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Abstract

To maximize the amount of information extracted from cosmological datasets,
simulations that accurately represent these observations are necessary. However,
traditional simulations that evolve particles under gravity by estimating particle-
particle interactions (N-body simulations) are computationally expensive and pro-
hibitive to scale to the large volumes and resolutions necessary for the upcoming
datasets. Moreover, modeling the distribution of galaxies typically involves iden-
tifying collapsed and bound dark matter structures called halos. This is also a
time-consuming process for large N-body simulations, further exacerbating the
computational cost. In this study, we introduce CHARM, a novel method for
creating mock halo catalogs by matching the spatial and mass statistics of halos
directly from the large-scale distribution of dark matter density field. We develop
multi-stage neural spline flow based networks to learn this mapping directly with
computationally cheaper, approximate dark matter simulations instead of relying
on the full N-body simulations. We validate that the mock halo catalogs have same
statistical properties as obtained from traditional methods. Our method effectively
provides a speed-up of more than a factor of 1000 in creating reliable mock halo
catalogs compared to conventional approaches. This study represents a major first
step towards being able to analyze the non-Gaussian and non-linear information
from current-generation surveys using simulation-based inference approaches on
the massive scales of upcoming surveys.

1 Introduction

The standard model of cosmology describes the evolution of the Universe using a set of free cosmo-
logical parameters. Constraining these parameters with observations is the primary goal of cosmology.
Over approximately 13.7 billion years of evolution, the hierarchical structure formation process
transforms the initial Gaussian distribution of matter into a highly non-Gaussian field comprising
of halos, voids, and filaments. The observed galaxies occupy the collapsed and bound structure of
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dark matter called halos. The cosmological parameters can be constrained by analyzing the statistical
distribution of the observed galaxies and comparing them to predictions from theoretical models or
simulations. Traditional techniques limit this comparison to simple two-point summary statistics, such
as the power spectrum at large scales, as theoretical models break down for higher-order statistics and
non-linear small scales [18, 4, 3]. Since the evolved matter distribution is non-Gaussian, higher-order
statistics, as well as small-scale two-point correlations, carry a significant amount of complementary
information about the cosmological parameters [9, 14, 1, 6, 21, 17].

To extract this information, we need to rely on accurate N-body simulations and employ simulation-
based inference (SBI) techniques [9, 10]. SBI involves using computational forward models to
simulate the data on a grid of cosmological parameters, measuring the statistics of interest and
comparing it with the observed data using machine learning techniques to constrain the parameters.
For galaxy clustering surveys, these forward models involve evolving the dark matter particles under
gravity, identifying the dark matter halos in each scenario, and then populating these halos with
galaxies. However, simulating the high-mass halos (which are very rare) in various environmental
conditions requires a large simulation box, while simulating the lower halo masses demands high
resolution. Particularly, to reliably analyze the current generation of galaxy surveys, the number of
particles and the volume of the simulation required are so large that the computational cost of running
these simulations at a grid of cosmological parameters is prohibitive. To put things in context, to
analyze the last generation of cosmological surveys which ended a decade ago with this approach
would require running at least 2000 simulations with 2.7 × 1010 particles, taking more than 270
million CPU hours for running the simulations alone [22]. Furthermore, finding the halos in these
N-body simulations also adds to the computational cost.

However, physically, we expect the number and mass distribution of halos to depend on the large-scale
matter distribution. For example, the overdense regions of the universe will have more matter to
collapse and will be able to form more numerous and heavier halos. Therefore, accurately learning
this relationship and generating fast approximations to the dark matter distribution on large scales can
accelerate mock halo catalog generation, and ultimately generating observed data with end-to-end
simulations. This motivates us to use deep learning techniques to learn these highly non-linear and
non-local relationship between the dark matter and halo distribution.

In order to further accelerate the simulations on large scales, particle mesh (PM) approximations can
be used [e.g., 19, 7]. These approximations estimate the gravitational forces by interpolating CDM
(cold dark matter) particles on a uniform grid, enabling the use of techniques such as fast Fourier
transforms to solve the equations of motion. Due to this grid interpolation, they lose information on
scales smaller than the grid resolution, resulting in poor halo catalogs. However, on scales larger than
the grid size, they accurately capture the matter distribution. Since these PM simulations are orders
of magnitude faster than N-body simulations, our goal is to learn the relationship between halos and
matter density obtained from PM simulations, instead of the N-body simulations.

