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Abstract. Reliable uncertainty quantification is crucial for trustworthy
decision-making and the deployment of AI models in medical imaging.
While prior work has explored the ability of neural networks to quantify
predictive, epistemic, and aleatoric uncertainties using an information-
theoretical approach in synthetic or well defined data settings like natural
image classification, its applicability to real life medical diagnosis tasks
remains underexplored. In this study, we provide an extensive uncer-
tainty quantification benchmark for multi-label chest X-ray classification
using the MIMIC-CXR-JPG dataset. We evaluate 13 uncertainty quan-
tification methods for convolutional (ResNet) and transformer-based (Vi-
sion Transformer) architectures across a wide range of tasks. Addition-
ally, we extend Evidential Deep Learning, HetClass NNs, and Deep De-
terministic Uncertainty to the multi-label setting. Our analysis provides
insights into uncertainty estimation effectiveness and the ability to dis-
entangle epistemic and aleatoric uncertainties, revealing method- and
architecture-specific strengths and limitations.
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1 Introduction

Deep neural networks have widely been used to solve medical image analysis
tasks, such as image classification and segmentation [17,30]. However, in high-
stakes applications such as radiology, models must meet rigorous standards to
ensure reliability and trustworthiness. These requirements are developed from
multiple perspectives, including the needs of patients, medical professionals, and
regulatory agencies. From a technical standpoint, comprehensive benchmarks are
essential to guide the development of safe and interpretable AI models. In radi-
ology, AI-assisted diagnosis can reach human-expert level performance [22], but
the expressivity of uncertainty of such models is often not intensively studied. A
false negative AI classification of pneumonia, for example, could delay life-saving
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treatment, while overconfident AI predictions could lead to unnecessary inter-
ventions. Regulatory agencies such as the FDA [26] emphasize the importance of
uncertainty-aware AI systems, yet robust uncertainty quantification remains un-
derexplored in multi-label medical imaging [16]. Despite the increasing focus in
benchmarking AI models on performance, robustness, and explainability [24,4],
uncertainty quantification (UQ)[9,1] remains an underexplored aspect of model
evaluation. Reliable UQ methods are crucial for assessing predictive confidence,
and ultimately improving model trustworthiness in clinical practice [2,8]. Our
work addresses this research gap by systematically benchmarking a diverse set of
uncertainty quantification methods for multi-label chest X-ray classification. We
provide a comprehensive evaluation across convolutional and transformer-based
architectures, offering practical insights into their reliability and applicability in
real-world medical imaging workflows.

1.1 Related Work

Benchmarking Uncertainty Quantification. Our work follows the bench-
marking setup recently proposed by Mucsányi et al. [19] for uncertainty quantifi-
cation in natural imaging, which we adapt to a multilabel setting. Their frame-
work benchmarks UQ methods across five tasks, assessing their ability to disen-
tangle uncertainty and evaluating various aggregation strategies.

Distributional Methods. Distributional methods model uncertainty by learn-
ing a second-order predictive distribution p(y | x, θ), where the model outputs
a distribution over predictions rather than a point estimate. Practically, M for-
ward passes are sampled for each input x to approximate p(y | x, θ) [27,28].
We evaluate a diverse set of uncertainty quantification methods, including La-
tent Heteroscedastic Classifier (HET-XL) [5], Swag [18], MC Dropout (MC-D)
[25], Heteroscedastic Classification Neural Network (Het-NN) [6], Deep Ensem-
ble (D-Ens) [14], Shallow Ensemble (SE) [15], Evidential Deep Learning (EDL)
[23], Masked Attention (M-Attn) [3], and Gumbel Softmax (GS-Attn) [21]. The
latter two are only applicable to transformers.

Deterministic Methods. Deterministic uncertainty methods estimate uncer-
tainty without requiring a distribution over predictions. These approaches often
rely on model-internal features to assess confidence in predictions. We evaluate
several deterministic methods, namely Loss Prediction (LP) [29], Correctness
Prediction (CP), Temperature Scaling (Temp) [10] and Deep Deterministic Un-
certainty (DDU) [20].

