
Robust Graph Neural Networks
via Unbiased Aggregation

Zhichao Hou1∗ Ruiqi Feng1∗ Tyler Derr2 Xiaorui Liu1†

1North Carolina State University, 2Vanderbilt University

{zhou4,xliu96}@ncsu.edu ruiqifeng.2024@gmail.com tyler.derr@vanderbilt.edu

Abstract

The adversarial robustness of Graph Neural Networks (GNNs) has been questioned
due to the false sense of security uncovered by strong adaptive attacks despite the
existence of numerous defenses. In this work, we delve into the robustness analysis
of representative robust GNNs and provide a unified robust estimation point of view
to understand their robustness and limitations. Our novel analysis of estimation
bias motivates the design of a robust and unbiased graph signal estimator. We then
develop an efficient Quasi-Newton Iterative Reweighted Least Squares algorithm
to solve the estimation problem, which is unfolded as robust unbiased aggregation
layers in GNNs with theoretical guarantees. Our comprehensive experiments
confirm the strong robustness of our proposed model under various scenarios, and
the ablation study provides a deep understanding of its advantages. Our code is
available at https://github.com/chris-hzc/RUNG.

1 Introduction

Graph neural networks (GNNs) have gained tremendous popularity in recent years due to their ability
to capture topological relationships in graph-structured data [1]. However, most GNNs are vulnerable
to adversarial attacks, which can lead to a substantial decline in predictive performance [2, 3, 4].
Despite the numerous defense strategies proposed to robustify GNNs, a recent study has revealed that
most of these defenses are not as robust as initially claimed [5]. Specifically, under adaptive attacks,
they easily underperform the multi-layer perceptrons (MLPs) which do not utilize the graph topology
information at all [5]. Therefore, it is imperative to thoroughly investigate the limitations of existing
defenses and develop innovative robust GNNs to securely harness the topology information in graphs.

Existing defenses attempt to bolster the resilience of GNNs using diverse approaches. For instance,
Jaccard-GCN [6] and SVD-GCN [7] aim to denoise the graph by removing potential adversarial
edges during the pre-processing procedure, while ProGNN [3] learns the clean graph structure during
the training process. GRAND [8] and robust training [9, 10] also improve the training procedure
through data augmentation. GNNGuard [2] and RGCN [11] reinforce their GNN architectures
by heuristically reweighting edges in the graph. Additionally, there emerge some ODEs-inspired
architectures including the GraphCON [12] and HANG [13] that demonstrate decent robustness.
Although most of these defenses exhibit decent robustness against transfer attacks, i.e., the attack is
generated through surrogate models, they encounter catastrophic performance drops when confronted
with adaptive adversarial attacks that directly attack the victim model [5].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

∗Equal contribution.
†Corresponding author.

https://github.com/chris-hzc/RUNG

Concerned by the false sense of security, we provide a comprehensive study on existing defenses under
adaptive attacks. Our preliminary study in Section 2 indicates that SoftMedian [4], TWIRLS [14],
and ElasticGNN [15] exhibit closely aligned performance and notably outperform other defenses
despite their apparent architectural differences. However, as attack budgets increase, these defenses
still experience a severe performance decrease and underperform the graph-agnostic MLPs. These
observations are intriguing, but the underlying reasons are still unclear.

To unravel the aligned robustness and performance degradation of SoftMedian, TWIRLS, and
ElasticGNN, we delve into their theoretical understanding and unveil their inherent connections and
limitations in the underlying principles. Specifically, their improved robustness can be understood
from a unified view of ℓ1-based robust graph smoothing. Moreover, we unearth the problematic
estimation bias of ℓ1-based graph smoothing that allows the adversarial impact to accumulate as
the attack budget escalates, which provides a plausible explanation of their declining robustness.
Motivated by these understandings, we propose a robust and unbiased graph signal estimator to
reduce the estimation bias in GNNs. We design an efficient Quasi-Newton IRLS algorithm that
unrolls as robust unbiased aggregation layers to safeguard GNNs against adversarial attacks. Our
contributions can be summarized as follows:

• We provide a unified view of ℓ1-based robust graph signal smoothing to justify the improved and
closely aligned robustness of representative robust GNNs. Moreover, we reveal their estimation
bias, which explains their severe performance degradation as the attack budgets increase.

• We propose a robust and unbiased graph signal estimator to mitigate the estimation bias in ℓ1-
based graph signal smoothing and design an efficient Quasi-Newton IRLS algorithm to solve the
non-smooth and non-convex estimation problem with theoretical guarantees.

• The proposed algorithm can be readily unfolded as feature aggregation building blocks in GNNs,
which not only provides clear interpretability but also covers many classic GNNs as special cases.

• Comprehensive experiments demonstrate that our proposed GNN significantly improves the
robustness while maintaining clean accuracy. We also provide comprehensive ablation studies to
validate its working mechanism.

2 Estimation Bias Analysis of Robust GNNs

In Section 2.1, we conduct a preliminary study to evaluate the robustness of several representative
robust GNNs. In Section 2.2, we establish a unified view as ℓ1-based models to uncover the inherent
connections of three well-performing GNNs, including SoftMedian, TWIRLS and ElasticGNN. In
Section 2.3, we leverage the bias of ℓ1-based estimation to explain the catastrophic performance
degradation in the preliminary experiments.

Notation. Let G = {V, E} be a graph with node set V = {v1, . . . , vn} and edge set E =
{e1, . . . , em}. The adjacency matrix of G is denoted as A ∈ {0, 1}n×n and the graph Lapla-
cian matrix is L = D−A. D = diag(d1, . . . , dn) is the degree matrix where di = |N (i)| and N (i)
is the neighborhood set of vi. The node feature matrix is denoted as F = [f1, . . . ,fn]

⊤ ∈ Rn×d,
and f (0) (F (0)) denotes the node feature vector (matrix) before graph smoothing in decoupled GNN
models. Let ∆ ∈ {−1, 0, 1}m×n be the incidence matrix whose l-th row denotes the l-th edge
el = (i, j) such that ∆li = −1,∆lj = 1,∆lk = 0 ∀k /∈ {i, j}. ∆̃ is its normalized version :
∆̃lj = ∆lj/

√
dj . For a vector x ∈ Rd, we use ℓ1-based gragh smoothing penalty to denote either

∥x∥1 =
∑
i |xi| or ∥x∥2 =

√∑
i x

2
i . Note that we use ℓ2-based gragh smoothing penalty to denote

∥x∥22 =
∑
i x

2
i .

2.1 Robustness Analysis

To test the robustness of existing GNNs without the false sense of security, we perform a preliminary
evaluation of existing robust GNNs against adaptive attacks. We choose various baselines including
the undefended MLP, GCN [16], some of the most representative defenses in [5], and two additional
robust models TWIRLS [14] and ElasticGNN [15]. We execute adaptive local evasion topological
attacks and test the node classification accuracy on the Cora ML and Citeseer datasets. The detailed
settings follow Section 4.1. From Figure 1, it can be observed that:

2

Figure 1: Robustness analysis under adaptive local attack. The perturbation budget (x-axis) is the
number of edges allowed to be perturbed relative to the target node’s degree. SoftMedian, TWIRLS,
and ElasticGNN (blue curves) exhibit similarly aligned competitive robustness among all the selected
robust GNNs, but all models experience catastrophic performance degradation as the attack budget
increases.

• Among all the selected robust GNNs, only SoftMedian, TWIRLS, and ElasticGNN exhibit
notable and closely aligned improvements in robustness whereas other GNNs do not show
obvious improvement over undefended GCN.

• SoftMedian, TWIRLS, and ElasticGNN encounter a similar catastrophic performance degradation
as the attack budget scales up. Their accuracy easily drops below that of the graph-unware MLP,
indicating their failure in safely exploiting the topology of the data.

2.2 A Unified View of Robust Estimation

Our preliminary study provides intriguing observations in Section 2.1, but the underlying reasons be-
hind these phenomena remain obscure. This motivates us to delve into their theoretical understanding
and explanation. In this section, we will compare the architectures of three well-performing GNNs,
aiming to reveal their intrinsic connections.

SoftMedian [4] substitutes the GCN aggregation for enhanced robustness with the dimension-wise
median mi ∈ Rd for all neighbors of each node i ∈ V . However, computing the median in-
volves operations like ranking and selection, which is not compatible with the back-propagation
training of GNNs. Therefore, the median is approximated as a differentiable weighted sum
m̃i =

1
Z

∑
j∈N (i) w(fj ,mi)fj ,∀i ∈ V , where mi is the exact non-differentiable dimension-wise

median, fj is the feature vector of the j-th neighbor,w(x,y) = e−β∥x−y∥2 , andZ =
∑
k w(fk,mk)

is a normalization factor. In this way, the aggregation assigns the largest weights to the neighbors
closest to the actual median.

TWIRLS [14] utilizes the iteratively reweighted least squares (IRLS) algorithm to optimize the
objective with parameter λ, and ρ(y) = y is the default:

2λ
∑

(i,j)∈E

ρ(∥f̃i − f̃j∥2) +
∑
i∈V

∥f̃i − f̃ (0)∥22, f̃i = (1 + λdi)
− 1

2fi. (1)

ElasticGNN [15] proposes the elastic message passing which unfolds the proximal alternating
predictor-corrector (PAPC) algorithm to minimize the objective with parameter λ{1,2}:

1

2

∑
i∈V

∥fi − f
(0)
i ∥22 + λ1

∑
(i,j)∈E

∥∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥∥
p

+ λ2
∑

(i,j)∈E

∥∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥∥
2

2

,where p ∈ {1, 2}.

(2)

A Unified View of Robust Estimation. While these three approaches have seemingly different
architectures, we provide a unified view of robust estimation to illuminate their inherent connections.
First, the objective of TWIRLS in Eq. (1) can be considered as a particular case of ElasticGNN

3

with λ2 = 0 and p = 2 when neglecting the difference in the node degree normalization. However,
TWIRLS and ElasticGNN leverage different optimization solvers, i.e., IRLS and PAPC, which leads
to vastly different GNN layers. Second, SoftMedian approximates the computation of medians in
a soft way of weighted sums, which can be regarded as approximately solving the dimension-wise
median estimation problem [17]: argminfi

∑
j∈N (i) ∥fi − fj∥1. Therefore, SoftMedian can be

regarded as the ElasticGNN with λ2 = 0 and p = 1. We also note that the SoftMedoid [18] approach
also resembles ElasticGNN with λ2 = 0 and p = 2, and the Total Variation GNN [19] also utilizes
an ℓ1 estimator in spectral clustering.

The above analyses suggest that SoftMedian, TWIRLS, and ElasticGNN share the same under-
lying design principle of ℓ1-based robust graph signal estimation, i.e. a similar graph smoothing
objective with edge difference penalties ∥fi − fj∥1 or ∥fi − fj∥2. However, they adopt different
approximation solutions that result in distinct architecture designs. This unified view of robust
estimation clearly explains their closely aligned performance. Besides, the superiority ℓ1-based
models over the ℓ2-based models such as GCN [16], whose graph smoothing objective is essentially∑

(i,j)∈E ∥fi/
√
di − fj/

√
dj∥22 [20], can be explained since ℓ1-based graph smoothing mitigates

the impact of the outliers [15].

