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ABSTRACT

This paper investigates the generalization issue in AI-Generated image detection,
aiming to generalize from training on one AI-Generated image dataset to detect-
ing unseen AI-Generated images. Many methods consider extracting low-level
information from RGB images to aid the generalization of AI-Generated image
detection. However, these methods often consider a single type of low-level infor-
mation and this may lead to suboptimal generalization. In our analysis, different
low-level information often exhibit generalization capabilities for different forgery
types. Additionally, simple fusion strategies are insufficient to leverage the detec-
tion advantages of each low-level and high-level information for various forgery
types. Therefore, we propose the Adaptive Low-level Experts Injection (ALEI)
framework. Our approach introduces Lora Experts to enable the transformer-based
backbone to learn knowledge from different low-level information. We incorporate
a Cross-Low-level Attention layer to fuse these features at intermediate layers.
To prevent the backbone from losing modeling capabilities for different low-level
features, we develop a Low-level Information Adapter that interacts with the fea-
tures extracted by the backbone. Finally, we propose Dynamic Feature Selection to
maximize the generalization detection capability by dynamically selecting the most
suitable features for detecting the current image. Extensive experiments demon-
strate that our method, finetuned on only four categories of ProGAN data, performs
excellently and achieves state-of-the-art results on multiple datasets containing
unseen GAN and Diffusion methods.

1 INTRODUCTION

Advanced AIGC technologies, such as GANs (Goodfellow et al., 2014; Karras et al., 2018; 2019;
2020) and Diffusion models (Dhariwal and Nichol, 2021; Gu et al., 2022; Nichol et al., 2022;
Rombach et al., 2022), have seen significant progress, raising concerns about misuse, privacy, and
copyright issues. To address these concerns, universal AI-generated image detection methods are
essential. A major challenge faced by existing detection methods is how to effectively generalize to
unseen AI-Generated Images in real-world scenarios. Existing methods (Ojha et al., 2023; Wang et al.,
2020), which primarily use RGB images, often focus on content information, leading to overfitting
on AIGC-generated fake images in the training set and a significant drop in generalization accuracy
on novel AIGC-generated images.

Recent studies have shown that incorporating low-level information, which refers to fundamental
signal properties like noise patterns and subtle artifacts inherent in images (Zamir et al., 2020; Zhang
et al., 2017), can significantly enhance the generalization of detection model (Tan et al., 2023b; Jeong
et al., 2022a;b; Wang et al., 2023b; Liu et al., 2022; Tan et al., 2023a). For instance, LNP (Liu et al.,
2022) and NPR (Tan et al., 2023a) achieve state-of-the-art results by leveraging low-level information.
LNP extracts the noise pattern of spatial images based on a well-trained denoising model. NPR
investigates the upsampling operations in generative models and designs a module to extract the
artifacts associated with this upsampling. These methods focus on analyzing and designing specific
types of low-level information for detection. However, the diversity of AIGC technologies and the
varied nature of low-level features raise two important questions: How do different types of low-level
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Figure 1: Radar chart of the average accuracy on various forgery test datasets using different low-level
features and different fusion strategies.
information contribute to the detection of various AIGC forgeries? Is simply incorporating low-level
features into existing models sufficient for optimal detection results?

To address this question, we conducted two sets of analytical experiments. First, we trained detection
models using 6 widely used low-level features and evaluated their performance separately on 16
distinct types of AIGC images. We then explored the impact of combining multiple low-level
information sources by examining both early and late fusion strategies on these images. The results
of these experiments are presented in Fig. 1. Our analysis of these validation experiments yielded
two key insights: (a) The effectiveness of different low-level information varies significantly across
various types of AIGC image forgeries. (b) Simple fusion mechanisms prove inadequate in fully
leveraging these low-level features for optimal detection performance. Thus, it is important to design
which and how to integrate low-level features into detection models.

In this paper, we propose the Adaptive Low-level Experts Injection (ALEI) framework, which
adaptively incorporates diverse low-level information into the image encoder to effectively detect
a wide range of AI-generated image forgeries. Specifically, we train an expert for each type of
low-level information using LoRA (Hu et al., 2021) and develop a cross-low-level attention layer to
facilitate feature fusion. To address the potential loss of low-level features during deep transformer
modeling, we introduce a low-level information adapter. This adapter extracts low-level features
through two convolutional layers and maintains ongoing interaction with the backbone’s features
via our custom-designed injector and extractor. For the final classification, we implement dynamic
feature selection and weighting, enabling adaptive utilization of both low-level and high-level features
to optimally categorize the current forgery type.

The main contributions of this paper are summarized as follows:

• We provide key insights into the effectiveness of various low-level features for AI-generated
image detection, demonstrating that different low-level information generalizes differently
across various AIGC forgery types and that simple fusion strategies are insufficient for
optimal detection performance.

• We propose the Adaptive Low-level Experts Injection (ALEI) framework, a novel framework
that adaptively integrates diverse low-level information into the image encoder. This module
includes expert models trained with LoRA, a cross-low-level attention layer, and a low-
level information adapter to maintain and effectively fuse low-level features throughout the
detection process.

• Experimental results demonstrate that our method achieves competitive performance with
state-of-the-art methods across multiple AI-generated image detection benchmark datasets.

2 RELATED WORK

2.1 AI-GENERATED IMAGE DETECTION

The classification methods of AI-Generated images can be broadly categorized into two main
parts: detection based on high-level information and detection based on low-level information.
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Following the descriptions in prior works (Triaridis and Mezaris, 2024; Liu et al., 2023b), we refer
to the noise patterns extracted from RGB images using carefully designed methods as low-level
information. In contrast, we define the semantic features extracted from RGB images using deep
learning techniques (Liu et al., 2019) as high-level information.

High-level Based Methods. Early researches utilize images as input and trains binary classification
models for GAN-Generated image detection. For instance, (Wang et al., 2020) uses ProGAN-
generated images and real images as the training set for a binary classification task, achieving
promising results across multiple GAN methods. (Rossler et al., 2019) trains an Xception model to
identify deepfake facial images, while (Chai et al., 2020) focuses on detecting recognizable regions
within images. More recently, (Ojha et al., 2023) achieves good generalization to diffusion models
by fine-tuning the fully connected layers of a CLIP’s ViT-L backbone. Building upon this approach,
(Liu et al., 2023a) further enhances the detection method’s generalization by considering CLIP’s text
encoding embeddings and introducing frequency-related adapters into the image encoder.

Low-level Based Methods. Directly using high-level RGB images as the training set (Wang et al.,
2020) often results in limited generalization to AI-generated images outside the training set. Some
studies attempt to find universal low-level forgery representations based on high-level images (Luo
et al., 2021; Liu et al., 2022; Jeong et al., 2022a; Zhong et al., 2023; Tan et al., 2023b; Wang et al.,
2023b; Tan et al., 2023a). (Luo et al., 2021) utilizes SRM filters (Fridrich and Kodovsky, 2012)
to extract high-frequency features, enhancing the generalization of face forgery detection. (Jeong
et al., 2022a) amplifies artifacts using high-frequency filters to achieve better detection performance.
(Liu et al., 2022) extracts noise from images using a denoising network and use this noise for
binary classification. (Tan et al., 2023b) classifies gradient maps generated from images using a
discriminator pretrained on StyleGAN. (Zhong et al., 2023) trains models based on arrangements
of high-frequency features extracted by SRM filters in both adversarial and benign texture regions.
(Wang et al., 2023b) utilizes an ADM model for image reconstruction and use the difference between
the reconstructed and original images (DIRE) for classification. (Tan et al., 2023a) proposes NPR as
a low-level representation of the upsampling process for detection, achieving good generalization
across multiple forgery types.

