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Abstract

Learning high-level causal representations together with a causal model from
unstructured low-level data such as pixels is impossible from observational data
alone. We prove under mild assumptions that this representation is however
identifiable in a weakly supervised setting. This involves a dataset with paired
samples before and after random, unknown interventions, but no further labels. We
then introduce implicit latent causal models, variational autoencoders that represent
causal variables and causal structure without having to optimize an explicit discrete
graph structure. On simple image data, including a novel dataset of simulated
robotic manipulation, we demonstrate that such models can reliably identify the
causal structure and disentangle causal variables.

1 Introduction
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Figure 1: We learn to represent pix-
els x as causal variables z. The bot-
tom shows the effect of intervening
on one variable. We prove that vari-
ables and causal model can be iden-
tified from samples (x, x̃).

The dynamics of many systems can be described in terms of
some high-level variables and causal relations between them.
Often, these causal variables are not known but only observed
in some unstructured, low-level representation, such as the pix-
els of a camera feed. Learning the causal representations to-
gether with the causal structure between them is a challenging
problem and may be important for instance for applications in
robotics and autonomous driving [1]. Without prior assump-
tions on the data-generating process or supervision, it is impos-
sible to uniquely identify the causal variables and their causal
structure [2, 3].

In this work, we show that a weak form of supervision is suf-
ficient to identify both the causal representations and the struc-
tural causal model between them. We consider a setting in
which we have access to data pairs, representing the system be-
fore and after a randomly chosen, unknown intervention while
preserving the noise. This may approximate the generative pro-
cess of data collected from a video feed of an external agent or
demonstrator interacting with a system. Neither labels on the
intervention targets nor active control of the interventions are
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necessary for our identifiability theorem, making this setting useful for offline learning. We prove that
with this form of weak supervision, and under certain assumptions (including that the interventions are
stochastic and perfect and that all interventions occur in the dataset), latent causal models (LCMs)—
structural causal models (SCMs) together with a decoder from the causal factors to the data space—
are identifiable up to a relabelling and elementwise reparameterizations of the causal variables.

We then discuss two practical methods for LCM inference. First, we define explicit latent causal
models (ELCMs) as a variational autoencoder (VAE) [4] in which the causal variables are the latent
variables and the prior is based on an SCM. While this approach works in simple problems, it can be
finicky and is difficult to scale. We trace this to a major challenge in causal representation learning,
namely that it is a chicken-and-egg problem: it can be difficult to learn the causal variables when the
causal graph is not yet learned, and it is difficult to learn the graph without knowing the variables.

To overcome this optimization difficulty, we introduce a second model class: implicit latent causal
models (ILCMs). These models can represent causal structure and variables without requiring an
explicit, discrete graph representation, which makes gradient-based optimization easier. Nevertheless,
these models still contain the causal structure implicitly, and we discuss two algorithms that can extract
it after the model is trained. Finally, we demonstrate ILCMs on synthetic datasets, including the new
CausalCircuit dataset of a robot arm interacting with a causally connected system of light switches. We
show that these models can robustly learn the true causal variables and the causal structure from pixels.

2 Related work

Our work builds on the work of Locatello et al. [5] on disentangled representation learning. The
authors introduce a similar weakly supervised setting where observations are collected before and after
unknown interventions. In contrast to our work, however, they focus on disentangled representations,
i. e. (conditionally) independent factors of variation with a trivial causal graph, which our work
subsumes as a special case. Other relevant works on disentangled representation learning and
(nonlinear) independent component analysis include Refs. [6–12].

The problem of causal representation learning has been gaining attention lately, see the recent review
by Schölkopf et al. [1]. Lu et al. [13] learn causal representations by observing similar causal models
in different environments. von Kügelgen et al. [14] use the weakly supervised setting to study self-
supervised learning, using a known but non-trivial causal graph between content and style factors.
Lippe et al. [15] learn causal representations from time-series data from labelled interventions,
assuming that causal effects are not instantaneous but can be temporally resolved. Yang et al. [16]
propose to train a VAE with an SCM prior, but require the true causal variables as labels. Other
relevant works include Refs. [17–21]. To the best of our knowledge, our work is the first to provide
identifiability guarantees for arbitrary, unknown causal graphs in this weakly supervised setting.