In this work, we introduce CHARM: a generative model for creating halo catalogs using multi-stage
neural spline flows from transforming the low-resolution PM simulations to discrete mock catalog
expected from a high-resolution N-body simulation. It consists of 3 stages after extracting features
extracted from the surrounding dark matter density in PM simulations at any location: (i) learn
the number of halos expected, (ii) learn the mass of the heaviest halo and, (iii) auto-regressively
predict lower halo masses. Developing a methodology like this is crucial for using simulation-based
inference techniques to analyze and maximizing the information gain from current and future surveys.

2 Related Work

In recent years, there have been other studies with related goals, but they provide different solutions
compared to what is desired here. In [2], a similar mapping is learned using physically motivated
networks, but they assume an explicit form of likelihood for halo occupation, which breaks down for
high-mass halos and small scales, which are of interest in this study. There have also been attempts, as
in [15] and [23], that do not impose a likelihood form. However, the methodology of [15] only works
for continuous fields like total halo mass, whereas here we aim to obtain discrete halo catalogs. The
methodology of [23] is designed to work only with dark matter density obtained from high-resolution
N-body simulations, thus requiring large computational resources.
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In [12], displacement corrections to the PM simulations were provided to make them resemble their
N-body counterparts. However, these corrections do not extend to very small scales, and hence
the recovered halo catalogs are not fully accurate. Nevertheless, these corrections could be used to
augment the PM simulations used here and improve the accuracy of the model in the future.

3 Dataset

Simulations: We use the public simulation suite from the N-body Quijote project [22], which
simulates a volume of approximately 1000(Mpc/h)3, where Mpc is one mega-parsec (approximately
3×106 light years), and h is the dimensionless Hubble parameter that is proportional to the expansion
rate of the Universe. These simulations have enough volume and resolution to provide reliable dark
matter halo catalogs with masses above 1013M⊙/h, where 1M⊙ is equal to the solar mass. Therefore,
these simulations provide a good suite to build a reliable model of how the distribution of halos
relates to the dark matter field around them, which can then be applied to significantly larger volume
simulations. In this first work focused on that goal, we fix the cosmological parameters and process 20
independent simulations with different initial conditions. Each N-body simulation evolves an initial
Gaussian distribution of 10243 cold dark matter particles to the present time and takes approximately
5000 CPU hours to finish.

Input dark matter density: For the approximate simulations, which will form our input, we run
20 paired simulations (i.e., matching Gaussian initial conditions and cosmology) using the FASTPM
algorithm [7]. Here, we evolve only 2563 particles over the same volume, and each simulation takes
only 3 CPU hours1. We compute matter density fields (ρm) from the PM simulations on a regular grid
with 1283 voxels using cloud-in-cell interpolation. We convert this density field to the over-density
field (δm = ρm/ρ̄m − 1), where ρ̄m is the average matter density of each simulation box. Note that
this means that each voxel has a physical box length of approximately 7.8 Mpc/h. Additionally, it’s
important to note that the size of a typical halo is less than 1 Mpc/h, and hence each voxel can host
multiple halos.

Target halo catalog: From the N-body simulations, we voxelize our target halo distribution on
the same 1283 grid using the nearest-grid point mass assignment scheme. Within this scheme, for
each voxel i, we count the number of halos inside it (N i

tot), and if it is non-zero, we also store
the halo masses in decreasing order ([M i

1,M
i
2, . . . ,M

i
Ni

tot
], where M i

1 > M i
2 > . . . > M i

Ni
tot

). In
our training set, we have at most six halos in any voxel, i.e., Nmax = 6, and N i

tot ≤ Nmax for all
i. Moreover, we impose a minimum halo mass cut of M i

Ni
tot

≥ 1013M⊙/h for all i, which is the
relevant halo mass range for current-generation galaxy surveys.

Augmentations: We select 10 of the paired simulations to create the training dataset. We divide the
3D simulation boxes, each of size 1283, into sub-boxes of size 163, resulting in 512 sub-boxes from
each of the simulations. Each sub-box has a physical size of 125 Mpc/h. Next, in our training set, we
sort the 512×10 sub-boxes from the N-body simulations in decreasing order based on the mass of
their heaviest halos and select the first 512 sub-boxes from this sorted list. The reason for doing this
is that these heaviest halos are exponentially rare, but host a significant fraction of the galaxies, hence
over-representing them in the training dataset leads to better results. We choose the same sub-boxes
from the PM set to create the input dark matter density field, paired with the N-body halos for training.
To facilitate feature extraction, we pad the input density field from the PM sub-boxes such that the
output after convolutions preserves the size of sub-box (163). Therefore, we add a padding of four
voxels on each side from the original periodic simulations.