2.2 LOW-LEVEL INFORMATION FUSION IN LOW-LEVEL STRUCTURE DETECTION.

Low-level information plays a crucial role in tasks that are difficult for the human eye to perceive.
Therefore, many studies explore how incorporating low-level information as input can enhance the
performance of methods that use only high-level information. In the field of Camouflaged Object
Detection and Image Forgery Detection, (Wang et al., 2023a) guides the detection model to detect
camouflaged objects by incorporating depth maps into the detection network based on RGB images.
(Guillaro et al., 2023) trains a noise network called Noiseprint using contrastive learning loss to detect
image manipulation traces, and then integrate the traces and images into a transformer network for
classification and segmentation. (Triaridis and Mezaris, 2024) employs multiple low-level features
for adaptive early fusion in the input module of the transformer, achieving state-of-the-art results
on multiple datasets. (Liu et al., 2023b) develops a universal framework for detecting various
low-level structures. In deepfake detection methods, (Luo et al., 2021; Shuai et al., 2023) introduces
high-frequency features using SRM filters (Fridrich and Kodovsky, 2012) through carefully designed
fusion modules into the high-level detection branch, applied to facial forgery detection. (Masi et al.,
2020) combines RGB and frequency domain information using a two-stream network to detect
processed face images and videos. However, in the AI-Generated image detection domain, although
many methods emerge using low-level information instead of high-level images for generalization,
detection methods that combine multiple low-level information and high-level information remain
unexplored.

3 ANALYSIS OF LOW-LEVEL INFORMATION

To further investigate the phenomena highlighted in the introduction, we conducted two sets of
experiments to analyze the effectiveness of various low-level features and their fusion strategies in
AI-generated image detection.
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3.1 EVALUATION OF INDIVIDUAL LOW-LEVEL FEATURES

Experimental Setup: We studied six types of low-level information from different domains:
SRM (Fridrich and Kodovsky, 2012), DnCNN (Corvi et al., 2023), NPR (Tan et al., 2023a), LNP (Liu
et al., 2022), Bayar (Bayar and Stamm, 2016), and NoisePrint (Guillaro et al., 2023). Following
the standard paradigm in the field (Ojha et al., 2023; Wang et al., 2020), we trained on a dataset
consisting only of ProGAN and real images, and tested on other AI-generated images using the
AIGCDetectBenchmark (Zhong et al., 2023). We utilized the visual encoder of CLIP (Liu et al.,
2023a; Ojha et al., 2023) as the backbone, applying LoRA to train the QKV matrix weights in the
attention layers. The final classification head was optimized using binary cross-entropy loss.

Results and Analysis: The detailed results are presented in Fig. 1 (a) and in the appendix. NPR,
DnCNN, and NoisePrint demonstrated better overall performance, showcasing strong generalization
capabilities in detecting unseen AIGC images. Image-based methods achieved superior performance
on similar GAN datasets but showed limitations on certain Diffusion-based datasets. Different types
of low-level information varied in their generalization across different AIGC methods: NPR excelled
in detecting mainstream GAN methods, particularly StyleGAN, while DnCNN and NoisePrint
performed better on Diffusion-based methods.

Conclusion: This experiment supports our hypothesis that although using a single type of low-level
information can yield better generalization than RGB images alone, it still results in suboptimal
performance across various AIGC forgery types.

3.2 EVALUATION OF SIMPLE FUSION STRATEGIES

Experimental Setup: To explore the potential of combining multiple low-level information types,
we experimented with two simple fusion strategies: (1). Early Fusion: After embedding each input
using learnable convolutional layers in the early stages of the backbone, a simple addition operation
fuses the inputs. (2). Late Fusion: After extracting features for each input with the backbone, we
concatenate the feature vectors and use a learnable classification head for training. Both of the above
backbones are trained using LoRA.

Results and Analysis: The results are presented in Fig. 1(b) and in the appendix. Early fusion appeared
to confuse some key features, leading to a loss of generalization. Late fusion, while showing strong
results, still suffered from insufficient utilization, failing to match the generalization of individual
low-level information types for certain AI-generated images.

Conclusion: Simple fusion mechanisms prove inadequate in fully leveraging these low-level features
for optimal detection performance across various AIGC forgery types.

Based on these findings, we propose the Adaptive Low-level Experts Injection (ALEI) framework,
specifically designed for AI-generated image detection. Given the superior performance of NPR,
DnCNN, and NoisePrint, and following the principle of Occam’s Razor, we conducted further
experiments using only these three low-level information types. The integration of additional low-
level information is also feasible within our framework, which we discuss further in the appendix.
The detailed method will be presented in the subsequent sections.

4 METHODOLOGY

4.1 OVERVIEW

This paper aims to address the issue of generalization in AI-Generated image detection. Given
an input image I ∈ RH×W×3, where H and W denote the height and width respectively, we
extract multiple low-level information C = {C1, C2, ..., CM}, where each Ci ∈ RH×W×3, i =
1, 2, 3, ...,m. Following UniFD (Ojha et al., 2023), our approach uses the CLIP’s visual encoder ViT-
L as the backbone in Fig. 2. To enable the model, pretrained on high-level images, to accept various
low-level information inputs and ensure effective integration, while avoiding insufficient fusion either
in the early or late stages, we transform the original transformer block into a Cross-Low-level Expert
LoRA Transformer Block, which will be introduced in Section 4.2. Furthermore, to prevent the loss
of low-level input characteristics in deep transformer modeling, we employ a low-level information
interaction adapter. This adapter further transmits the features of low-level information into the ViT
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Figure 2: The overall framework of our proposed method. Our method consists of three main
components: Cross-Low-level Expert LoRA Transformer Block, Low-Level Information Interaction
Adapter, and Dynamic Feature Selection. These modules will be explained in the methods section.

for enhanced interaction, as discussed in Section 4.3. Finally, to select the most suitable features for
different types of forgeries, we propose a dynamic feature selection classification head to choose the
most appropriate low-level features for the current type of forgery, which will be detailed in Section
4.4. The overall training phase of our framework will be presented in Section 4.5.

4.2 CROSS-LOW-LEVEL EXPERT LORA TRANSFORMER BLOCK

In our approach, we avoid merging features from different modalities using straightforward fusion
techniques. Instead, we strive to preserve the unique characteristics of each modality while capturing
the interactions and influences between them. For the M + 1 different low-level inputs with the
high-level image input I denoted as C0 and added to the set C, Cj , (j = 0, 1, 2, ...,M), the visual
encoder initially transforms the input tensors of size RH×W×3 into D-dimensional image features
F j
0 ∈ R(1+L)×D, where 1 represents the CLS token of the image, and L = H×W

P 2 with P representing
the number of patches. The input features for the jth modality Cj through the ith transformer block
are denoted as F j

i ∈ R(1+L)×D, i = 0, 1, 2, ..., N , where N denotes the number of blocks in
the transformer. The transformer module takes the patch-embedded features F j

0 as input for each
low-level information.

Considering the distinctiveness of each modality, we aim to embed the knowledge of each modality
into the CLIP visual backbone without affecting the original pretrained weights. We utilize the
fine-tuning technique Lora (Hu et al., 2021), widely used in large language models and diffusion
models, to introduce modal knowledge through an additional plug-and-play module.

