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Abstract

Distinguishing between human- and LLM-001
generated texts is crucial given the risks associ-002
ated with misuse of LLMs. This paper investi-003
gates detection and explanation capabilities of004
current LLMs across two settings: binary (hu-005
man vs. LLM-generated) and ternary classifica-006
tion (including an “undecided” class). We eval-007
uate 6 close- and open-source LLMs of varying008
sizes and find that self-detection (LLMs iden-009
tifying their own outputs) consistently outper-010
forms cross-detection (identifying outputs from011
other LLMs), though both remain suboptimal.012
Introducing a ternary classification framework013
improves both detection accuracy and explana-014
tion quality across all models. Through com-015
prehensive quantitative and qualitative analyses016
using our human-annotated dataset, we identify017
key explanation failures, primarily reliance on018
inaccurate features, hallucinations, and flawed019
reasoning. Our findings underscore the limi-020
tations of current LLMs in self-detection and021
self-explanation, highlighting the need for fur-022
ther research to address overfitting and enhance023
generalizability.024

1 Introduction025

The rise of large language models (LLMs) has026

brought remarkable advancements in natural lan-027

guage processing (NLP) tasks (Matarazzo and Tor-028

lone, 2025), including text generation. Models029

such as GPT-4o (OpenAI, 2024), LLaMA (Tou-030

vron et al., 2023), and Qwen (Team, 2024) have031

blurred the boundaries between LLM-generated032

(LGTs) and human-generated texts (HGTs), pos-033

ing new challenges in distinguishing between the034

two. While these capabilities of LLMs open new035

possibilities, they also bring concerns in areas such036

as misinformation, academic dishonesty, and auto-037

mated content moderation (Hu, 2025). As a result,038

detecting LGTs has become an increasingly impor-039

tant research area (Dugan et al., 2024; Lee et al.,040

2023; Bhattacharjee and Liu, 2024a).041

Prior research has mainly focused on developing 042

classifiers to distinguish HGTs and LGTs, includ- 043

ing open-source detectors (Hans et al., 2024) and 044

online close-source detection systems (Tian et al., 045

2023). However, most detection systems have 046

been limited to binary classification, which has 047

several inherent issues. Recently, some works (Lee 048

et al., 2024b) have attempted ternary classification 049

by introducing a “mixed” category, which repre- 050

sents texts originating from mixed sources. How- 051

ever, this approach does not fundamentally resolve 052

the issue. We further adopt the definition of an 053

“Undecided” category based on other studies (Ji 054

et al., 2024) and conduct ternary classification ex- 055

periments for different LLMs, as certain texts are 056

inherently indistinguishable between LGTs and 057

HGTs. Furthermore, many studies treat the de- 058

tection task as a black box, offering little insight 059

into the decision-making process. Explainability, a 060

critical aspect of trustworthy AI, has received less 061

attention, but it is essential for building systems 062

that users can trust (Weng et al., 2024; Zhou et al., 063

2024). This paper presents an analysis of current 064

LLMs in detecting LGTs and HGTs, with a par- 065

ticular emphasis on evaluating and improving the 066

clarity of the explanations provided by LLM-based 067

detectors. By investigating how LLMs make pre- 068

dictions and offer explanations for their decisions, 069

we aim to enhance their transparency and provide 070

deeper insights into their reasoning processes. 071

This paper explores the explainability of LLM- 072

based detectors, addressing two central questions: 073

(1) How accurately can current LLM detectors 074

identify origins of texts, and (2) How reliable are 075

their explanations? Our study highlights that in 076

a ternary setting compared to traditional binary 077

classification, the average detection performance 078

improves by 5.6%, which demonstrates the neces- 079

sity of ternary rather than binary setting to detect 080

HGTs and LGTs. We further discovered that ex- 081

planations are often flawed even when binary pre- 082
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dictions are correct. Based on our comprehensive083