3 Identifiability of latent causal models from weak supervision

In this section, we show theoretically that causal variables and causal mechanisms are identifiable
from weak supervision. In Sec. 4 we will then demonstrate how we can learn causal models in
practice by training a causally structured VAE.

3.1 Setup

We begin by defining latent causal models and the weakly supervised setting. Here, we only provide
informal definitions and assume familiarity with common concepts from causality as introduced
for instance in Ref. [22]. We provide a complete and precise treatment in Appendix A and discuss
limitations of our setup and possible generalizations in Appendix B.

We describe the causal structure between latent variables as a Structural Causal Model (SCM).
An SCM C describes the relation between causal variables z1, . . . , zn with domains Zi and noise
variables ϵ1, . . . , ϵn with domains Ei along a directed acyclic graph (DAG) G(C). Causal mechanisms
fi : Ei ×

∏
j∈pai

Zj → Zi describe how the value of a causal variable is determined from the
associated noise variables, as well as the values of its parents in the graph. Finally, an SCM includes
a probability measure for the noise variables.
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Figure 2: In LCM M, zi denotes whether the i-th stone
from the front is standing. Intervening on the second
variable, z2, leads to z̃. The decoder g renders z, z̃ as
images x, x̃. LCM M′ has an equivalent representation
in which z′i denotes whether the i-th stone from the back
has fallen. In Thm. 1, we prove that if and only if two
causal models have the same pixel distribution p(x, x̃),
there exists an LCM isomorphism φ: an element-wise
reparameterization of the causal variables plus a permu-
tation of the ordering that commutes with interventions
and causal mechanisms.

An SCM entails a unique solution s :
E → Z defined by successively applying
the causal mechanisms. We require the
causal mechanisms to be pointwise diffeo-
morphic, that is, for any value of the par-
ents zpai

we have that fi(·; zpai
) is invert-

ible, differentiable, and its inverse is dif-
ferentiable.3 Then s is also diffeomorphic
and thus noise variables can be uniquely in-
ferred from causal variables. This simpli-
fies the weakly supervised distribution, as
the only stochasticity comes from the noise
variables and the intervention. The SCM
also entails an observational distribution
pC(z) (Markov with respect to the graph of
the SCM), which is the pushforward of pE
through the solution.

A perfect, stochastic intervention
(I, (f̃i)i∈I) modifies an SCM by replacing
for a subset of the causal variables, called
the intervention target set I ⊂ {1, ..., n},
the causal mechanism fi with a new mech-
anism f̃i : Ei → Zi, which does not de-
pend on the parents. The intervened SCM
has a new solution s̃I : E → Z . We call
interventions atomic if the number of tar-
geted variables is one or zero.

We will reason about generative models in a data space X , in which the causal structure is latent.
Also including a distribution of interventions (as in Ref. [23]), we define LCMs:

Definition 1 (Latent causal model (LCM)). A latent causal model M = ⟨C,X , g, I, pI⟩ consists of

• an acyclic SCM C, which is faithful (all independencies are encoded in its graph [24]),
• an observation space X ,
• a decoder g : Z → X that is diffeomorphic onto its image,
• a set I of interventions on C, and
• a probability measure pI over I.

We define two LCMs as equivalent if all of their components are equal up to a permutation of the
causal variables and elementwise diffeomorphic reparameterizations of each variable, see Fig. 2.

Definition 2 (LCM isomorphism (informal)). Let M = ⟨C,X , g, I, pI⟩ and M′ =
⟨C′,X , g′, I ′, p′I′⟩ be two LCMs with identical observation space. An LCM isomorphism between
them is a graph isomorphism ψ : G(C) → G(C′) together with elementwise diffeomorphisms for
noise and causal variables that tell us how to reparameterize them, such that the structure functions,
noise distributions, decoder, intervention set, and intervention distribution of M′ are compatible with
the corresponding elements of M reparameterized through the graph isomorphism and elementwise
diffeomorphisms. M and M′ are equivalent, M ∼ M′, if and only if there is an LCM isomorphism
between them.