2.3 Bias Analysis and Performance Degradation

The unified view of ℓ1-based graph smoothing we established in Section 2.2 not only explains their
aligned robustness improvement but also provides a perspective to understand their failure as attack
budgets scale up through an estimation bias analysis.

Figure 2: Different mean estimators in the presence of outliers. The clean samples are the majority of
data points following the Gaussian distribution N ((0, 0), 1 · I), while the outliers are data points that
deviate significantly from the main data pattern, following N ((8, 8), 0.5 · I). ℓ2-estimator deviates
far from the true mean, while the ℓ1-based estimator is more resistant to outliers. However, as the
ratio of outliers escalates, the ℓ1-based estimator encounters a greater shift from the true mean, but
our estimator still maintains a position close to the ground truth.

Bias of ℓ1-based Estimation. In the literature of high-dimensional statistics, it has been well
understood that the ℓ1 regularization will induce an estimation bias. In the context of denoising [21]
or variable selection [22], small coefficients β are undesirable. To exclude small β in the estimation,
a soft-thresholding operator can be derived as Sλ(β) = sign(β)max(|β| − λ, 0). As a result, large β
are also shrunk by a constant, so the ℓ1 estimation is biased towards zero.

A similar bias effect also occurs in graph signal estimation in the presence of adversarial attacks.
For example, in TWIRLS (Eq. (1)), after the graph aggregation f̃

(k+1)
i =

∑
j∈N (i) wij f̃

(k)
j where

wij = ∥f̃i − f̃j∥−1
2 , the edge difference f̃i − f̃j will shrink towards zero. Consequently, every

adversarial edge the attacker adds will induce a bias that can be accumulated and amplified when the
attack budget scales up.

Numerical Simulation. To provide a more intuitive illustration of the estimation bias of ℓ1-based
models, we simulate a mean estimation problem on synthetic data since most message passing
schemes in GNNs essentially estimate the mean of neighboring node features. The results in Figure 2

4

shows that ℓ1-based estimator is more resistant than ℓ2-based estimator. However, as the ratio of
outliers escalates, the ℓ1-based estimator encounters a greater shift from the true mean due to the
accumulated bias caused by outliers. This observation explains why ℓ1-based graph smoothing
models suffer from catastrophic degradation under large attack budgets. The detailed simulation
settings and results are available in Appendix A.

3 Robust GNNs with Unbiased Aggregation

In this section, we first design a robust unbiased estimator to reduce the bias in graph signal estimation
in Section 3.1 and propose an efficient second-order IRLS algorithm to compute the robust estimator
with theoretical convergence guarantees in Section 3.2. Finally, we unroll the proposed algorithm as
the robust unbiased feature aggregation layers in GNNs in Section 3.3.

3.1 Robust and Unbiased Graph Signal Estimator

Our study and analysis in Section 2 have shown that while ℓ1-based methods outperform ℓ2-based
methods in robustness, they still suffer from the accumulated estimation bias, leading to severe
performance degradation under large perturbation budgets. This motivates us to design a robust and
unbiased graph signal estimator that derives unbiased robust aggregation for GNNs with stronger
resilience to attacks.

Theoretically, the estimation bias in Lasso regression has been discovered and analyzed in high-
dimensional statistics [23]. Statisticians have proposed adaptive Lasso [23] and many non-convex
penalties such as Smoothly Clipped Absolute Deviation (SCAD) [24] and Minimax Concave Penalty
(MCP) [25] to alleviate this bias. Motivated by these advancements, we propose a Robust and
Unbiased Graph signal Estimator (RUGE) as follows:

argmin
F

H(F) =
∑

(i,j)∈E

ργ(

∥∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥∥
2

) + λ
∑
i∈V

∥fi − f
(0)
i ∥22, (3)

where ργ(y) denotes the function that penalizes the feature differences on edges by MCP:

ργ(y) =

{
y − y2

2γ if y < γ
γ
2 if y ≥ γ

. (4)

Figure 3: Penalties.

As shown in Figure 3, MCP closely approximates the ℓ1 norm when
y is small since the quadratic term y2

2γ is negligible, and it becomes
a constant value when y is large. This transition can be adjusted
by the thresholding parameter γ. When γ approaches infinity, the
penalty ργ(y) reduces to the ℓ1 norm. Conversely, when γ is very
small, the “valley” of ργ near zero is exceptionally sharp, so ργ(y)
approaches the ℓ0 norm and becomes a constant for a slightly larger
y. This enables RUGE to suppress smoothing on edges whose node
differences exceeding the threshold γ. This not only mitigates the
estimation bias against outliers but also maintains the estimation
accuracy in the absence of outliers. The simulation in Figure 2
verifies that our proposed estimator (η(x) := ργ(∥x∥2)) can recover
the true mean despite the increasing outlier ratio when the outlier
ratio is below the theoretical optimal breakdown point.

3.2 Quasi-Newton IRLS

Despite the advantages discussed above, the proposed RUGE in Eq. (3) is non-smooth and non-convex,
which results in challenges for deriving efficient numerical solutions that can be readily unfolded
as neural network layers. In the literature, researchers have developed optimization algorithms for
MCP-related problems, such as the Alternating Direction Multiplier Method (ADMM) and Newton-
type algorithms [24, 25, 26]. However, due to their excessive computation and memory requirements
as well as the incompatibility with back-propagation training, these algorithms are not well-suited

5

for the construction of feature aggregation layers in GNNs. To solve these challenges, we propose
an efficient Quasi-Newton Iteratively Reweighted Least Squares algorithm (QN-IRLS) to solve the
estimation problem in Eq. (3).

IRLS. Before stepping into our QN-IRLS, we first introduce the main idea of iteratively reweighted
least squares (IRLS) [27] and analyze its weakness in convergence. IRLS aims to circumvent the
non-smooth H(F) in Eq. (3) by computing its quadratic upper bound Ĥ based on F (k) in each
iteration k and optimizing Ĥ(F):

Ĥ(F) =
∑

(i,j)∈E

W
(k)
ij

∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥2
2

+ λ
∑
i∈V

∥fi − f
(0)
i ∥22, (5)

where W
(k)
ij = 1i ̸=j

dργ(yij)

dy2ij

∣∣
yij=y

(k)
ij

3 , where y(k)ij =
∥∥f (k)

i /
√
di − f

(k)
j /

√
dj
∥∥
2

and ργ(·) is the
MCP function. For the detailed proof of the upper bound, please refer to Lemma 1 in Appendix B.
Then, each iterative step of IRLS can be formulated as the first-order gradient descent for Ĥ(F):

F (k+1) = F (k) − η∇Ĥ(F (k)) = F (k) − η
(
(Q̂(k) − 2W (k) ⊙ Ã)F (k) − 2λF (0)

)
, (6)

where η is the step size, Q̂(k) = 2(diag(q(k))+λI), and q
(k)
m =

∑
jW

(k)
mjAmj/dm. Its convergence

condition is given in Theorem 1, with a proof in Appendix B.

Theorem 1. If F (k) follows the update rule in Eq. (6) where ρ defining W satisfies that dρ(y)dy2 is
non-decreasing ∀y ∈ (0,∞), then a sufficient condition for H(F (k+1)) ≤ H(F (k)) is that the step
size η satisfies 0 < η ≤ ∥diag(q(k))−W (k) ⊙ Ã+ λI∥−1

2 .

Quasi-Newton IRLS. Theorem 1 suggests the difficulty in the proper selection of stepsize for
(first-order) IRLS due to its non-trivial dependency on the graph (Ã) and the dynamic terms (q(k) and
W (k)) 4. The dilemma is that a small stepsize will lead to slow convergence but a large step easily
causes divergence and instability as verified by our experiments in Section 4.3 (Figrue 5), which
reveals its critical shortcoming for the construction of GNN layers.

To overcome this limitation, we aim to propose a second-order Newton method, F (k+1) =

F (k) − (∇2Ĥ(F (k)))−1∇Ĥ(F (k)), to achieve faster convergence and stepsize-free hyperparam-
eter tuning by better capturing the geometry of the optimization landscape. However, obtaining
the analytic expression for the inverse Hessian matrix (∇2Ĥ(F (k)))−1 ∈ Rn×n is intractable,
and the numerical solution requires expensive computation for large graphs. Therefore, we pro-
pose a novel Quasi-Newton IRLS algorithm (QN-IRLS) that approximates the Hessian matrix
∇2Ĥ(F (k)) = 2(diag(q(k))−W (k) ⊙ Ã+λI) by the diagonal matrix Q̂(k) = 2(diag(q(k))+λI)
such that the inverse is trivial. The proposed QN-IRLS works as follows:

F (k+1) = F (k) −
(
Q̂(k))−1∇Ĥ(F (k)) = (diag(q(k)) + λI)−1

(
(W (k) ⊙ Ã)F (k) + λF (0)

)
, (7)

where (Q̂(k))−1 automatically adjusts the per-coordinate stepsize according to the local geometry of
the optimization landscape, q(k) and W (k) are defined as in Eq. (5) and (6). In this way, QN-IRLS
provides faster convergence without needing to select a stepsize. The convergence is guaranteed by
Theorem 2 with the proof in Appendix B.

Theorem 2. If F (k+1) follows update rule in Eq. (7), where ρ satisfies that dρ(y)dy2 is non-decreasing
∀y ∈ (0,∞), it is guaranteed that H(F (k+1)) ≤ H(F (k)).

3.3 GNN with Robust Unbiased Aggregation

3Wij is defined as dρ(y)

dy2

∣∣
y=y

(k)
ij

so that the quadratic upper bound Ĥ is tight at F (k) according to Lemma 3.

The diagonal terms of W are set to zero to avoid undefined derivative of dρ(y)

dy2

∣∣
y=0

as discussed in Remark 2.
4A related work [14] adopts IRLS algorithm to optimize the problem in Eq. (1). A preconditioned version is

proposed to handle the unnormalized graph Laplacian, but its step size needs to satisfy η ≤ ∥∆⊤Γ(k)∆+λI∥−1
2

as shown in Lemma 3.3 of [14], which is expensive to estimate.

6

Figure 4: dρ(y)dy2 .

The proposed QN-IRLS provides an efficient algorithm to optimize the
RUGE in Eq. (3) with a theoretical convergence guarantee. Instantiated
with ρ = ργ , each iteration in QN-IRLS in Eq. (7) can be used as
one layer in GNNs, which yields the Robust Unbiased Aggregation
(RUNG):

F (k+1) = (diag(q(k)) + λI)−1
(
(W (k) ⊙ Ã)F (k) + λF (0)

)
, (8)

where q
(k)
m =

∑
jW

(k)
mjAmj/dm as in Eq. (6) , W

(k)
ij =

1i̸=j max(0, 1

y
(k)
ij

− 1
γ) and y(k)ij =

∥∥f
(k)
i√
di

− f
(k)
j√
dj

∥∥
2
.

