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Abstract—This paper investigates the prescribed performance-
based cooperative control problem for a class of uncertain
strict-feedback nonlinear multiagent systems with input satura-
tion. Compared with the existing results, the new performance
function is constructed with a larger initial value and faster
convergence speed to meet the feasible condition of prescribed
performance control, while ensuring that tracking errors con-
verge to the prescribed range in a configurable time frame. On
this basis, the constrained system is converted into an equivalent
totally unconstrained one, which indicates that the convergence
of the logarithmic error transformation function is mapped to
the convergence of the tracking error. Meanwhile, the problem
of input saturation is considered, which can be addressed by
constructing an auxiliary system with the same order as the dy-
namics for compensating the effect of input saturation. Moreover,
for the topology communication redundancy problem, a topology
optimization scheme is designed to eliminate unnecessary edges
and save communication resources. The results of numerical
simulation on the control systems verify the approach.

Index Terms—cooperative control, prescribed performance
control, input saturation, topology optimization.

I. INTRODUCTION

DURING the past few decades, people gradually pay
attention to the research on multiagent systems (MASs)

due to the ability to attack more complex, realistic, and
large-scale problems which are beyond the capabilities of an
individual agent, such as extensive search and rescue [1],
traffic vehicle [2], environmental monitor [3]. A research
goal is to transform large complex systems (hardware and
software systems) into easy-to-manage systems in which in-
dividual agents can communicate and coordinate with each
other and eventually complete control objective precisely.
Accomplishing precise control has always been an essential
control requirement for the smooth operation of multiagent
systems. Researchers have achieved abundant results; see,
for instance [4]. The control outcomes of formation control,
consensus control, and containment control are commonly
demonstrated by the convergence of tracking errors to a small
vicinity around the origin. Extensive investigation has been
undertaken regarding the design of stable controllers especially
for systems with nonlinear uncertain terms, including fuzzy
systems [5], adaptive backstepping [6], adaptive feedback [7].

The purpose of this paper is to reconstruct the performance
function for a particular class of tracking error initial values

that exceed its boundaries. The reconstruction aims to meet
the following requirements

1) The initial value ρi(0) of the new performance function
satisfies ρi(0) > |ei(0)|, where ei(0) represents the error initial
value.

2) The new prescribed performance function should con-
verge within the boundaries of the original performance func-
tion after a designable time τmp.

With the above observations, this work investigates consen-
sus tracking problem of multiagent systems via a performance
function reconstruction approach and topology optimization
method. The advancements of this paper are delineated as
follows

1) A new performance function is designed to satisfy
the feasible condition of PPC and larger convergence
speed of tracking errors. Compared to the performance
function delineated in [8], the new performance function
expedites the convergence rate of the tracking error and
mitigates tracking error overshoots by incorporating a
specifically designed logarithmic term.

2) A new topology optimization method is developed based
on the minimum communication distance, which can
eliminate redundant edges while ensuring that the com-
munication graph contains a spanning tree.

The structure of the remaining sections of this paper is as
follows. Nonlinear dynamics model and some preliminaries
including graph theory, fuzzy logic system, topology optimiza-
tion as well as prescribed performance scheme are introduced
in Section II. Controller and adaptive laws based backstepping
approach are designed in Section III. Numerical examples are
provided in provided in Section IV.

II. PROMBLEM FORMULATION AND PRELIMINARIES

The dynamics of the ith (i = 1, ..., N) follower is described
in the strict-feedback form

ẋi,m = xi,m+1 + fi,m(x̄i,m) + ωi,m(t),

ẋi,n = ui(vi(t)) + fi,n(x̄i,n) + ωi,n(t),

yi = xi,1, m = 1, 2, ..., n− 1 (1)

where xi = [xi,1, ..., xi,n]T ∈ Rn and yi represent state
vector and system output of the ith agent with x̄i,k =



[xi,1, ..., xi,k]T ∈ Rk(k = 1, ..., n), fi,k(x̄i,k) is unknown
smooth nonlinear function, ωi,k(t) is unknown time-varying
disturbance, The system input signal ui(vi(t)) is affected by
saturation nonlinearity, as expressed by

ui(vi(t)) =

{
sign(vi(t))ui,M , |vi(t)| ≥ ui,M
vi(t), |vi(t)| < ui,M

(2)

where ui,M > 0 represents the known upper bounds of
ui(vi(t)), and vi(t) denotes the actuator input to be designed.

The leader’s signal yr is assumed to be generated by a linear
autonomous system of the form

ẋl = Sxl,

yr = xl,1, (3)

where xl = [xl,1, ..., xl,n]T ∈ Rn is the state vector of leader
node, S ∈ Rn×n is the constant coefficient matrix, we assume
that S is detectable.