human-annotators’ feedback, we summarize three084

common issues with explanations: reliance on inac-085

curate features (e.g., vague or irrelevant character-086

istics), hallucinations (e.g., non-existent or contra-087

dictory features), and incorrect reasoning (e.g., log-088

ical errors in attributing text origin). These expla-089

nation errors are quantified and categorized, with090

their distributions analyzed across different LLMs.091

Consequently, the proportion of explanation errors092

decreases by 13.3% when we switch to ternary093

classification setting, which further supports the ne-094

cessity of ternary classification for LGTs detection.095

We evaluated 6 state-of-the-art (SOTA) LLM-096

based detectors, such as GPT-4o, GPT-4o mini,097

LLaMA3.3-70B, LLaMA3.3-7B, Qwen2-72B, and098

Qwen2-7B, on our created dataset comprising099

LGTs and HGTs. Moreover, our human annotators100

provided feedback based on correctness of predic-101

tions and explanations for this benchmark. Our102

results show that GPT-4o achieved the highest de-103

tection accuracy. In addition, LLMs performed104

better in self-detection than cross-detection, and105

ternary classification outperformed binary classifi-106

cation. Finally, explanation quality also improved107

under ternary setting, with fewer hallucinations and108

incorrect reasoning observed.109

The main contributions of this work are:110

• Comprehensive Evaluation of Detection and111

Explanation: We systematically assess current112

LLMs’ ability to detect and explain human-113

and LLM-generated texts using both binary and114

ternary classification tasks, demonstrating the115

advantages of ternary classification for both de-116

tection accuracy and explanation quality.117

• Human-Annotated Dataset: We present a new118

human-annotated dataset of LLM- and human-119

generated texts, enabling evaluation of LLM ex-120

planations and improved detector training.121

• Analysis of Explanation Errors: We quantita-122

tively and qualitatively characterize key expla-123

nation failures, reliance on inaccurate features,124

hallucinations, and flawed reasoning, offering125

insights for LLM detection and self-explanation.126

2 Related Work127

LGT and HGT Detection. Past efforts to iden-128

tify LGTs often relied on binary classification129

systems that distinguish HGTs from LGTs using130

surface-level features. While these methods were 131

initially effective, they are prone to errors when 132

encountering adversarial attacks or domain shifts, 133

which limit their overall robustness (Bhattachar- 134

jee and Liu, 2024a; Dugan et al., 2024). To ad- 135

dress these limitations, researchers have explored 136

strategies that integrate external knowledge, such 137

as combining internal and external factual struc- 138

tures, to boost detection against diverse content 139

and styles (Internal and Structures, 2024). Recent 140

studies also highlight the promise of using LLMs 141

themselves for text detection: approaches like self- 142

detection and mutual detection can outperform tra- 143

ditional classifiers, as illustrated by GPT-4’s suc- 144

cess in tasks like plagiarism detection (Lee et al., 145

2024a). Notably, smaller models sometimes ex- 146

cel in zero-shot scenarios, offering adaptable solu- 147

tions across varying architectures (He et al., 2024). 148

Furthermore, Lee et al. (2023) demonstrated that 149

LLMs can reliably identify their own outputs, pro- 150

viding a more nuanced framework for content ver- 151

ification. Despite these advances, the continuing 152

challenges of domain adaptation and adversarial 153

resistance underscore the need for more versatile 154

and robust detection systems. 155

Explainability in Detection Models. Recent 156

work on LGT detection has focused on improving 157

explainability. Zhou et al. (2024) proposed to in- 158

corporate factual consistency into detection models 159

to enhance their interpretability, while Weng et al. 160

(2024) explored mixed-initiative approaches that 161

combine human expertise with automated models 162

for better detection. These studies have made sig- 163

nificant contributions to the field; however, they 164

either depend heavily on expert input (Weng et al., 165

2024) or lack integration of explanation generation 166

within the model itself (Zhou et al., 2024). Our ap- 167

proach, in contrast, enables LLMs to autonomously 168

generate both predictions and detailed explanations, 169

making it a more scalable and transparent solution 170

for detecting machine-generated content. 171

Ternary Classification. Traditional binary clas- 172

sification methods face limitations when texts ex- 173

hibit ambiguous characteristics. Introducing an 174

“Undecided” category addresses this by capturing 175

three distinct scenarios (see Appendix E for con- 176

crete illustrations): (1) Mixed texts co-authored 177

by humans and LLMs, where stylistic blending 178

creates classification challenges; (2) Inherently am- 179

biguous texts that could plausibly originate from 180

either source despite single authorship; and (3) 181

Fragile indicators, where subtle distinguishing fea- 182
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Datasets
Models LLM Detectors

GPT-4o GPT-4o mini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B

GPT-4o 71.39 59.38 57.31 48.41 64.14 59.76
GPT-4o mini 65.71 61.03 53.75 51.73 67.27 60.09
LLaMA3.3-70B 67.26 60.92 68.10 53.65 58.96 51.57
LLaMA3.3-8B 60.74 55.77 62.29 59.09 59.87 49.88
Qwen2-72B 62.66 61.92 57.79 49.20 68.15 61.36
Qwen2-7B 62.45 59.06 59.12 48.57 65.24 63.44

Average 65.03 59.68 59.73 51.78 63.94 57.68

Table 1: F1 scores of LLM-based detectors in binary classification. The first column indicates different LLMs used
for text generation, and the first row indicates different LLMs acting as detectors. The highest column-wise F1 score
for each LLM detector to classify LGTs and HGTs across six datasets is highlighted in blue . The highest row-wise
F1 score for each LLM-generated text dataset across different LLM detectors is marked in blue.

tures exist but lack robustness against behavioral183

evolution of either LLMs or human writers. This184

approach advances beyond previous methods that185

primarily addressed mixed texts (Lee et al., 2024b).186

The complexity is evidenced by Turing tests show-187

ing human difficulty in binary classification (Frank188

et al., 2024), and by studies demonstrating detector189

limitations with evolving writing patterns (Bhat-190

tacharjee and Liu, 2024b). The ternary framework191

improves both accuracy and explainability, particu-192

larly for these edge cases.193

3 LLM-based Binary Classification on194

LGTs and HGTs195

3.1 Experimental Design196

We selected six SOTA LLMs for text genera-197

tion and subsequent detection: GPT-4o, GPT-4o198

mini (Hurst et al., 2024), Qwen2-72B, Qwen2-199

7B (Yang et al., 2024), LLaMA3.3-70B, and200

LLaMA3.3-8B (Dubey et al., 2024). These LLMs201

were chosen for two main reasons. First, they repre-202

sent the latest advancements in LLM development,203

demonstrating strong generation and detection ca-204

pabilities. Second, selection spans different series205

and model sizes, enabling a comparative analysis206

of performance across architectures and scales.207

To construct the dataset, we first selected208

1,000 HGTs from publicly available M4GT-Bench209

dataset (Wang et al., 2024), ensuring a diverse210

range of topics, styles, and formats. Based on these211

selected HGTs, we designed 1,000 prompts that212

align with themes, structure, and style of the HGTs.213

Each LLM subsequently generated a corresponding214

response for each of these prompts. Together, these215

LGTs and HGTs formed the benchmark used in216

this study. For each text, the LLMs were tasked to217

determine its source (LGTs or HGTs) and provide 218

an explanation, as illustrated in Table 2. 219

Prompt: Please determine whether the following text is gen-
erated by large language models or by a human, and provide a
clear judgment. Additionally, please offer a detailed explana-
tion for your decision. Please structure your answer in JSON
format as follows: {“answer”: , “explanation”: }.

Table 2: A prompt for LLMs to determine text origin
and provide an explanation under a binary setting.