Following Locatello et al. [5], we define a generative process of pre- and post-interventional data:4

Definition 3 (Weakly supervised generative process). Consider an LCM M where the underlying
SCM has continuous noise spaces Ei, independent probabilities pEi

, and admits a solution s. We

3Under some mild smoothness assumptions, any SCM can be brought into this form by elementwise
redefinitions of the variables, preserving the observational and interventional distributions, but not the weakly
supervised / counterfactual distribution.

4This construction is closely related to twinned SCMs [25, Def. 2.17], typically used to compute counterfac-
tual queries p(z̃\I |z, z̃I). We instead focus on the joint distribution of pre-intervention and post-intervention data.
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define the weakly supervised generative process of data pairs (x, x̃) ∼ pXM(x, x̃) as follows:

ϵ ∼ pE , z = s(ϵ) , x = g(z) ,

I ∼ pI , ∀i ∈ I , ϵ̃i ∼ pẼi
, ∀i ̸∈ I , ϵ̃i = ϵi , z̃ = s̃I(ϵ̃) , x̃ = g(z̃) . (1)

3.2 Identifiability result

The main theoretical result of this paper is that an LCM M can be identified from p(x, x̃) up to a
relabeling and elementwise transformations of the causal variables:

Theorem 1 (Identifiability of R-valued LCMs from weak supervision). Let M = ⟨C,X , g, I, pI⟩
and M′ = ⟨C′,X , g′, I ′, p′I′⟩ be LCMs with the following properties:

• The LCMs have an identical observation space X .
• The SCMs C and C′ both consist of n real-valued endogeneous causal variables and

corresponding exogenous noise variables, i. e. Ei = Zi = Z ′
i = E ′

i = R.
• The intervention sets I and I ′ consist of all atomic, perfect interventions, I =
{∅, {z0}, . . . , {zn}} and similar for I ′.

• The intervention distribution pI and p′I′ have full support.

Then the following two statements are equivalent:

1. The LCMs entail equal weakly supervised distributions, pXM(x, x̃) = pXM′(x, x̃).
2. The LCMs are equivalent in the sense of Def. 2, M ∼ M′.

Let us summarize the key steps of our proof, which we provide in its entirety in Sec. A in the
supplementary material. The direction 2 ⇒ 1 follows from the definition of equivalence. The
direction 1 ⇒ 2 is proven constructively along the following steps:

1. We begin by defining a diffeomorphism φ = g′−1 ◦ g : Z → Z ′ and note that if
z, z̃ ∼ pZC (z, z̃), the weakly supervised distribution of causal variables of model C, then
φ(z), φ(z̃) ∼ pZ

′

C′ (z′, z̃′). The distribution over z, z̃ is a mixture, where each intervention
target I gives a mixture component; each component is supported on a different (n+ 1)-
dimensional submanifold. Therefore, there exists a bijection between the components
ψ : [n] → [n] that maps intervention targets I in M to intervention targets I ′ = ψ(I) in
M′. Furthermore, because the joint distribution z, z̃ is preserved by φ, first mapping with

φ, then intervening, Z φ−→ Z ′ I′

−→ Z̃ ′, equals Z I−→ Z̃ φ−→ Z̃ ′.

2. Because I = {i} is a perfect intervention, for the map Z φ−→ Z ′ I′

−→ Z̃ ′, z̃′i′ is independent
of z′. Thus, in both maps, z̃′i′ is independent of z. This means that for the path through
Z̃ , the intervention sample z̃i is transformed into z̃′i′ independently of z. For R-valued
variables, this statistical independence implies that the transformation is constant in z, and
thus φ(z)i′ is constant in zj for j ̸= i. φ is therefore an elementwise reparametrization.

3. Using this, we can show that ψ is a causal graph isomorphism and that it is compatible with
the causal mechanisms. This proves LCM equivalence M ∼ M′.

