributional representations in
kernel Hilbert spaces. Through extensive simulations, we demonstrate that UKAT
achieves substantially higher statistical power than traditional association tests
while maintaining proper Type I error control. We also validate UKAT’s versatility
across diverse scientific domains in proof-of-principle applications, including de-
tecting prompt-induced effects in large language model responses on self-reported
confidence and identifying associations in physical measurements with error esti-
mates.

1 INTRODUCTION

Measurement uncertainty is ubiquitous across scientific disciplines (Figure [I). In high-throughput
biological experiments, abundance estimates for genes, proteins, or metabolites carry uncertainties
that reflect both technical factors, such as sample quality and sequencing depth, as well as the in-
herent stochasticity of biological processes. In astronomical surveys, photometric measurements
of stellar properties often include error bars encoding detector noise, atmospheric conditions, and
source brightness. Climate projections present similar challenges, where ensemble models generate
temperature estimates with uncertainties reflecting both structural model differences and parameter
estimation errors. In each domain, uncertainty quantifies data reliability and carries scientific mean-
ing about experimental conditions, yet conventional analyses routinely ignore this rich information.

The neglect of measurement uncertainty comes at a significant cost. Traditional statistical tests
assume homoscedastic errors, treating precise and imprecise measurements equally. This reduces
statistical power for detecting associations, as noisy observations can dilute true signals (Figure[Th).
Beyond power considerations, uncertainty patterns themselves can reveal scientifically meaningful
relationships (Figure[Tk). For instance, intrinsic and extrinsic gene expression noise in E. coli arises
from functionally different sources and capture distinct biological heterogeneity.

Incorporating uncertainty into statistical testing faces practical challenges. Uncertainty estimates are
themselves imperfect, arriving in diverse formats from bootstrap confidence intervals to Bayesian
credible regions to self-reported confidence scores (Figure[Ip). Additionally, the most general sce-
nario involves uncertainty in both predictor and response variables, requiring joint modeling ap-
proaches (Figure [T[d).

We present UKAT (Uncertainty-aware Kernel Association Test), a framework that incorporates mea-
surement uncertainty into association testing through kernel methods. UKAT offers two key contri-
butions: (1) generalized association testing for data with additional uncertainty estimates, accom-
modating various uncertainty types; (2) improved statistical power over traditional methods while
maintaining proper Type I error control in the mean- and variance-only testing scenarios. Through
extensive simulations and applications, we demonstrate UKAT’s broad utility for uncertainty-aware
statistical inference.
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Figure 1: Motivation for uncertainty-aware statistical testing. (a) Per-observation measurement
uncertainty can mask true group differences that become detectable when uncertainty is properly
modeled. (b) Uncertainty estimates are imperfect and arrive in various formats, from bootstrap con-
fidence intervals to self-reported confidence scores. (¢) Some scientific questions focus on variance
differences between groups, where incorporating uncertainty estimates can distinguish biological
heterogeneity from measurement noise. (d) In general scenarios, both covariates and response vari-
ables carry uncertainty that requires joint modeling for optimal inference.

2 BACKGROUND

2.1 RELATED WORK

Several statistical approaches have attempted to address measurement uncertainty, though none pro-
vide a general framework for uncertainty-aware association testing.

Weighted statistical tests (Bland & Kerry, |1998; |Pasek et al.,2025) represent one common approach,
which typically assigns weights to observations inversely proportional to measurement variance (un-
certainty). However, these weighting schemes are often arbitrary, and their effects on test validity re-
main unclear. When uncertainty manifests as probability distributions over discrete categories (e.g.,
genotype groups), /Acar & Sun|(2013) proposed a generalized Kruskal-Wallis test using probability-
weighted rank sums with an asymptotic x? null distribution.

Multiple imputation (MI) (Little & Rubin, [2019) handles uncertainty by creating multiple plausible
datasets and combining results across imputations. Originally developed for missing data, MI has
been extended to genetic association studies with genotype imputation (Palmer & Pe’er}, [2016) and
differential expression testing based on model predictions with calibrated uncertainty (Sun et al.,
2024). Briefly, a small number of imputed new datasets are independently drawn based on measure-
ment uncertainty, which are then analyzed with standard statistical tests to characterize uncertainty-
induced variation in the test results.