Interpretability. The proposed RUNG can be interpreted intuitively with edge reweighting. In
Eq. (8), the normalized adjacency matrix Ã is reweighted by W (k), where W

(k)
ij = dρ(y)

dy2 |
y=y

(k)
ij

. It

is shown in Figure 4 that Wij becomes zero for any edge ek = (i, j) with a node difference y(k)ij ≥ γ,
thus pruning suspicious edges. This implies RUNG’s strong robustness under large-budget adversarial
attacks. With the inclusion of the skip connection F (0), diag(q(k)) + λI can be seen as a normalizer
of the layer output.

Relations with Existing GNNs. RUNG can adopt different ρ that Theorem 2 allows, thus covering
many classic GNNs as special cases. When ρ(y) = y2, RUNG in Eq. (8) exactly reduces to
APPNP [28] (F (k+1) = 1

1+λÃF (k) + λ
1+λF

(0)) and GCN (F (k+1) = ÃF (k)) if chosing λ = 0.
When ρ(y) = y, the objective of RUGE is equivalent to ElasticGNN with p = 2, which is analogous
to SoftMedian and TWIRLS due to their inherent connections as ℓ1-based graph smoothing.

Complexity analysis. RUNG is scalable with time complexity ofO(k(m+n)d) and space complexity
O(m+ nd), where m is the number of edges, d is the number of features, n is the number of nodes,
and k is the number of GNN layers. Therefore, the complexity of our RUNG is comparable to normal
GCN (with a constant difference) and it is feasible to implement. The detailed discussions about
computation efficiency can be found in Appendix C.

4 Experiment

In this section, we perform comprehensive experiments to validate the robustness of the proposed
RUNG. Besides, ablation studies show its convergence and defense mechanism.

4.1 Experiment Setting

Datasets. We test our RUNG with the node classification task on two widely used real-world citation
networks, Cora ML and Citeseer [29], as well as a large-scale networks Ogbn-Arxiv [30]. We adopt
the data split of 10% training, 10% validation, and 80% testing, and report the classification accuracy
of the attacked nodes following [5]. Each experiment is averaged over 5 different random splits.

Baselines. To evaluate the performance of RUNG, we compare it to ℓ2 other representative baselines.
Among them, MLP, GCN [16], APPNP [28], and GAT [31] are undefended vanilla models. GNN-
Guard [2], RGCN [11], GRAND [8], ProGNN [3], Jaccard-GCN [6], SVD-GCN [7], EvenNet [32],
HANG [13], NoisyGNN [33], and GARNET [34] are representative robust GNNs. Besides, Soft-
Median and TWIRLS are representative methods with ℓ1-based graph smoothing 5. We also evaluate
a variant of TWIRLS with thresholding attention (TWIRLS-T). For RUNG, we test two variants:
default RUNG (Eq. (8)) and RUNG-ℓ1 with ℓ1 penalty (ρ(y) = y).

Hyperparameters. The model hyperparameters including learning rate, weight decay, and dropout
rate are tuned as in [5]. Other hyperparameters follow the settings in the original papers. RUNG
uses an MLP connected to 10 graph aggregation layers following the decoupled GNN architecture
of APPNP. λ̂ = 1

1+λ is tuned in {0.7, 0.8, 0.9}, and γ tuned in {0.5, 1, 2, 3, 5}. We chose the

5We do not include ElasticGNN because it is still unclear how to attack it adaptively due to its special incident
matrix formulation [15]. In the preliminary study (Section 2.1), we evaluate the robustness of ElasticGNN
following the unit test setting proposed in [5].

7

hyperparameter setting that yields the best robustness without a notable impact (smaller than 1%) on
the clean accuracy following [35].

Attack setting. We use the PGD attack [36] to execute the adaptive evasion and poisoning topology
attack since it delivers the strongest attack in most settings [5]. The adaptive attack setting is provided
in Appendix F. The adversarial attacks aim to misclassify specific target nodes (local attack) or the
entire set of test nodes (global attack). To avoid a false sense of robustness, our adaptive attacks
directly target the victim model instead of the surrogate model. Additionally, we include the transfer
attacks with a 2-layer GCN as the surrogate model. We also include graph injection attack following
the setting in TDGIA [37].

4.2 Adversarial Robustness

Table 1: Adaptive local attack on Cora ML. The best and second are marked.
Model 0% (Clean) 20% 50% 100% 150% 200%

MLP 72.6± 6.4 72.6± 6.4 72.6± 6.4 72.6± 6.4 72.6± 6.4 72.6± 6.4
GCN 82.7± 4.9 40.7± 10.2 12.0± 6.2 2.7± 2.5 0.0± 0.0 0.0± 0.0
APPNP 84.7± 6.8 50.0± 13.0 27.3± 6.5 14.0± 5.3 3.3± 3.0 0.7± 1.3
GAT 80.7± 10.0 30.7± 16.1 16.0± 12.2 11.3± 4.5 1.3± 1.6 2.0± 1.6

GNNGuard 82.7± 6.7 44.0± 11.6 30.7± 11.6 14.0± 6.8 5.3± 3.4 2.0± 2.7
RGCN 84.6± 4.0 46.0± 9.3 18.0± 8.1 6.0± 3.9 0.0± 0.0 0.0± 0.0
GRAND 84.0± 6.8 47.3± 9.0 18.7± 9.1 7.3± 4.9 1.3± 1.6 0.0± 0.0
ProGNN 84.7± 6.2 47.3± 10.4 21.3± 7.8 4.0± 2.5 0.0± 0.0 0.0± 0.0
Jaccard-GCN 81.3± 5.0 46.0± 6.8 17.3± 4.9 4.7± 3.4 0.7± 1.3 0.7± 1.3
GARNET 82.4± 6.8 70.9± 7.5 61.9± 7.9 42.7± 9.3 11.6± 3.4 9.6± 3.5
HANG 83.1± 7.4 71.2± 7.8 60.1± 6.3 39.5± 3.4 9.4± 2.3 5.6± 2.3
NoisyGNN 82.5± 5.6 57.4± 5.7 47.8± 6.2 36.1± 4.5 5.8± 3.4 4.1± 1.2
EvenNet 83.4± 8.1 64.8± 6.9 56.1± 5.6 29.5± 5.3 3.1± 1.1 1.1± 1.3
GraphCON 81.3± 7.1 67.3± 7.3 54.7± 7.1 41.3± 6.2 4.1± 2.1 2.3± 1.2
SoftMedian 80.0± 10.2 72.7± 13.7 62.7± 12.7 46.7± 11.0 8.0± 4.5 8.7± 3.4
TWIRLS 83.3± 7.3 71.3± 8.6 60.7± 11.0 36.0± 8.8 20.7± 10.4 12.0± 6.9
TWIRLS-T 82.0± 4.5 70.7± 4.4 62.7± 7.4 54.7± 6.2 44.0± 11.2 40.7± 11.8

RUNG-ℓ1 (Ours) 84.0± 6.8 72.7± 7.1 62.7± 11.2 53.3± 8.2 22.0± 9.3 14.0± 7.4
RUNG (Ours) 84.0± 5.3 75.3± 6.9 72.7± 8.5 70.7± 10.6 69.3± 9.8 69.3± 9.0

Table 2: Adaptive global attack on Cora ML. The best and second are marked.
Model 0% (Clean) 5% 10% 20% 30% 40%

MLP 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0
GCN 85.0± 0.4 75.3± 0.5 69.6± 0.5 60.9± 0.7 54.2± 0.6 48.4± 0.5
APPNP 86.3± 0.4 75.8± 0.5 69.7± 0.7 60.3± 0.9 53.8± 1.2 49.0± 1.6
GAT 83.5± 0.5 75.8± 0.8 71.2± 1.2 65.0± 0.9 60.5± 0.9 56.7± 0.9

GNNGuard 83.1± 0.7 74.6± 0.7 70.2± 1.0 63.1± 1.1 57.5± 1.6 51.0± 1.2
RGCN 85.7± 0.4 75.0± 0.8 69.1± 0.4 59.8± 0.7 52.8± 0.7 46.1± 0.7
GRAND 86.1± 0.7 76.2± 0.8 70.7± 0.7 61.6± 0.7 56.7± 0.8 51.9± 0.9
ProGNN 85.6± 0.5 76.5± 0.7 71.0± 0.5 63.0± 0.7 56.8± 0.7 51.3± 0.6
Jaccard-GCN 83.7± 0.7 73.9± 0.5 68.3± 0.7 60.0± 1.1 54.0± 1.7 49.1± 2.4
GARNET 84.0± 0.5 76.5± 0.4 72.1± 0.1 66.4± 0.7 62.1± 1.3 58.7± 1.5
HANG 84.5± 0.2 75.7± 0.6 74.2± 0.3 69.5± 0.4 64.7± 0.9 58.4± 0.1
NoisyGNN 83.9± 0.5 76.7± 0.1 72.1± 0.3 64.7± 0.7 58.0± 0.2 53.3± 0.6
EvenNet 84.8± 0.9 75.8± 0.9 70.7± 0.6 63.9± 0.5 58.7± 0.7 54.7± 0.8
GraphCON 83.7± 0.6 75.8± 0.3 70.9± 0.8 65.9± 0.7 62.2± 0.9 56.6± 0.3
SoftMedian 85.0± 0.7 78.6± 0.3 75.5± 0.9 69.5± 0.5 62.8± 0.8 58.1± 0.7
TWIRLS 84.2± 0.6 77.3± 0.8 72.9± 0.3 66.9± 0.2 62.4± 0.6 58.7± 1.1
TWIRLS-T 82.8± 0.5 76.8± 0.6 73.2± 0.4 67.7± 0.4 63.8± 0.2 60.8± 0.3

RUNG-ℓ1 (Ours) 85.8± 0.5 78.4± 0.4 74.3± 0.3 68.1± 0.6 63.5± 0.7 59.8± 0.8
RUNG (Ours) 84.6± 0.5 78.9± 0.4 75.7± 0.2 71.8± 0.4 67.8± 1.3 65.1± 1.2

8

Figure 5: Convergence of our
QN-IRLS compared to IRLS.

Figure 6: Bias induced by
different attack budgets.

Figure 7: Distribution of feature
difference on attacked edges.

Here we evaluate the the performance of RUNG against the baselines under different settings. The
results of local and global adaptive attacks on Cora ML are presented in Table 1 and Table 2, while
those on Citeseer are presented in Table 3 and Table 4 in Appendix E due to space limits. We
summarize the following analysis from Cora ML, noting that the same observations apply to Citeseer.

• Under adaptive attacks, many existing defenses are not significantly more robust than undefended
models. The ℓ1-based models such as TWIRLS, SoftMedian, and RUNG-ℓ1 demonstrate consider-
able and closely aligned robustness under both local and global attacks, which supports our unified
ℓ1-based robust view analysis in Section 2.2.

• RUNG exhibits significant improvements over all baselines across various budgets under both global
and local attacks. Local attacks are stronger than global attacks since local attacks concentrate on
targeted nodes. The robustness improvement of RUNG appears to be more remarkable in local
attacks.

• When there is no attack, RUNG largely preserves an excellent clean performance. RUNG also
achieves state-of-the-art performance under small attack budgets.