4 Methodology

The task of this paper is to obtain a discrete mock halo catalog when provided with an approximate
dark matter over-density field from PM simulations. Halo formation is a complex non-linear process
that depends on the 3D matter distribution on large scales. For example, there is a higher probability
of forming a heavy halo at the intersection of large dark matter filaments compared to in a void region.

1GPU implementations of these algorithms can further increase computational efficiency [16, 13]
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Figure 1: Visualization of the data products and network architecture used in this study. On the left
side of the dashed line, we show the matter density field from PM simulation that serves as the input
to the ResNet layers to extract features. These features are then used to predict the halo distribution in
three parts: the total number of halos is modeled using a mixture density network, the heaviest halo
mass is modeled using a stack of spline transformations, and lower halo masses are modeled using a
stack of auto-regressive neural spline flows. On the right side, we display the target distribution of
the halos from paired N-body simulation. Additionally, we present histograms of the three quantities
in both low and high-density voxels, illustrating their dependence on the dark matter distribution.

Therefore, to extract the features of dark matter density that correlate with the halo distribution, we
stack two 3D residual network (ResNet) layers [11]. These features, extracted from a physical region
of approximately 70 Mpc/h, are used as conditioning for a multi-level generative model for the halo
distribution, as described below.

To create a mock halo catalog, we need to estimate a discrete distribution of halos conditioned on a
feature vector for each voxel. To achieve this, we split the problem into three parts. For each voxel
i, we first predict the total number of halos (N i

tot), which provides a mask as well as an occupation
number to train the mass distribution. Then, for the voxels that have a non-zero number of halos, we
predict the mass of the heaviest halo (M i

1). Finally, for voxels that have more than one halo, we train
the prediction for the masses of lighter halos (M i

2, . . . ,M
i
Ni

tot
) in an auto-regressive fashion. This

means that, as dictated by the physics of structure formation, we always condition the probability of
lighter halo masses on the masses of all the heavier halos in the same voxel. Our final loss function is
a sum of the losses from these three steps and the details of each step is as follows (also see Fig. 1 for
a brief summary of this inference pipeline):

1. We model the probability distribution of the total number of halos as a mixture of Nmax

Gaussians. We take the discrete distribution of the number of halos in each voxel of the
training simulations and make it continuous by adding a small Gaussian noise with a known
variance. With input from the learned features of the ResNet, we predict the probability
of each Gaussian using a fully connected neural network (FCNN). In this case, the loss is
modeled as the forward Kullback–Leibler (KL) divergence between the modeled Gaussian
mixture with predicted probabilities (with fixed mean and variance) and the true distribution.

2. To model the mass of the heaviest halo, we first transform a base distribution using a stack
of five spline transformations with 8 knots [5]. The base distribution here is not the standard
Gaussian, as is often used with normalizing-flows, but the probability distribution function
estimated from the unconditional halo mass function, as described in [20] (see the central
histogram in Fig. 1). We found that using this physically motivated base distribution was
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Figure 2: Comparison of mean and standard deviation in the one-point statistics between the true
(markers) and CHARM (solid lines) halo catalogs in test simulations. We display the distribution
of the total number of halos (left), the mass of the heaviest halo (center), and the mass of the third
heaviest halo (right). We present these distributions for sub-selections of voxels with either low (red-
colored) or high (black-colored) dark matter density. This test individually compares the performance
of each of the three stages of the network (as described in § 4).
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Figure 3: Comparison of mean and standard deviation of power spectrum (left), bispectrum on
large scales (center), and bispectrum on small scales (right) statistics between the true (markers) and
CHARM (solid lines) halo catalogs in the test simulations. We calculate these statistics for both
low-mass (red) and high-mass (black) halos, showing that the CHARM catalog can accurately capture
these statistics on both small and large scales. Note that these statisics probe the global distribution
of halos over all the voxels and are sensitive to the overall performance of the network.

crucial for obtaining accurate predictions for the heaviest halo. The parameters of the
transformations are learned using a separate FCNN. The loss is then calculated as the KL
divergence between a known base distribution and this transformed distribution.