Random-effect meta-analysis (RMA) (Hedges & Vevea, [1998) combines effect estimates across
studies while accounting for per-study standard errors. As the name implies, RMA models effect
sizes as random effects whose variance components capture both within-study and between-study
variation, effectively weighting studies by precision. To find association, mixed-effect models are
typically used where study covariates are modeled in the fixed-effects term on the target effect size
(Viechtbauer, 2010).

UKAT differs from these approaches in two major ways. First, we test associations involving both
measurements and their uncertainties. When uncertainty doesn’t vary with covariates, the problem
reduces to robust mean (measurement) testing, for which we provide an alternative to weighted
tests, MI, and RMA. Second, we don’t assume uncertainty is perfect or follows any specific format,
though when uncertainty represents standard deviation, our procedure has the intuitive interpretation
of comparing distributions of distributions, as introduced in Figure [2]

2.2 KERNEL ASSOCIATION TESTS

Kernel methods detect nonlinear associations by embedding data into reproducing kernel Hilbert
spaces (RKHS). The Hilbert-Schmidt Independence Criterion (HSIC) provides an elegant frame-
work for testing independence between random variables X and Y by measuring the Hilbert-
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Schmidt norm of the cross-covariance operator between their RKHS embeddings (Gretton et al.
2005a;|2007). The theoretical foundation rests on the fact that two random variables are statistically
independent if and only if their covariance is zero (Gretton et al., 2005b)),

sup cov(f(X),g(Y)) =0
feF,geg

for all pairs of bounded continuous functions (f,g). These functions can be studied in RKHS
F = span({k(-,z),z € X'}) associated with kernel k(-, -), provided the RKHS is sufficiently rich
(e.g., using universal kernels).

Formally, HSIC is the Hilbert-Schmidt norm of the cross-covariance operator mapping between
RKHSs F and G associated with kernel functions k, and k,, for variables X and Y. With universal
kernels, HSIC equals zero if and only if X and Y are statistically independent (Theorem 4 of |Gretton
et al.|(2005a)). For empirical data with kernel matrices K x and Ky, HSIC simplifies to

HSIC(X,Y) = KxHKy H)

o

where H = I — %llT is the centering matrix. Under the null hypothesis of independence, HSIC
follows an asymptotic y? mixture distribution (Theorem 4 of Zhang et al.[(2012))

1 d i
Tusic := gtl‘(KxHKyH) m Hzl )\iujzfj (1)
1,j=
where {);} and {y;} are eigenvalues of centered kernels H K x H and HKy H, and z;; are inde-
pendent standard Gaussian variables.

This framework provides the foundation for UKAT, which extends HSIC to handle uncertainty by
constructing appropriate kernels that capture both measurement values and their associated uncer-
tainties.

3 METHODS

Observation Distance Distance-induced kernel Uncertainty-aware
Kernel Association Test
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Figure 2: UKAT conceptual framework. UKAT considers each data point as a distribution char-
acterized by both the measured value X and its uncertainty U. Cross-sample pairwise distance
is measured in the Euclidean space R? using © := [X, U], which corresponds to the Wasserstein
distance between Gaussian distributions. This distance induces an energy kernel suitable for HSIC-
based association test.

3.1 FROM POINT ESTIMATES TO DISTRIBUTIONS

UKAT’s core innovation is treating each observation as a probability distribution rather than a point
estimate (Figure[2). This conceptual shift enables kernel-based tests to detect associations between
covariates and distributions, fundamentally departing from traditional tests that examine single prop-
erties like group means or variances. Under the null hypothesis, the distribution of distributions is
independent of other covariates. This framework naturally encompasses conventional null hypothe-
ses as special cases — for instance, equal group means (t-test) and equal group variances (F-test).
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In real datasets, distributional information except for the observed value X and its measurement
uncertainty U, typically expressed as standard deviation or variance, is rarely available. For scalar
variables, we denote © := [X,U] € R? as the augmented observation. When only mean and
variance are known, the Gaussian distribution maximizes entropy, making it a natural choice. We
therefore characterize each observation as N (x;,u?), assuming all relevant distributional informa-
tion is captured in 8; = [x;, u;].