Each block consists of our designed Multi-Lora-Expert Layer in Fig. 3(a), Self-Attention, residual
connections, Layer Normalization and an FFN layer. In the Multi-Lora-Expert Layer at layer i, we
employ Lora to process features specific to each modality by designing different Lora experts. The
computation is as follows:

F̂
(j)
i = Wqkv · F (j)

i +
α

r
∆Wj · F (j)

i = Wqkv · F (j)
i +

α

r
BjAj · F (j)

i (1)

Here, F̂ (j)
i represents the output of F (j)

i after processing by the jth Lora expert and we set r = 4
and α = 8, Wqkv denotes the matrix weights of the qkv in the attention layer and ∆Wj = BjAj is
the trainable parameter of the jth Lora expert. Next, F̂ (j)

i serves as the input for the self-attention

Q,K, V in the original CLIP, and the output after the FFN layer is denoted as F
(j)

i . Noting that the
features of each modality are computed in parallel without interaction, we employ a cross-modality
attention layer in the original output section to facilitate interaction between modalities, as computed
by:

F i = Concatnate[F
(j)

i , 0 ≤ j ≤ C]

Fi+1 = F i + βiMHA(LN(F i),LN(F i),LN(F i))
(2)
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Here, LN(·) represents LayerNorm, and the attention layer MHA(·) is suggested to use a multi-head
attention mechanism with the number of heads set to 4. Furthermore, we apply a learnable vector
βik ∈ RD to balance the output of the attention layer with the input features, initially set to 0. This
initialization strategy ensures that the unique features of each modality do not undergo drastic changes
due to the injection of features from other modalities and adaptively integrates features related to
forgery types contained in other modalities.

4.3 LOW-LEVEL INFORMATION INTERACTION ADAPTER

Many work (Zhao et al., 2023; Peng et al., 2021; Yuan et al., 2021) suggests that the deeper layers
of transformers might lead to the loss of low-level information, focusing instead on the learning
of semantic information. Inspired by (Chen et al., 2022), to prevent our framework from losing
critical classification features related to forgery types during the fusion of low-level information, we
introduce a low-level information interaction adapter. This adapter is designed to capture low-level
information priors and to enhance the significance of low-level information within the backbone. It
operates parallel to the patch embedding layer of the CLIP image encoder and does not alter the
architecture of the CLIP visual encoder. Unlike the vit-adapter, which injects spatial priors, our
adapter injects low-level priors.

As illustrated, we utilize the first two blocks of ResNet50 (He et al., 2016), followed by global
pooling and several 1 × 1 convolutions applied at the end to project the low-level information
C1, C2, ..., CM into D dimensions. Through this process, we obtain the feature vector G0 ∈ RD

extracted from the low-level encoder. To better integrate our features into the backbone, we design a
cross-attention-based low-level feature injector and a low-level feature extractor.
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Figure 3: The key components of our method.

Low-level Feature Injector. This module is used to inject low-level priors into the ViT. As shown
in Fig. 3(b), for the output from each modality feature of the ith block of CLIP using ViT-L, the
features are concatenated into a feature vector Fi ∈ R(1+M)·(1+L)×D, which serves as the query for
computing cross-attention. The low-level feature Gi acts as the key and value in injecting into the
modal feature Fi, represented by the following equation:

F̃i = Fi + γiMHA(LN(Fi),LN(Gi),LN(Gi)) (3)

As before, LN and MHA operations respectively represent LayerNorm and multi-head attention
mechanisms, with the number of heads set to 4. Similarly, we use a learnable vector γi ∈ RD to
balance the two different features.

Modal Feature Extractor. After injecting the low-level priors into the backbone, we perform the
forward propagation process. We concatenate the output of each modality feature of the (i+ 1)

th

block to obtain the feature vector Fi+1 and then apply a module composed of cross-attention and
FFN to extract modal features, as shown in Fig. 3(c). This process is represented by the following
equations:

G̃i = Gi + ηiMHA(LN(Gi),LN(Fi+1),LN(Fi+1)) (4)
Gi+1 = G̃i + FFN(LN(G̃i)) (5)

Here, the low-level feature Gi ∈ RD serves as the query, and the output Fi+1 ∈ R(1+M)·(1+L)×D

from backbone acts as the key and value. Similar to the low-level feature injector, we use a learnable
vector ηi ∈ RD to balance the two different features. Gi+1 is then used as the input for the next
low-level feature injector.
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4.4 DYNAMIC FEATURE SELECTION

As mentioned in the introduction, since different modal features are often sensitive to different types of
forgeries, simple feature concatenation or averaging followed by training with a unified classification
head might lose some modal advantages for detecting certain types of forgeries. To better integrate
modal features for generalizing to various forgery type detections, inspired by the mixed experts
routing dynamic feature selection (Shazeer et al., 2017), we introduce a dynamic modal feature
selection mechanism at the final output classification feature part of the model. Specifically, we
extract the cls tokens of the final output modal features, concatenate them, and denote this as Fcls ∈
R(1+M)·D, which serves as the input for the dynamic router. The dynamic router employs a learnable
fully connected neural network, with its matrix parameter defined as WRouter ∈ R(1+M)·D×(1+M).
The probability distribution for selecting each modal feature is computed as follows:

p = SoftMax(WRouterFcls) (6)

For each modality, a corresponding classification head headi, i = 0, 1, 2, ...,M , is prepared. The
final classification result ŷ is obtained through the following equation:

P̂ (y) =

M∑
i=0

pi · headi(F i
cls) (7)

Here, F i
cls represents the cls token of the ith modality. By adaptively learning a dynamic modal

feature selection module, we enable the selection of the most suitable modal features for integration,
thus allowing the classification to be tailored to the forgery type of the current image under detection.
To balance the selection of different experts, we use entropy regularization loss as an additional
constraint, as shown below:

Lmoe = −
M∑
i=0

pi log pi (8)

4.5 TRAINING PHASE

We first train Lora Expert and the low-level information encoder for each type of low-level information
and the high-level image information to ensure that the model learns knowledge relevant to AI-
Generated image detection from both low-level and high-level information. Let the true label be
y and the model’s prediction be P̂ (y). The training is performed using the cross-entropy loss as
defined in Eq.9. Subsequently, we load these pre-trained weights into our framework and further train
our carefully designed fusion module to ensure the adequate and appropriate fusion of each type of
low-level and high-level information. Our final fused prediction results are given in Eq.7, and we
optimize our overall framework using Eq.10 as well, the loss is composed of the classification loss
(Eq.9) and the expert balance regularization loss (Eq.8) weighted together. In our experiments, we set
λ = 0.1.

Lcls = −y · log P̂ (y)− (1− y) · log(1− P̂ (y)). (9)

Ltotal = Lcls + λLmoe (10)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Training Dataset. To ensure a fair comparison, we adhere to the training set proposed by (Wang
et al., 2020). Testing is then conducted on other unseen forgery types, such as those generated by
different GANs or new diffusion models. This training set comprises 20 different categories, with
each category containing 18,000 synthetic images generated by ProGAN. Additionally, an equal
number of real images sampled from the LSUN dataset are included. As in previous methods (Jeong
et al., 2022a;b; Tan et al., 2023a; Liu et al., 2023a), we restrict the training set to four categories: car,
cat, chair, and horse.
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Testing Dataset. To further evaluate the generalization capability of the proposed method in real-
world scenarios, we employ various real-world images and images generated by diverse GANs
and Diffusions. The evaluation dataset follows the test datasets proposed by previous methods
and primarily includes the following datasets:CNNDetectionBenchmark (Wang et al., 2020),
GANGenDetectionBenchmark (Tan et al., 2024), UniversalFakeDetectBenchmark (Ojha et al.,
2023) and AIGCDetectBenchmark (Zhong et al., 2023). More details about testing dataset are
provided in the Appendix.