4 Practical latent causal models

Theorem 1 means that it is possible to learn causal structure from pixel-level data in the weakly
supervised setting. Consider a system that is described by an unknown true LCM and assume that
we have access to data pairs (x, x̃) sampled from its probability density. Then we can train another
LCM with learnable components by maximum likelihood. Assuming sufficient data and perfect
optimization, this model’s density will match that of the ground-truth LCM. Our identifiability result
guarantees that the trained LCM then has the same causal variables and causal structure as the ground
truth, up to relabelling.

In the following, we describe two neural LCM implementations that can be trained on data.
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Figure 3: ILCM architecture. Pre- and post-intervention data (left) are encoded to noise encodings and
intervention targets, which are then decoded back to the data space. To compute the prior probability
density, the noise encodings are transformed into causal variables with the neural solution function.

4.1 Explicit latent causal models (ELCMs)

To implement LCMs with neural networks, we use the variational autoencoder (VAE) framework [4].
We first consider an approach where the causal variables (z, z̃) are the latent variables. Data
(x, x̃) and latents (z, z̃) are linked by a stochastic encoder q(z|x) and decoder p(x|z); unlike the
deterministic decoder from Sec. 3 this allows us to map high-dimensional data spaces (like images)
to low-dimensional causal variables. The causal structure is encoded in the prior p(z, z̃) and consists
of a learnable causal graph and learnable causal mechanisms fi. The first contribution to the prior
density is the observational probability density p(z), which factorizes according to the causal graph
into components p(zi|zpai

), which are given by fixed base densities and the causal mechanisms. The
second contribution is the interventional conditional density p(z̃|z), which is also computable from
the graph and causal mechanisms. The model can be trained on the ELBO loss, a variational bound
on − log p(x, x̃). For more details, see Appendix E.

We call this an explicit latent causal model (ELCM), as the model directly parameterizes all compo-
nents of an LCM. In particular, ELCMs contain an explicit representation of the causal graph and
causal mechanisms. The graph can be learned by an exhaustive search over all DAGs or through a
differentiable DAG parameterization [26–29] and gradient descent.

In our experiments with ELCMs, which we describe in Appendix E, we find that optimally trained
ELCMs indeed correctly identify the causal structure and disentangle causal variables on simple
datasets. However, jointly learning explicit graph and variable representations presents a challenging
optimization problem. In particular, we observe that the loss landscape has local minima correspond-
ing to wrong graph configurations.

4.2 Implicit latent causal models (ILCMs)

To enable causal representation learning in a more robust, scalable way, we propose a second LCM
implementation: Implicit Latent Causal Models (ILCMs). Like ELCMs, ILCMs are also variational
autoencoders with a causally structured prior. The key difference is that ILCMs represent the causal
structure through neural solution functions s(e). Under our assumption of diffeomorphic causal
mechanisms, the solution function—which maps the vector of noise variables to the causal variables—
contains the same information as the causal graph and causal mechanisms that we parameterize with
neural networks in ELCMs (see Appendix C). However, unlike ELCMs, this parameterization does
not require an explicit graph parameterization. In practice, ILCMs are thus easier to train than ELCMs.

Latents The latent variables in an ILCMs are noise encodings, defined through the inverse solution
function as e = s−1(z) and ẽ = s−1(z̃). The pre-intervention noise encoding e is identical to
the SCM noise variables. The post-intervention noise encoding ẽ corresponds to the value of the
SCM noise variables that would have generated the post-intervention causal variables z̃ under the
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unintervened SCM mechanisms. ILCMs contain a stochastic encoder q(e|x) and decoder p(x|e) that
map data (x, x̃) to noise encodings (e, ẽ).

Noise encodings have the convenient property that under an intervention with intervention targets I ,
precisely the components eI change value: ei ̸= ẽi ⇔ i ∈ I with probability 1. We prove this property
in Appendix A. This means that from noise encodings e, ẽ, we can infer interventions easily. We use
a simple heuristic intervention encoder that assigns higher intervention probability q(i ∈ I|x, x̃) to a
component i the more this component of the noise encoding changes under interventions:

log q(i ∈ I|x, x̃) ∼ h
(
µe(x)i − µe(x̃)i

)
, (2)

where µe(x) is the mean function of the noise encoder q(e|x) and h is a quadratic function with
learnable parameters. Both the equality pattern of e under interventions and this heuristic intervention
encoder are similar to the ones used for disentangled representation learning in Ref. [5].