A key insight is that for Gaussian observations, Euclidean distance in the augmented space © corre-
sponds exactly to the Wasserstein distance between probability distributions

Wa(N (x5, uf), N(z5,u3)) = \/(Iz' — )% 4 (ui = uy)? = (|0 = 05]|2 := p(6:, 6;). ()

This formulation naturally incorporates uncertainty into similarity computations. Observations with
similar means but vastly different uncertainties are treated as dissimilar, reflecting that measurement
precision affects statistical reliability. Conversely, observations with overlapping uncertainty ranges
receive higher similarity scores, boosting variance-based inference.

3.2 KERNEL CONSTRUCTION AND HYPOTHESIS TESTING

Given the metric p in , we construct a distance-induced kernel,
k(0,0") = —p(0,0") + p(0,00) + p(0, 6o) (3)

which is induced by p and centered at 6. Setting 6y = 0 yields the uncertainty-aware Wasserstein-
based energy kernel
Kij = =10 = 05ll2 + [10ill2 + 1165 ]2- )

Kernel choice determines the power of association tests and, specifically, which types of statistical
dependency can be detected. Linear kernels capture correlations equivalent to multivariate cor-
relation analysis, while nonlinear kernels like the energy kernel provide universal approximation
properties, enabling detection of arbitrary dependencies given sufficient sample size.

Proposition 3.1. The energy kernel in [{@)) is positive definite, characteristic, and universal.

Proof. Universal kernels are stricter than characteristic kernels, which are both positive definite. We
refer to |Sriperumbudur et al|(2011) for detailed definitions. The positive definiteness follows from
the fact that Euclidean space (R?, || - — - [|3) is of negative type (Proposition 3 and Lemma 12 of
Sejdinovic et al.| (2013)). Indeed, Euclidean spaces have strong negative type (Proposition 3.1 and
Theorem 3.16 of |[Lyons|(2013))), equivalent to the associated kernel being characteristic (Proposition
29 of Sejdinovic et al.| (2013)). Universality follows from that & is characteristic and translation
invariant (Propositions 8 and 19 of |Sriperumbudur et al.| (2010)). O

Alternative uncertainty-aware data kernels K x include RBF K;; = exp(—~yd?(6;,6;)) and Lapla-
cian K;; = exp(—~d(6;,6;)), which are also universal but yield uncalibrated p-values and subopti-
mal power in our experiments.

For the covariate kernel Ky, we use different approaches based on variable type. For categorical
covariates, we employ the Dirac delta kernel

Ky (i,j) = 1y,=y;, Ky = onehot(Y )onehot(Y)T

In two-sample scenarios, Y; € {0, 1} indicates control and case groups. For continuous covariates,
we use the linear kernel Ky = YY7.

UKAT-C: We refer to the test ((T)) with uncertainty kernel K x and standard covariate kernel as
UKAT-C. P-values are computed using the Liu et al.|(2009) moment matching approximation.

3.3 UKAT VARIANTS

UKAT-R (Robust): Uncertainty estimates from real data are often imperfect and arrive in various
formats (Figure[Tp). While noise in uncertainty U does not directly interact with measurement X in
(2), arbitrarily large uncertainty scales can dilute signals and amplify estimation noise. To address
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this, we replace the distance metric with a rank-based robust variant, yielding the Semblance kernel
(Agarwal & Zhang, |2019),

1 - -
Kij=1——(d(6;,0;) +2
5, (A0, 05) +2)
where ; = [rank(;), rank(u;)] contains ranks across all n observations, and d(-, -) is Manhattan

distance.

UKAT-L (Linear): Treating augmented observations © as regular 2D random variables, we can
apply multivariate correlation analysis such as the RV coefficient (Robert & Escoufier, |1976) to
study the linear association. This corresponds to a linear uncertainty-aware kernel,

Ky =XXT+UU".

In two-sample scenarios with m cases and n — m controls, the test, UKAT-L, reduces to a multivari-
ate extension of the two-sample t-test. Since observed values X and uncertainties U are isolated in
separate dimensions, UKAT-L is equivalent to combining per-dimension t-test results under a new
x? mixture null distribution.