4.3 Ablation study

Convergence. To verify the advantage of our QN-IRLS method in Eq (7) over the first-order IRLS in
Eq (6), we show the objective H on each layer in Figure 5. It can be observed that our stepsize-free
QN-IRLS demonstrates the best convergence as discussed in Section 3.

Estimation bias. The bias effect in ℓ1-based GNNs and the unbiasedness of our RUNG can be
empirically verified. We quantify the bias with

∑
i∈V ∥fi − f⋆i ∥22, where f⋆i and fi denote the

aggregated feature on the clean graph and attacked graph, respectively. As shown in Figure 6, when
the budget scales up, ℓ1 GNNs exhibit a notable bias, whereas RUNG has nearly zero bias. We
provide comprehensive discussion of unbiasedness of RUNG in Appendix D.

Defense Mechanism To further investigate how our defense takes effect, we analyze the edges
added under adaptive attacks. The distribution of the node feature differences

∥∥fi/√di − fj/
√
dj
∥∥
2

of attacked edges is shown in Figure 7 for different graph signal estimators. It can be observed
that our RUNG forces the attacker to focus on the edges with a small feature difference, indicating
that our RUNG can improve robustness by down-weighting or pruning some malicious edges that
connect distinct nodes. Therefore, the attacks become less influential, which explains why RUNG
demonstrates outstanding robustness.

Transfer Attacks. In addition to the adaptive attack, we also conduct a set of transfer attacks that
take every baseline GNN as the surrogate model to comprehensively test the robustness of RUNG,
following the unit test attack protocol proposed in [5]. We summarize the results on Cora ML and
Citeseer in Figure 9 and Figure 10 in Appendix E due to space limits. All transfer attacks are weaker
than the adaptive attack in Section 4.2, indicating the necessity to evaluate the strongest adaptive
attack to avoid the false sense of security emphasized in this paper. Note that the attack transferred
from RUNG model is slightly weaker than the adaptive attack since the surrogate and victim RUNG
models have different model parameters in the transfer attack setting.

Hyperparameters. Due to the space limit, we provide the additional ablation studies on the
hyperparameters (including γ and λ in MCP as well as the number of layers) of RUNG in Appendix G.

9

The results offer an overview strategy for the choice of optimal hyperparameters. We can observe
that γ in MCP has a significant impact on the performance of RUNG. Specifically, a larger γ makes
RUNG closer to an ℓ1-based model, while a smaller γ encourages more edges to be pruned. This
pruning helps RUNG to remove more malicious edges and improve robustness, although a small γ
may slightly reduce clean performance.

Robustness under various scenarios. Besides the evaluation under strong adaptive attacks, we also
validate the consistent effectiveness of our proposed RUNG under various scenarios, including Trans-
fer attacks (Appendix E.2), Poisoning attacks (Appendix E.3), Large scale datasets (Appendix E.4),
Adversarial training (Appendix E.5), Graph injection attacks (Appendix E.6).

5 Related Work

To the best of our knowledge, although there are works unifying existing GNNs from a graph signal
denoising perspective [20], no work has been dedicated to uniformly understand the robustness
and limitations of robust GNNs such as SoftMedian [4], SoftMedoid [18], TWIRLS [14], Elas-
ticGNN [15], and TVGNN [19] from the ℓ1 robust statistics and bias analysis perspectives. To
mitigate the estimation bias, MCP penalty is promising since it is well known for its near unbiased-
ness property [25] and has been applied to the graph trend filtering problem [26] to promote piecewise
signal modeling, but their robustness is unexplored. Nevertheless, other robust GNNs have utilized
alternative penalties that might alleviate the bias effect. For example, GNNGuard [2] prunes the
edges whose cosine similarity is too small. Another example is that TWIRLS [14] with a thresholding
penalty can also exclude edges using graph attention. However, the design of their edge weighting
or graph attention is heuristic-based and exhibits suboptimal performance compared to the RUNG
proposed in this work.

6 Conclusion & Limitation

In this work, we propose a unified view of ℓ1 robust graph smoothing to uniformly understand the
robustness and limitations of representative robust GNNs. The established view not only justifies
their improved and closely aligned robustness but also explains their severe performance degradation
under large attack budgets by a novel estimation bias analysis. To mitigate the estimation bias, we
propose a robust and unbiased graph signal estimator. To solve this non-trivial estimation problem,
we design a novel and efficient Quasi-Newton IRLS algorithm that can better capture the landscape
of the optimization problem and converge stably with a theoretical guarantee. This algorithm can
be unfolded and used as a building block for constructing robust GNNs with Robust Unbiased
Aggregation (RUNG). As verified by our experiments, RUNG provides the best performance under
strong adaptive attacks among all the baselines. Furthermore, RUNG also covers many classic GNNs
as special cases. Most importantly, this work provides a deeper understanding of existing approaches
and reveals a principled direction for designing robust GNNs.

Regarding the limitations, first, the improvement of RUNG is more significant under large budgets
compared to the robust baselines. Second, we primarily include experiments on homophilic graphs
in the main paper, but we can generalize the proposed robust aggregation to heterophilic graphs in
future work. Third, although our Quasi-Newton IRLS algorithm has exhibited excellent convergence
compared to the vanilla IRLS, the efficiency of RUNG could be further improved.

Acknowledgment

Zhichao Hou and Dr. Xiaorui Liu are supported by the National Science Foundation (NSF) National
AI Research Resource Pilot Award, Amazon Research Award, NCSU Data Science Academy Seed
Grant Award, and NCSU Faculty Research and Professional Development Award.

10

References
[1] Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.

[2] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against
adversarial attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

[3] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 66–74, 2020.

[4] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 7637–7649. Curran Associates, Inc., 2021.

[5] Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bojchevski. Are
defenses for graph neural networks robust? In Neural Information Processing Systems, NeurIPS,
2022.

[6] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples on graph data: Deep insights into attack and defense. arXiv preprint
arXiv:1903.01610, 2019.

[7] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 169–177, 2020.

[8] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. Advances in neural information processing systems, 33:22092–22103, 2020.

[9] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolu-
tional networks. AI Open, 2023.

[10] Jinyin Chen, Xiang Lin, Hui Xiong, Yangyang Wu, Haibin Zheng, and Qi Xuan. Smoothing
adversarial training for gnn. IEEE Transactions on Computational Social Systems, 8(3):618–629,
2020.

[11] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1399–1407, 2019.

[12] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022.

[13] Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Adversarial
robustness in graph neural networks: A hamiltonian approach. Advances in Neural Information
Processing Systems, 36, 2024.

[14] Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,
Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative
algorithms. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11773–11783. PMLR, 18–24 Jul 2021.

[15] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang.
Elastic graph neural networks. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 6837–6849. PMLR, 18–24 Jul 2021.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

11

[17] Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

[18] Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural networks via
robust aggregation. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[19] Jonas Berg Hansen and Filippo Maria Bianchi. Total variation graph neural networks. In
Proceedings of the 40th international conference on Machine learning. ACM, 2023.

[20] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on
graph neural networks as graph signal denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, page 1202–1211, New York,
NY, USA, 2021. Association for Computing Machinery.

[21] David L Donoho. De-noising by soft-thresholding. IEEE transactions on information theory,
41(3):613–627, 1995.

[22] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[23] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

[24] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[25] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894 – 942, 2010.

[26] Rohan Varma, Harlin Lee, Jelena Kovačević, and Yuejie Chi. Vector-valued graph trend filtering
with non-convex penalties. IEEE transactions on signal and information processing over
networks, 6:48–62, 2019.

[27] Paul W Holland and Roy E Welsch. Robust regression using iteratively reweighted least-squares.
Communications in Statistics-theory and Methods, 6(9):813–827, 1977.

[28] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[32] Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop
neighbors improves robustness of graph neural networks. Advances in Neural Information
Processing Systems, 35:4694–4706, 2022.

[33] Sofiane Ennadir, Yassine Abbahaddou, Johannes F Lutzeyer, Michalis Vazirgiannis, and Henrik
Boström. A simple and yet fairly effective defense for graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 21063–21071, 2024.

[34] Chenhui Deng, Xiuyu Li, Zhuo Feng, and Zhiru Zhang. Garnet: Reduced-rank topology
learning for robust and scalable graph neural networks. In Learning on Graphs Conference,
pages 3–1. PMLR, 2022.

[35] Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations.
In Neural Information Processing Systems, 2019.

12

[36] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: an optimization perspective.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages
3961–3967, 2019.

[37] Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie
Tang. Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2461–2471, 2021.

[38] Emmanuel J. Candès, Michael B. Wakin, and Stephen P. Boyd. Enhancing sparsity by
reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5-6):877–905,
Dec 2008. Funding by NSF.

[39] Amir Beck and Shoham Sabach. Weiszfeld’s method: Old and new results. Journal of
Optimization Theory and Applications, 164(1):1–40, 2015.

[40] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

[41] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. 2010.

[42] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 34:7637–7649, 2021.

13

A Bias Accumulation of ℓ1 Models

A.1 Details of the Numerical Simulation Settings

To provide a more intuitive illustration of the estimation biases of different models, we simulate a
mean estimation problem on synthetic data since most message passing schemes in GNNs essentially
estimate the mean of neighboring node features. In the context of mean estimation, the bias is
measured as the distances between different mean estimators and the true mean. We firstly generated
clean samples {xi}ni=1 (blue dots) and the outlier samples {xi}n+mi=n+1(red dots) from 2-dimensional
Gaussian distributions, N ((0, 0), 1) and N ((8, 8), 0.5), respectively. We calculate the mean of clean
samples 1

n

∑n
i=1 xi as the ground truth of the mean estimator. Then we estimate the mean of all the

samples by solving argminz
∑n+m
i=1 η(z − xi) using the Weiszfeld method [38, 39], where η(·) can

take different norms such as ℓ2 norm ∥ · ∥22 and ℓ1 norm ∥ · ∥2.

The mean estimators are formulated as minimization operators

z̄ = argmin
z

n+m∑
i

η(z − xi), (9)

where n is the number of clean samples and m is the number of adversarial samples.

ℓ1 estimator. The ℓ1 estimator (η(y) := ∥y∥2), essentially is the geometric median. We adopted the
Weiszfeld method to iteratively reweight z to minimize the objective, following

z(k+1) =

∑
i w

(k)
i xi∑

i w
(k)
i

, (10)

where w(k)
i = 1

∥z(k)−xi∥2
. This can be seen as a gradient descent step of z(k+1) = z(k) −

α∇z

∑
i ∥z − xi∥2 = z(k+1) − α

∑
i

z(k)−xi

∥z(k)−xi∥2
. Taking α = 1∑

i w
(k)
i

instantly yields Eq. (10).

MCP-based estimator. We therefore adopt a similar approach for the MCP-based estimator (“Ours”
in Fig. Figure 2), where η(y) := ργ(y):

z(k+1) = z(k) − α∇z

∑
i

ργ(∥z − xi∥2) (11)

= z(k) − α
∑
i

max(0,
1

∥z(k) − xi∥2
− 1

γ
)(z(k) − xi). (12)

Denoting max(0, ∥z(k) − xi∥−1
2 − 1

γ) as wi, and then α = 1∑
i wi

yields a similar reweighting

iteration z(k+1) =
∑

i w
(k)
i xi∑

i w
(k)
i

.