Information-Theoretical Approach and Disentanglement. The information-
theoretical (IT) formulation of uncertainty [7,11] models predictive uncertainty
as a combination of epistemic uncertainty (EU), arising from limited data or
model capacity, and aleatoric uncertainty (AU), reflecting inherent noise in the
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data. While this decomposition has been thoroughly investigated in controlled
and synthetic settings, recent studies [13,19] raise concerns about the practical
effectiveness of the IT framework in complex, real-world datasets, questioning its
ability to reliably disentangle epistemic and aleatoric uncertainties, and therefore
its effectiveness of modeling uncertainty in total.

1.2 Contribution

Our key contributions can be summarized as follows:

1. We present the first extensive empirical benchmark of 13 uncertainty meth-
ods on chest X-ray data, spanning multiple tasks and both ConvNets and
Vision Transformers.

2. We adapt three UQ methods—EDL, Het NN, and DDU—from multiclass to
multilabel classification.

3. Our analyses highlight limitations in disentangling EU and AU using the IT
framework. We infer that the IT framework is to be used with caution.

2 Theoretical Framework and Methods

In radiology, epistemic uncertainty stems from limited knowledge or distribution
shifts, affecting underrepresented or unseen cases and signaling the need for ex-
pert review or more data. Aleatoric uncertainty, originating from inherent data
variability (e.g. motion artifacts), can be used to flag images for re-acquisition.
Methods that are reliably able to distinguish EU and AU could therefore signif-
icantly advance AI deployment in diagnostic applications.

2.1 Uncertainty Disentanglement

To derive uncertainty estimates u(x) for an input x we focus on the information-
theoretical (IT) [7,11] approach of decomposing total predictive uncertainty (PU)
into aleatoric uncertainty (AU) and epistemic uncertainty (EU). The model’s
predictions are obtained via the Bayesian-Model-Average (BMA):

BMA ≡ π̄(x) ≡ 1

M

M∑
m=1

π(m), (1)

PU ≡ H (π̄(x)) , (2)

AU ≡ 1

M

M∑
m=1

H
(
π(m)

)
, (3)

EU ≡ H (π̄(x))− 1

M

M∑
m=1

H
(
π(m)

)
, (4)

where M is the number of sampled forward passes, π is the class probability
output vector and H(x) is the entropy.
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2.2 Multilabel Adaptions

We adapt EDL, Het-NN and DDU, methods originally designed for multiclass
tasks, to the multilabel setting. For a detailed mathematical description see ??.

3 Tasks, Experimental Setting and Results

3.1 Tasks

We evaluate all methods mentioned in 1.1 on 6 different tasks on the MIMIC-
CXR-JPG [12] dataset (official train/val/test split) which is annotated for 14
pathologies with labels being either 0 (negative), 1 (positive), or -1 (uncertain).
We further provide correlation analysis of aleatoric and epistemic uncertainty as
well as insights into capabilities of uncertainty disentanglement of each method.

Task 1: OOD-Detection. Out-of-distribution detection assesses a model’s
ability to capture epistemic uncertainty. We construct an OOD dataset by ran-
domly sampling unaltered images from MIMIC-CXR-JPG (assigning label 0,
marking ID data) and applying a combination of transformations (Gaussian
noise, motion blur, vignettes, mask occlusion, etc.) to an equal number of im-
ages (assigning label 1, marking OOD data). These transformations induce a
performance drop of ∼ 20% on validation AUROC, similar to the difference
between ImageNet and ImageNet-C. OOD detection performance is evaluated
using binary AUROC, where a higher score reflects better separation between
ID and OOD samples.

Task 2: Uncertainty Label Prediction. MIMIC-CXR-JPG includes class
labels for each class annotated as negative (0), positive (1), or uncertain (-1),
where the latter is therefore providing a source of expert-labeled ground truth
uncertainties. To assess aleatoric uncertainty, we evaluate how well the model’s
uncertainty scores align with these ground truth uncertainties. Specifically, we
filter the test set to include only samples with at least one uncertain (-1) label
across all classes, mapping -1 to 1 (effectively marking the class as uncertain) and
both 0 and 1 to 0 (effectively marking the class as certain). We then compute the
binary AUROC per class and report the macro-average AUROC, where higher
values indicate better identification of ground truth uncertainties.