UKAT-G (General): In the most general case, covariates also carry uncertainty (Figure[I{d). Here,
we apply uncertainty-aware energy kernels to both variables, testing associations between two distri-
butions of distributions. While eigendecomposition of two full-rank kernels may be computationally
expensive for large samples, this approach provides maximum expressiveness.

Proposition 3.2. UKAT-G test statistic is zero if and only if X and'Y are statistically independent.

Proof. From Proposition the uncertainty-aware energy kernel is universal. Applying Theorem
4 of |Gretton et al.|(2005a) completes the proof. O

4 RESULTS

4.1 SIMULATION STUDIES

We first evaluate UKAT’s performance on simulated two-group data following a parametric mixed-
effect model, varying group means (1, (1) and uncertainty scales (o, o1). The mean and variance
association tests examine null hypotheses 1o = @1 and o9 = o1, respectively, which are special
cases of the distributional null [p, 09| = 11, 01] detectable through UKAT.

For each observation, the noise-free mean y and standard deviation ¢ are drawn from
o ~ o4 - Exponential(1), p~ N(ug,1),
and the observed value x and estimated uncertainty u follow
x~ N(p,0), u~(1—=p)- o+ p- Uniform(umin, Umaz),

where p denotes the noise level when uncertainty estimation is imperfect.

4.1.1 GROUP MEAN TESTING

We evaluated UKAT’s performance in detecting group mean differences, where uncertainty infor-
mation should improve power by appropriately weighting observations. The simulation generated
two groups of n = 50 observations each, with group means o = 0 and p; = 1 but identical
within-group uncertainty scales.

Figure [3| presents comprehensive simulation results comparing UKAT against traditional approaches
across various uncertainty scenarios. Baseline methods include the standard t-test using only mea-
sured values X, its weighted variant with observation weights w; = exp(—(u; — Umin)/(Umaz —
Umin)), and a filtered version removing the top 20% of samples with highest uncertainty. We im-
plemented a multiple imputation (MI) t-test following Sun et al.| (2024), drawing 10 datasets from
P ~ N(z;,u;) and combining test results across imputations. A two-sample random-effects
meta-analysis (RMA) was implemented using the Q-statistic from [Hedges & Vevea| (1998)), which
aligns with our data generation process and should achieve optimal power.
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Figure 3: UKAT improves power of group-mean tests by incorporating uncertainty. (a) Simu-
lated two-group data (ng = n; = 50) with different group means (1o = 0, 13 = 1) but same group
uncertainty scales. (b) Type I error control across methods at nominal o = 0.05 level. (c) Area under
ROC curve vs uncertainty scale, with AUC improvements computed over the standard T-test. T-test
(perfect) represents ideal scenario with noise-free observations. (d-e) Performance under noisy un-
certainty estimates with varying levels of estimation error. (f-h) Results when noisy uncertainty is
discretized into categorical levels. MI: multiple imputation; RMA: random-effect meta analysis.

All proposed methods maintain proper Type I error control (Figure Bp) while incorporating uncer-
tainty information. In contrast, RMA yields inflated Type I error consistent with literature reports
(IntHout et al} 2014), while weighted and MI-based t-tests are overly conservative. As uncertainty
scales increase, traditional t-tests lose power rapidly as noise overwhelms signal. When perfect un-
certainty estimates (u = o) are available, we ask whether each method can recover much of this
power loss by explicitly modeling uncertainty structure. To account for false positive rate differ-
ences, we compared methods using area under the ROC curve, showing that RMA generates the
highest power increase, followed by UKAT and the filtered t-test (Figure [3t). These results validate
UKAT as a reliable alternative to weighted t-tests and data filtering, avoiding per-sample reliability
adjustments that may compromise test validity. We confirmed that the asymptotic null distribution
remains robust across sample sizes (Figure 7).

Real applications rarely provide perfect uncertainty estimates, motivating the noisy uncertainty sim-
ulations in Figure BJd. As expected, performance improvements from uncertainty modeling decay
rapidly for most methods as noise levels increase (Figure Bp). The exception is UKAT-C, which
remains robust and provides modest improvements even when uncertainty contains no additional
information (noise level = 100%). Comparing the energy kernel of UKAT-C with the linear kernel
of UKAT-L, this robustness likely stems from a regularization effect where large variations in X
are mitigated by random variations in U. Overall, our results suggest that proper modeling of noisy
uncertainty can still provide detection benefit.