Prior Given encoders for noise encodings and intervention targets, let us now write down the prior
p(e, ẽ, I), which encodes the structure of the weakly supervised setting. The intervention-target
prior p(I) and the pre-intervention noise distribution p(e) are given by simple base densities, which
we choose as uniform categorical and standard Gaussian, respectively. The post-intervention noise
encodings ẽ follow the conditional probability distribution

p(ẽ|e, I) =
∏
i/∈I

δ(ẽi − ei)
∏
i∈I

p(ẽi|e) =
∏
i/∈I

δ(ẽi − ei)
∏
i∈I

p̃(z̄i)

∣∣∣∣∂z̄i∂ẽi

∣∣∣∣ , z̄i = s̄i(ẽi; e\i). (3)

In the second equality we have parameterized the conditional density p(ẽi|e) with a conditional
normalizing flow consisting of a learnable diffeomorphic transformation ẽi 7→ z̄i = s̄i(ẽi; e\i) and a
base density p̃ on z̄i, which we choose as standard Gaussian.

How does this prior encode causal structure? We rely on three key properties of SCMs, shown in
Appendix A: 1) the noise variables ei are independent of each other; 2) upon intervening on variable
i, the post-intervention causal variable z̃i are independent of all ej ; 3) while for the other variables
j ̸= i, the noise encodings are unchanged ẽj = ej . These three properties are ensured in the ILCM
prior in Eq. (3). We show in Appendix C that therefore each ILCM is equivalent to a unique ELCM.
For each variable i, the ILCM function s̄i is equal to the solution function si of the equivalent ELCM,
which maps from noise variables to causal variable zi.

Thus, by learning to transform ẽi into z̃i = s̄(ẽi; e) in the ILCM, we learn the solution function of
the corresponding ELCM. This implicitly describes both the causal graph and the causal mechanisms
fi. We can thus learn a causal model without ever explicitly modelling a graph.5

The final question is how to implement the first terms in Eq. (3), which encode that those noise
encodings that are not part of the intervention targets I should not change value under the intervention.
We enforce this in the encoder by setting the non-intervention components of e and ẽ to the same
value [similar to 5]. In Appendix C this procedure is described in more detail. We will refer to this
projective noise encoder as q(e, ẽ|x, x̃, I).

Learning Putting everything together, an ILCM consists of an intervention encoder q(I|x, x̃), a
noise encoder q(e, ẽ|x, x̃, I), a noise decoder p(x|e), and transformations / solution functions si(·; e),
see Fig. 3. All of these components are implemented with neural networks and learnable, see
Appendix C for details. The lower bound on the joint log likelihood of pre-intervention and post-
intervention data is given by

log p(x, x̃) ≥ EI∼q(I|x,x̃)Ee,ẽ∼q(e,ẽ|x,x̃,I)

[
log p(I) + log p(e) + log p(ẽ|e, I)

− log q(I|x, x̃)− log q(e, ẽ|x, x̃, I) + log p(x|e) + log p(x̃|ẽ)
]
. (4)

5The solution function of an ELCM only depends on ancestors in the graph. The learned transformation
si(ei; e\i) of an ILCM should thus also depend only on ancestors of i. As each si is constructed to be a
diffeomorphism in its first argument, jointly they have a triangular structure and thus a diffeomorphism s : e 7→ z.
In practice, however, the learned solution functions may still depend weakly on non-ancestors. Therefore, to
ensure that s always forms a diffeomorphism, at some point in training, we test functional dependence to infer
ancestral dependence, pick a topological ordering of variables conforming to the ancestry, and parameterize the
solution functions si to only depend on earlier variables in the ordering.
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The model is trained by minimizing the corresponding VAE loss, learning to map low-level data to
noise variables (with q) and to map noise variables to causal variables (with s). The expectation over
I is computed via summation, but could alternatively be done with sampling.