Task 3: Correctness Prediction. To assess the model’s ability to judge its
own prediction reliability, we infer correctness labels through assigning 1 to cor-
rect predictions (threshold 0.5 for positives) and 0 to incorrect ones. We then
compute binary AUROC per class between estimated UQ scores and correctness
labels, and report the macro-average AUROC, where a higher score indicates
better distinction between correct and incorrect predictions.
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Task 4: Abstained Prediction. To assess the impact of uncertainty on ac-
curacy, we iteratively remove the 5% most uncertain samples (as determined by
estimated UQ scores) and track accuracy, effectively making the test set more
certain in each iteration. We compute the Area Under the Accuracy Coverage
Curve (AUAC), where higher values indicate better uncertainty-informed ab-
stention.

Task 5 and Task 6: Calibration. For calibration assessment, we compute
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) per
class. We report the macro-average ECE and MCE across all classes, where lower
values indicate better calibration.

3.2 Experimental Setting.

We trained each model for 50 epochs with early stopping of 5 based on vali-
dation AUROC. Learning rate was initialized with 1e-4 and decreased with a
cosine annealing learning rate scheduler. We used the AdamW optimizer with a
weight decay of 0.1. We trained five models per method with different seeds. For
distributional methods, we performed M=5 forward passes per model, totaling
25 samples per input. We report the mean and standard error across all models
and forward passes. We chose M = 5 to keep our experiments computationally
efficient and because higher Ms did not show significant improvements [19]. We
chose ViT-tiny and ResNet18 models due to their comparable parameter sizes,
not utilizing larger models as they yielded only minor performance improve-
ments on validation metrics. We initialized all models with weights pretrained
on ImageNet. We retained method-specific hyperparameters as reported from
the best-performing runs in [19].

3.3 Results

Fig.1 summarizes results across Tasks 1-6 and reports the best performing of
PU, AU and EU scores for each method. Task 1 exhibits a wide performance
range (0.55–0.99), implicating a strong impact of method choice on OOD de-
tection. For ViT, S-Ens and D-Ens perform best (only two methods achieving
> 0.9), while ResNet benefits most from S-Ens, D-Ens, EDL, and SWAG, all
achieving scores above 0.9. Distributional methods in general are outperforming
deterministic methods across model architectures. Task 2 scores are varying less
(almost all methods scoring between 0.58–0.62) compared to Task 1, with D-Ens
and DDU being the top performing. Swag on ResNet is an outlier towards the
bottom (0.52), indicating poor capability of capturing aleatoric uncertainties.
Notably more deterministic methods lie within the upper performance range
compared to Task 1. Task 3 again displays a narrow range for most methods
(0.7-0.75). Again, Ensemble based methods (D-Ens, S-Ens) are among top scor-
ers. CP, which specifically is designed to solve Task 3 shows high performance,
and therefore aligns well with it’s intention. DDU and Swag for ResNet show
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Fig. 1. Results for Tasks 1-6: ViT-Tiny (blue) and ResNet-18 (orange). For Tasks 1–4,
we computed three uncertainty scores per method—predictive (PU), epistemic (EU),
and aleatoric (AU)—as defined in 2.1. Each score yields a separate AUROC, and we
report only the highest per method. Task 5 and 6 are evaluated based on BMA scores.

significantly lower performance than other methods here. Task 4 paints a sim-
ilar picture as Task 3 (most ranging from 0.82–0.84), this time lower outliers
being LP (both) and DDU (ViT), indicating weak alignment with accuracy for
those methods. Again, D-Ens and S-Ens are top scorers. Results for Task 5
suggest almost all methods are well calibrated w.r.t ECE,(ECE < 0.04), except
EDL (ECE = 0.4) which is strongly ill-calibrated for both models. Calibration in
terms of MCE paints a more diverse picture: for ViT, most methods align around
0.2, whereas ResNet shows strong differences, with Swag being best (0.12) and
almost all other methods displaying a MCE > 0.25. EDL is again heavily mis-
calibrated. Results across both calibration tasks therefore imply that swag is
leading across calibration metrics and architectures, while EDL has significant
trouble in achieving good calibration.

