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Abstract

Distinguishing between human- and LLM-
generated texts is crucial given the risks associ-
ated with misuse of LLMs. This paper investi-
gates detection and explanation capabilities of
current LLMs across two settings: binary (hu-
man vs. LLM-generated) and ternary classifica-
tion (including an “undecided” class). We eval-
uate 6 close- and open-source LLMs of varying
sizes and find that self-detection (LLMs iden-
tifying their own outputs) consistently outper-
forms cross-detection (identifying outputs from
other LLMs), though both remain suboptimal.
Introducing a ternary classification framework
improves both detection accuracy and explana-
tion quality across all models. Through com-
prehensive quantitative and qualitative analyses
using our human-annotated dataset, we identify
key explanation failures, primarily reliance on
inaccurate features, hallucinations, and flawed
reasoning. Our findings underscore the limi-
tations of current LLMs in self-detection and
self-explanation, highlighting the need for fur-
ther research to address overfitting and enhance
generalizability.

1 Introduction

The rise of large language models (LLMs) has
brought remarkable advancements in natural lan-
guage processing (NLP) tasks (Matarazzo and Tor-
lone, 2025), including text generation. Models
such as GPT-4o0 (OpenAl, 2024), LLaMA (Tou-
vron et al., 2023), and Qwen (Team, 2024) have
blurred the boundaries between LLM-generated
(LGTs) and human-generated texts (HGTs), pos-
ing new challenges in distinguishing between the
two. While these capabilities of LLMs open new
possibilities, they also bring concerns in areas such
as misinformation, academic dishonesty, and auto-
mated content moderation (Hu, 2025). As a result,
detecting LGTs has become an increasingly impor-
tant research area (Dugan et al., 2024; Lee et al.,
2023; Bhattacharjee and Liu, 2024a).

Prior research has mainly focused on developing
classifiers to distinguish HGTs and LGTs, includ-
ing open-source detectors (Hans et al., 2024) and
online close-source detection systems (Tian et al.,
2023). However, most detection systems have
been limited to binary classification, which has
several inherent issues. Recently, some works (Lee
et al., 2024b) have attempted ternary classification
by introducing a “mixed” category, which repre-
sents texts originating from mixed sources. How-
ever, this approach does not fundamentally resolve
the issue. We further adopt the definition of an
“Undecided” category based on other studies (Ji
et al., 2024) and conduct ternary classification ex-
periments for different LLMs, as certain texts are
inherently indistinguishable between LGTs and
HGTs. Furthermore, many studies treat the de-
tection task as a black box, offering little insight
into the decision-making process. Explainability, a
critical aspect of trustworthy Al, has received less
attention, but it is essential for building systems
that users can trust (Weng et al., 2024; Zhou et al.,
2024). This paper presents an analysis of current
LLMs in detecting LGTs and HGTs, with a par-
ticular emphasis on evaluating and improving the
clarity of the explanations provided by LLM-based
detectors. By investigating how LL.Ms make pre-
dictions and offer explanations for their decisions,
we aim to enhance their transparency and provide
deeper insights into their reasoning processes.

This paper explores the explainability of LLM-
based detectors, addressing two central questions:
(1) How accurately can current LLM detectors
identify origins of texts, and (2) How reliable are
their explanations? Our study highlights that in
a ternary setting compared to traditional binary
classification, the average detection performance
improves by 5.6%, which demonstrates the neces-
sity of ternary rather than binary setting to detect
HGTs and LGTs. We further discovered that ex-
planations are often flawed even when binary pre-



dictions are correct. Based on our comprehensive
human-annotators’ feedback, we summarize three
common issues with explanations: reliance on inac-
curate features (e.g., vague or irrelevant character-
istics), hallucinations (e.g., non-existent or contra-
dictory features), and incorrect reasoning (e.g., log-
ical errors in attributing text origin). These expla-
nation errors are quantified and categorized, with
their distributions analyzed across different LLMs.
Consequently, the proportion of explanation errors
decreases by 13.3% when we switch to ternary
classification setting, which further supports the ne-
cessity of ternary classification for LGTs detection.

We evaluated 6 state-of-the-art (SOTA) LLM-
based detectors, such as GPT-40, GPT-40 mini,
LLaMA3.3-70B, LLaMA3.3-7B, Qwen2-72B, and
Qwen2-7B, on our created dataset comprising
LGTs and HGTSs. Moreover, our human annotators
provided feedback based on correctness of predic-
tions and explanations for this benchmark. Our
results show that GPT-40 achieved the highest de-
tection accuracy. In addition, LLMs performed
better in self-detection than cross-detection, and
ternary classification outperformed binary classifi-
cation. Finally, explanation quality also improved
under ternary setting, with fewer hallucinations and
incorrect reasoning observed.

The main contributions of this work are:

¢ Comprehensive Evaluation of Detection and
Explanation: We systematically assess current
LLMs’ ability to detect and explain human-
and LLM-generated texts using both binary and
ternary classification tasks, demonstrating the
advantages of ternary classification for both de-
tection accuracy and explanation quality.

* Human-Annotated Dataset: We present a new
human-annotated dataset of LLM- and human-
generated texts, enabling evaluation of LLM ex-
planations and improved detector training.

* Analysis of Explanation Errors: We quantita-
tively and qualitatively characterize key expla-
nation failures, reliance on inaccurate features,
hallucinations, and flawed reasoning, offering
insights for LLLM detection and self-explanation.