3. We learn the distribution of lower halo masses using an auto-regressive neural spline flow
[5]. We condition the transformation on the masses of all the heavier halos. Additionally, to
ensure a decreasing order of halo masses, for the j-th halo in the voxel, we learn the mass
difference Mj−1 −Mj and ensure that this difference is positive. Here, we stack two such
spline flows, and their parameters are once again learned using an FCNN. As having more
halos in the same voxel becomes a rarer phenomenon, we model the base distribution as
proportional to the Gumbel distribution [8], which provides a good initial estimate of this
extreme value statistics (see the bottom histogram in Fig. 1).

5 Results

To test the performance of our network, we calculate the one-point statistics (histogram), two-point
statistics (power spectrum), as well as three-point statistics (bispectrum) from CHARM and true halo
catalogs in 10 independent test simulations and compare their means and standard deviation.

In Fig. 2, we compare the one-point statistics of the total number of halos, the mass of the heaviest
halo, and the mass of the third heaviest halo. We compare these histograms in both low-density
(0 < δm < 2, red color) and high-density (δm > 2, black color) environments to highlight the
differences in these histograms and their dependence on the underlying dark matter density field. We
observe a good match for all three histograms in both environmental conditions. That this one-point
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comparison individually tests the performance of each of the three parts of the pipeline as mentioned
in § 4. We see that for all the cases where the number of halos is significant, our network is accurate
at percent level.

In Fig. 3, we compare the mock and true mean power spectrum and bispectrum from the test
simulations. To highlight the differences in clustering properties depending on the masses of the halos,
we calculate these statistics for a sub-sample of either low-halo masses (5×1013 < Mhalo(M⊙/h) <
7× 1013, red color) or high-mass halos (5× 1014 < Mhalo(M⊙/h) < 1015, black color). On the left
plot, we display the power spectrum as a function of scale and find that the statistics match in both
large scales and small scales. As the bispectrum is a three-point statistic, it depends on three scales (or
two scales and one angle between them). We show the results for the isosceles triangle configuration
(hence the two scales are equal) and as a function of the angle between them. We present this for
both large-scale and small-scale configurations in the middle and right panels respectively for the
two mass selections. We find good agreement between all four cases. Note that two- and three-point
statistics jointly test the performance of all the three stages of the network as well as for all the voxels
globally.

Moreover, as shown in both Fig. 2 and Fig. 3, we also capture the uncertainity arising due to
stochasticity of uncertain initial condtions. This is a natural by-product of the generative model used
here which captures the distribution of halo masses and its correlation with underlying matter density.
This is another advantage compared to previous studies like [23] which use regression-based models
and hence are unable to quantify uncertainities.

We note that estimating the total computational speed-up achieved by using this algorithm, compared
to running conventional N-body simulations, is somewhat complicated due to the involvement of
different devices. However, running the required PM simulations takes a total of 3 CPU-hours, and
training the full network on one V100 GPU requires 2 hours. In contrast, running a high-resolution
N-body simulation and identifying halos takes approximately 5000 CPU-hours. This results in a
computational speed-up factor of about 1000 when using the CHARM algorithm for halo generation.

6 Discussion

In this work, we describe how accelerating cosmological simulations and identifying collapsed dark
matter structures (halos) are key to maximizing the information gained from current and upcoming
galaxy surveys. We develop a multi-stage generative model that can learn the relationship between
the halo distribution and the surrounding dark matter distribution on large scales. We demonstrate
how these relationships can be learned using a faster alternative to N-body simulations, which provide
correct dark matter densities on large scales. We validate our mock catalogs obtained with CHARM
using one-, two-, and three-point statistics under various environmental conditions, demonstrating
the accuracy of the method. This results in computational gains of more than a factor of 1000 in
generating relevant halo catalogs for galaxy survey analysis.

In this study, we fixed the cosmological parameters and learnt the generative model on a single
cosmology. In our next work, we plan to improve the conditional network by accounting for
the cosmology dependence before proceeding to data analysis and constraining the cosmological
parameters. To push to smaller scales, we will also train the network on higher resolution simulations.
Finally, we have currently focused only on generating the halo masses and positions. To model some
cosmological observables, halo velocity and concentration are also required. We will develop similar
techniques to learn these.
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