SOTA Methods Details. This paper aims to establish a framework that integrates multiple low-level
and high-level features to enhance the generalization capabilities of AI-generated image detection.
To this end, we conduct extensive comparisons with several state-of-the-art methods that explore gen-
eralization in AI-generated image detection, including: CNNDet (Wang et al., 2020), FreDect (Frank
et al., 2020a), Fusing (Ju et al., 2022), GramNet (Liu et al., 2020), Frank (Frank et al., 2020b), Du-
rall (Durall et al., 2020), Patchfor (Chai et al., 2020), F3Net (Qian et al., 2020), SelfBlend (Shiohara
and Yamasaki, 2022), GANDet (Mandelli et al., 2022), FrePGAN (Jeong et al., 2022b),BiHPF (Jeong
et al., 2022a), LNP (Liu et al., 2022), LGrad (Tan et al., 2023b), DIRE-G (Wang et al., 2023b), DIRE-
D (Wang et al., 2023b), UnivFD (Ojha et al., 2023), PatchCraft (Zhong et al., 2023), FAFormer (Liu
et al., 2023a), and NPR (Tan et al., 2023a). In this context, DIRE-D refers to the results obtained
using the pretrained weights from the original DIRE model, trained on the ADM dataset, while
DIRE-G refers to the results obtained from retraining the DIRE model using weights trained on the
ProGAN dataset.

Implementation Details. Our main training and testing settings largely follow previous research.
First, the input images are resized to 256× 256, then center-cropped to 224× 224. During training,
we use a random cropping strategy, while for testing, only center cropping is applied. We train our
method using the Adam optimizer with parameters (0.9, 0.999), a learning rate of 2× 10−4, and a
batch size of 32. Our method is implemented using the PyTorch framework on four Nvidia GeForce
RTX 3090 GPUs. The training period is set to 10 epochs. We report the average accuracy (Acc.)
and average precision (A.P.) during the evaluation for each forgery type. More details related to our
method and baseline methods are provided in the Appendix.

5.2 COMPARED WITH SOTA METHODS

Comparisons on AIGCDetectBenchmark. Tab. 1 reports results of our method and baseline
methods on AIGCDetectBenchmark. Our method outperforms previous state-of-the-art methods
by 3.44% across 16 different forgery datasets. This notable achievement is largely due to the
generalization capability offered by diverse low-level features for AI-generated image detection,
along with the effective integration of low-level information containing various forensic clues. This
enables our method to generalize well to unseen fake images using a limited amount of ProGAN
training data.

Table 1: The detection accuracy comparison between our approach and baselines. Among all detectors,
the best result and the second-best result are denoted in boldface and underlined, respectively. The
complete table will be presented in the Appendix.

Generator CNNDet GramNet LNP LGrad DIRE-G DIRE-D UnivFD PatchCraft Ours
ProGAN 100.00 99.99 99.95 99.83 95.19 52.75 99.81 100.00 100.00

StyleGAN 90.17 87.05 92.64 91.08 83.03 51.31 84.93 92.77 98.35
BigGAN 71.17 67.33 88.43 85.62 70.12 49.70 95.08 95.80 94.51

CycleGAN 87.62 86.07 79.07 86.94 74.19 49.58 98.33 70.17 97.03
StarGAN 94.60 95.05 100.00 99.27 95.47 46.72 95.75 99.97 100.00
GauGAN 81.42 69.35 79.17 78.46 67.79 51.23 99.47 71.58 95.19

StyleGAN2 86.91 87.28 93.82 85.32 75.31 51.72 74.96 89.55 98.88
whichfaceisreal 91.65 86.80 50.00 55.70 58.05 53.30 86.90 85.80 75.71

ADM 60.39 58.61 83.91 67.15 75.78 98.25 66.87 82.17 88.43
Glide 58.07 54.50 83.50 66.11 71.75 92.42 62.46 83.79 91.53

Midjourney 51.39 50.02 69.55 65.35 58.01 89.45 56.13 90.12 91.56
SDv1.4 50.57 51.70 89.33 63.02 49.74 91.24 63.66 95.38 93.28
SDv1.5 50.53 52.16 88.81 63.67 49.83 91.63 63.49 95.30 93.38
VQDM 56.46 52.86 85.03 72.99 53.68 91.90 85.31 88.91 90.94
wukong 51.03 50.76 86.39 59.55 54.46 90.90 70.93 91.07 89.46

DALLE2 50.45 49.25 92.45 65.45 66.48 92.45 50.75 96.60 93.32
Average 69.73 68.43 85.28 75.11 67.90 72.70 76.80 89.85 93.29

Comparison on GANGenDetectionBenchmark. Tab. 2 evaluates the Acc. and A.P. metrics on
GANGenDetection, with test results on CNNDetection provided in the Appendix. The test datasets
were unseen during training, with ProGAN in the test set comprising 20 classes, compared to only
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4 in the training set. Our method outperforms several baseline methods and achieves comparable
results to the state-of-the-art methods NPR (Liu et al., 2023a), improving average accuracy by 2.1%
and 1.5%. This indicates that our method, by incorporating multiple low-level information, enhances
detection performance uniformly across various GAN generation methods.

Table 2: Cross-GAN-Sources Evaluation on the GANGenDetection (Tan et al., 2024). Partial results
from (Tan et al., 2023a). The complete table will be presented in the Appendix.

Method AttGAN BEGAN CramerGAN InfoMaxGAN MMDGAN RelGAN SNGAN Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet 51.1 83.7 50.2 44.9 81.5 97.5 71.1 94.7 72.9 94.4 53.3 82.1 62.7 90.4 62.3 82.9
Frank 65.0 74.4 39.4 39.9 31.0 36.0 41.1 41.0 38.4 40.5 69.2 96.2 48.4 47.9 47.5 54.7
Durall 39.9 38.2 48.2 30.9 60.9 67.2 50.1 51.7 59.5 65.5 80.0 88.2 54.8 58.9 60.3 63.3
Patchfor 68.0 92.9 97.1 100.0 97.8 99.9 93.6 98.2 97.9 100.0 99.6 100.0 97.6 99.8 90.1 95.4
F3Net 85.2 94.8 87.1 97.5 89.5 99.8 67.1 83.1 73.7 99.6 98.8 100.0 51.6 93.6 75.4 93.1
SelfBlend 63.1 66.1 56.4 59.0 75.1 82.4 79.0 82.5 68.6 74.0 73.6 77.8 61.6 65.0 65.8 69.7
GANDet 57.4 75.1 67.9 100.0 67.8 99.7 67.6 92.4 67.7 99.3 60.9 86.2 66.7 90.6 66.1 91.6
LGrad 68.6 93.8 69.9 89.2 50.3 54.0 71.1 82.0 57.5 67.3 89.1 99.1 78.0 87.4 68.6 80.8
UnivFD 78.5 98.3 72.0 98.9 77.6 99.8 77.6 98.9 77.6 99.7 78.2 98.7 77.6 98.7 77.6 98.8
NPR 83.0 96.2 99.0 99.8 98.7 99.0 94.5 98.3 98.6 99.0 99.6 100.0 88.8 97.4 93.2 96.6
Ours 86.2 97.8 100.0 100.0 100.0 100.0 98.6 99.9 99.3 99.8 100.0 100.0 90.4 98.7 95.3 98.1