2 Related Work

LGT and HGT Detection. Past efforts to iden-
tify LGTs often relied on binary classification
systems that distinguish HGTs from LGTs using

surface-level features. While these methods were
initially effective, they are prone to errors when
encountering adversarial attacks or domain shifts,
which limit their overall robustness (Bhattachar-
jee and Liu, 2024a; Dugan et al., 2024). To ad-
dress these limitations, researchers have explored
strategies that integrate external knowledge, such
as combining internal and external factual struc-
tures, to boost detection against diverse content
and styles (Internal and Structures, 2024). Recent
studies also highlight the promise of using LLMs
themselves for text detection: approaches like self-
detection and mutual detection can outperform tra-
ditional classifiers, as illustrated by GPT-4’s suc-
cess in tasks like plagiarism detection (Lee et al.,
2024a). Notably, smaller models sometimes ex-
cel in zero-shot scenarios, offering adaptable solu-
tions across varying architectures (He et al., 2024).
Furthermore, Lee et al. (2023) demonstrated that
LLMs can reliably identify their own outputs, pro-
viding a more nuanced framework for content ver-
ification. Despite these advances, the continuing
challenges of domain adaptation and adversarial
resistance underscore the need for more versatile
and robust detection systems.

Explainability in Detection Models. Recent
work on LGT detection has focused on improving
explainability. Zhou et al. (2024) proposed to in-
corporate factual consistency into detection models
to enhance their interpretability, while Weng et al.
(2024) explored mixed-initiative approaches that
combine human expertise with automated models
for better detection. These studies have made sig-
nificant contributions to the field; however, they
either depend heavily on expert input (Weng et al.,
2024) or lack integration of explanation generation
within the model itself (Zhou et al., 2024). Our ap-
proach, in contrast, enables LLMs to autonomously
generate both predictions and detailed explanations,
making it a more scalable and transparent solution
for detecting machine-generated content.

Ternary Classification. Traditional binary clas-
sification methods face limitations when texts ex-
hibit ambiguous characteristics. Introducing an
“Undecided” category addresses this by capturing
three distinct scenarios (see Appendix E for con-
crete illustrations): (1) Mixed texts co-authored
by humans and LLMs, where stylistic blending
creates classification challenges; (2) Inherently am-
biguous texts that could plausibly originate from
either source despite single authorship; and (3)
Fragile indicators, where subtle distinguishing fea-



Models LLM Detectors
Datasets GPT-40 GPT-4omini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B  Qwen2-7B
GPT-40 71.39 59.38 57.31 48.41 64.14 59.76
GPT-40 mini 65.71 61.03 53.75 51.73 67.27 60.09
LLaMA3.3-70B 67.26 60.92 68.10 53.65 58.96 51.57
LLaMA3.3-8B 60.74 55.77 62.29 59.09 59.87 49.88
Qwen2-72B 62.66 61.92 57.79 49.20 68.15 61.36
Qwen2-7B 62.45 59.06 59.12 48.57 65.24 63.44
Average 65.03 59.68 59.73 51.78 63.94 57.68

Table 1: F1 scores of LLM-based detectors in binary classification. The first column indicates different LLMs used
for text generation, and the first row indicates different LLMs acting as detectors. The highest column-wise F1 score
for each LLM detector to classify LGTs and HGTs across six datasets is highlighted in | blue . The highest row-wise
F1 score for each LLM-generated text dataset across different LLM detectors is marked in blue.

tures exist but lack robustness against behavioral
evolution of either LL.Ms or human writers. This
approach advances beyond previous methods that
primarily addressed mixed texts (Lee et al., 2024b).
The complexity is evidenced by Turing tests show-
ing human difficulty in binary classification (Frank
et al., 2024), and by studies demonstrating detector
limitations with evolving writing patterns (Bhat-
tacharjee and Liu, 2024b). The ternary framework
improves both accuracy and explainability, particu-
larly for these edge cases.

3 LLM-based Binary Classification on
LGTs and HGTs

3.1 Experimental Design

We selected six SOTA LLMs for text genera-
tion and subsequent detection: GPT-40, GPT-40
mini (Hurst et al., 2024), Qwen2-72B, Qwen2-
7B (Yang et al., 2024), LLaMA3.3-70B, and
LLaMA3.3-8B (Dubey et al., 2024). These LLMs
were chosen for two main reasons. First, they repre-
sent the latest advancements in LLM development,
demonstrating strong generation and detection ca-
pabilities. Second, selection spans different series
and model sizes, enabling a comparative analysis
of performance across architectures and scales.

To construct the dataset, we first selected
1,000 HGTs from publicly available M4GT-Bench
dataset (Wang et al., 2024), ensuring a diverse
range of topics, styles, and formats. Based on these
selected HGTs, we designed 1,000 prompts that
align with themes, structure, and style of the HGTs.
Each LLM subsequently generated a corresponding
response for each of these prompts. Together, these
LGTs and HGTs formed the benchmark used in
this study. For each text, the LLMs were tasked to

determine its source (LGTs or HGTs) and provide
an explanation, as illustrated in Table 2.

Prompt: Please determine whether the following text is gen-
erated by large language models or by a human, and provide a
clear judgment. Additionally, please offer a detailed explana-
tion for your decision. Please structure your answer in JSON
format as follows: {“answer”: , “explanation”: }.

Table 2: A prompt for LLMs to determine text origin
and provide an explanation under a binary setting.

Manual Annotation. To assess LLMs’ ability
to explain text origins and identify distinguishing
features, 3 co-authors, who are undergraduate com-
puter science students, manually evaluated correct-
ness of LLM-generated explanations. They de-
termined accuracy of each explanation. From 7
datasets (6 SOTA LLMs + Human), 100 texts with
corresponding explanations per dataset were ran-
domly selected for human evaluation. All annota-
tors assessed explanations provided by each model,
which achieved a Fleiss’ kappa (Fleiss, 1971) of
0.8387, indicating near-complete agreement. An-
notation guidelines are detailed in Appendix D.