Manual Annotation. To assess LLMs’ ability 220

to explain text origins and identify distinguishing 221

features, 3 co-authors, who are undergraduate com- 222

puter science students, manually evaluated correct- 223

ness of LLM-generated explanations. They de- 224

termined accuracy of each explanation. From 7 225

datasets (6 SOTA LLMs + Human), 100 texts with 226

corresponding explanations per dataset were ran- 227

domly selected for human evaluation. All annota- 228

tors assessed explanations provided by each model, 229

which achieved a Fleiss’ kappa (Fleiss, 1971) of 230

0.8387, indicating near-complete agreement. An- 231

notation guidelines are detailed in Appendix D. 232

Evaluation Metrics. For evaluating the classifi- 233

cation performance of the LLMs, the primary met- 234

ric we used is the F1 score. To assess the quality 235

of explanations, human evaluators reviewed the 236

LLM-generated explanations and classified them 237

as correct or incorrect. The F1 score was also used 238

as the evaluation metric for explanation quality. 239

3.2 Binary Classification Results 240

We evaluated the performance of six LLMs across 241

six datasets, as detailed in Table 1, which systemat- 242

ically compares the detection capabilities of vari- 243

ous LLMs for both LGTs and HGTs. The results 244
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Datasets
Models LLM Detectors

GPT-4o GPT-4o mini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B

GPT-4o 73.48 / 67.04 58.41 / 54.17 57.65 / 54.17 48.29 / 51.32 64.11 / 59.60 59.57 / 62.13
GPT-4o mini 63.72 / 60.95 63.43 / 60.15 53.85 / 52.46 50.01 / 47.75 66.91 / 61.08 60.13 / 57.28
LLaMA3.3-70B 68.13 / 63.96 62.12 / 60.32 68.33 / 64.47 53.13 / 51.78 58.16 / 59.22 52.41 / 48.82
LLaMA3.3-8B 58.97 / 61.11 56.19 / 55.98 63.24 / 63.72 58.73 / 56.29 59.83 / 59.17 49.66 / 48.97
Qwen2-72B 62.70 / 61.09 62.91 / 62.84 58.71 / 56.99 49.12 / 47.26 70.47 / 67.98 61.24 / 58.18
Qwen2-7B 63.78 / 61.54 58.11 / 57.84 60.15 / 58.60 48.72 / 49.17 65.44 / 63.58 63.83 / 61.91

Table 3: F1 scores of LLM-based detectors on human-annotated texts for binary classification. Each dataset contains
100 LGTs and 100 HGTs with human-annotated explanations. Each cell indicates classification/explanation F1,
where the highest column-wise F1 of each LLM detector for binary classification and explanations across different
generated texts are highlighted with blue and red , respectively. In addition, the highest row-wise F1 among
different LLM detectors for each LLM-generated text datasets are indicated with blue and red in bold, respectively.

demonstrate that GPT-4o achieves the best average245

detection performance across all datasets, showing246

relatively strong generalization capabilities. Larger247

parameter models generally exhibit significantly248

better detection performance than smaller ones,249

which suggests that these models are not merely250

making random guesses but are effectively identi-251

fying distinctive textual features.252

The F1 scores in Table 1’s diagonal direction253

show that LLMs within same series consistently de-254

tect their own outputs more effectively than those255

from other LLM families. For example, LLaMA3.3256

70B achieves the highest F1 score in its gener-257

ated dataset, which indicates a heightened sensitiv-258

ity to its own text distribution compared to other259

LLMs. However, this specialization reduces cross-260

detection performance, as seen in Qwen2-7B’s261

lower F1 on LLaMA-generated texts. While larger262

LLMs generally achieve better detection across263

different LLMs, such as GPT-4o, GPT-4o mini,264

LLaMA3.3-70B and Qwen2-72B, their outputs are265

also more difficulty to distinguish by smaller LLMs,266

such as LLaMA3.3-8B and Qwen2-7B.267

Additionally, based on the human annotations268

of sampled 100 LGTs and 100 HGTs with expla-269

nations from each dataset, we observed that the270

detection and explanation results across different271

LLMs are not entirely consistent, as shown in Ta-272

ble 3. We noted that in some cases, the F1 score for273

explanations was higher than that for classification.274

This is because, in these cases, the explanation275

correctly identified the reasoning for attribution,276

but the final classification was incorrect. For in-277

stance, the difference in F1 scores between expla-278

nation and classification was particularly noticeable279

for LLaMA3.3-8B and Qwen2-7B, suggesting that280

these models struggle to truly comprehend the tex-281

tual features necessary for correctly determining282

the origin of generated texts, which results in lower 283

detection performance. 284

As shown in Table 4, analysis of the annotators’ 285

results revealed that models are generally more 286

accurate in attributing HGTs compared to LGTs. 287

For example, while GPT-4o demonstrates higher 288

accuracy (78 out of 100) in classifying HGTs, the 289

false explanations account for more than 47%. 290

4 LLM-based Ternary Classification on 291

LGTs and HGTs 292

4.1 Experimental Setup 293

Using the same benchmark in § 3, we prompted 294

the LLMs for ternary classification and the prompt 295

template is demonstrated in Table 6. The ground 296

truth for the ternary classification was determined 297

based on annotators’ votes, where the three anno- 298

tators were aware of the text’s origin (LLMs or 299

human) and were asked to distinguish between the 300

ground truth and the “Undecided” category. This 301

allowed for the evaluation of both the LLM’s clas- 302

sification results and the explanations provided by 303

the LLMs. The Fleiss’ kappa (Fleiss, 1971) for 304

the ternary classification annotations among the 305

three annotators was calculated as 0.7629, which 306

indicates substantial agreement. 307

4.2 Ternary Classification Results 308

Table 5 presents the F1 scores of LLMs in the 309

ternary classification setting. Comparing it with 310

Table 3, we observe that introducing the “Unde- 311

cided” category leads to overall performance im- 312

provements across both classification and expla- 313

nation tasks. Specifically, GPT-4o exhibits the 314

most notable gains, improving from 73.48/67.04 315

to 79.73/72.04, indicating that a finer-grained clas- 316

sification allows stronger models to better capture 317

nuanced differences between LGTs and HGTs. 318
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Model
MGTs HGTs