Comparison on UniversalFakeDetectBenchmark. Tab. 3 evaluates the Acc. and A.P. metrics on
the Diffusions dataset from UniversalFakeDetect. Given that our method is trained on ProGAN,
this setting poses a challenge as the fake images originate from different Diffusion methods, which
differ significantly from GAN generation processes. Nevertheless, our method exhibits strong
generalization capabilities across various Diffusion models. Compared to state-of-the-art methods
NPR (Liu et al., 2023a) and FAFormer (Tan et al., 2023a), our method enhances Acc. by 2.0% and
3.4%, respectively, and A.P. by 1.7% and 3.6%, respectively. These results strongly suggest that
the low-level information utilized contains critical clues that generalize well to diffusion detection,
resulting in improved performance.

Table 3: Cross-Diffusion-Sources Evaluation on the diffusion test set of UniversalFakeDetect (Ojha
et al., 2023). Partial results from (Liu et al., 2023a; Tan et al., 2023a). The complete table will be
presented in the Appendix.

Method DALLE Glide_100_10 Glide_50_27 ADM LDM_100 LDM_200 Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet 51.8 61.3 53.3 72.9 54.2 76.0 54.9 66.6 51.9 63.7 52.0 64.5 52.8 67.4
Frank 57.0 62.5 53.6 44.3 52.0 42.3 53.4 52.5 56.6 51.3 56.4 50.9 54.5 49.6
Durall 55.9 58.0 54.9 52.3 51.7 49.9 40.6 42.3 62.0 62.6 61.7 61.7 54.3 54.0
Patchfor 79.8 99.1 87.3 99.7 84.9 98.8 74.2 81.4 95.8 99.8 95.6 99.9 86.8 97.2
F3Net 71.6 79.9 88.3 95.4 88.5 95.4 69.2 70.8 74.1 84.0 73.4 83.3 79.1 86.5
SelfBlend 52.4 51.6 58.8 63.2 64.2 68.3 58.3 63.4 53.0 54.0 52.6 51.9 56.3 58.7
GANDet 67.2 83.0 51.2 52.6 51.7 53.5 49.6 49.0 54.7 65.8 54.9 65.9 54.3 60.1
LGrad 88.5 97.3 89.4 94.9 90.7 95.1 86.6 100.0 94.8 99.2 94.2 99.1 90.9 97.2
UnivFD 89.5 96.8 90.1 97.0 91.1 97.4 75.7 85.1 90.5 97.0 90.2 97.1 86.9 94.5
NPR 94.5 99.5 98.2 99.8 98.2 99.8 75.8 81.0 99.3 99.9 99.1 99.9 95.2 97.4
FAFormer 98.8 99.8 94.2 99.2 94.7 99.4 76.1 92.0 98.7 99.9 98.6 99.8 93.8 95.5
Ours 97.7 99.7 97.9 99.2 98.6 99.9 90.1 96.4 99.5 99.9 98.9 99.3 97.3 99.1

5.3 ABLATION STUDY

We conducted ablation studies to verify the effectiveness of the key components in our method using
the AIGCDetectBenchmark, which includes both GAN- and Diffusion-synthesized images, providing
a challenging dataset for generalization detection.

Combination of different low-level information.To demonstrate the effectiveness of the low-level
information used in our method, we compared its performance with different low-level information
in Tab.4. Each type of low-level information individually achieved over 83% Acc. and 89% A.P. on
the test set, indicating generalization performance on synthetic images. As we progressively added
low-level information, performance improved, with an overall enhancement of 8.0% in Acc. and
6.6% in A.P. We visualized features of different low-level information using t-SNE (Van Der Maaten,
2014) plots for various synthetic image methods (StyleGAN, BigGAN, ADM, Stable Diffusion) and
the distribution of low-level features for different forgery types in Fig. 4. As noted in the Analysis
section, different low-level information provides key clues for detecting synthetic image methods,
establishing distinct boundaries. For example, Image and NPR effectively separate BigGAN and
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BigGAN

StyleGAN

ADM

Stable

Diffusion

Image DnCNNNPR NoisePrint Router

Figure 4: T-SNE visualization of features extracted by the classifier (Van Der Maaten, 2014). Blue
and red represent the features of real images and fake images, respectively. The rightmost column
shows the distribution bar chart of the selected different features when facing different forgery types.

StyleGAN, while DnCNN and NoisePrint delineate boundaries for ADM and Stable Diffusion. Our
method adeptly selects the best features for classifying the current forgery type.

Table 4: Performance of different combinations
of low-level information not used in the main
text.

Image NPR DnCNN NoisePrint Acc. A.P.

✓ 85.3 91.8
✓ 84.6 91.4

✓ 83.9 89.6
✓ 85.1 90.1

✓ ✓ 89.1 93.2
✓ ✓ ✓ 91.3 95.1
✓ ✓ ✓ ✓ 93.3 98.4

Table 5: Performance of different combinations
of model compoents.

LE LIIA CLA DFS Acc. A.P.

80.8 87.6
✓ 89.0 93.7
✓ ✓ 91.7 96.0
✓ ✓ 90.6 95.3
✓ ✓ ✓ 92.8 97.8
✓ ✓ ✓ ✓ 93.3 98.4

Core model components. Tab. 5 presents the ablation study of our proposed model components: Lora
Expert (LE), Cross-Low-level Attention (CLA), Low-level Information Interaction Adapter (LIIA),
and Dynamic Feature Selection (DFS). Utilizing individual components and various combinations
enhances the model’s generalization performance on the test set. By employing all components, our
method achieves improvements of 12.5% in Acc. and 10.8% in A.P. compared to using only low-level
information and Image as input, followed by late fusion and fine-tuning the fully connected layer.
To further illustrate the effectiveness of our fusion strategy, we visualize the Class Activation Map
(CAM) for images with different forgery types and low-level information using the CAM method
from (Zhou et al., 2016), shown in Fig. 5 in the Appendix. The results indicate that different low-level
information highlights distinct regions for the same forgery type, and our fusion method effectively
combines these focus regions to better identify hidden forgery clues in the images.

6 CONCLUSION

In this paper, we have discovered the advantage of various low-level features in enhancing the
generalization capability of AI-generated image detection. We presents the Adaptive Low-level
Experts Injection (ALEI) framework, which enhances AI-generated image detection through low-
level features. By utilizing Lora Experts, our transformer-based approach learns from these features,
merging them via a Cross-Low-level Attention layer. We introduce a Low-level Information Adapter
to maintain the backbone’s modeling ability and employ Dynamic Feature Selection to optimize
feature selection for current images. Our method achieved state-of-the-art results on multiple datasets,
demonstrating improved generalization in detecting AI-generated images.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Testing datasets. In the main text, we used three datasets, CNNDetectionBenchmark (Wang et al.,
2020), GANGenDetectionBenchmark (Tan et al., 2024), UniversalFakeDetectBenchmark (Ojha
et al., 2023) and AIGCDetectBenchmark (Zhong et al., 2023), to evaluate the generalization of our
method across different types of forgeries. The following provides a more detailed description of
these datasets:

• CNNDetectionBenchmark (Wang et al., 2020): This dataset includes fake images gener-
ated by various GAN methods such as ProGAN (Karras et al., 2018), StyleGAN (Karras et al.,
2019), StyleGAN2 (Karras et al., 2020), BigGAN (Brock et al., 2018), CycleGAN (Zhu et al.,
2017), StarGAN (Choi et al., 2018), GauGAN (Park et al., 2019), and DeepFake (Rossler
et al., 2019). It also contains real images randomly selected from six datasets: LSUN (Yu
et al., 2015), ImageNet (Deng et al., 2009), CelebA (Liu et al., 2015), CelebA-HQ (Karras
et al., 2018), COCO (Lin et al., 2014), and FaceForensics++ (Rossler et al., 2019). This
dataset is commonly used in early AIGC detection work.