Evaluation Metrics. For evaluating the classifi-
cation performance of the LLMs, the primary met-
ric we used is the F1 score. To assess the quality
of explanations, human evaluators reviewed the
LLM-generated explanations and classified them
as correct or incorrect. The F1 score was also used
as the evaluation metric for explanation quality.

3.2 Binary Classification Results

We evaluated the performance of six LLMs across
six datasets, as detailed in Table 1, which systemat-
ically compares the detection capabilities of vari-
ous LLMs for both LGTs and HGTs. The results



W LLM Detectors

Datasets GPT-40 GPT-4omini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B
GPT-40 73.48 / 67.04 58.41/54.17 57.65/54.17 48.29/51.32 64.11/59.60 59.57/162.13
GPT-40 mini 63.72 /1 60.95 63.43 /60.15 53.85/52.46 50.01/47.75 66.91/61.08 60.13/57.28
LLaMA3.3-70B 68.13/63.96 62.12/60.32 68.33 / 64.47 53.13/51.78 58.16/59.22 52.41/48.82
LLaMA3.3-8B 58.97/61.11 56.19/55.98 63.24/ 63.72 58.73 / 56.29 59.83/59.17 49.66/48.97
Qwen2-72B 62.70/61.09 62.91/162.84 58.71/56.99 49.12/47.26 70.47 / 67.98 61.24/58.18
Qwen2-7B 63.78 /1 61.54 58.11/57.84 60.15/58.60 48.72/49.17 65.44 / 63.58 63.83 /61.91

Table 3: F1 scores of LLM-based detectors on human-annotated texts for binary classification. Each dataset contains
100 LGTs and 100 HGTs with human-annotated explanations. Each cell indicates classification/explanation F1,
where the highest column-wise F1 of each LLM detector for binary classification and explanations across different
generated texts are highlighted with blue and red , respectively. In addition, the highest row-wise F1 among
different LLM detectors for each LLM-generated text datasets are indicated with blue and red in bold, respectively.

demonstrate that GPT-40 achieves the best average
detection performance across all datasets, showing
relatively strong generalization capabilities. Larger
parameter models generally exhibit significantly
better detection performance than smaller ones,
which suggests that these models are not merely
making random guesses but are effectively identi-
fying distinctive textual features.

The Fl1 scores in Table 1’s diagonal direction
show that LLMs within same series consistently de-
tect their own outputs more effectively than those
from other LLM families. For example, LLaMA3.3
70B achieves the highest Fl1 score in its gener-
ated dataset, which indicates a heightened sensitiv-
ity to its own text distribution compared to other
LLMs. However, this specialization reduces cross-
detection performance, as seen in Qwen2-7B’s
lower F1 on LLaMA-generated texts. While larger
LLMs generally achieve better detection across
different LLMs, such as GPT-40, GPT-40 mini,
LLaMA3.3-70B and Qwen2-72B, their outputs are
also more difficulty to distinguish by smaller LLMs,
such as LLaMA3.3-8B and Qwen2-7B.

Additionally, based on the human annotations
of sampled 100 LGTs and 100 HGTs with expla-
nations from each dataset, we observed that the
detection and explanation results across different
LLMs are not entirely consistent, as shown in Ta-
ble 3. We noted that in some cases, the F1 score for
explanations was higher than that for classification.
This is because, in these cases, the explanation
correctly identified the reasoning for attribution,
but the final classification was incorrect. For in-
stance, the difference in F1 scores between expla-
nation and classification was particularly noticeable
for LLaMA3.3-8B and Qwen2-7B, suggesting that
these models struggle to truly comprehend the tex-
tual features necessary for correctly determining

the origin of generated texts, which results in lower
detection performance.

As shown in Table 4, analysis of the annotators’
results revealed that models are generally more
accurate in attributing HGTs compared to LGTs.
For example, while GPT-40 demonstrates higher
accuracy (78 out of 100) in classifying HGTs, the
false explanations account for more than 47%.

4 LLM-based Ternary Classification on
LGTs and HGTSs

4.1 Experimental Setup

Using the same benchmark in § 3, we prompted
the LLMs for ternary classification and the prompt
template is demonstrated in Table 6. The ground
truth for the ternary classification was determined
based on annotators’ votes, where the three anno-
tators were aware of the text’s origin (LLMs or
human) and were asked to distinguish between the
ground truth and the “Undecided” category. This
allowed for the evaluation of both the LLM’s clas-
sification results and the explanations provided by
the LLMs. The Fleiss’ kappa (Fleiss, 1971) for
the ternary classification annotations among the
three annotators was calculated as 0.7629, which
indicates substantial agreement.

4.2 Ternary Classification Results

Table 5 presents the F1 scores of LLMs in the
ternary classification setting. Comparing it with
Table 3, we observe that introducing the “Unde-
cided” category leads to overall performance im-
provements across both classification and expla-
nation tasks. Specifically, GPT-40 exhibits the
most notable gains, improving from 73.48/67.04
to 79.73/72.04, indicating that a finer-grained clas-
sification allows stronger models to better capture
nuanced differences between LGTs and HGTs.



Model MGTs HGTs

TC TE FE FC TE FE TC TE FE FC TE FE
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Table 4: Performance of LLMs on LLM-generated and human-generated texts for ternary classification and
explanation tasks. It includes results for classification and explanation tasks, where TC represents true classification,
FC represents false classification, TE represents true explanation, and FE represents false explanation. Note:

TC=TE+FE and FC=TE+FE.