A. Graph Theory
Consider the direct graph Υ = (U , E ,P), where U =

{1, ..., N} are the sets of nodes, E = {(i, j) : i ∈ U , j ∈ U}
are edges between ith agent and jth agent, P = [ai,j ]N×N
stands for the adjacency matrix. If ai,j = 0, there is no
information interaction between ith and jth agents; otherwise
ai,j > 0. The Laplacian matrix is defined as L = D−P , where
D = diag{d1, ..., dN} with di =

∑N
j=1 ai,j is the in-degree

matrix of the ith follower. In order to achieving subsequent
study, the following assumptions are imposed.

The augmented graph is denoted as Ῡ =
(
Ū , Ē

)
with Ū =

{0, 1, ..., N} and Ē = {(i, j) : i ∈ Ū , j ∈ Ū}, ai,0 > 0
represent ith agent maintains communication with the leader,
A = diag{a1,0, a2,0, ..., aN,0} ∈ RN×N .

B. Fuzzy Logic System
In order to approximate the unknown continue function, we

introduce the following definitions and lemma. Consider the
fuzzy rule base consisting of M rules in the following form

Rj :If x1 is A
j
1, x2 is A

j
2, ..., xn is A

j
n,

Then z is Bj ,

with j = 1, 2, ...,M , X = [x1, x2, ..., xn]T ∈ Rn and z as
the input vector and the output variable of the fuzzy system,
respectively. Aji and Bj represent linguistic terms defined by
fuzzy membership functions µAj

i
(xi) and µBj (z), respectively.

The fuzzy logic system has the form

g(X) =

∑M
j=1 z̄

jΠn
i=1µAj

i
(xi)∑M

j=1[Πn
i=1µAj

i
(xi)]

, (4)

where µAj
i
(xi) is the Gaussian membership function, denoted

as

µAj
i
(xi) = aji exp

[
− 1

2
(
xi − x̄ji
σji

)

]2
, (5)

herein, aji , x̄ji , and σji are real-valued parameters with 0 <
aji ≤ 1 and z̄j = maxz∈R µBj (z).

C. Prescribed Performance

Throughout this work, the cooperative control objective is
to confine ei(t) =

∑N
j=1 ai,j(yi − yj) + ai,0(yi − yr) within

a predefined arbitrarily small residual set.

−ρi(t) < ei(t) < ρi(t), (6)

where the candidate function could be ρi(t) = (ρi(0) −
ρi(∞))e−lt+ρi(∞) which is a strictly positive and monoton-
ically decreasing function satisfying ρi(0) > limt→∞ ρi(t) >
0, l > 0 is a constant representing the required exponential
convergence rate. Clearly, ρi(t) is bounded and continuously
differentiable. ρi(0) is the initial performance bound, ρi(∞)
is the maximum steady state error.

The prerequisite for achieving the above control objective is
to select suitable initial value ρi(0) and satisfy ρi(0) > |ei(0)|.
We consider the case that the precise value of initial error ei(0)
can be obtained, a performance function ρ∗i (t) is expressed by

ρ∗i (t) =(ρ∗i (0)− ρi(∞)) exp
[
− (l −

ln ρi(0)−ρi(∞)
ρ∗i (0)−ρi(∞)

τmp
)t
]

+ ρi(∞), (7)

where ρ∗i (0) = ~|ei(0)| with ~ > 1 is a constant, τmp > 0
is an arbitrarily specified constant which satisfies ρ∗i (τmp) =
ρi(τmp). Then, a new performance function is designed as

Hi(t) =

{
ρi(t), |ei(0)| < ρi(0)

ρ∗i (t). |ei(0)| ≥ ρi(0)
(8)

III. MAIN RESULTS

Step m(1 ≤ m ≤ n− 1): The time derivative of zi,m can
be denoted as

żi,m =ẋi,m − $̇i,m−1 − ς̇i,m
=xi,m+1 + fi,m + ωi,m − $̇i,m−1 − ςi,m+1 + pi,mςi,m

=zi,m+1 +$i,m + fi,m + ωi,m − $̇i,m−1 + pi,mςi,m.
(9)

where $̇i,m−1 is denoted as
Define the following Lyapunov function:

Vi,m =
1

2
z2i,m +

1

2κi,m
ϑ̃2i,m +

1

2γi,m
Γ̃2
i,m, (10)

where κi,m > 0 and γi,m > 0 are designed constant, ϑ̃i,m =
ϑi,m− ϑ̂i,m and Γ̃i,m = Γi,m− Γ̂i,m are the estimation errors.
Then, the derivative of Vi,m along (9) is