• GANGenDetectionBenchmark (Tan et al., 2024): To better evaluate the generalization of
our detection method on GAN-generated images, we follow (Tan et al., 2023a) and extend
our evaluation with images generated by 9 additional GAN models. Each GAN model
includes 4K test images, with an equal number of real and fake images.

• UniversalFakeDetectBenchmark (Ojha et al., 2023): This dataset includes test sets from
diffusion methods such as ADM (Dhariwal and Nichol, 2021), DALL-E (Ramesh et al.,
2021), LDM (Rombach et al., 2022), and Glide (Nichol et al., 2022). Variants of these
methods are also considered for LDM and Glide. Real image datasets are drawn from
LAION (Schuhmann et al., 2021) and ImageNet (Deng et al., 2009).

• AIGCDetectBenchmark (Zhong et al., 2023): Similar to cnndetection, this dataset collects
fake images generated by seven GAN-based models and real images from the same sources.
Additionally, it incorporates whichfaceisreal (WFIR) and GenImage (Zhu et al., 2023),
collecting images from seven diffusion models.

Implementation details. For the LoRA expert module we use, we set α = 8 and r = 4. As
mentioned in the main text, these Lora experts are trained individually for each type of low-level
information. The training steps are consistent with the implementation details in the main text. For
the low-level encoder part, we also follow the same pre-training setup as in the main text, where the
extracted features are trained using a classification head and cross-entropy loss to ensure that the
features extracted from the low-level information are optimal for our classification task. We insert
our Cross-Low-level attention layer and Low-level Information Adapter only at one-quarter, one-half,
three-quarters, and the final layer of the pre-trained transformer backbone we use. We provide the
code for reproducing our experiments in the supplementary materials, and more implementation
details can be found in the code.

A.2 MORE EXPERIMENTAL RESULTS

Comparison on testing datasets. The raw experimental data used to plot Fig. 1 and for the analysis in
the methods section is presented in Tab. 6. Tab. 7 evaluate the Acc. and A.P. metrics on CNNDetection.
Our method achieves excellent results compared to multiple baseline methods and yields comparable
results with the current state-of-the-art methods NPR (Liu et al., 2023a) and FAFormer (Tan et al.,
2023a). Specifically, our method improves Acc. by 3.4% and 0.1% compared to (Liu et al., 2023a)
and (Tan et al., 2023a), respectively. For the StyleGAN, where (Liu et al., 2023a) performs poorly,
and the BigGAN, where (Tan et al., 2023a) underperforms, our method improves the average accuracy
by 10.7% and 7.0%, respectively. This demonstrates that our method, by incorporating multiple low-
level information, uniformly enhances the detection performance across different GAN generation
methods. Tab. 8, Tab. 9 and Tab. 10 are the complete versions of Tab. 1, Tab. 2 and Tab. 3 presented
in the main text, respectively. They include more baseline method comparisons and additional test
results on more datasets. Tab. 11 presents the results of some combinations of low-level information
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Table 6: The detection accuracy comparison between different low-level information and fusion
method. Among all detectors, the best result and the second-best result are denoted in boldface and
underlined, respectively.

Generator Image SRM LNP NPR Bayar DnCNN Noiseprint EarlyFusion LateFusion NPR(ResNet50) Ours

ProGAN 99.49 98.38 99.18 100.00 97.15 98.28 99.88 98.51 99.95 99.96 100.00
StyleGAN 89.45 79.00 69.22 96.59 77.85 83.68 82.69 83.99 99.12 97.28 98.35
BigGAN 96.95 82.23 88.33 86.13 70.28 81.40 72.53 75.88 87.78 85.88 94.51

CycleGAN 98.59 50.91 74.11 83.17 84.44 86.45 75.85 66.50 98.05 95.12 97.03
StarGAN 99.57 96.42 99.22 98.05 99.50 95.35 100.00 99.87 99.92 97.32 100.00
GauGAN 97.92 69.78 83.52 84.51 53.59 71.12 52.84 63.47 84.69 97.99 95.19

StyleGAN2 91.71 77.52 73.38 96.53 81.15 79.75 87.18 78.79 96.61 99.56 98.88
whichfaceisreal 83.25 51.95 50.00 70.30 50.00 45.85 90.45 51.95 71.30 50.35 75.71

ADM 77.78 89.61 82.54 68.88 89.47 92.26 79.72 57.19 87.05 71.30 88.43
Glide 84.99 93.58 75.21 86.25 90.14 93.97 74.70 39.67 88.41 94.11 91.53

Midjourney 58.14 51.14 50.59 86.39 50.00 87.23 93.58 55.34 91.33 74.30 91.56
SDv1.4 74.29 50.02 50.20 86.12 50.00 81.24 91.18 56.70 89.83 69.43 93.28
SDv1.5 74.40 49.96 49.96 85.88 50.00 81.29 91.14 56.52 89.96 69.51 93.38
VQDM 85.43 77.27 68.51 69.94 87.79 93.07 87.43 57.25 91.23 80.80 90.94
wukong 77.29 50.04 50.14 78.88 50.00 76.67 89.52 56.87 83.45 61.97 89.46

DALLE2 75.90 92.30 83.05 76.00 94.55 95.00 93.40 33.45 92.40 93.25 93.32

Average 85.32 72.51 71.70 84.60 73.49 83.91 85.13 64.50 90.69 83.63 93.29

not utilized in the main text, demonstrating that our framework can effectively integrate other low-
level information that may possess generalization capabilities. Tab. 12 displays the parameters related
to the model’s performance and inference efficiency, indicating that our method achieves a balance
between performance and efficiency.

Table 7: Cross-GAN-Sources Evaluation on the test set of CNNDetection (Wang et al., 2020). Partial
results from (Liu et al., 2023a; Tan et al., 2023a).