W LLM Detectors

Datasets GPT-40 GPT-40 mini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B
GPT-40 79.73/72.04 64.62/61.87 62.19/59.04 58.06/57.78 71.62/68.86 63.81/62.72
GPT-40 mini 70.11/68.75 67.39/ 65.18 58.88/52.95 54.43/51.16 69.65/65.95 65.15/62.60
LLaMA3.3-70B 74.41/75.26 65.16/64.75 72.11/ 71.83 57.05/57.34 64.94/62.44 56.46/55.32
LLaMA3.3-8B 71.99/70.80 60.18/61.10 64.82/63.93 63.96/ 62.85 63.12/60.52 54.08/53.01
Qwen2-72B 67.28/66.74 65.12/64.73 61.81/61.74 53.24/52.87 76.05/ 75.56 65.26/64.72
Qwen2-7B 68.91/67.42 60.15/59.31 62.06/61.57 52.41/52.30 70.30/68.44 66.61/ 65.17

Table 5: F1 scores of LLM-based detectors on the ternary classification of LGTs and HGTs. The highest column-
wise and row-wise F1 scores are highlighted and marked following the same scheme as in Table 3.

Prompt: Please classify the following text into one of three
categories based on its source: LLM-generated, human-
generated, or undecided. The “Undecided” category refers
to texts that exhibit characteristics of both LLM-generated
and human-generated content, making it impossible and in-
appropriate to distinguish between the two. Provide a clear
classification and a detailed explanation for your decision.
Structure your answer in JSON format as follows: {“classifi-
cation”: , “explanation”: }.

Table 6: A prompt for LLMs to determine text origin
and provide an explanation under a ternary setting.

Moreover, Fig 1 reveals how different mod-
els distribute predictions across three categories.
GPT-40 demonstrates a more balanced distribu-
tion, with relatively lower misclassification rates
for both HGTs and LGTs. In contrast, LLaMA3-
70B shows a stronger tendency to label texts as
“human-generated”, leading to a higher false posi-
tive rate. Meanwhile, Qwen2-72B exhibits a more
cautious classification approach, assigning a larger
proportion of texts to “Undecided” category, par-
ticularly for LGTs.

A closer comparison between binary and ternary
classifications in Tables 3 and 5 suggests that added
“Undecided” category benefits models differently.
While large models like GPT-40 and LLaMA3-70B
leverage this additional flexibility to improve both
classification and explanation F1 scores, smaller
models such as Qwen2-7B show more mixed re-
sults, with only marginal improvements. This

suggests that high-capacity models may be better
equipped to handle ambiguous cases, while smaller
models struggle with added complexity.

Overall, these findings indicate that ternary clas-
sification not only refines detection performance
but also enhances the LLMs’ ability to generate
more meaningful explanations. The improvements
are particularly evident in large-scale LLMs, which
benefit from a more nuanced decision space.

5 Explainability of LLM-based Detectors

5.1 Incorrect Explanation Attribution

Although LLMs can distinguish LGTs and HGTs,
especially in self-detection settings, there are ex-
planations that are incorrect via human evaluation.
Normally, incorrect explanations in correctly clas-
sified cases fall into three types: inaccurate fea-
tures (misidentifying key attributes), hallucinations
(citing nonexistent or contradictory features), and
flawed reasoning (faulty logic despite a correct out-
come). For misclassified texts, errors typically in-
volve inaccurate features or hallucinations, which
highlights the need to prioritize explanation accu-
racy alongside detection performance to enhance
trust in LLM-based detectors.

Inaccurate Features. Incorrect explanation attri-
bution is often caused by relying on ambiguous, su-
perficial, or misinterpreted features, as shown in the
examples in Tables 7 and 12 of Appendix A. In Ex-
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Figure 1: Confusion matrices showing the performance of LLM-based detectors (GPT-4, LLaMA3.3-70B, Qwen2-
72B) in the ternary classification task, where the bottom row represents human-annotated ground truth labels (LGTs,
Undecided, and HGTSs), and the left column represents classification results predicted by LLM-based detectors.

Example 1: Ambiguous Features

Original Text: “Quantum entanglement enables faster-than-light communication, allowing for instantaneous data transfer across
vast distances. This phenomenon has vast implications for future communication technologies, making it a subject of growing
interest in both academic and technological circles.”

LLM Judgment: LLM-generated

LLM Explanation: “The text discusses highly technical content, filled with specialized scientific terms, which is characteristic
of machine-generated text. Such advanced topics are often produced by Al systems rather than human experts.”

Example 4: Incorrectly Perceived Repetition

Original Text: “The discovery of gravitational waves was a turning point in the history of physics. This breakthrough confirmed
Einstein’s theory of relativity, providing compelling evidence for the existence of gravitational waves, which opened new doors
in astrophysics research.”

LLM Judgment: LL.M-generated

LLM Explanation: “The text exhibits repetitive sentence structures, a hallmark of Al-generated content. The repeated mention
of *gravitational waves’ and ’breakthrough’ indicates a pattern commonly seen in machine-generated texts.”

Example 6: Misinterpretation of Formal Tone

Original Text: “One must consider the economic ramifications of such policies, as they extend beyond immediate financial
concerns into broader societal impacts. The implications of these policies are far-reaching, touching on employment, income
inequality, and long-term societal well-being.”

LLM Judgment: LLM-generated

LLM Explanation: “The formal tone and structured language initially suggest human authorship, as such features are often
attributed to human experts. However, LLMs can replicate this style with high fidelity, leading to the final classification as
LLM-generated.”