We now go on to analyze the promised disentanglement capabilities of the IT
approach. As a first step we investigate rank correlations of EU and AU scores
on Task 1 and 2, which represent tasks aimed to be solved by the respective
scores. If the promise of the IT approach holds, EU and AU scores should not
display significant correlations. However, almost all methods show significant
correlations between EU and AU. See ?? for detailed correlation metrics. We
therefore can confirm prior findings of e.g. [19] that UQ scores as disentangled
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by the IT approach do not keep their promise of uncorrelated uncertainties.
Given strong correlation between EU and AU scores —despite their intended

Fig. 2. Task 1 (OOD-Detection) AUROC scores for epistemic (purple) and aleatoric
(red) uncertainty. Capability to disentangle is greater when epistemic uncertainty out-
performs aleatoric uncertainty (i.e. purple line is further outwards than red line).

non-correlation— we evaluate how well uncertainty estimates perform on their
respective target tasks as final step of our analysis. We do this exemplary for
Task 1 (OOD detection). Fig.2 compares EU and AU estimators on Task 1. Only
distributional methods are shown, as deterministic methods yield EU = 0 per
2.1. Note that AUROC scores here do not necessarily align with AUROC scores
of Task 1 in Fig.1, as it can also include AUROC derived from PU estimates,
whereas in Fig.2 we solely take EU and AU scores into account. Ideally, EU
should significantly outperform AU in this task. However, many methods fail to
disentangle uncertainty types, with AU estimates performing comparably or bet-
ter. For ViT, only D-Ens, S-Ens, and M-Attn outperform aleatoric estimates. In
ResNet, D-Ens, S-Ens, EDL, and Het-NN show significantly stronger epistemic
performance. To synthesize our prior analyses, we aggregate metrics from Fig.1
and Fig.2 as well as rank correlations into an overview given in Fig.3. Ensemble-
based methods (D-Ens, S-Ens) consistently perform best across architectures,
with HET-NN (ResNet) and M-Attn (ViT) coming closest in performance. Our
results motivate several practical implications, discussed in the following section
4.
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Fig. 3. Comparison of average performance across all tasks (x-axis; see Fig. 1) and
disentanglement capability (y-axis), measured as AUROC(EU) − AUROC(AU) (see
Fig. 2). Y-values above the disentanglement threshold indicate that EU and AU are
well separated, with EU better aligned to the epistemic task. Values below the thresh-
old suggest an inverse relationship, where AU unexpectedly performs better on the
epistemic task. Bubble size reflects the inverse correlation between EU and AU scores;
larger bubbles indicate weaker correlation. Methods in the upper-right region combine
strong performance with well-separated uncertainty types.

4 Conclusion and Practical Implications

We studied 13 UQ methods across two architectures—ResNet and ViT—and six
tasks in a multilabel medical setting, establishing a comprehensive benchmark
of UQ performance. Additionally, we assessed distributional methods’ ability to
decompose uncertainties using the information-theoretical approach. Based on
our findings, we offer the following recommendations for clinical practitioners:

Align models and methods with tasks. We observed substantial variability
in UQ method performance across tasks and architectures, highlighting the need
to align the method with the specific UQ objective. For OOD detection, distri-
butional (bayesian) methods clearly outperform deterministic ones and should
be preferred. Notably, Swag with ResNet is highly effective for OOD, while
performing poorly on aleatoric tasks—a potentially useful trait if understood.
Conversely, for modeling aleatoric uncertainty, simple deterministic methods like
LP and CP are surprisingly effective, performing nearly on par with ensembles.

Architectures matter for calibration. For well-calibrated predictions, prac-
titioners should consider both the UQ method and the model architecture. ViTs
generally outperform ResNets in calibration (MCE) across methods. SWAG re-
mains a strong choice, while EDL should be used with caution, as it appears
consistently ill-calibrated.
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Ensembles remain the most reliable. Ensemble based UQ methods (D-Ens,
S-Ens) consistently outperform other approaches across tasks while disentangling
effectively in comparison and should therefore be preferred whenever possible.

Understand Limits of IT-Based Disentanglement. We showed that dis-
entangling uncertainties via the information-theoretical approach can fall short
of its theoretical expectations. If the IT framework holds, EU and AU should
be uncorrelated and task-specific. However, in practice disentangled scores do
not always align with their intended tasks—e.g., EU scores can counterintu-
itively perform worse on OOD detection than their AU and PU counterparts.
We therefore recommend practitioners to apply the IT framework with caution
and encourage further research assessing limitations and practical reliability.
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