To further mimic real-world use cases, we designed a discrete uncertainty scenario (Figure [3f-h)
where uncertainty can only be categorized into broad levels. Despite coarse discretization, UKAT
maintains proper p-value calibration and retains significant power improvements over simple t-test
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variants and more sophisticated MI and RMA baselines, suggesting broad utility even with qual-
itative uncertainty information. The translation-invariant kernel design makes UKAT-C robust to
additive uncertainty estimation errors but not scaling errors. While this can be mitigated by rescal-
ing U to be comparable with X (interpreting U as the standard deviation of X), the rank-based
UKAT-R eliminates scaling concerns and generates consistent, robust performance across noise lev-
els (Figure Bh and Figure g).

4.1.2 GROUP VARIANCE TESTING

We next explored UKAT’s performance for detecting variance differences, particularly relevant in ap-
plications like gene expression where differential variability indicates regulatory changes or cellular
heterogeneity. The simulation maintained identical group means but varied uncertainty scales with
ratio r. Incorporating per-sample uncertainty should improve power since it directly contributes to
observed group-level variance.

Figure [] shows that UKAT significantly outperforms F-tests in both false positive rate control and
detection power. For baselines, we implemented a modified F-test where per-group variances were
directly estimated from per-sample variances, which proved less powerful than testing uncertainty
directly with t-test variants (including UKAT-L). Similar to the mean testing results, the noisy sce-
nario (Figure[dd-e) confirms UKAT’s robustness even when uncertainty estimates contain substantial
error. Comparing UKAT-C with UKAT-L, we again observe a likely regularization effect from mea-
surement X that mitigates large outliers in U.
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Figure 4: UKAT improves power of group-variance tests by incorporating uncertainty. (a)
Simulated two-group data (ng = n; = 50) with same group means but different group uncertainty
scales (o9 = 1,01 = rogp). (b) Type I error control across methods. (c) Area under ROC curve vs
uncertainty ratio r, with AUC improvements computed over the standard F-tests. (d-e) Performance
under noisy uncertainty estimates demonstrates robustness to imperfect uncertainty quantification.

4.2 REAL-WORLD APPLICATIONS

We now demonstrate the importance of jointly testing both observed values and their measurement
uncertainties in proof-of-principle applications on real data, showcasing findings that would other-
wise remain hidden.

4.2.1 LARGE LANGUAGE MODEL (LLM) CONFIDENCE ANALYSIS

One potential solution to LLM ”hallucinations” is encouraging models to honestly communicate
uncertainty. We designed an experiment to test prompting effects on LLM response quality, specif-
ically comparing standard, chain-of-thought (CoT, think step by step to solve this problem”), and
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double-check (DC, “calculate carefully, double-check your work™) strategies. We evaluated GPT-5-
nano performance on numerical reasoning tasks (L1 et al.,|2025)). For each of 30 selected questions,
we computed average accuracy based on 5 independent runs with identical prompts.
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Figure 5: UKAT reveals prompt effects on LLM confidence patterns. (a-b) Three prompt types
tested on GPT-5-nano for numerical reasoning tasks, measuring both 5-run accuracy and model
self-reported confidence (0-10 scale). (c) Pairwise comparisons show that accuracy-only t-tests
detect weak differences, while uncertainty-aware UKAT-C reveals highly significant effects driven
by changes in self-reported model confidence. CoT: chain-of-thoughts; DC: double-check.

Figure [5] demonstrates how prompting strategies affect LLM behavior. Performance shows mini-
mal effects from prompt strategies (Figure Sh). However, the double-check strategy significantly
increases model-reported confidence, while chain-of-thought minimizes confidence variance (Fig-
ure[5p). These changes are readily detected by UKAT but missed by traditional accuracy-only tests

(Figure[3k).

4.2.2 EXOPLANET PHYSICAL PROPERTIES

Figure|§| showcases another application to astronomical dataﬂ where both measured values and esti-
mation errors are available for various exoplanet physical properties and orbital characteristics. We
performed association tests for all pairs of properties and document below unexpected associations
that are only significant when uncertainty is incorporated.