Table 7: Analysis of LLM vs. Human Writing Attribution Based on Various Features. The table categorizes examples
where LLM-generated and human-written texts were incorrectly attributed or analyzed, providing explanations and
analyses of these misattributions.

ample 1 “Ambiguous Features”, the model misclas-
sifies text on quantum entanglement as LGTs due
to technical jargon usage. However, advanced top-
ics can also be written by human experts, not just
LLMs. This text was actually human-generated.
Similarly, Example 2 “Surface Features” shows
how the model links grammatical errors to the ma-
chine. Such mistakes are common among both
native and non-native writers and should not be
sole indicators of LGTs. In fact, HGTSs are more
likely to contain grammatical errors. Example 3
illustrates a misjudgment where emotional com-
plexity is falsely attributed exclusively to human
writing. The model assumes nuanced emotional
contrasts inherently reflect human authorship, over-
looking modern LLMs’ capability to simulate such

depth. This case underscores the unreliability of
using emotional sophistication alone as a criterion
to differentiate between HGTs and LGTs.

Hallucinations. Hallucinations occur when the
model incorrectly attributes features to the text that
either do not exist or are contrary to the actual
content. In Example 4: Incorrectly Perceived Rep-
etition, the model misinterprets the repetition of
ideas about gravitational waves as a sign of LLM
authorship. The text does not exhibit excessive
repetition, and the claim of a repetitive structure
is a false attribution, likely due to biases in the
model’s training data. In Example 5: Fictitious
Absence of Domain Knowledge, the model mis-
takenly claims that a text about RNA interference
lacks technical depth, suggesting it is more likely



Models Ambiguous Features (%)  Surface Features (%)

Logic&Emotion (%)

Vocabulary (%) Hallucinations (%) Incorrect Reasoning (%)

GPT-40 32.7 12.4
LLaMA3.3-70B 40.1 25.7
Qwen2-72B 32.1 23.7

432 72 22 2.3
18.9 4.1 6.1 5.1
25.4 8.9 6.3 3.6

Table 8: Attribution differences among LLMs when the judgment is correct but the explanation is incorrect.

Models Ambiguous Features (%)  Surface Features (%) Logic&Emotion (%) Vocabulary (%) Hallucinations (%)
GPT-40 13.9 30.7 23.8 20.7 10.9
LLaMA3.3-70B 26.8 10.1 40.1 4.1 18.9
Qwen2-72B 33.7 20.1 9.9 26.4 9.9

Table 9: Attribution differences among LLMs when both the judgment and the explanation are incorrect.

to be human-written. In reality, the text contains
domain-specific biological content, and the model
fails to recognize the technical knowledge present.

Incorrect Reasoning. Incorrect reasoning occurs
when relevant features are correctly identified but
are misinterpreted, leading to incorrect conclusions.
Example 6 highlights a classification error rooted in
inconsistent reasoning. The model correctly iden-
tifies formal stylistic features but misapplies their
significance. Enforcing a binary classification may
lead to inconsistent reasoning in model’s inference
process, as it forces an erroneous LLM label de-
spite ambiguity that could be better captured in a
ternary framework.

5.2 Human Evaluation

The reasons for incorrect explanations from hu-
man annotators are categorized into two scenarios:
correct predictions with incorrect explanations and
incorrect predictions with incorrect explanations.
The results are summarized in Tables 8 and 9.

For cases where the model made correct predic-
tions but provided incorrect explanations, Table 8
shows that the most prevalent reasons were inac-
curate features and hallucinations. Inaccurate fea-
tures, such as attributing the decision to vague or ir-
relevant characteristics, accounted for a significant
portion of errors across all LLMs. Hallucinations
were also frequent, particularly for models like
Qwen2-7B and GPT-4o0. Faulty reasoning, though
less common, contributed to the proportion of in-
correct explanations, highlighting inconsistencies
in reasoning despite identifying correct features.
For cases involving both incorrect predictions and
incorrect explanations, Table 9 indicates a simi-
lar distribution of error types, but with a higher
prevalence of hallucinations. Annotators noted that
models hallucinated key features, attributing the
decision to features not present in the text, which
compounded the issue of misclassification.

Overall, the analysis reveals that hallucinations
and reliance on inaccurate features are dominant
sources of error in explanations, regardless of pre-
diction accuracy. Addressing these issues requires
further refinement of the interpretability mecha-
nisms in LLMs, with a focus on grounding expla-
nations in verifiable and relevant textual evidence.

6 Can we improve LLM-based LGT
detection and explanation?

Supervised Fine-Tuning and Reinforcement
Learning. To investigate effectiveness of super-
vised fine-tuning (SFT) on improving cross-LLM
detection, we conducted a series of experiments us-
ing datasets generated from different LLMs, with
or without explanations. Details of data construc-
tion are provided in Appendix B, and results are
summarized in Table 10. When using answer-only
data for SFT, we observe a clear advantage when
training data is generated by GPT-40 compared
to LLaMA3.3-8B. This likely reflects higher qual-
ity and linguistic diversity of GPT-40 generations,
whereas LLLaMA3.3-8B tends to produce simpler
and less informative outputs, offering limited su-
pervision signals. Furthermore, although models
fine-tuned on GPT-40-only data generally achieve
higher F1 scores when evaluated on GPT-family
outputs, the mixed-source dataset provides stronger
generalization across all target LLMs. This indi-
cates that exposure to varied generation styles dur-
ing training helps the model better capture cross-
LLM decision boundaries. Additionally, incorpo-
rating explanations into training data consistently
yields higher performance. The improvement sug-
gests that explanation-augmented SFT encourages
model to internalize task-relevant reasoning pat-
terns and enhances its ability to focus on discrim-
inative linguistic cues indicative of text origin,
rather than merely memorizing surface features.
Motivated by recent advances in reward-



Model

Datasets

GPT-40 GPT-40omini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B  Qwen2-7B