In practice, we find it beneficial to add a regularization term to the loss that disincentivizes collapse
to a lower-dimensional submanifold of the latent space. For each batch of training data, we compute
the batch-aggregate intervention posterior qI(I) = Ex,x̃∈batch[q(I|x, x̃)]. To the beta-VAE loss we
then add the negative entropy of this distribution, weighted with a hyperparameter.

Downstream tasks Despite the implicit representation of causal structure, we argue that ILCMs let
us solve various tasks:

• Causal representation learning / disentanglement: ILCMs allow us to map low-level data x
to causal variables z by applying the encoder q followed by the solution functions s.

• Intervention inference: It is also straightforward to infer intervention targets from an ob-
served pair (x, x̃) of pre-intervention and post-intervention data, as this just requires evaluat-
ing the intervention-target encoder qI(x, x̃).

• Causal discovery / identification: We propose two methods to infer the causal graphs af-
ter training an ILCM. One is to use an off-the-shelf method for causal discovery on the
learned representations. Since the ILCM allows us to infer intervention targets, we can use
intervention-based algorithms. In this paper, we use ENCO [28], a recent differentiable
causal discovery method that exploits interventions to obtain acyclic graphs without requir-
ing constrained optimization. Alternatives to ENCO include DCDI [27] and GIES [30].
Alternatively, we can analyze the causal structure implicitly represented in the learned
solution functions si. We propose a heuristic algorithm that proceeds in three steps. First,
it infers the topological order by sorting variables such that si only depends on ej if zi is
after zj in the topological order. It then iteratively rewrites the solution functions such that
they only depend on ancestors in the topological order. Finally, it determines which causal
ancestors are direct parents by testing the functional dependence of the causal mechanisms.
We describe this algorithm in more detail in Appendix C.

• Generation of interventions and counterfactuals: The ILCM entails a generative model
for pairs of pre- and post-intervention data. It is straightforward to sample from the joint
distribution p(x, x̃, I), from the conditional p(x, x̃|I), or from the conditional p(x̃|x, I).

5 Experiments

Finally, we demonstrate latent causal models in practice. Here we focus on implicit LCMs; explicit
LCMs are demonstrated in similar experiments in Appendix E. We evaluate the causal graphs learned
by the ILCM models either with ENCO (ILCM-E) or with the heuristic algorithm described above
(ILCM-H).

Baselines Since we are to the best of our knowledge the first to study causal representation learning
in this weakly supervised setting, we are not aware of any baseline methods designed for this task.
We nevertheless compare ILCMs to three other methods. First, we define a disentanglement VAE that
models the weakly supervised process, but assumes independent factors of variation rather than a
non-trivial causal structure between the variables. This baseline is similar to the method proposed by
Ref. [5], but it differs in some implementation details to be more comparable to our ILCM setup. We
infer the causal graph between the learned representations with ENCO (dVAE-E). We also compare to
an unstructured β-VAE that treats x and x̃ as i. i. d. and uses a standard Gaussian prior. Finally, for the
pixel-level data, we consider a slot attention model [31], which segments the image unsupervisedly
into as many objects as there are causal variables. The latent representation associated to each object
is considered a learned causal variable.

5.1 2D toy experiment

We first demonstrate LCMs in a pedagogical toy experiment with X = Z = R2. Training data is
generated from a nonlinear SCM with the graph z1 → z2 and mapped to the data space through a
randomly initialized normalizing flow.

An ILCM trained in the weakly supervised setting is able to reconstruct the causal factors accurately up
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Figure 4: 2D toy data with graph z∗1 → z∗2 . The grey grids show the map between true causal factors,
data, and latent causal factors learned by the LCM. The mint dots indicate the observational data
distribution, the arrows from z to z̃ show interventions targeting z∗1 (red) or z∗2 (blue). The fact that
axis-aligned lines in the true latent space are mapped to axis-aligned lines in the learned latent space
implies that the disentanglement succeeded.

to elementwise reparameterizations, as shown in Fig. 4. In Tbl. 1 we quantify the quality of the learned
representations with the DCI disentanglement score [32]. We find that our LCM is able to disentangle
the causal factors almost perfectly, while the baselines, which assume independent factors of variation,
fail as expected. Both the ILCM and the dVAE baseline infer the intervention targets with high
accuracy. Finally, we test the quality of the learned causal graphs. We infer the implicit graph with
ENCO and the heuristic algorithm discussed above. In both cases, the learned causal graph is identical
to the correct one, whereas the representations found by the dVAE baseline induce a wrong graph.