TC TE FE FC TE FE TC TE FE FC TE FE

GPT-4o 64 51:79.7% 13:20.3% 36 8:22.2% 28:77.8% 78 41:52.6% 37:47.4% 22 2:9.1% 20:90.9%
LLaMA3.3-70B 56 35:62.5% 21:37.5% 44 10:22.7% 34:77.3% 60 37:61.7% 23:38.3% 40 7:17.5% 33:82.5%
Qwen2-72B 60 36:60.0% 24:40.0% 40 7:17.5% 33:82.5% 69 50:72.5% 19:27.5% 31 7:22.6% 24:77.4%

Table 4: Performance of LLMs on LLM-generated and human-generated texts for ternary classification and
explanation tasks. It includes results for classification and explanation tasks, where TC represents true classification,
FC represents false classification, TE represents true explanation, and FE represents false explanation. Note:
TC=TE+FE and FC=TE+FE.

Datasets
Models LLM Detectors

GPT-4o GPT-4o mini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B

GPT-4o 79.73 /72.04 64.62/61.87 62.19/59.04 58.06/57.78 71.62/68.86 63.81/62.72
GPT-4o mini 70.11/68.75 67.39 / 65.18 58.88/52.95 54.43/51.16 69.65/65.95 65.15/62.60
LLaMA3.3-70B 74.41/ 75.26 65.16/64.75 72.11 / 71.83 57.05/57.34 64.94/62.44 56.46/55.32
LLaMA3.3-8B 71.99/70.80 60.18/61.10 64.82/63.93 63.96 / 62.85 63.12/60.52 54.08/53.01
Qwen2-72B 67.28/66.74 65.12/64.73 61.81/61.74 53.24/52.87 76.05 / 75.56 65.26/64.72
Qwen2-7B 68.91/67.42 60.15/59.31 62.06/61.57 52.41/52.30 70.30/68.44 66.61 / 65.17

Table 5: F1 scores of LLM-based detectors on the ternary classification of LGTs and HGTs. The highest column-
wise and row-wise F1 scores are highlighted and marked following the same scheme as in Table 3.

Prompt: Please classify the following text into one of three
categories based on its source: LLM-generated, human-
generated, or undecided. The “Undecided” category refers
to texts that exhibit characteristics of both LLM-generated
and human-generated content, making it impossible and in-
appropriate to distinguish between the two. Provide a clear
classification and a detailed explanation for your decision.
Structure your answer in JSON format as follows: {“classifi-
cation”: , “explanation”: }.

Table 6: A prompt for LLMs to determine text origin
and provide an explanation under a ternary setting.

Moreover, Fig 1 reveals how different mod-319

els distribute predictions across three categories.320

GPT-4o demonstrates a more balanced distribu-321

tion, with relatively lower misclassification rates322

for both HGTs and LGTs. In contrast, LLaMA3-323

70B shows a stronger tendency to label texts as324

“human-generated”, leading to a higher false posi-325

tive rate. Meanwhile, Qwen2-72B exhibits a more326

cautious classification approach, assigning a larger327

proportion of texts to “Undecided” category, par-328

ticularly for LGTs.329

A closer comparison between binary and ternary330

classifications in Tables 3 and 5 suggests that added331

“Undecided” category benefits models differently.332

While large models like GPT-4o and LLaMA3-70B333

leverage this additional flexibility to improve both334

classification and explanation F1 scores, smaller335

models such as Qwen2-7B show more mixed re-336

sults, with only marginal improvements. This337

suggests that high-capacity models may be better 338

equipped to handle ambiguous cases, while smaller 339

models struggle with added complexity. 340

Overall, these findings indicate that ternary clas- 341

sification not only refines detection performance 342

but also enhances the LLMs’ ability to generate 343

more meaningful explanations. The improvements 344

are particularly evident in large-scale LLMs, which 345

benefit from a more nuanced decision space. 346

5 Explainability of LLM-based Detectors 347

5.1 Incorrect Explanation Attribution 348

Although LLMs can distinguish LGTs and HGTs, 349

especially in self-detection settings, there are ex- 350

planations that are incorrect via human evaluation. 351

Normally, incorrect explanations in correctly clas- 352

sified cases fall into three types: inaccurate fea- 353

tures (misidentifying key attributes), hallucinations 354

(citing nonexistent or contradictory features), and 355

flawed reasoning (faulty logic despite a correct out- 356

come). For misclassified texts, errors typically in- 357

volve inaccurate features or hallucinations, which 358

highlights the need to prioritize explanation accu- 359

racy alongside detection performance to enhance 360

trust in LLM-based detectors. 361

Inaccurate Features. Incorrect explanation attri- 362

bution is often caused by relying on ambiguous, su- 363

perficial, or misinterpreted features, as shown in the 364

examples in Tables 7 and 12 of Appendix A. In Ex- 365
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Human

76.5 10.4 4.2
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11.1 22.9 59.2

(a) GPT-4o
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Human
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34.6 18.8 71.8

(b) LLaMA3.3-70B
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(c) Qwen2-72B

Figure 1: Confusion matrices showing the performance of LLM-based detectors (GPT-4, LLaMA3.3-70B, Qwen2-
72B) in the ternary classification task, where the bottom row represents human-annotated ground truth labels (LGTs,
Undecided, and HGTs), and the left column represents classification results predicted by LLM-based detectors.

Example 1: Ambiguous Features
Original Text: “Quantum entanglement enables faster-than-light communication, allowing for instantaneous data transfer across
vast distances. This phenomenon has vast implications for future communication technologies, making it a subject of growing
interest in both academic and technological circles.”
LLM Judgment: LLM-generated
LLM Explanation: “The text discusses highly technical content, filled with specialized scientific terms, which is characteristic
of machine-generated text. Such advanced topics are often produced by AI systems rather than human experts.”