Qwen2-7B (base model) 59.57 60.13 52.41 49.66 61.24 63.83
SFT (only answer)

w/ LLaMA3.3-8B 58.28 60.17 52.57 49.85 55.41 59.52

w/ GPT-40 63.70 62.18 53.90 52.91 63.28 62.86

w/ mixed dataset (ALL) 62.87 63.10 53.28 54.33 64.17 67.91
SFT (answer & explanation)

w/ GPT-40 70.09 72.03 58.19 54.17 67.39 68.55

w/ mixed dataset (ALL) 68.14 71.09 60.41 54.59 70.72 70.90
GRPO

w/o cold-start 63.31 64.17 57.96 56.09 63.60 63.02

w/ cold-start 73.29 69.01 63.34 65.22 74.89 73.47

Table 10: F1 score comparison of various training strategies across different evaluation models. Qwen2-7B (base
model) represents the raw performance without fine-tuning. SFT (only answer) and SFT (answer & explanation)
denote models supervised-fine-tuned using answer-only or answer-plus-explanation data, respectively. In “SFT
w/ GPT-40” or “w/ LLaMA3.3-8B”, the training dataset was generated using the outputs of the specified LLM.
“Mixed dataset (ALL)” combines training data from multiple sources. GRPO refers to the Group Relative Policy
Optimization, evaluated with and without cold-start initialization. Bold indicates the best score per column;

underline indicates the second-best.

optimized reasoning, such as OpenAl-o1(OpenAl,
2024) and DeepSeek-R1(DeepSeek-Al et al.,
2025), we further explore the impact of RL on
cross-LLM detection. Specifically, we adopt a
GRPO-style reward optimization framework in-
spired by DeepSeek-R1, with implementation de-
tails in Appendix C. As shown in Table 10, apply-
ing GRPO without any SFT initialization already
brings consistent gains over base model across all
test LLMs, with the most notable improvement ob-
served on LLaMA3.3-8B. However, performance
remains generally lower than the best SFT con-
figurations. When we initialize GRPO with a
model that has been fine-tuned using explanation-
augmented, mixed-source data (i.e., the cold-start
setting), we observe substantial performance boosts
across all evaluation datasets. This combination
effectively leverages reasoning capacity learned
during SFT and further refines it through reward-
driven preference learning. Results demonstrate
that GRPO with a well-informed initialization can
significantly enhance detection accuracy, enabling
the model to better align its scoring behavior with
human-intuitive criteria for text provenance.

Enhancing LLM Detection through LLM Col-
laboration. We further explore whether the per-
formance of LLM-based detection can improve
via LLM’s collaboration. Table 11 shows that
the performance of LLM-based detectors improves
significantly when their judgments and explana-
tions are complemented by another LLM counter-
part. Specifically, the cross-detection of GPT-40 on
Qwen-2 72B dataset has noticeable improvements

in the classification and explanation F1 with the
support of Qwen2-72B. We also find a similar trend,
where Qwen2-72B benefits from GPT-40’s support
on the cross-detection settings. These findings indi-
cate that LLM’s collaboration can further improve
the classification and explanation performance on
the LLM counterpart’s dataset, i.e., cross-detection.

Datasets
m GPT-40 Qwen2-72B
GPT-4o (+Qwen2-72B)  +1.43%/-0.61%  +3.79% / +2.33%

Qwen2-72B (+GPT-40) +2.01% /+0.45%  +0.39% /-1.24%

Table 11: F1 score differences based on LLM collabora-

tion with judgments and explanations integration. The
supplemental LLMs in () will generate the judgments
and explanations first to further support the detection
and explanations of main LLMs.

7 Conclusion

We evaluated how well LLM-based detectors differ-

entiate human- from LLM-generated text, focusing
on detection accuracy and explanation clarity. Self-
detection by LLM-based detectors reliably outper-
forms cross-detection, especially within the same
model family. Yet their explanations remain flawed,
hinging on spurious features, hallucinations, and
unsound reasoning, with GPT-40 trading higher
accuracy for frequent hallucinations and Qwen2-
7B offering a more balanced but vague rationale.
These results underscore the imperative for more
interpretable, trustworthy detectors in critical ap-
plications such as academic integrity and content
moderation.



Limitations

This study is subject to several limitations. First,
due to the limited number of API calls available
for closed-source LLMs, the datasets used for gen-
erating and detecting LLM-generated texts were
constructed at a scale of 1,000 samples. As a re-
sult, the types and variety of texts involved in the
analysis may not be fully comprehensive, poten-
tially introducing bias. Additionally, because the
generation of explanations requires manual anno-
tation, which is time-consuming, only a random
sample of 100 texts per dataset could be selected
for evaluation. This sample size may lead to biases
in the evaluation of LLM-generated explanations.
Finally, given the rapid advancements in LLM tech-
nology, the detection and explanation capabilities
of models are continually evolving. Therefore, it
is crucial to periodically update our research focus
and the models under study to ensure the results
remain relevant and accurate.

Ethic Statements

All experiments were conducted using publicly
available LLMs and datasets. For the datasets we
constructed for the work, no any personal or pri-
vate information is included. All the three human
annotators are co-authors, so an research ethics re-
view was not considered necessary. More details
on how we used the human annotators can be found
in Appendix D.
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A Misattributions Examples

To better illustrate the types of errors and their at-
tributions, Table 12 provides examples of common
mistakes made by the models in classifying text
origins.

B Supervised Fine-Tuning (SFT)

B.1 Dataset Construction

For each language model (e.g., GPT-4o,
LLaMA3.3-8B), we first generate synthetic
outputs and then perform self-detection using the
same LLM. Based on whether the self-detection is
correct, we apply the following rejection sampling
procedure to construct our SFT datasets:

* If the model correctly identifies its own output,
we retain the sample.