ℓ2 estimator. It is worth noting that the same technique can be applied to the ℓ2 estimator with
ρ(z) := ∥z∥22. The iteration becomes

z(k+1) = z(k) − α∇z

∑
i

∥z − xi∥22 (13)

= z(k) − α
∑
i

(z(k) − xi), (14)

and α = 1
n+m yields z(k+1) = 1

n+m

∑
i xi, which gives the mean of all samples in one single

iteration.

Similarities between this mean estimation scenario and our QN-IRLS in graph smoothing can be
observed, both of which involve iterative reweighting to estimate similar objectives. The approximated
Hessian in our QN-IRLS resembles the Weiszfeld method, canceling the z(k) by tuning the stepsize.

In Figure 2, we visualize the generated clean samples and outliers, as well as the ground truth
means and the mean estimators with η(·) = ∥ · ∥22 or ∥ · ∥2 under different outlier ratios (15%,

14

30%, 45%). The results show that the ℓ2-based estimator deviates far from the true mean, while
the ℓ1-based estimator is more resistant to outliers, which explains why ℓ1-based methods exhibit
stronger robustness. However, as the ratio of outliers escalates, the ℓ1-based estimator encounters a
greater shift from the true mean due to the accumulated bias caused by outliers. This observation
explains why ℓ1-based graph smoothing models suffer from catastrophic degradation under large
attack budgets. Our estimator keeps much closer to the ground truth than other estimators with the
existence of outliers.

A.2 Additional Simulation Results and Discussions

Here, we complement Figure 2 with the settings of higher attack budgets. As the outlier ratio exceeds
the breakdown point 50%, we observe that our MCP-based mean estimator can correctly recover the
majority of the samples, i.e. converge to the center of “outliers”.

Figure 8: The trajectory of our MCP-based mean estimator.

B Convergence Analysis

To begin with, we will provide an overview of our proof, followed by a detailed presentation of the
formal proof for the convergence analysis.

Overview of proof. First, for both IRLS and QN-IRLS, we construct, for F (k) in every iteration k,
a quadratic upper bound Ĥ that satisfies Ĥ + C ≥ H where the equality is reached at F (k). Then
we can minimize Ĥ to guarantee the iterative descent of H since H(F (k+1)) ≤ Ĥ(F (k+1)) + C ≤
Ĥ(F (k)) + C = H(F (k)).

To find the F (k+1) such that Ĥ(F (k+1)) ≤ Ĥ(F (k)), IRLS simply adopts the plain gradient descent
F (k+1) = F (k)− η∇Ĥ(F (k)) whose convergence condition can be analyzed with the β-smoothness
of the quadratic Ĥ (Theorem 1). To address the problems of IRLS as motivated in Section 3.2, our
Quasi-Newton IRLS utilizes the diagonal approximate Hessian Q̂ to scale the update step size in
different dimensions respectively as F (k+1) = F (k) − Q̂−1∇Ĥ(F (k)). Thereafter, by bounding the
Hessian with 2Q̂, the descent condition of Ĥ is simplified (Theorem 2).

15

Lemma 1. For any ρ(y) satisfying dρ(y)
dy2 is non-increasing, denote yij :=

∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥
2

, then

H(F) =
∑

(i,j)∈E,i̸=j ρ(yij) + λ
∑
i∈V ∥fi − f

(0)
i ∥22 has the following upper bound:

H(F) ≤ Ĥ(F) + C =
∑

(i,j)∈E,i̸=j

W
(k)
ij y2ij + λ

∑
i∈V

∥fi − f
(0)
i ∥22 + C, (15)

where W (k)
ij = ∂ρ(y)

∂y2

∣∣
y=y

(k)
ij

and y(k)ij =

∥∥∥∥f
(k)
i√
di

− f
(k)
j√
dj

∥∥∥∥
2

andC = H(F (k))−Ĥ(F (k)) is a constant.

The equality in Eq. (15) is achieved when F = F (k).

Proof. Let v = y2 and define ψ(v) := ρ(y) = ρ(
√
v). Then ψ is concave since dψ(v)

dv = dρ(y)
dy2 is

non-increasing. According to the concavity property, we have ψ(v) ≤ ψ(v0) + ψ′(ν)
∣∣
ν=v0

(v − v0).
Substitute v = y2, v0 = y20 , we obtain:

ρ(y) ≤ y2
∂ρ(y)

∂y2
∣∣
y=y0

− y20
∂ρ(y)

∂y2
∣∣
y=y0

+ ρ(y0) (16)

= y2
∂ρ(y)

∂y2
∣∣
y=y0

+ C(y0) (17)

where the inequality is reached when y = y0. Next, substitute y = yij and y0 = y
(k)
ij , we can get

ρ(yij) ≤ W
(k)
ij y2ij + C(y

(k)
ij) which takes the equality at yij = y

(k)
ij . Finally, by summing up both

sides and add a regularization term, we can prove the Eq. (15).

Remark 1. It can be seen that the definition of Ĥ depends on F (k), which ensures that the bound
is tight when F = F (k). This tight bound condition is essential in the majorization-minimization
algorithm as seen in Theorem 1.

Lemma 2. For Ĥ =
∑

(i,j)∈E,i̸=jWijy
2
ij + λ

∑
i∈V ∥fi − f

(0)
i ∥22, the gradient and Hessian w.r.t.

F 6 satisfy

∇Fmn
Ĥ(F) = 2

(
(diag(q)−W ⊙ Ã+ λI)F − λF (0)

)
mn

, (18)

and

∇Fmn
∇Fkl

Ĥ(F) = 2
(

diag(q)−W ⊙ Ã+ λI
)
mk

, (19)

where qm =
∑
jWmjAmj/dm and Ãij =

Aij√
didj

is the symmetrically normalized adjacency

matrix.

6Here are some explanations on the tensor ‘Hessian’ ∇2Ĥ. Since Ĥ(F) is dependent on a matrix, there
are some difficulties in defining the Hessian. However, as can be observed in Eq. (27) and Eq. (32), the feature
dimension can be accounted for by the following. Initially, we treat the feature dimension as an irrelevant
dimension that is excluded from the matrix operations. E.g., F∇2ĤF =

∑
ik Fij∇2ĤijklFkl where the

feature dimensions j and l remain free indices while the node indices i and k are eliminated as dummy indices.
Finally, we take the trace of the resulting #feature×#feature matrix to get the desired value.

16

Proof. Follow A = A⊤ and define y2ij :=

∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥2
2

, then the first-order gradient of∑
(i,j)∈E,i̸=jWijy

2
ij will be

∇Fmn

 ∑
(i,j)∈E,i̸=j

Wijy
2
ij

 (20)

=
∑

(i,j)∈E,i̸=j

Wij

∂y2ij
∂Fmn

(21)

=
∑

(m,j)∈E

Wmj

∂y2mj
∂Fmn

(22)

=
∑

(m,j)∈E

Wmj

∂

(
Fmn√
dm

− Fjn√
dj

)2

∂Fmn
(23)

=
∑

j∈N (m)

2Wmj(
Fmn
dm

− Fjn√
dmdj

) (24)

=2
∑
j

Wmj(
Amj

dm
Fmn − Amj√

dmdj
Fjn) (25)

=2(

∑
jWmjAmj

dm
)Fmn − 2((W ⊙ Ã)F)mn (26)

=
(
2(diag(q)−W ⊙ Ã)F

)
mn

, (27)

and the second-order hessian will be:

∇2
FmnFkl

 ∑
(i,j)∈E,i̸=j

Wijy
2
ij

 (28)

=
∑

(i,j)∈E,i̸=j

Wij

∂y2ij
∂Fmn∂Fkl

(29)

=2
∂

∂Fkl

∑
j

Wmj(
Amj

dm
Fmn − Amj√

dmdj
Fjn)

 (30)

=2(qmδmk −
∑
j

Wmj
Amj√
dmdj

δjk)δnl (31)

=2(diag(q)−W ⊙ Ã)mkδnl. (32)

Remark 2. From Eq. (21) to Eq. (24), one can assume m /∈ N (m), and thus Wmm = 0. However,
as we know, a self-loop is often added to A to facilitate stability by avoiding zero-degree nodes
that cannot be normalized. This is not as problematic as it seems, though. Because

∑
(i,j)∈E,i̸=j

intrinsically excludes the diagonal terms, we can simply assign zero to the diagonal terms of W so
that the term of j = m is still zero in Eq. (24), as defined in Eq. (5).

To minimize Ĥ, the gradient descent update rule takes the form of Eq. (6). One may assume that
when η is chosen to be small enough, Ĥ(F (k+1)) ≤ Ĥ(F (k)). For a formal justification, we have
Theorem 1 to determine the convergence condition of η.

Theorem 1. If F (k) follows the update rule in Eq. (6), where the ρ satisfies that dρ(y)
dy2 is non-

decreasing for y ∈ (0,∞), then a sufficient condition for H(F (k+1)) ≤ H(F (k)) is that the step size
η satisfies 0 < η ≤ ∥diag(q(k))−W (k) ⊙ Ã+ λI∥−1

2 .

17

Proof. The descent of Ĥ(F) can ensure the descent of H(F) since H(F (k+1)) ≤ Ĥ(F (k+1)) ≤
Ĥ(F (k)) = H(F (k)). Therefore, we only need to prove Ĥ(F (k+1)) ≤ Ĥ(F (k)).

Noting that Ĥ is a quadratic function and F (k+1) − F (k) = −η∇Ĥ(F (k)), then Ĥ(F (k+1)) and
Ĥ(F (k)) can be connected using Taylor expansion6, where ∇Ĥ and ∇2Ĥ is given in Lemma 2:

Ĥ(F (k+1))− Ĥ(F (k)) (33)

=tr
(
∇Ĥ(F (k))⊤(F (k+1) − F (k))

)
(34)

+
1

2
tr
(
(F (k+1) − F (k))⊤∇2Ĥ(F (k))(F (k+1) − F (k))

)
(35)

=tr
(
−η∇Ĥ(F (k))⊤∇Ĥ(F (k))

)
(36)

+ tr

(
η2

2
∇Ĥ(F (k))⊤∇2Ĥ(F (k))∇Ĥ(F (k))

)
. (37)

Insert ∇2Ĥ(F (k)) = 2(diag(q)−W (k) ⊙ Ã+ λI) from Lemma 2 into the above equation and we
can find a sufficient condition for Ĥ(F (k+1)) ≤ Ĥ(F (k)) to be

−η + ∥diag(q)−W (k) ⊙ Ã+ λ̂I∥2η2 ≤ 0, (38)

or
η ≤ ∥diag(q)−W (k) ⊙ Ã+ λ̂I∥−1

2 . (39)

Now we prove that when taking the Quasi-Newton-IRLS step as in Eq. (7), the objective Ĥ is
guaranteed to descend. Since the features in different dimensions are irrelevant, we simplify our
notations as if feature dimension was 1. One may easily recover the general scenario by taking the
trace.
Lemma 3. 2Q̂−∇2Ĥ(y) is positive semi-definite, where Ĥ =

∑
(i,j)∈E,i̸=j Wijy

2
ij+λ

∑
i∈V ∥fi−

f
(0)
i ∥22, Q̂ = 2(diag(q) + λI), and qm =

∑
j WmjAmj/dm.