Example 4: Incorrectly Perceived Repetition
Original Text: “The discovery of gravitational waves was a turning point in the history of physics. This breakthrough confirmed
Einstein’s theory of relativity, providing compelling evidence for the existence of gravitational waves, which opened new doors
in astrophysics research.”
LLM Judgment: LLM-generated
LLM Explanation: “The text exhibits repetitive sentence structures, a hallmark of AI-generated content. The repeated mention
of ’gravitational waves’ and ’breakthrough’ indicates a pattern commonly seen in machine-generated texts.”

Example 6: Misinterpretation of Formal Tone
Original Text: “One must consider the economic ramifications of such policies, as they extend beyond immediate financial
concerns into broader societal impacts. The implications of these policies are far-reaching, touching on employment, income
inequality, and long-term societal well-being.”
LLM Judgment: LLM-generated
LLM Explanation: “The formal tone and structured language initially suggest human authorship, as such features are often
attributed to human experts. However, LLMs can replicate this style with high fidelity, leading to the final classification as
LLM-generated.”

Table 7: Analysis of LLM vs. Human Writing Attribution Based on Various Features. The table categorizes examples
where LLM-generated and human-written texts were incorrectly attributed or analyzed, providing explanations and
analyses of these misattributions.

ample 1 “Ambiguous Features”, the model misclas-366

sifies text on quantum entanglement as LGTs due367

to technical jargon usage. However, advanced top-368

ics can also be written by human experts, not just369

LLMs. This text was actually human-generated.370

Similarly, Example 2 “Surface Features” shows371

how the model links grammatical errors to the ma-372

chine. Such mistakes are common among both373

native and non-native writers and should not be374

sole indicators of LGTs. In fact, HGTs are more375

likely to contain grammatical errors. Example 3376

illustrates a misjudgment where emotional com-377

plexity is falsely attributed exclusively to human378

writing. The model assumes nuanced emotional379

contrasts inherently reflect human authorship, over-380

looking modern LLMs’ capability to simulate such381

depth. This case underscores the unreliability of 382

using emotional sophistication alone as a criterion 383

to differentiate between HGTs and LGTs. 384

Hallucinations. Hallucinations occur when the 385

model incorrectly attributes features to the text that 386

either do not exist or are contrary to the actual 387

content. In Example 4: Incorrectly Perceived Rep- 388

etition, the model misinterprets the repetition of 389

ideas about gravitational waves as a sign of LLM 390

authorship. The text does not exhibit excessive 391

repetition, and the claim of a repetitive structure 392

is a false attribution, likely due to biases in the 393

model’s training data. In Example 5: Fictitious 394

Absence of Domain Knowledge, the model mis- 395

takenly claims that a text about RNA interference 396

lacks technical depth, suggesting it is more likely 397
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Models Ambiguous Features (%) Surface Features (%) Logic&Emotion (%) Vocabulary (%) Hallucinations (%) Incorrect Reasoning (%)

GPT-4o 32.7 12.4 43.2 7.2 2.2 2.3
LLaMA3.3-70B 40.1 25.7 18.9 4.1 6.1 5.1
Qwen2-72B 32.1 23.7 25.4 8.9 6.3 3.6

Table 8: Attribution differences among LLMs when the judgment is correct but the explanation is incorrect.

Models Ambiguous Features (%) Surface Features (%) Logic&Emotion (%) Vocabulary (%) Hallucinations (%)

GPT-4o 13.9 30.7 23.8 20.7 10.9
LLaMA3.3-70B 26.8 10.1 40.1 4.1 18.9
Qwen2-72B 33.7 20.1 9.9 26.4 9.9

Table 9: Attribution differences among LLMs when both the judgment and the explanation are incorrect.