5.2 Causal3DIdent

Figure 5: Causal3DIdent before (top)
and after (middle) interventions, and
post-intervention samples generated
from the ILCM under the intervention
inferred from the data (bottom), indicat-
ing we correctly learned to intervene.

We then turn to pixel-level data and more complex
causal graphs. We test ILCMs on an adaptation of the
Causal3DIdent dataset [14], which contains images of
three-dimensional objects under variable positions and
lighting conditions. We consider three causal variables
representing object hue, the spotlight hue, and the position
of the spotlight. We construct six versions of this dataset,
each with a different causal graph, randomly initialized
nonlinear structure functions, and heteroskedastic noise.
These are mapped to images with a resolution of 64× 64,
see Fig. 5 for examples.

ILCMs are again able to disentangle the causal variables
reliably. The results in Tbl. 1 show that the learned rep-
resentations are more disentangled than those learned by
methods that do not account for causal structure. The
LCM as well as the dVAE baseline can infer interven-
tions with almost perfect accuracy. We demonstrate this
in Fig. 5 by comparing true and inferred interventions, see
Sec. D.3 of the supplementary material for details. The
ILCMs also learn the causal graphs accurately, while the
acausal dVAE-E baseline does in most cases not find the
correct causal graphs.

5.3 CausalCircuit

While Causal3DIdent provides a good test of the ability to disentangle features that materialize
in pixel space in different ways, like through the position of lights and the color of objects, the
underlying causal structure we imposed may feel rather ad-hoc. To explore causal representation
learning in a more intuitively causal setting, we introduce a new dataset, which we call CausalCircuit.
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Figure 6: Varying learned causal factors vs. intervening on them. With a trained ILCM, we encode
a single test image (left column). In the top row, we then vary the latent z1 independently, without
computing causal effects, and show the corresponding reconstructed images. Only the robot arm
position changes, highlighting that we learned a disentangled representation. In the bottom row we
instead intervene on z1 and observe the causal effects: the robot arm may activate lights, which in
turn can affect other lights in the circuit.
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Green 
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Red 
light

Figure 7: Causal graph of
the CausalCircuit dataset.

The CausalCircuit system consists of a robot arm that can interact
with multiple touch-sensitive lights. The lights are connected with a
stochastic circuit: a light is more likely to be on if its button is pressed
or if its parent lights are on. The robot arm itself can be seen as part of
the causal system. Concretely, we consider the causal graph shown in
Fig. 7. This system is observed from a fixed-position camera, and we
generate samples in 512× 512× 3 resolution with MuJoCo [33], see
Sec. D.4 of the supplementary material for more details.

ILCMs are again able to disentangle the causal variables reliably and
better than the acausal baselines, see Tbl. 1. As shown in Appendix D,
the slot attention model fails because the lights have no limited spatial
extent and thus are not well represented by segments of the image. Interventions are identified with
high accuracy. ILCMs also correctly learn the causal graph shown in Fig. 6, both when extracted
with ENCO and with our heuristic algorithm. In Fig. 6 we demonstrate how ILCMs let us infer and
manipulate causal factors and reason about interventions.

By studying variations of this dataset, we tested the limitations of our method. We find that it works
reliably only as long as the causal variables are continuous (that is, when we model the lights with a
continuous intensity). As soon as we consider discrete states, the assumptions of our identifiability
theorem are violated and the model has difficulty disentangling these variables.

5.4 Scaling with graph size
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Figure 8: Scaling with graph size. LCMs dis-
entangle causal variables robustly in simple sys-
tems with up to ∼ 10 causal variables.