Method ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDetection 91.4 99.4 63.8 91.4 76.4 97.5 52.9 73.3 72.7 88.6 63.8 90.8 63.9 92.2 51.7 62.3 67.1 86.9
Frank 90.3 85.2 74.5 72.0 73.1 71.4 88.7 86.0 75.5 71.2 99.5 99.5 69.2 77.4 60.7 49.1 78.9 76.5
Durall 81.1 74.4 54.4 52.6 66.8 62.0 60.1 56.3 69.0 64.0 98.1 98.1 61.9 57.4 50.2 50.0 67.7 64.4
Patchfor 97.8 100.0 82.6 93.1 83.6 98.5 64.7 69.5 74.5 87.2 100.0 100.0 57.2 55.4 85.0 93.2 80.7 87.1
F3Net 99.4 100.0 92.6 99.7 88.0 99.8 65.3 69.9 76.4 84.3 100.0 100.0 58.1 56.7 63.5 78.8 80.4 86.2
SelfBlend 58.8 65.2 50.1 47.7 48.6 47.4 51.1 51.9 59.2 65.3 74.5 89.2 59.2 65.5 93.8 99.3 61.9 66.4
GANDetection 82.7 95.1 74.4 92.9 69.9 87.9 76.3 89.9 85.2 95.5 68.8 99.7 61.4 75.8 60.0 83.9 72.3 90.1
BiHPF 90.7 86.2 76.9 75.1 76.2 74.7 84.9 81.7 81.9 78.9 94.4 94.4 69.5 78.1 54.4 54.6 78.6 77.9
FrePGAN 99.0 99.9 80.7 89.6 84.1 98.6 69.2 71.1 71.1 74.4 99.9 100.0 60.3 71.7 70.9 91.9 79.4 87.2
LGrad 99.9 100.0 94.8 99.9 96.0 99.9 82.9 90.7 85.3 94.0 99.6 100.0 72.4 79.3 58.0 67.9 86.1 91.5
UnivFD 99.7 100.0 89.0 98.7 83.9 98.4 90.5 99.1 87.9 99.8 91.4 100.0 89.9 100.0 80.2 90.2 89.1 98.3
NPR 99.8 100.0 96.3 99.8 97.3 100.0 87.5 94.5 95.0 99.5 99.7 100.0 86.6 88.8 77.4 86.2 92.5 96.1
FAFormer 99.8 100.0 87.7 97.4 91.1 99.3 98.9 99.9 99.9 100.0 100.0 100.0 99.9 100.0 89.4 97.3 95.8 99.2
Ours 100.0 100.0 98.4 100.0 98.9 100.0 94.5 98.8 97.0 99.9 100.0 100.0 95.2 98.9 83.4 88.2 95.9 98.2

Table 8: The detection accuracy comparison between our approach and baselines. Among all detectors,
the best result and the second-best result are denoted in boldface and underlined, respectively.

Generator CNNDet FreDect Fusing GramNet LNP LGrad DIRE-G DIRE-D UnivFD PatchCraft Ours
ProGAN 100.00 99.36 100.00 99.99 99.95 99.83 95.19 52.75 99.81 100.00 100.00

StyleGAN 90.17 78.02 85.20 87.05 92.64 91.08 83.03 51.31 84.93 92.77 98.35
BigGAN 71.17 81.97 77.40 67.33 88.43 85.62 70.12 49.70 95.08 95.80 94.51

CycleGAN 87.62 78.77 87.00 86.07 79.07 86.94 74.19 49.58 98.33 70.17 97.03
StarGAN 94.60 94.62 97.00 95.05 100.00 99.27 95.47 46.72 95.75 99.97 100.00
GauGAN 81.42 80.57 77.00 69.35 79.17 78.46 67.79 51.23 99.47 71.58 95.19

StyleGAN2 86.91 66.19 83.30 87.28 93.82 85.32 75.31 51.72 74.96 89.55 98.88
whichfaceisreal 91.65 50.75 66.80 86.80 50.00 55.70 58.05 53.30 86.90 85.80 75.71

ADM 60.39 63.42 49.00 58.61 83.91 67.15 75.78 98.25 66.87 82.17 88.43
Glide 58.07 54.13 57.20 54.50 83.50 66.11 71.75 92.42 62.46 83.79 91.53

Midjourney 51.39 45.87 52.20 50.02 69.55 65.35 58.01 89.45 56.13 90.12 91.56
SDv1.4 50.57 38.79 51.00 51.70 89.33 63.02 49.74 91.24 63.66 95.38 93.28
SDv1.5 50.53 39.21 51.40 52.16 88.81 63.67 49.83 91.63 63.49 95.30 93.38
VQDM 56.46 77.80 55.10 52.86 85.03 72.99 53.68 91.90 85.31 88.91 90.94
wukong 51.03 40.30 51.70 50.76 86.39 59.55 54.46 90.90 70.93 91.07 89.46

DALLE2 50.45 34.70 52.80 49.25 92.45 65.45 66.48 92.45 50.75 96.60 93.32
Average 69.73 63.28 67.63 68.43 85.28 75.11 67.90 72.70 76.80 89.85 93.29

Robustness Tests. In real-world applications, images spread on public platforms may undergo various
common image processing techniques like JPEG compression. Therefore, it is important to evaluate
the performance of the detector when handling distorted images. We adopt three common image
distortions, including JPEG compression (quality factor QF=95), Gaussian blur (σ = 1), and image
downsampling, where the image size is reduced to a quarter of its original size (r = 0.5). Consistent
with previous methods (Wang et al., 2020) and (Zhong et al., 2023), we augment the training set
using the aforementioned image distortion methods and test on the AIGCDetectBenchmark test set
processed with these distortion methods. The results are presented in Tab. 13. The results show that

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Cross-GAN-Sources Evaluation on the GANGenDetection (Tan et al., 2024). Partial results
from (Tan et al., 2023a)

Method AttGAN BEGAN CramerGAN InfoMaxGAN MMDGAN RelGAN S3GAN SNGAN STGAN Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet 51.1 83.7 50.2 44.9 81.5 97.5 71.1 94.7 72.9 94.4 53.3 82.1 55.2 66.1 62.7 90.4 63.0 92.7 62.3 82.9
Frank 65.0 74.4 39.4 39.9 31.0 36.0 41.1 41.0 38.4 40.5 69.2 96.2 69.7 81.9 48.4 47.9 25.4 34.0 47.5 54.7
Durall 39.9 38.2 48.2 30.9 60.9 67.2 50.1 51.7 59.5 65.5 80.0 88.2 87.3 97.0 54.8 58.9 62.1 72.5 60.3 63.3
Patchfor 68.0 92.9 97.1 100.0 97.8 99.9 93.6 98.2 97.9 100.0 99.6 100.0 66.8 68.1 97.6 99.8 92.7 99.8 90.1 95.4
F3Net 85.2 94.8 87.1 97.5 89.5 99.8 67.1 83.1 73.7 99.6 98.8 100.0 65.4 70.0 51.6 93.6 60.3 99.9 75.4 93.1
SelfBlend 63.1 66.1 56.4 59.0 75.1 82.4 79.0 82.5 68.6 74.0 73.6 77.8 53.2 53.9 61.6 65.0 61.2 66.7 65.8 69.7
GANDet 57.4 75.1 67.9 100.0 67.8 99.7 67.6 92.4 67.7 99.3 60.9 86.2 69.6 83.5 66.7 90.6 69.6 97.2 66.1 91.6
LGrad 68.6 93.8 69.9 89.2 50.3 54.0 71.1 82.0 57.5 67.3 89.1 99.1 78.5 86.0 78.0 87.4 54.8 68.0 68.6 80.8
UnivFD 78.5 98.3 72.0 98.9 77.6 99.8 77.6 98.9 77.6 99.7 78.2 98.7 85.2 98.1 77.6 98.7 74.2 97.8 77.6 98.8
NPR 83.0 96.2 99.0 99.8 98.7 99.0 94.5 98.3 98.6 99.0 99.6 100.0 79.0 80.0 88.8 97.4 98.0 100.0 93.2 96.6
Ours 86.2 97.8 100.0 100.0 100.0 100.0 98.6 99.9 99.3 99.8 100.0 100.0 83.0 87.0 90.4 98.7 100.0 100.0 95.3 98.1

Table 10: Cross-Diffusion-Sources Evaluation on the diffusion test set of UniversalFakeDetect (Ojha
et al., 2023). Partial results from (Liu et al., 2023a; Tan et al., 2023a).