» If the model misclassifies, but a stronger
model (e.g., GPT-40) can identify the source
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Example 2: Surface Features

Original Text: “The book were interesting. It show a deep exploration of human emotions and relationships. The author’s use of
metaphors and descriptive language provided rich insights into the human psyche, but the writing style seemed awkward and
unpolished in places.”

LLM Judgment: LLM-generated

LLM Explanation: “The grammatical errors such as *were’ instead of *was’ and ’show’ instead of ’shows’ suggest that the text
is Al-generated. Machines typically generate text with such mistakes.”

Example 3: Misattributed Logical or Emotional Elements

Original Text: “His words carried a strange contradiction—he spoke of hope but with an undeniable sadness. It was as though
the optimism in his tone clashed with his deeply melancholic gaze, creating a complex emotional paradox.”

LLM Judgment: Human-written

LLM Explanation: “The nuanced contradiction of hope and sadness reflects deeply human emotional complexity, which LLMs
typically struggle to replicate authentically. Such layered emotional depth is often unique to human expression.”

Example 5: Fictitious Absence of Domain Knowledge

Original Text: “RNA interference plays a crucial role in gene regulation, allowing for targeted suppression of specific genetic
sequences. This mechanism is being studied for its potential therapeutic applications in cancer treatment and genetic disorders.”
LLM Judgment: Human-written

LLM Explanation: “The text lacks the level of technical depth and domain-specific knowledge typically found in professional
scientific writing, suggesting that it is more likely to be written by a human author who is not an expert in the field.”

Table 12: Analysis of LLM vs. Human Writing Attribution Based on Various Features. The table categorizes
examples where LLM-generated and human-written texts were incorrectly attributed or analyzed, providing
explanations and analyses of these misattributions.

correctly and provide an explanation, we in- C Reward Optimization with GRPO

clude this explanation-augmented sample. C.1 Dataset Construction

e If all models fail to detect the text’s origin ~ For GRPO training, we construct a high-quality,
correctly, the sample is discarded, as it offers ~ moderately difficult dataset. We filter out both
limited training value. overly simple and excessively hard samples from

the LLLM-generated pool:

This strategy ensures that our training data are

high-quality and informative, containing either an-
swers alone or answers with explanations. It helps

» Samples that are correctly classified by all
detectors are excluded as they lack training

challenge.
the SFT model learn from both model-generated
cues and external reasoning signals. » Samples that are misclassified by all detectors
are removed because they may be inherently
B.2 Training Configuration ambiguous.
Each SFT experiment is conducted using a bal- From the remaining samples, we randomly se-

anced dataset of 10,000 LLM-generated and 10,000  lect 5,000 LLM-generated texts and mix them
human-written texts. We perform LoRA-based(Hu  with 5,000 human-written texts to form a balanced
et al., 2021) fine-tuning for two epochs using four  dataset for reward learning.
NVIDIA A100 80GB GPUs with FP16 precision. L. .
C.2 Training Configuration
* Answer-only setting: Each training session ~ GRPO training is conducted using the same in-
takes approximately 18 hours. frastructure as SFT. We initialize the model either
from a base Qwen2-7B checkpoint or from a previ-
* Answer + explanation setting: Training re-  ously SFT-trained model (cold-start setup). Train-
quires around 28 hours due to longer input  ing is performed using a PPO-style loop with KL-
sequences and richer supervision. divergence regularization.

* Without SFT: Training tak imatel
We use a batch size that fully utilizes available tthou raining takes approximately

GPU memory, a learning rate of 2e-5, and the 24 hours.
AdamW optimizer. Model performance is eval- * With SFT: Training requires about 30 hours
uated after each epoch based on macro F1 score, due to improved convergence and longer se-
and the best-performing checkpoint is selected. quences.
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All training is done with 4 NVIDIA A100 80GB
GPUs, using FP16 precision, a reward model learn-
ing rate of 1le-5, a policy learning rate of 5e-6, and
gradient accumulation for stability. The total train-
ing loop runs for 1 epoch with a replay buffer size
of 10k examples.

D Annotation Guidelines

This appendix provides detailed instructions for the
manual annotation tasks conducted in our study.
The annotation process consists of two tasks: (1) a
binary classification task to evaluate the accuracy
of LLM-generated explanations, and (2) a ternary
classification task where annotators evaluate both
the correctness of the LLM’s ternary classifica-
tion judgments and the accuracy of its explanations
based on known text sources.

E Examples of Undecided Text Categories
E.1 Mixed Human-LLM Co-authored Texts

This category includes texts collaboratively writ-
ten by humans and large language models (LLMs),
where stylistic or structural transitions reflect a shift
in authorship. Such texts often begin with nuanced
and context-sensitive human input and later transi-
tion to more uniform, templated, and encyclopedic
LLM-generated content. These transitions are not
always clearly marked, making authorship attribu-
tion difficult. Table 14 presents two representative
examples.

E.2 Inherently Ambiguous Single-source
Texts

This category includes texts produced entirely by
either humans or LL.Ms, but whose stylistic and
rhetorical features align with both sources. Such
texts often exhibit emotionally neutral tones, fact-
heavy content, and well-structured reasoning, mak-
ing it difficult to distinguish their origin. Human-
written texts may appear too polished, while LLM
outputs may mimic human nuance. Table 15 illus-
trates two such ambiguous examples.

E.3 Fragile Indicator Cases

This category includes texts that trigger LLM detec-
tors based on subtle linguistic patterns or statistical
anomalies. However, these indicators tend to be
unstable. Minor changes in wording, paraphrasing,
or model sampling parameters often cause the fea-
tures to disappear. As a result, these texts demon-
strate the brittleness of current detection methods.
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Table 16 presents two examples with unstable fea-
tures that resist robust attribution.