to be human-written. In reality, the text contains398

domain-specific biological content, and the model399

fails to recognize the technical knowledge present.400

Incorrect Reasoning. Incorrect reasoning occurs401

when relevant features are correctly identified but402

are misinterpreted, leading to incorrect conclusions.403

Example 6 highlights a classification error rooted in404

inconsistent reasoning. The model correctly iden-405

tifies formal stylistic features but misapplies their406

significance. Enforcing a binary classification may407

lead to inconsistent reasoning in model’s inference408

process, as it forces an erroneous LLM label de-409

spite ambiguity that could be better captured in a410

ternary framework.411

5.2 Human Evaluation412

The reasons for incorrect explanations from hu-413

man annotators are categorized into two scenarios:414

correct predictions with incorrect explanations and415

incorrect predictions with incorrect explanations.416

The results are summarized in Tables 8 and 9.417

For cases where the model made correct predic-418

tions but provided incorrect explanations, Table 8419

shows that the most prevalent reasons were inac-420

curate features and hallucinations. Inaccurate fea-421

tures, such as attributing the decision to vague or ir-422

relevant characteristics, accounted for a significant423

portion of errors across all LLMs. Hallucinations424

were also frequent, particularly for models like425

Qwen2-7B and GPT-4o. Faulty reasoning, though426

less common, contributed to the proportion of in-427

correct explanations, highlighting inconsistencies428

in reasoning despite identifying correct features.429

For cases involving both incorrect predictions and430

incorrect explanations, Table 9 indicates a simi-431

lar distribution of error types, but with a higher432

prevalence of hallucinations. Annotators noted that433

models hallucinated key features, attributing the434

decision to features not present in the text, which435

compounded the issue of misclassification.436

Overall, the analysis reveals that hallucinations 437

and reliance on inaccurate features are dominant 438

sources of error in explanations, regardless of pre- 439

diction accuracy. Addressing these issues requires 440

further refinement of the interpretability mecha- 441

nisms in LLMs, with a focus on grounding expla- 442

nations in verifiable and relevant textual evidence. 443

6 Can we improve LLM-based LGT 444

detection and explanation? 445

Supervised Fine-Tuning and Reinforcement 446

Learning. To investigate effectiveness of super- 447

vised fine-tuning (SFT) on improving cross-LLM 448

detection, we conducted a series of experiments us- 449

ing datasets generated from different LLMs, with 450

or without explanations. Details of data construc- 451

tion are provided in Appendix B, and results are 452

summarized in Table 10. When using answer-only 453

data for SFT, we observe a clear advantage when 454

training data is generated by GPT-4o compared 455

to LLaMA3.3-8B. This likely reflects higher qual- 456

ity and linguistic diversity of GPT-4o generations, 457

whereas LLaMA3.3-8B tends to produce simpler 458

and less informative outputs, offering limited su- 459

pervision signals. Furthermore, although models 460

fine-tuned on GPT-4o-only data generally achieve 461

higher F1 scores when evaluated on GPT-family 462

outputs, the mixed-source dataset provides stronger 463

generalization across all target LLMs. This indi- 464

cates that exposure to varied generation styles dur- 465

ing training helps the model better capture cross- 466

LLM decision boundaries. Additionally, incorpo- 467

rating explanations into training data consistently 468

yields higher performance. The improvement sug- 469

gests that explanation-augmented SFT encourages 470

model to internalize task-relevant reasoning pat- 471

terns and enhances its ability to focus on discrim- 472

inative linguistic cues indicative of text origin, 473

rather than merely memorizing surface features. 474

Motivated by recent advances in reward- 475
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Model Datasets
GPT-4o GPT-4o mini LLaMA3.3-70B LLaMA3.3-8B Qwen2-72B Qwen2-7B

Qwen2-7B (base model) 59.57 60.13 52.41 49.66 61.24 63.83
SFT (only answer)

w/ LLaMA3.3-8B 58.28 60.17 52.57 49.85 55.41 59.52
w/ GPT-4o 63.70 62.18 53.90 52.91 63.28 62.86
w/ mixed dataset (ALL) 62.87 63.10 53.28 54.33 64.17 67.91

SFT (answer & explanation)
w/ GPT-4o 70.09 72.03 58.19 54.17 67.39 68.55
w/ mixed dataset (ALL) 68.14 71.09 60.41 54.59 70.72 70.90

GRPO
w/o cold-start 63.31 64.17 57.96 56.09 63.60 63.02
w/ cold-start 73.29 69.01 63.34 65.22 74.89 73.47

Table 10: F1 score comparison of various training strategies across different evaluation models. Qwen2-7B (base
model) represents the raw performance without fine-tuning. SFT (only answer) and SFT (answer & explanation)
denote models supervised-fine-tuned using answer-only or answer-plus-explanation data, respectively. In “SFT
w/ GPT-4o” or “w/ LLaMA3.3-8B”, the training dataset was generated using the outputs of the specified LLM.
“Mixed dataset (ALL)” combines training data from multiple sources. GRPO refers to the Group Relative Policy
Optimization, evaluated with and without cold-start initialization. Bold indicates the best score per column;
underline indicates the second-best.

optimized reasoning, such as OpenAI-o1(OpenAI,476

2024) and DeepSeek-R1(DeepSeek-AI et al.,477

2025), we further explore the impact of RL on478

cross-LLM detection. Specifically, we adopt a479

GRPO-style reward optimization framework in-480

spired by DeepSeek-R1, with implementation de-481

tails in Appendix C. As shown in Table 10, apply-482

ing GRPO without any SFT initialization already483

brings consistent gains over base model across all484

test LLMs, with the most notable improvement ob-485

served on LLaMA3.3-8B. However, performance486

remains generally lower than the best SFT con-487

figurations. When we initialize GRPO with a488

model that has been fine-tuned using explanation-489

augmented, mixed-source data (i.e., the cold-start490

setting), we observe substantial performance boosts491

across all evaluation datasets. This combination492

effectively leverages reasoning capacity learned493

during SFT and further refines it through reward-494

driven preference learning. Results demonstrate495

that GRPO with a well-informed initialization can496

significantly enhance detection accuracy, enabling497

the model to better align its scoring behavior with498

human-intuitive criteria for text provenance.499

Enhancing LLM Detection through LLM Col-500

laboration. We further explore whether the per-501

formance of LLM-based detection can improve502

via LLM’s collaboration. Table 11 shows that503

the performance of LLM-based detectors improves504

significantly when their judgments and explana-505

tions are complemented by another LLM counter-506

part. Specifically, the cross-detection of GPT-4o on507

Qwen-2 72B dataset has noticeable improvements508

in the classification and explanation F1 with the 509

support of Qwen2-72B. We also find a similar trend, 510

where Qwen2-72B benefits from GPT-4o’s support 511

on the cross-detection settings. These findings indi- 512

cate that LLM’s collaboration can further improve 513

the classification and explanation performance on 514

the LLM counterpart’s dataset, i.e., cross-detection. 515

Models
Datasets GPT-4o Qwen2-72B

GPT-4o (+Qwen2-72B) +1.43% / -0.61% +3.79% / +2.33%
Qwen2-72B (+GPT-4o) +2.01% / +0.45% +0.39% / -1.24%

Table 11: F1 score differences based on LLM collabora-
tion with judgments and explanations integration. The
supplemental LLMs in () will generate the judgments
and explanations first to further support the detection
and explanations of main LLMs.