Proof. In Lemma 2, we have ∇2Ĥ(y) = 2(diag(q) + λI −W ⊙ Ã), then

2Q̂−∇2Ĥ(y) = 2(diag(q) + λI +W ⊙ Ã). (40)

Recall how we derived Eq. (27) from Eq. (15), where we proved that∑
(i,j)∈E,i̸=j

Wij∥
fi√
di

− fj√
dj

∥22 = tr(F⊤(diag(q)−W ⊙ Ã)F), (41)

which holds for all F . Similarly, the equation still holds after flipping the sign before fj/
√
dj and

W ⊙ Ã. We then have this inequality: ∀F ,∀λ ≥ 0

0 ≤
∑

(i,j)∈E,i̸=j

Wij∥
fi√
di

+
fj√
dj

∥22 = tr(F⊤(diag(q) +W ⊙ Ã)F) (42)

≤tr(F⊤(diag(q) +W ⊙ Ã+ λI)F). (43)

Thus, (diag(q) +W ⊙ Ã+ λI) ⪰ 0, and thus 2Q̂−∇2Ĥ(y) ⪰ 0.

Using Lemma 1 and Lemma 3 we can prove Theorem 2. Note that we continue to assume #feature= 1
for simplicity but without loss of generality6.

Theorem 2. If F (k+1) follows update rule in Eq. (7), where ρ satisfies that dρ(y)dy2 is non-decreasing
∀y ∈ (0,∞), it is guaranteed that H(F (k+1)) ≤ H(F (k)).

18

Proof. Following the discussions in Theorem 1, we only need to prove Ĥ(F (k+1)) ≤ Ĥ(F (k)).For
the quadratic Ĥ, we have:

Ĥ(x) = Ĥ(y) +∇Ĥ(y)⊤(x− y) +
1

2
(x− y)⊤∇2Ĥ(y)(x− y). (44)

We can define Q(y) = 2Q̂(y) in Lemma 3 such that Q(y)−∇2Ĥ(y) ⪰ 0, then

∀z, z⊤Q(y)z ≥ z⊤∇2Ĥ(y)z. (45)

Then an upper bound of Ĥ(x) can be found by inserting Eq. (45) into Eq. (44).

Ĥ(x) ≤ Ĥ(y) +∇Ĥ(y)⊤(x− y) +
1

2
(x− y)⊤Q(y)(x− y). (46)

Then, insert Q = 2Q̂ into Eq. (46). Note that Q̂ := 2(diag(q) + λ̂I), so Q̂ ⪰ 0 and Q̂⊤ = Q̂.
Thereafter, the update rule x = y − Q̂−1∇Ĥ(y) in Eq. (7) gives

Ĥ(x)− Ĥ(y) (47)

≤∇Ĥ(y)⊤(x− y) +
1

2
(x− y)⊤Q(y)(x− y) (48)

=∇Ĥ(y)⊤(x− y) + 2
(
Q̂

1
2 (x− y)

)⊤ (
Q̂

1
2 (x− y)

)
(49)

=2∇Ĥ(y)⊤Q̂−1∇Ĥ(y)− 2∇Ĥ(y)⊤(Q̂− 1
2)⊤Q̂− 1

2∇Ĥ(y) (50)
=0. (51)

Therefore, our QN-IRLS in Eq. (7) is guaranteed to descend.

C Computation Efficiency

Our RUNG model preserves advantageous efficiency even adopting the quasi-Newton IRLS algorithm.

C.1 Time Complexity Analysis

Each RUNG layer involves computing W , q, and the subsequent aggregations. We elaborate on
them one by one. We denote the number of feature dimensions d, the number of nodes n, and the
number of edges m, which are assumed to satisfy m≫ 1, n≫ 1 and d≫ 1. The number of layers
is denoted as k. The asymptotic computation complexity is denoted as O(·).

Computation of W ⊙A and W ⊙Ã. W := 1i ̸=j
dργ(yij)

dy2ij
is the edge weighting matrix dependent

on the node feature matrix F . The computation of yij = ∥ fi√
di

− fj√
dj
∥2 is O(d) and that of dργ(yij)

dy2ij

is O(1). Wij only needs computing when (i, j) ∈ E , because ∀(i, j) /∈ E , Wij will be masked out
by A or Ã anyways. Each element of W involves computation time of O(d) and m elements are
needed. In total, W costs O(md), and W ⊙A and W ⊙ Ã cost O(md+m) = O(md).

Computation of Q̂−1. Q̂−1 := 1
2 (diag(q(k)) + λI)−1 is the inverse Hessian in our quasi-Newton

IRLS. Because Q̂ is designed to be a diagonal matrix, its inverse can be evaluated as element-wise
reciprocal which is efficient. As for q :=

∑
j W

(k)
mjAmj/dm, only existing edges (i, j) ∈ E need

evaluation in the summation. Therefore, this computation costs O(m). Thus, Q̂−1 costs O(m) in
total.

Computation of aggregation. An RUNG layer follows

F (k+1) = 2Q̂−1
(
(W (k) ⊙ Ã)F (k) + λF (0)

)
, (52)

which combines the quantities calculated above. An extra graph aggregation realized by the matrix
multiplication between W ⊙ Ã and F is required, costing O(md). The subsequent addition to F (0)

and the multiplication to the diagonal Q̂−1 both cost O(nd).

19

Stacking layers. RUNG unrolls the QN-IRLS optimization procedure, which has multiple iterations.
Therefore, the convergence increase that QN-IRLS introduces allows a RUNG with fewer layers and
increases the overall complexity. It is worth noting that the QN-IRLS utilizes a diagonal approximated
Hessian, and thus the computation per iteration is also kept efficient as discussed above.

Summing up all the costs, we have the total computational complexity of our RUNG, O((m+ n)kd).
Our RUNG thus scales well to larger graph datasets such as ogbn-arxiv.

Space Complexity Analysis The only notable extra storage cost is W whose sparse layout takes
up O(m). This is the same order of size as the adjacency matrix itself, thus not impacting the total
asymptotic complexity.

C.2 Alternative Perspective

In fact, the above analysis can be simplified when we look at the local aggregation behavior of RUNG.
For node i, it’s updated via aggregation fi =

2
Q̂−1

ii

((
∑
j∈N (i) Wijfj) + λf

(0)
i). The summation

over neighbors’ fj will give O(m) in the total time complexity in each feature dimension, and Wij

involves O(d) computations for each neighbor. This sums up to O(md) as well. Essentially, the high
efficiency of RUNG originates from that every edge weighting in our model involves only the 2 nodes
on this edge.

D Comprehensive Bias Analysis

In this section, we provide multiple evidence from various perspectives to reveal the estimation bias
of ℓ1-based estimation as follows.

(1) From the theoretical perspective, the extensive literature on high-dimensional statistics [40, 41]
has proved that ℓ1 regularization induces an estimation bias.

(2) From the algorithm perspective, in Section 2.3, we provide the explanation on the ℓ1-based
estimation problem solver. Specifically, the soft-thresholding operator Sλ(θ) := sign(θ)max(|θ| −
λ, 0) induced by the ℓ1 regularized problem causes a constant shrinkage for θ larger than λ, enforcing
the estimator to be biased towards zero with the magnitude λ.

(3) From the numerical simulation in Section 2.3, we provide an example of mean estimation to verify
this estimation bias. As shown in Figure 2, the ℓ1 estimator (green) deviates further from the true
mean as the ratio of outliers escalates. This can be clearly explained as the effect of the accumulation
of estimation bias. In other words, each outlier results in a constant bias, and the bias accumulates
with more outliers.

(4) From the performance perspective, ℓ1-based GNNs such as SoftMedian, TWIRLS, and RUNG-ℓ1
(the ℓ1 variant of our model) suffer from significant performance degradation when the attack budget
increases.

(5) From our ablation study in Figure 6, we quantify the estimation bias of the aggregated feature
f⋆i on the attacked graph from the feature fi on the clean graph:

∑
i∈V ∥fi − f∗i ∥22. The results

demonstrate that ℓ1-based GNN produces biased estimation under adversarial attacks and the bias
indeed scales up with the attack budget. However, our proposed RUNG method exhibits a nearly zero
estimation bias under the same attacking budgets.

All of this evidence can convincingly support our claim that ℓ1-based robust estimator suffers from
the estimation bias, which validates the motivation of our new algorithm design.

20

E Additional experiment results

In this section, we present the experiment results that are not shown in the main paper due to space
limits.

E.1 Adaptive Attacks

Table 3 and Table 4 are the results of adaptive local and global attacks on Citeseer, referred to in
Section 4.2.

Table 3: Adaptive local attack on Citeseer. The best and second are marked.
Model 0% 20% 50% 100% 150% 200%

MLP 69.3± 2.5 69.3± 2.5 69.3± 2.5 69.3± 2.5 69.3± 2.5 69.3± 2.5
GCN 79.3± 3.3 44.7± 8.8 27.3± 7.7 6.7± 3.7 0.7± 1.3 0.0± 0.0
APPNP 80.7± 4.4 50.0± 6.7 39.3± 6.5 16.7± 12.3 16.0± 8.0 0.0± 0.0
GAT 74.7± 5.0 15.3± 17.5 13.3± 13.5 12.0± 11.3 12.7± 6.5 9.3± 5.3

GNNGuard 74.7± 4.5 46.0± 10.4 32.7± 11.0 18.0± 7.5 6.0± 3.9 4.0± 3.9
RGCN 80.0± 2.1 46.7± 9.4 32.7± 8.8 10.0± 5.2 0.7± 1.3 0.7± 1.3
GRAND 77.3± 2.5 56.7± 4.2 44.0± 3.9 16.7± 6.3 0.7± 1.3 0.0± 0.0
ProGNN 80.0± 2.1 42.7± 7.4 26.0± 5.3 10.0± 4.7 0.7± 1.3 0.0± 0.0
Jaccard-GCN 78.7± 3.4 46.7± 7.3 28.0± 7.5 6.7± 4.7 0.7± 1.3 0.0± 0.0
SoftMedian 78.7± 3.4 69.3± 6.5 66.0± 7.1 56.0± 4.4 8.7± 6.9 3.3± 3.0
TWIRLS 77.3± 2.5 69.3± 1.3 68.7± 1.6 57.3± 2.5 36.7± 4.7 26.7± 4.7
TWIRLS-T 76.0± 3.3 70.7± 2.5 68.7± 2.7 62.0± 3.4 52.7± 5.3 47.3± 8.3

RUNG-ℓ1 (ours) 80.0± 3.7 75.3± 4.5 73.3± 3.0 67.3± 3.3 36.0± 9.3 26.0± 8.3
RUNG (ours) 77.3± 1.3 70.7± 5.7 69.3± 6.8 67.3± 7.1 64.0± 5.7 61.3± 5.8