Task 1: Explanation Accuracy Evaluation

Annotators will assess whether the explanation provided by the model correctly justifies its classification decision. Each explana-
tion should be judged based on its logical consistency, relevance to the text, and whether it accurately reflects distinguishing
features.

Columns:

» Text: The text sample to be classified.

* Detection Result: The model’s classification of the text as “LLM-generated” or “Human-generated.”
* Model’s Explanation: The explanation provided by the model for its classification decision.

* Annotation: Label the explanation as “Accurate” or “Inaccurate” based on its reasoning quality.

Example:

Text: “In recent years, artificial intelligence has demonstrated remarkable progress, influencing numerous industries, including
healthcare, finance, and creative writing. Many experts believe that this rapid advancement will continue to reshape the workforce
and redefine human-machine collaboration.”

Detection Result: LL.M-generated

Model’s Explanation: “The highly structured argumentation and precise yet impersonal tone indicate that this text was likely
machine-generated rather than composed by a human writer.”

Annotation: Inaccurate (While structured argumentation is common in LLM-generated text, human authors can also produce
similarly structured and objective writing.)

Task 2: Ternary Classification with Explanation Evaluation

Annotators will classify each text as “LLM-generated,” “Human-generated,” or “Undecided,” and evaluate whether the model’s
explanation correctly justifies the classification. The “Undecided” label applies when the text lacks sufficient distinguishing
features.

Columns:

» Text: The text sample to be classified.

* Detection Result: LLM’ judgment of whether the text is “LLM-generated,” “Human-generated,” or “Undecided.”
* Model’s Explanation: The explanation provided by the model.

* Classification Annotation: Label whether the model’s classification is “Correct” or “Incorrect.”

* Explanation Annotation: Label the explanation as “Accurate” or “Inaccurate” based on its reasoning quality.

Example:

Text: “Quantum mechanics, a field of physics that describes the behavior of particles at the atomic and subatomic levels, has
led to groundbreaking discoveries such as quantum entanglement and superposition. These principles have paved the way for
advancements in quantum computing and cryptography, revolutionizing modern technology.”

Detection Result: Undecided

Model’s Explanation: “The text presents factual scientific content in a neutral tone, making it difficult to distinguish between
human and machine authorship.”

Classification Annotation: Correct

Explanation Annotation: Accurate (The explanation correctly justifies why the text is indistinguishable.)

Table 13: Human Annotation Instructions

Example 1

“In examining urban resilience frameworks, we find that grassroots organizations play a pivotal role in ensuring community
adaptability. Interviews with local leaders in Jakarta revealed bottom-up innovation and resource sharing as key drivers of
resilience. However, literature on climate-adaptive infrastructure increasingly emphasizes machine learning for real-time flood
prediction and decentralized data systems for disaster response. A systematic review of recent publications demonstrates that
hybrid models integrating sensor-based monitoring with socio-political data yield more actionable insights. These models offer
scalable solutions for cities facing climate uncertainty, as evidenced by pilot projects in Southeast Asia and Latin America.”

Example 2

“The first wave of digital humanities emphasized textual digitization and basic metadata annotation, grounded in traditional
philological practices. Scholars argued for methodological transparency and historical fidelity. In recent years, however, there
has been a shift toward large-scale computational analysis. Transformer-based models are now trained on digitized archives to
identify latent narrative patterns across centuries. This methodological turn, while powerful, raises questions about interpretability
and disciplinary boundaries. Current debates focus on integrating humanistic inquiry with algorithmic inference in ways that
preserve epistemic integrity.”

Table 14: Examples of Mixed Human-LLM Co-authored Texts
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Example 1

“The monitor offers a 2560x1440 resolution, a 165Hz refresh rate, and a color accuracy rating of Delta E < 2. These specifications
make it suitable for both competitive gaming and semi-professional design work. Its adjustable stand and blue-light reduction
features enhance long-term usability. In testing, response times remained consistent across refresh rates, and input lag was
minimal. While the built-in speakers are underwhelming, the overall design reflects thoughtful engineering. Prospective buyers
should note that firmware updates may be required to access advanced color profiles.”

Example 2

“The exhibition explores post-colonial identity through mixed media installations that juxtapose industrial debris with archival
imagery. Each piece is accompanied by minimal curatorial framing, allowing for open-ended engagement. The spatial
arrangement avoids linear narratives, instead emphasizing fragmented temporality and layered symbolism. Visitor responses
ranged from emotional introspection to conceptual confusion. Whether the ambiguity is intentional or a result of aesthetic
overreach remains debatable, yet the collection undeniably provokes sustained reflection.”

Table 15: Examples of Inherently Ambiguous Single-source Texts

Example 1

“The second quarter’s economic indicators reflect a modest uptick in consumer confidence, despite lagging wage growth and
persistent inflationary pressures. Analysts note that housing starts have stabilized, though regional variation remains high.
Meanwhile, the energy sector showed unexpected resilience due to global supply chain recalibrations. Although many forecasts
anticipated stagnation, revised models suggest a delayed soft landing. The Federal Reserve’s policy stance continues to oscillate
between caution and proactive intervention, with uncertainty surrounding long-term bond yields.”

Example 2

“In the novel’s final chapter, the protagonist revisits the childhood home, now transformed by decay and silence. The narrative
perspective shifts from third-person to free indirect discourse, blurring the boundary between memory and present perception.
Sentence rhythms slow, with nested subordinate clauses evoking emotional weight. Yet, this stylistic density is briefly interrupted
by abrupt declaratives, mirroring the character’s psychological fragmentation. Such microstructural choices are atypical but
could be easily altered in paraphrased variants, rendering authorship signals imperceptible to automated systems.”

Table 16: Examples of Fragile Indicator Cases
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