7 Conclusion 516

We evaluated how well LLM-based detectors differ- 517

entiate human- from LLM-generated text, focusing 518

on detection accuracy and explanation clarity. Self- 519

detection by LLM-based detectors reliably outper- 520

forms cross-detection, especially within the same 521

model family. Yet their explanations remain flawed, 522

hinging on spurious features, hallucinations, and 523

unsound reasoning, with GPT-4o trading higher 524

accuracy for frequent hallucinations and Qwen2- 525

7B offering a more balanced but vague rationale. 526

These results underscore the imperative for more 527

interpretable, trustworthy detectors in critical ap- 528

plications such as academic integrity and content 529

moderation. 530
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Limitations531

This study is subject to several limitations. First,532

due to the limited number of API calls available533

for closed-source LLMs, the datasets used for gen-534

erating and detecting LLM-generated texts were535

constructed at a scale of 1,000 samples. As a re-536

sult, the types and variety of texts involved in the537

analysis may not be fully comprehensive, poten-538

tially introducing bias. Additionally, because the539

generation of explanations requires manual anno-540

tation, which is time-consuming, only a random541

sample of 100 texts per dataset could be selected542

for evaluation. This sample size may lead to biases543

in the evaluation of LLM-generated explanations.544

Finally, given the rapid advancements in LLM tech-545

nology, the detection and explanation capabilities546

of models are continually evolving. Therefore, it547

is crucial to periodically update our research focus548

and the models under study to ensure the results549

remain relevant and accurate.550

Ethic Statements551

All experiments were conducted using publicly552

available LLMs and datasets. For the datasets we553

constructed for the work, no any personal or pri-554

vate information is included. All the three human555

annotators are co-authors, so an research ethics re-556

view was not considered necessary. More details557

on how we used the human annotators can be found558

in Appendix D.559
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A Misattributions Examples 729

To better illustrate the types of errors and their at- 730

tributions, Table 12 provides examples of common 731

mistakes made by the models in classifying text 732

origins. 733

B Supervised Fine-Tuning (SFT) 734

B.1 Dataset Construction 735

For each language model (e.g., GPT-4o, 736

LLaMA3.3-8B), we first generate synthetic 737

outputs and then perform self-detection using the 738

same LLM. Based on whether the self-detection is 739

correct, we apply the following rejection sampling 740

procedure to construct our SFT datasets: 741

• If the model correctly identifies its own output, 742

we retain the sample. 743

• If the model misclassifies, but a stronger 744

model (e.g., GPT-4o) can identify the source 745
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Example 2: Surface Features
Original Text: “The book were interesting. It show a deep exploration of human emotions and relationships. The author’s use of
metaphors and descriptive language provided rich insights into the human psyche, but the writing style seemed awkward and
unpolished in places.”
LLM Judgment: LLM-generated
LLM Explanation: “The grammatical errors such as ’were’ instead of ’was’ and ’show’ instead of ’shows’ suggest that the text
is AI-generated. Machines typically generate text with such mistakes.”

Example 3: Misattributed Logical or Emotional Elements
Original Text: “His words carried a strange contradiction—he spoke of hope but with an undeniable sadness. It was as though
the optimism in his tone clashed with his deeply melancholic gaze, creating a complex emotional paradox.”
LLM Judgment: Human-written
LLM Explanation: “The nuanced contradiction of hope and sadness reflects deeply human emotional complexity, which LLMs
typically struggle to replicate authentically. Such layered emotional depth is often unique to human expression.”

Example 5: Fictitious Absence of Domain Knowledge
Original Text: “RNA interference plays a crucial role in gene regulation, allowing for targeted suppression of specific genetic
sequences. This mechanism is being studied for its potential therapeutic applications in cancer treatment and genetic disorders.”
LLM Judgment: Human-written
LLM Explanation: “The text lacks the level of technical depth and domain-specific knowledge typically found in professional
scientific writing, suggesting that it is more likely to be written by a human author who is not an expert in the field.”

Table 12: Analysis of LLM vs. Human Writing Attribution Based on Various Features. The table categorizes
examples where LLM-generated and human-written texts were incorrectly attributed or analyzed, providing
explanations and analyses of these misattributions.

correctly and provide an explanation, we in-746

clude this explanation-augmented sample.747

• If all models fail to detect the text’s origin748

correctly, the sample is discarded, as it offers749

limited training value.750

This strategy ensures that our training data are751

high-quality and informative, containing either an-752

swers alone or answers with explanations. It helps753

the SFT model learn from both model-generated754

cues and external reasoning signals.755

B.2 Training Configuration756

Each SFT experiment is conducted using a bal-757

anced dataset of 10,000 LLM-generated and 10,000758

human-written texts. We perform LoRA-based(Hu759

et al., 2021) fine-tuning for two epochs using four760

NVIDIA A100 80GB GPUs with FP16 precision.761

• Answer-only setting: Each training session762

takes approximately 18 hours.763

• Answer + explanation setting: Training re-764

quires around 28 hours due to longer input765

sequences and richer supervision.766

We use a batch size that fully utilizes available767

GPU memory, a learning rate of 2e-5, and the768

AdamW optimizer. Model performance is eval-769

uated after each epoch based on macro F1 score,770

and the best-performing checkpoint is selected.771

C Reward Optimization with GRPO 772

C.1 Dataset Construction 773

For GRPO training, we construct a high-quality, 774

moderately difficult dataset. We filter out both 775

overly simple and excessively hard samples from 776

the LLM-generated pool: 777

• Samples that are correctly classified by all 778

detectors are excluded as they lack training 779

challenge. 780

• Samples that are misclassified by all detectors 781

are removed because they may be inherently 782

ambiguous. 783

From the remaining samples, we randomly se- 784

lect 5,000 LLM-generated texts and mix them 785

with 5,000 human-written texts to form a balanced 786

dataset for reward learning. 787

C.2 Training Configuration 788

GRPO training is conducted using the same in- 789

frastructure as SFT. We initialize the model either 790

from a base Qwen2-7B checkpoint or from a previ- 791

ously SFT-trained model (cold-start setup). Train- 792

ing is performed using a PPO-style loop with KL- 793

divergence regularization. 794

• Without SFT: Training takes approximately 795

24 hours. 796

• With SFT: Training requires about 30 hours 797

due to improved convergence and longer se- 798

quences. 799
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All training is done with 4 NVIDIA A100 80GB800