Table 4: Adaptive global attack on Citeseer. The best and second are marked.
Model Clean 5% 10% 20% 30% 40%

MLP 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3
GCN 74.8± 1.2 66.1± 1.0 60.9± 0.8 53.0± 1.0 47.0± 0.8 41.2± 1.1
APPNP 75.3± 1.1 65.8± 0.9 60.7± 1.6 52.3± 1.6 46.0± 2.0 41.2± 2.2
GAT 73.4± 1.2 65.4± 1.3 60.4± 1.4 52.6± 2.5 47.2± 3.4 41.2± 4.8

GNNGuard 72.4± 1.1 65.6± 0.9 61.8± 1.4 55.6± 1.4 51.0± 1.3 47.3± 1.3
RGCN 74.4± 1.0 66.0± 0.8 60.6± 0.9 52.5± 0.8 46.1± 0.9 40.2± 1.0
GRAND 74.8± 0.6 66.6± 0.7 61.8± 0.7 53.6± 1.1 47.4± 1.2 42.2± 0.9
ProGNN 74.2± 1.3 65.6± 1.1 60.3± 1.1 52.7± 1.4 46.2± 0.9 40.8± 0.6
Jaccard-GCN 74.8± 1.2 66.3± 1.2 60.9± 1.2 53.3± 0.9 46.5± 0.9 41.1± 1.0
EvenNet 74.6± 0.5 66.8± 0.5 62.0± 0.6 55.9± 0.4 51.1± 0.4 47.4± 0.8
GARNET 74.8± 1.3 68.0± 0.9 64.0± 1.1 58.2± 0.7 53.9± 0.8 51.0± 0.9
SoftMedian 74.6± 0.7 68.0± 0.7 64.4± 0.9 59.3± 1.1 55.2± 2.0 51.9± 2.1
TWIRLS 74.2± 0.8 69.2± 0.8 66.4± 0.7 61.6± 0.9 58.1± 1.2 51.8± 1.5
TWIRLS-T 73.7± 1.1 69.1± 1.2 66.4± 1.0 62.8± 1.5 60.0± 1.4 57.4± 1.5

RUNG-ℓ1 (ours) 75.5± 1.1 69.3± 1.2 65.9± 1.2 61.1± 1.1 57.2± 1.4 53.9± 1.3
RUNG (ours) 74.3± 0.7 71.4± 1.0 69.8± 1.3 67.6± 1.2 66.5± 1.3 65.3± 1.5

E.2 Transfer Attacks

Table 5 and Table 6 are the results of transfer global attacks on Cora ML and Citeseer. Figure 9 and
Figure 10 are the experiment results of our RUNG attacked by transfer attacks generated on different
surrogate models as mentioned in Section 4.3.

Figure 11 shows results of global evasion transfer attacks between different models on Cora ML. Our
observations are summarized below:

• The attacks generated by RUNG are stronger when applied to more robust models like SoftMedian,
while are not strong against undefended or weakly defended models.

21

Table 5: Transfer global evasion attack on Cora ML.

Model Clean 5% 10% 20% 30% 40%

MLP 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0 65.0± 1.0
GCN 85.0± 0.4 76.0± 0.7 70.6± 0.9 62.1± 1.0 55.4± 1.0 49.8± 1.1
APPNP 86.3± 0.4 78.0± 1.0 72.7± 1.2 64.4± 1.8 57.7± 1.5 53.0± 1.2
GAT 83.5± 0.5 78.4± 0.7 75.1± 0.9 69.5± 1.7 65.0± 1.8 61.4± 2.4

GNNGuard 83.1± 0.7 79.9± 0.7 78.1± 0.7 74.8± 0.9 71.8± 1.1 69.9± 1.1
RGCN 85.7± 0.4 77.7± 0.6 72.7± 0.8 64.4± 0.8 57.9± 0.8 52.6± 1.0
GRAND 86.1± 0.7 80.2± 0.7 76.4± 1.0 70.0± 1.3 64.6± 1.4 60.1± 1.1
ProGNN 85.6± 0.5 77.8± 0.7 72.8± 0.9 64.8± 1.1 58.7± 1.3 53.2± 1.3
Jaccard-GCN 83.7± 0.7 77.8± 0.7 74.1± 1.1 68.4± 1.1 63.5± 1.6 59.3± 1.4
ElasticGNN 85.9± 0.5 81.9± 0.9 79.0± 1.0 73.3± 1.3 68.1± 1.4 63.6± 1.5
SoftMedian 85.0± 0.7 81.8± 0.4 79.0± 0.6 73.0± 1.1 66.3± 1.6 60.4± 2.4
TWIRLS 84.2± 0.6 81.5± 0.7 79.7± 0.6 76.8± 0.5 74.3± 0.7 72.8± 0.9

RUNG-ℓ1 (ours) 85.8± 0.5 82.3± 0.8 79.7± 0.6 75.1± 0.8 70.5± 0.8 67.1± 0.9
RUNG (ours) 84.6± 0.5 83.7± 0.6 82.9± 0.9 81.3± 1.3 79.2± 1.6 77.9± 2.0

Table 6: Transfer global evasion attack on Citeseer.

Model Clean 5% 10% 20% 30% 40%

MLP 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3 67.7± 0.3
GCN 74.8± 1.2 66.7± 1.3 62.1± 1.3 54.5± 1.7 48.7± 1.8 43.4± 2.1
APPNP 75.3± 1.1 67.7± 1.2 62.9± 1.0 55.6± 1.0 50.3± 1.0 45.8± 1.6
GAT 73.4± 1.2 68.2± 1.3 64.6± 1.4 58.2± 2.1 53.2± 3.1 48.7± 3.7

GNNGuard 72.4± 1.1 70.6± 1.2 69.1± 1.3 67.1± 1.4 65.4± 1.7 64.2± 1.9
RGCN 74.4± 1.0 67.8± 1.0 63.5± 1.3 56.3± 1.5 51.0± 1.4 46.1± 1.7
GRAND 74.8± 0.6 68.9± 0.8 65.0± 0.9 59.2± 1.3 54.8± 1.5 51.2± 1.9
ProGNN 74.2± 1.3 66.8± 1.0 62.3± 1.0 55.0± 1.1 49.2± 1.0 43.7± 1.3
Jaccard-GCN 74.8± 1.2 68.5± 1.1 65.1± 1.0 59.0± 1.7 54.6± 1.9 51.1± 1.7
ElasticGNN 75.2± 1.2 70.9± 1.4 67.7± 1.6 62.0± 2.5 57.9± 3.2 53.4± 4.0
SoftMedian 74.6± 0.7 68.0± 0.7 64.4± 0.9 59.3± 1.1 55.2± 2.0 51.9± 2.2
TWIRLS 74.2± 0.8 71.8± 1.0 70.1± 0.9 68.4± 1.4 67.4± 1.6 66.4± 1.8

RUNG-ℓ1 (ours) 75.5± 1.1 72.0± 1.3 69.3± 1.4 65.1± 1.8 61.8± 2.0 58.7± 2.4
RUNG (ours) 74.3± 0.7 74.2± 1.0 74.2± 1.0 74.3± 1.0 74.2± 1.1 74.1± 1.1

Figure 9: Transfer global attack from different surrogate models to our RUNG on Cora ML.

• For ℓ1 GNNs, the attacks are the strongest when transferred from ℓ1 GNNs. This supports again
our unified view on ℓ1 GNNs. An exception is TWIRLS because it only has one attention layer and
does not always converge to the actual ℓ1 objective.

22

Figure 10: Transfer global attack from different surrogate models to our RUNG on Citeseer.

Figure 11: Transfer global attack between different model pairs on Cora.

E.3 Poisoning Attacks

We provide the experiment results under poisoning attacks on Cora ML and Citeseer in Table 7 and
Table 8, respectively.

23

Table 7: Poisoning Attacks on Cora ML.
Budget 5% 10% 20% 30% 40%
GCN 74.9± 0.4 69.7± 0.7 60.7± 0.7 54.0± 1.0 48.7± 1.0

APPNP 76.3± 0.9 71.1± 1.2 63.0± 1.3 57.1± 0.6 53.2± 1.1
SoftMedian 79.2± 0.7 75.6± 0.3 67.8± 0.6 62.9± 1.0 58.6± 0.7

RUNG-ℓ1 (ours) 79.7± 0.6 76.4± 0.6 68.1± 0.6 63.8± 0.5 60.1± 0.9
RUNG (ours) 78.5± 0.5 75.5± 0.3 71.5± 0.4 67.1± 1.6 64.6± 1.3

Table 8: Poisoning Attacks on Citeseer.
Budget 5% 10% 20% 30% 40%
GCN 65.5± 1.1 59.8± 1.0 51.0± 1.0 44.0± 1.2 37.9± 1.0

APPNP 64.2± 1.8 58.1± 2.6 49.8± 2.5 43.4± 2.3 40.6± 2.7
SoftMedian 67.1± 1.0 63.8± 1.0 58.5± 1.1 54.3± 1.9 51.2± 2.4

RUNG-ℓ1 (ours) 68.9± 1.0 65.9± 1.1 61.0± 1.0 57.2± 1.1 53.9± 1.3
RUNG (ours) 72.4± 0.9 72.1± 1.2 71.3± 1.4 70.8± 1.3 69.7± 1.4

E.4 Large Scale Ogbn-Arxiv

In the large scale datasets, we can not directly apply the vanilla PGD attack [36] on them due to
excessive requirement of memory and computation on dense matrix. Alternatively, we leverage
the PRBCD [42] to scale the PGD attack instead of manipulating on the dense adjacency matrix.
We conduct experiments on large scale Ogbn-Arxiv and the results in Table 9 verified the superior
robustness of our RUNG model. RUNG’s robustness outperforms its ℓ1 variant which delivers similar
performance as SoftMedian and Elastic GNN due to their shared ℓ1 graph smoothing.

Table 9: Global PGD Attacks on Ogbn-Arxiv.
Model Clean 1% 5% 10%
GCN 71.9± 0.5 63.1± 0.4 48.9± 3.2 41.8± 0.5

APPNP 71.7± 0.3 64.2± 0.4 50.1± 2.3 42.2± 1.3
SoftMedian 71.2± 0.5 65.1± 0.3 54.1± 1.6 50.1± 2.6

RUNG-ℓ1 (ours) 71.6± 0.6 65.5± 0.4 55.0± 1.1 49.6± 1.1
RUNG (ours) 70.2± 2.1 65.2± 0.2 64.0± 0.8 61.2± 0.7

E.5 Adversarial Training

We conduct the adversarial training following [36] and present the results in Table 10. From the results,
we can observe that with adversarial training, the robustness of RUNG can be further improved.

Table 10: Adversarial Training vs Normal Training on RUNG.
Budget Clean 5% 10% 20% 30% 40%
Normal Training 84.6± 0.5 78.9± 0.4 75.7± 0.2 71.8± 0.4 67.8± 1.3 65.1± 1.2
Adversarial Training 84.3± 1.2 81.8± 0.7 79.9± 0.3 77.3± 1.1 72.8± 0.6 69.1± 0.9

E.6 Graph Injection Attack

The injection attack was conducted following the settings in [37] to evaluate the robustness of different
methods. We set up the budget on the number of injected nodes as 100 and the budget on degree as
200. The results in Table 11 show that our RUNG significantly outperforms the baseline models.