Figure[6p examines planet radius versus orbital eccentricity, which theoretically should show no as-
sociation, consistent with the negligible Pearson correlation. However, UKAT detected that smaller
planets tend to have higher eccentricity estimation errors, reflecting increased characterization dif-
ficulty that may introduce observational biases in exoplanet catalogs. Figure [6p presents a more
complex scenario involving planet mass and argument of periastron. While traditional correlation
detects weak association (Pearson » = 0.10, p = 0.01), the general association is much stronger,
driven by negative relationships between mass and omega estimation uncertainty, again suggesting
potential systematic biases in the data.
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Figure 6: UKAT reveals associations between exoplanet properties and measurement precision.
(a) Planet radius and orbital eccentricity show no correlation, but smaller planets exhibit higher
eccentricity estimation error. (b) Planet mass shows mild correlation with argument of periastron
omega, while the association between omega estimation uncertainty and mass is much stronger.

'Dataset from Kaggle at akashbommidi/exoplanets-dataset/data
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5 DISCUSSION

As scientific instrumentation increasingly quantifies measurement uncertainty, statistical methods
should evolve to effectively utilize this rich information. UKAT provides a practical framework for
uncertainty-aware statistical inference by treating individual distributions rather than individual data
points as the fundamental units of analysis.

The technical foundation of UKAT, built upon kernel association testing with Wasserstein distances
and energy kernels, demonstrates robust power improvements, particularly under noisy uncertainty
estimates. Beyond statistical power gains, UKAT can reveal associations between variables and mea-
surement precision that remain invisible to traditional methods. In our LLM example, uncertainty-
aware testing uncovered behavioral differences between prompting strategies that accuracy-focused
analyses completely missed, illustrating the value of incorporating uncertainty information.

However, UKAT faces several limitations. First, performance depends on uncertainty estimation
quality, particularly regarding scaling errors (Figure[§). While simulations show robustness to noisy
uncertainties, especially for the rank-based UKAT-R, poorly calibrated estimates could still mis-
lead inference. Future work may extend upon domain-specific uncertainty calibration and outlier
detection approaches. Second, like other kernel association tests, UKAT’s computational complex-
ity scales quadratically with sample size due to kernel matrix computations, potentially limiting
applications to very large datasets. Advances in scalable kernel methods and low-rank approxima-
tions could address this limitation in the future. Third, the asymptotic x? mixture null distribution
may be overly conservative for smaller sample sizes (Figure[7), suggesting room for optimizing test
procedures, distance metrics, kernel selection, and null approximations to further improve power.

Despite these limitations, UKAT represents a meaningful step toward incorporating the uncertainty
information available in modern datasets, opening new avenues for scientific discovery through
uncertainty-aware statistical analysis.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation was
involved in this study. All datasets used were publicly available and sourced in compliance with
their respective usage guidelines and licenses.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details and experimental pro-
tocols. Method implementation is described in detail in Section 3, including all kernel constructions,
distance metrics, and statistical testing procedures. Simulation parameters are fully specified in Sec-
tion 4, with complete data generation processes for both mean and variance testing scenarios. All
hyperparameters, sample sizes, and experimental settings are explicitly stated throughout the re-
sults section. Code for implementing UKAT variants and reproducing all experiments will be made
available upon publication.

8 LLM USAGE

Large Language Models were used in several capacities during this research: Writing assistance:
LLMs aided in manuscript preparation, including grammar checking, improving readability and
clarity, and enhancing the fluency of various sections. Experimental subject: LLMs served as
experimental subjects in the confidence analysis study (Figure[5), where we evaluated the effects of
different prompting strategies on model self-reported confidence scores. Literature search: LLMs
assisted with initial literature searches. The Related Work section reflects the authors’ own analysis
and interpretation of the literature. Coding assistance: LLMs provided programming support for
implementation tasks, with all code thoroughly tested and validated by the authors.

The authors take full responsibility for all content, analyses, and conclusions presented in this
manuscript. All content was carefully reviewed and edited by the authors to ensure accuracy and
adherence to scientific standards.
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A APPENDIX
A.1 SUPPLEMENTARY FIGURES
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Figure 7: UKAT improvements are robust across sample sizes, related to Figur
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Figure 8: UKAT-C improvements are robust to uncertainty estimation additive biases but not scales,
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