Finally, we study how LCMs scale with the size of
the causal system. We generate simple synthetic
datasets with X = Z = Rn. For each dimension
n, we generate three datasets, using linear SCMs
with random DAGs, in which each edge in a fixed
topological order is sampled from a Bernoulli dis-
tribution with probability 0.5. The causal variables
are mapped to the data space through a randomly
sampled SO(n) rotation.

We find that ILCMs are able to reliably disentan-
gle the causal variables in systems with up to ap-
proximately 10 causal variables, see Fig. 8. In this
regime, the true causal graphs are also identified
with good accuracy, see Sec. D.5 of the supplemen-
tary material. In larger causal systems, both dis-
entanglement and graph accuracy become worse;
more work is required to improve the scaling of
our approach to causal representation learning.
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6 Discussion

Table 1: Experiment results. We compare our
ILCM-E (using ENCO for graph inference) and
ILCM-H (with a heuristic for graph inference) to
disentanglement VAE (dVAE-E), unstructured β-
VAE, and slot attention baselines. We show the
DCI disentanglement score (D), the accuracy of
intervention inference (Acc), and structural Ham-
ming distance (SHD) between learned and true
graph. Best results in bold.

Dataset Method D Acc SHD

2D toy data ILCM-E (ours) 0.99 0.96 0.00
ILCM-H (ours) 0.99 0.96 0.00
dVAE-E 0.35 0.96 1.00
β-VAE 0.52 – –

Causal3DIdent ILCM-E (ours) 0.99 0.98 0.00
ILCM-H (ours) 0.99 0.98 0.17
dVAE-E 0.82 0.98 1.67
β-VAE 0.66 – –
Slot attention 0.60 – –

CausalCircuit ILCM-E (ours) 0.97 1.00 0.00
ILCM-H (ours) 0.97 1.00 0.00
dVAE-E 0.34 1.00 5.00
β-VAE 0.39 – –
Slot attention 0.38 – –

What makes a variable causal? One school
of thought is that it that causal variables are
those aspects of a system that can be intervened
upon [34]. Following this logic, we find it in-
teresting to ask: can we uniquely determine the
causal variables underlying a system just by ob-
serving the effect of interventions?

In this work we have found a partial answer to
this question: we have shown in theory and prac-
tice that under certain assumptions, causal vari-
ables and their causal structure are identifiable
from low-level representations like the pixels
of a camera feed if the system is observed be-
fore and after random, unlabeled interventions.
Our identifiability theorem extends the results
by Locatello et al. [5] from independent factors
of variation (trivial causal graphs) to arbitrary
causal graphs.

Latent causal structure can be described in a vari-
ational autoencoder setup. However, a straight-
forward, explicit parameterization of the causal
structure requires simultaneously learning the
variables and the causal graph. We found that
leads to challenging optimization problems, es-
pecially when scaling to larger systems. As a
more robust alternative, we introduced implicit latent causal models (ILCMs), which parameterize
causal structure without requiring an explicit graph representation. We also discussed two algorithms
for extracting the learned causal mechanisms and graph after training.

In first experiments, we demonstrated that ILCMs let us reliably disentangle causal factors, identify
causal graphs, and infer interventions from unstructured pixel data. For these experiments, we
introduced the new CausalCircuit dataset, which consists of images of a robot arm interacting with
connected switches and lights.

The setting we consider is motivated by a potentially useful scenario: learning causal structure from
passive observations of an agent (or demonstrator) interacting with a causal system. However, it is
currently far from practical. Our identifiability result relies on a number of assumptions, including that
interventions are stochastic and perfect, that all atomic interventions may be observed, and that the
causal variables are real-valued. In addition, realistic temporal sequence data are not likely to exactly
correspond to a causal system before and after an intervention (while preserving the noise variables);
whether our causal abstraction provides a useful approximation remains to be tested. We discuss these
requirements and their potential relaxation in Appendix B. Similarly, our practical implementation
has so far been restricted to simplified datasets with relatively few, continuous causal variables, and
when trying to relax these limitations we saw the model performance decrease quickly. While more
work will be required to make latent causal models applicable to real-world settings, we believe that
our results demonstrate that causal representation learning is possible without explicit labels.
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