V̇i,m =zi,m(zi,m+1 +$i,m + fi,m + ωi,m − $̇i,m−1

+ pi,mςi,m)− 1

κi,m
ϑ̃i,m

˙̂
ϑi,m −

1

γi,m
Γ̃i,m

˙̂
Γi,m, (11)

given that f̄i,m = fi,m − $̇i,m−1 is an unknown
function, a fuzzy logic system WT

i,mϕi,m(Xi,m)
is utilized to approximate f̄i,m with Xi,m =

[x̄Ti,m, x̄
T
j,m, β

(0)
i , ..., β

(m−1)
i , ϑ̂i,1, ..., ϑ̂i,m−1, Γ̂i,1, ..., Γ̂i,m−1

, ςi,1, ..., ςi,m−1, yr]
T . Thus, f̄i,m can be expressed as

f̄i,m = WT
i,mϕi,m(Xi,m) + δi,m, |δi,m| ≤ εi,m. (12)



Define Γi,m = εi,m + ω̄i,m, ϑi,m = ||Wi,m||, design the
adaptive laws as

˙̂
ϑi,m = κi,m

z2i,mϕ
T
i,mϕi,m√

z2i,mϕ
T
i,mϕi,m + σ2

i,m

− κi,mϑ̂i,m, (13)

˙̂
Γi,m = γi,m

z2i,m√
z2i,m + σ2

i,m

− γi,mΓ̂i,m, (14)

where σi,m > 0. Combining Young’s inequality, substituting
(12)-(14) into (11) yields

V̇i,m ≤zi,m(zi,m+1 +$i,m + pi,mςi,m) +
Γ̂i,mz

2
i,m√

z2i,m + σ2
i,m

+
ϑ̂i,mz

2
i,1ϕ

T
i,mϕi,m√

z2i,mϕ
T
i,mϕi,m + σ2

i,m

− 1

2
(ϑ̃2i,m + Γ̃2

i,m)

+
1

2
(ϑ2i,m + Γ2

i,m) + σi,m(ϑi,m + Γi,m). (15)

The virtual controller $i,m is designed as

$i,m =− ci,mzi,m − Ξi,mzi,m−1 −
ϑ̂i,mzi,mϕ

T
i,mϕi,m√

z2i,mϕ
T
i,mϕi,m + σ2

i,m

− Γ̂i,mzi,m√
z2i,m + σ2

i,m

− pi,mςi,m, (16)

it is interesting to note that Ξi,m exhibits the following
properties: 1) Ξi,m = λi,1(di + ai,0) if and only if m = 2; 2)
Ξi,m = 1 as m = 3, 4, ..., n− 1 and ci,m > 0 is a constant.

Substituting (12)-(16) into (11) yields

V̇i,m ≤zi,mzi,m+1 − ci,mz2i,m − Ξi,mzi,mzi,m−1 −
1

2
(ϑ̃2i,m

+ Γ̃2
i,m) +

1

2
(ϑ2i,m + Γ2

i,m) + σi,m(ϑi,m + Γi,m).

(17)

IV. STABILITY ANALYSIS

Proof : We first define a Lyapunov function V =∑N
i=1

∑n
k=1 Vi,k. It follows that

V̇ ≤−
N∑
i=1

n∑
k=1

ci,kz
2
i,k −

1

2

N∑
i=1

n∑
k=1

(ϑ̃2i,k + Γ̃2
i,k) + B

≤− CV + B, (18)

where C = min{ci,1, ..., ci,n, κi,1, ..., κi,n, γi,1, ..., γi,n} > 0,
B =

∑N
i=1

∑n
k=1

1
2 (ϑ2i,k + Γ2

i,k) + σi,k(ϑi,k + Γi,k).
We can obtain

V (t) ≤ V (0)e−Ct +
B
C

(1− e−Ct), (19)

lim
t→+∞

||z∗,1(t)|| ≤
√

2V ≤
√

2V (0) + 2
B
C
, (20)

where z∗,1(t) = [z1,1, z2,1, ..., zN,1]T .

The result in (20) illustrates that ei is bounded and ei is
constrained by performance function (8), which implies that
the synchronization error ei satisfy −ρ∗i < ei < ρ∗i with t ∈
[0, τmp) and −ρi ≤ −ρ∗i < ei < ρ∗i ≤ ρi with t ∈ [τmp,+∞).
Meanwhile, one has

||y − y∗r || ≤
||e∗||

Ψ(L+A)
, (21)

where Ψ(L + A) is the minimum singular value of L + A,
y = [y1,1, y2,1, ..., yN,1]T ∈ RN , y∗r = [yr, yr, ..., yr]

T ∈ RN ,
e∗ = [e1, e2, ..., eN ]T ∈ RN .

V. CONCLUSIONS

We propose a performance function reconstruction approach
for reconstructing the initial performance function into a new
performance function, thereby ensuring that the initial values
of the tracking error align with the newly defined performance
bounds. Contrasted with existing methods for prescribed per-
formance, the proposed scheme offers two primary advantages.
On the one hand, it reduces the overshoot of the tracking error,
on the other hand, it ensures that the tracking error converges
to the initial performance function bound within the specified
time.
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