Method DALLE Glide_100_10 Glide_100_27 Glide_50_27 ADM LDM_100 LDM_200 LDM_200_cfg Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet 51.8 61.3 53.3 72.9 53.0 71.3 54.2 76.0 54.9 66.6 51.9 63.7 52.0 64.5 51.6 63.1 52.8 67.4
Frank 57.0 62.5 53.6 44.3 50.4 40.8 52.0 42.3 53.4 52.5 56.6 51.3 56.4 50.9 56.5 52.1 54.5 49.6
Durall 55.9 58.0 54.9 52.3 48.9 46.9 51.7 49.9 40.6 42.3 62.0 62.6 61.7 61.7 58.4 58.5 54.3 54.0
Patchfor 79.8 99.1 87.3 99.7 82.8 99.1 84.9 98.8 74.2 81.4 95.8 99.8 95.6 99.9 94.0 99.8 86.8 97.2
F3Net 71.6 79.9 88.3 95.4 87.0 94.5 88.5 95.4 69.2 70.8 74.1 84.0 73.4 83.3 80.7 89.1 79.1 86.5
SelfBlend 52.4 51.6 58.8 63.2 59.4 64.1 64.2 68.3 58.3 63.4 53.0 54.0 52.6 51.9 51.9 52.6 56.3 58.7
GANDet 67.2 83.0 51.2 52.6 51.1 51.9 51.7 53.5 49.6 49.0 54.7 65.8 54.9 65.9 53.8 58.9 54.3 60.1
LGrad 88.5 97.3 89.4 94.9 87.4 93.2 90.7 95.1 86.6 100.0 94.8 99.2 94.2 99.1 95.9 99.2 90.9 97.2
UnivFD 89.5 96.8 90.1 97.0 90.7 97.2 91.1 97.4 75.7 85.1 90.5 97.0 90.2 97.1 77.3 88.6 86.9 94.5
NPR 94.5 99.5 98.2 99.8 97.8 99.7 98.2 99.8 75.8 81.0 99.3 99.9 99.1 99.9 99.0 99.8 95.2 97.4
FAFormer 98.8 99.8 94.2 99.2 94.4 99.1 94.7 99.4 76.1 92.0 98.7 99.9 98.6 99.8 94.9 99.1 93.8 95.5
Ours 97.7 99.7 97.9 99.2 97.3 99.1 98.6 99.9 90.1 96.4 99.5 99.9 98.9 99.3 98.5 99.5 97.3 99.1

compared to previous methods, our method achieves better robustness, outperforming the current
best methods by 8.04%, 6.13%, and 7.27% in robustness tests for JPEG compression, Gaussian blur,
and image downsampling, respectively. Fig. 6 visualizes the low-level information we use, including
high-level images, before and after these operations. For low-level information, these operations
partially affect it. However, due to our robust training and the introduction of high-level images along
with multiple low-level features, our method’s robustness is effectively enhanced.

Transfer to other pretraining methods. To further demonstrate the generality of our proposed
method, we analyze its performance when combined with different architectures and pretraining
strategies. Tab. 14 shows the Acc. and A.P. metrics for different pretrained models and various
backbones. By comparing the performance with and without our method, we verify the effectiveness
of incorporating low-level information and using our fusion architecture under different pretraining
frameworks. This significantly improves the generalization of these methods for detecting synthetic
images.

Table 11: Robustness performance(Acc.) on dif-
ferent baselines and our method. the best result
and the second-best result are denoted in bold-
face and underlined, respectively

Image SRM LNP Bayar Acc. A.P.

✓ 85.3 91.8
✓ 72.5 84.4

✓ 71.7 83.2
✓ 73.5 87.9

✓ ✓ 87.8 92.4
✓ ✓ ✓ 89.3 93.1
✓ ✓ ✓ 88.1 92.7
✓ ✓ ✓ 90.4 93.0
✓ ✓ ✓ ✓ 90.7 95.6

Table 12: Analysis of the model’s parameters,
performance, and inference efficiency.

Model Total Params (M) Inference Time (s) Mean Acc.
CNNDet(ResNet50) 23.51 0.004 69.7
Lgrad(ResNet50) 46.56 0.012 75.1
UniFD(CLIP-L/14) 332.32 0.327 76.8
NPR(CLIP-L/14) 332.32 0.329 84.6
Ours(ResNet50) 94.04 0.014 91.7
Ours(CLIP-L/14) 366.19 0.391 93.3
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Table 13: Robustness performance(Acc.) on dif-
ferent baselines and our method. the best result
and the second-best result are denoted in bold-
face and underlined, respectively

Detector JPEG Downsampling Blur
CNNDetction 64.03 58.85 68.39

FreDect 66.95 35.84 65.75
Fusing 62.43 50.00 68.09

GramNet 65.47 60.30 68.63
LNP 53.56 63.28 65.88

LGrad 51.55 60.86 71.73
DIRE-G 66.49 56.09 64.00
DIRE-D 70.27 62.26 70.46
UnivFD 74.10 70.87 70.31

Patchcraft 72.48 78.36 75.99
Ours 80.52 84.49 83.26

Table 14: Analysis of different architectures and
pretraining strategies.

Arch Pretrain w/Ours Acc. A.P.

ViT-B ImageNet (Deng et al., 2009) × 71.7 88.5
✓ 85.4 93.6

ViT-L ImageNet (Deng et al., 2009) × 76.2 89.0
✓ 89.7 94.2

ViT-B SAM (Kirillov et al., 2023) × 63.3 81.2
✓ 80.1 89.9

ViT-L SAM (Kirillov et al., 2023) × 66.6 82.4
✓ 81.1 86.8

ViT-B CLIP (Radford et al., 2021) × 72.5 85.1
✓ 86.8 93.6

ViT-L CLIP (Radford et al., 2021) × 76.8 90.2
✓ 93.3 98.4

Big

GAN

Real

Style

GAN

ADM

SD

Raw Image(w/o) NPR(w/o) DnCNN(w/o) NP(w/o) Image(w/) NPR(w/) DnCNN(w/) NP(w/)

Figure 5: Visualization of the Class Activation Map (CAM) corresponding to different forgery types
and different low-level information (Zhou et al., 2016). Warmer colors indicate higher probabilities.
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A.3 BROADER IMPACTS AND LIMITATION

As AI-generated image detection methods continue to evolve, they aim to combat the growing influx
of fake information and the constantly updating AIGC technologies. However, these methods may
have unintended consequences in the realm of content moderation. Legitimate human-created content
that resembles forgeries may be incorrectly identified as AI-generated images, while some highly
realistic AI-generated images might be recognized by algorithms as genuine. This could impact the
sharing of normal information based on image morphology. Further research and consideration are
needed when applying this work to practical applications in content moderation.
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(a) The original image and low-level information.
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Print

(b) The blurred image and low-level information.
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(c) The JPEG compressed image and low-level infor-
mation.

RealStyleGANBigGAN ADM SD

Image

NPR

DnCNN

Noise-

Print

(d) The downsampled image and low-level informa-
tion.

Figure 6: The visualization results of the image and low-level information.
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