24

Table 11: Graph Injection Attack on Citeseer.

Model Clean Attacked
GCN 75.40 28.14

APPNP 75.84 25.24
GNNGuard 73.47 34.73
SoftMedian 74.82 38.91
RUNG-ℓ1 75.01 39.22

RUNG-MCP (ours) 75.65 51.13

F Adaptive Attack Settings

For the adaptive PGD attack we adpoted in the experiments, we majorly followed the algorithm in
[5] in the adaptive evasion attack. For the sake of completeness, we describe it below:

In summary, we consider the topology attack setting where the adjacency matrix A is perturbed
by δA whose element δAij ∈ {0, 1}. The budget B is defined as B ≥ ∥δA∥0. The PGD attack
involves first relaxing A from binary to continuous so that a gradient ascent attack can be conducted
on the relaxed graph.

During the attack, the minimization problem below is solved:

δA⋆ = argmin
δA

Lattack(GNNθ(A+ (I − 2A)⊙ δA,F), ytarget), (53)

where L is carefully designed attack loss function [4, 5], A, F and ytarget are respectively the graph,
node feature matrix and ground truth labels in the dataset, θ is the parameters of the GNN under attack
which are not altered in the evasion attack setting. (I − 2A)⊙ δA is the calculated perturbation that
“flips” the adjacency matrix between 0 and 1 when it is perturbed. The gradient of Lattack

δA is computed
and utilized to update the perturbation matrix δA.

After the optimization problem is solved, δA is projected back to the feasible domain of δAij ∈ {1}.
The adjacency matrix serves as a probability matrix allowing a Bernoulli sampling of the binary
adjacency matrix A′. The sampling is executed repeatedly so that an A′ producing the strongest
perturbation is finally generated.

G Additional Ablation Study of RUNG

G.1 Hyperparameters

The choice of the hyperparameters γ and λ is crucial to the performance of RUNG. We therefore
experimented with their different combinations and conducted adaptive attacks on Cora as shown in
Fig. 12.

Recall the formulation of RUNG in Eq.(8):

F (k+1) = (diag(q(k)) + λI)−1
(
(W (k) ⊙ Ã)F (k) + λF (0)

)
, (54)

where q
(k)
m =

∑
jW

(k)
mjAmj/dm, W (k)

ij = 1i̸=j max(0, 1
2y(k)

ij

− 1
2γ) and y(k)ij =

∥∥f
(k)
i√
di

− f
(k)
j√
dj

∥∥
2
.

In the formulation, λ controls the intensity of the regularization in the graph smoothing. In our
experiments, we tune λ̂ := 1

1+λ which is normalized into (0, 1). In Figure 12, the optimal value
of λ̂ can be found almost always near 0.9 regardless of the attack budget. This indicates that our
penalty function ργ is decoupled from γ which makes the tuning easier, contrary to the commonly
used formulation of MCP [25].

On the other hand, γ has a more intricate impact on the performance of RUNG. Generally speaking,
the smaller γ is, the more edges get pruned, which leads to higher robustness and a lower clean
accuracy. We begin our discussion in three cases:

Small attack budget (0%, 5%, 10%). The performance is largely dependent on clean accuracy.
Besides, when γ → ∞, RUNG becomes a state-of-the-art robust ℓ1 model. Therefore, a small γ

25

likely introduces more harm to the clean performance than robustness increments over ℓ1 models.
The optimal γ thus at least recovers the performance of ℓ1 models.

Large attack budget (20%, 30%, 40%). In these cases, γ → ∞ is no longer a good choice because
ℓ1 models are beginning to suffer from the accumulated bias effect. The optimal γ is thus smaller
(near 0.5). However, for fairness, we chose the same γ under different budgets in our experiments, so
the reported RUNG fixes γ = 3. In reality, however, when we know the possible attack budgets in
advance, we can tune γ for an even better performance.

Very large attack budget (50%, 60%). We did not include these scenarios because almost all GNNs
perform poorly in this region. However, we believe it can provide some insights into robust graph
learning. Under these budgets, more than half of the edges are perturbed. In the context of robust
statistics (e.g. mean estimation), the estimator will definitely break down. However, in our problem
of graph estimation, the input node features offer extra information allowing us to exploit the graph
information even beyond the breakdown point. In the “peak” near (0.9, 0.5), RUNG achieves > 70%
accuracy which is higher than MLP. This indicates that the edge weighting of RUNG is capable
of securely harnessing the graph information even in the existence of strong adversarial attacks.
The “ridge” near a λ̂ = 0.2, on the other hand, emerges because of MLP. When the regularization
dominates, λ→ ∞, and λ̂→ 0. A small λ is then connected to a larger emphasis on the input node
feature prior. Under large attack budgets, MLP delivers relatively good estimation, so a small λ̂ is
beneficial.

Figure 12: The performance dependence of RUNG with different hyperparameters γ and λ. The
performance is evaluated under different attack budgets. The attack setting is the global evasion
attack and the dataset is Cora. Note the x-axis is λ̂ := 1

1+λ instead of λ.

G.2 GNN Layers

In RUNG, QN-IRLS is unrolled into GNN layers. We would naturally expect RUNG to have enough
number of layers so that the estimator converges as desired. We conducted an ablation study on the
performance (clean and adversarial) of RUNG with different layer numbers and the results are shown
in Fig. Figure 13. We make the following observations:

• As the layer number increases, RUNG exhibits better performance. This verifies the effectiveness
of our proposed RUGE, as well as the stably converging QN-IRLS.

• The performance of RUNG can achieve a reasonably good level even with a small layer number
(3-5 layers) with accelerated convergence powered by QN-IRLS. This can further reduce the
computation complexity of RUNG.

26

Figure 13: The performance dependence of RUNG on the number of aggregation layers.

H Robustness of GCN and APPNP

In addition to the formulation in section 3 the main text, we can simply apply our edge reweighting
technique to the GCN architecture. Essentially the aggregation operation in GCN can be viewed as
an APPNP layer with λ̂ = 0. The GCN version of a layer in our model can then be formulated as

F (k+1) = ReLU((W (k) ⊙ Ã)F (k)M (k)), (55)

where M is the learned weight matrix in GCN.

GCN-based defenses are less robust than APPNP-based defenses GCN consists of layers
in which both feature transformation and message passing are included. This graph convolution
operation will weaken defense methods that rely on edge weighting, such as GNNGuard, models
using l1 penalty as well as our method using MCP penalty.

Consider an edge that is added by the attacker7. A successful defense should detect the attack on
this edge by the large difference of nodes connected by this edge, and then assign a zero weight
or at least a smaller weight to this edge. However in GCN, even if this edge is detected in the first
layer’s message passing, the subsequent feature transformation makes the node difference less likely
to be preserved until the second layer. This is where the attack can evade the defense and is thus
a vulnerability allowing adaptive attacks through. According to our experiments, using different
defense parameters in different layers of GCN, unfortunately, does not help much either.

On the other hand, in APPNP node features are also altered along the message-passing layers, but
the node distance change is more regulated than in GCN since MLP is decoupled from the graph
smoothing layers. In the latter submodule, node differences simply decrease, which allows our
defense based on node differences.

Experiments It can be seen from Figure 14 that the correlation of node feature differences in
different layers of GCN is about 4 times less than in APPNP, which means that an attack detected
in the first layer is less likely to continue to be detected in the second layer than in APPNP. This
property of GCN makes the many defense methods using GCN architecture as a backbone less robust,
as shown in the experiment results in Table 12 and Table 13. Nevertheless, our GCN-based MCP
model outperforms the SOTA models using l1 methods.

7Almost all attacks add new edges as shown by our experiments, so this is almost always the case

27

Figure 14: The distances ∥fi − fj∥2 between connected nodes in different layers are shown. The
linear transform operation in aggregation layers of GCN reduces the correlation between the node
distance at different propagation layers.

Model Clean 5% 10% 20% 30% 40%

RUNG-ℓ1 85.8± 0.5 78.4± 0.4 74.3± 0.3 68.1± 0.6 63.5± 0.7 59.8± 0.8
RUNG 84.6± 0.5 78.9± 0.4 75.7± 0.2 71.8± 0.4 67.8± 1.3 65.1± 1.2
RUNG-ℓ1-GCN 84.0± 0.4 74.7± 0.6 69.7± 0.7 62.7± 0.6 57.6± 0.6 53.5± 0.8
RUNG-GCN 82.6± 0.6 76.1± 0.7 71.0± 0.9 64.3± 1.1 59.9± 0.8 56.5± 1.1

Table 12: Comparison between APPNP-based and GCN-based QN-IRLS on Cora.

Model Clean 5% 10% 20% 30% 40%

RUNG-ℓ1 75.5± 1.1 69.3± 1.2 65.9± 1.2 61.1± 1.1 57.2± 1.4 53.9± 1.3
RUNG 74.3± 0.7 71.4± 1.0 69.8± 1.3 67.6± 1.2 66.5± 1.3 65.3± 1.5
RUNG-ℓ1-GCN 73.8± 1.2 66.1± 1.1 61.9± 1.0 56.0± 0.7 51.3± 0.8 47.7± 0.6
RUNG-GCN 73.0± 0.8 68.2± 0.8 64.3± 1.3 59.4± 1.0 55.7± 1.4 53.1± 1.6

Table 13: Comparison between APPNP-based and GCN-based QN-IRLS on Citeseer.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction (Section 1) closely follow the contribution (at the end
of Section 1) in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

29

Justification: We provide the theory in Section 3.2 and the detailed proof in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed experimental setting in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: We will organize the data and code after the submission.
Guidelines:

30

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide the detailed experimental setting in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [No]
Justification: We include the theoretical computation analysis in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper closely follows NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

32

https://neurips.cc/public/EthicsGuidelines

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

33

paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Estimation Bias Analysis of Robust GNNs
	Robustness Analysis
	A Unified View of Robust Estimation
	Bias Analysis and Performance Degradation

	Robust GNNs with Unbiased Aggregation
	Robust and Unbiased Graph Signal Estimator
	Quasi-Newton IRLS
	GNN with Robust Unbiased Aggregation

	Experiment
	Experiment Setting
	Adversarial Robustness
	Ablation study

	Related Work
	Conclusion & Limitation
	Bias Accumulation of 1 Models
	Details of the Numerical Simulation Settings
	Additional Simulation Results and Discussions

	Convergence Analysis
	Computation Efficiency
	Time Complexity Analysis
	Alternative Perspective

	Comprehensive Bias Analysis
	Additional experiment results
	Adaptive Attacks
	Transfer Attacks
	Poisoning Attacks
	Large Scale Ogbn-Arxiv
	Adversarial Training
	Graph Injection Attack

	Adaptive Attack Settings
	Additional Ablation Study of RUNG
	Hyperparameters
	GNN Layers

	Robustness of GCN and APPNP