GPUs, using FP16 precision, a reward model learn-801

ing rate of 1e-5, a policy learning rate of 5e-6, and802

gradient accumulation for stability. The total train-803

ing loop runs for 1 epoch with a replay buffer size804

of 10k examples.805

D Annotation Guidelines806

This appendix provides detailed instructions for the807

manual annotation tasks conducted in our study.808

The annotation process consists of two tasks: (1) a809

binary classification task to evaluate the accuracy810

of LLM-generated explanations, and (2) a ternary811

classification task where annotators evaluate both812

the correctness of the LLM’s ternary classifica-813

tion judgments and the accuracy of its explanations814

based on known text sources.815

E Examples of Undecided Text Categories816

E.1 Mixed Human-LLM Co-authored Texts817

This category includes texts collaboratively writ-818

ten by humans and large language models (LLMs),819

where stylistic or structural transitions reflect a shift820

in authorship. Such texts often begin with nuanced821

and context-sensitive human input and later transi-822

tion to more uniform, templated, and encyclopedic823

LLM-generated content. These transitions are not824

always clearly marked, making authorship attribu-825

tion difficult. Table 14 presents two representative826

examples.827

E.2 Inherently Ambiguous Single-source828

Texts829

This category includes texts produced entirely by830

either humans or LLMs, but whose stylistic and831

rhetorical features align with both sources. Such832

texts often exhibit emotionally neutral tones, fact-833

heavy content, and well-structured reasoning, mak-834

ing it difficult to distinguish their origin. Human-835

written texts may appear too polished, while LLM836

outputs may mimic human nuance. Table 15 illus-837

trates two such ambiguous examples.838

E.3 Fragile Indicator Cases839

This category includes texts that trigger LLM detec-840

tors based on subtle linguistic patterns or statistical841

anomalies. However, these indicators tend to be842

unstable. Minor changes in wording, paraphrasing,843

or model sampling parameters often cause the fea-844

tures to disappear. As a result, these texts demon-845

strate the brittleness of current detection methods.846

Table 16 presents two examples with unstable fea- 847

tures that resist robust attribution. 848
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Task 1: Explanation Accuracy Evaluation
Annotators will assess whether the explanation provided by the model correctly justifies its classification decision. Each explana-
tion should be judged based on its logical consistency, relevance to the text, and whether it accurately reflects distinguishing
features.
Columns:

• Text: The text sample to be classified.

• Detection Result: The model’s classification of the text as “LLM-generated” or “Human-generated.”

• Model’s Explanation: The explanation provided by the model for its classification decision.

• Annotation: Label the explanation as “Accurate” or “Inaccurate” based on its reasoning quality.

Example:
Text: “In recent years, artificial intelligence has demonstrated remarkable progress, influencing numerous industries, including
healthcare, finance, and creative writing. Many experts believe that this rapid advancement will continue to reshape the workforce
and redefine human-machine collaboration.”
Detection Result: LLM-generated
Model’s Explanation: “The highly structured argumentation and precise yet impersonal tone indicate that this text was likely
machine-generated rather than composed by a human writer.”
Annotation: Inaccurate (While structured argumentation is common in LLM-generated text, human authors can also produce
similarly structured and objective writing.)

Task 2: Ternary Classification with Explanation Evaluation
Annotators will classify each text as “LLM-generated,” “Human-generated,” or “Undecided,” and evaluate whether the model’s
explanation correctly justifies the classification. The “Undecided” label applies when the text lacks sufficient distinguishing
features.
Columns:

• Text: The text sample to be classified.

• Detection Result: LLM’ judgment of whether the text is “LLM-generated,” “Human-generated,” or “Undecided.”

• Model’s Explanation: The explanation provided by the model.

• Classification Annotation: Label whether the model’s classification is “Correct” or “Incorrect.”

• Explanation Annotation: Label the explanation as “Accurate” or “Inaccurate” based on its reasoning quality.

Example:
Text: “Quantum mechanics, a field of physics that describes the behavior of particles at the atomic and subatomic levels, has
led to groundbreaking discoveries such as quantum entanglement and superposition. These principles have paved the way for
advancements in quantum computing and cryptography, revolutionizing modern technology.”
Detection Result: Undecided
Model’s Explanation: “The text presents factual scientific content in a neutral tone, making it difficult to distinguish between
human and machine authorship.”
Classification Annotation: Correct
Explanation Annotation: Accurate (The explanation correctly justifies why the text is indistinguishable.)

Table 13: Human Annotation Instructions

Example 1
“In examining urban resilience frameworks, we find that grassroots organizations play a pivotal role in ensuring community
adaptability. Interviews with local leaders in Jakarta revealed bottom-up innovation and resource sharing as key drivers of
resilience. However, literature on climate-adaptive infrastructure increasingly emphasizes machine learning for real-time flood
prediction and decentralized data systems for disaster response. A systematic review of recent publications demonstrates that
hybrid models integrating sensor-based monitoring with socio-political data yield more actionable insights. These models offer
scalable solutions for cities facing climate uncertainty, as evidenced by pilot projects in Southeast Asia and Latin America.”

Example 2
“The first wave of digital humanities emphasized textual digitization and basic metadata annotation, grounded in traditional
philological practices. Scholars argued for methodological transparency and historical fidelity. In recent years, however, there
has been a shift toward large-scale computational analysis. Transformer-based models are now trained on digitized archives to
identify latent narrative patterns across centuries. This methodological turn, while powerful, raises questions about interpretability
and disciplinary boundaries. Current debates focus on integrating humanistic inquiry with algorithmic inference in ways that
preserve epistemic integrity.”

Table 14: Examples of Mixed Human-LLM Co-authored Texts
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Example 1
“The monitor offers a 2560×1440 resolution, a 165Hz refresh rate, and a color accuracy rating of Delta E < 2. These specifications
make it suitable for both competitive gaming and semi-professional design work. Its adjustable stand and blue-light reduction
features enhance long-term usability. In testing, response times remained consistent across refresh rates, and input lag was
minimal. While the built-in speakers are underwhelming, the overall design reflects thoughtful engineering. Prospective buyers
should note that firmware updates may be required to access advanced color profiles.”

Example 2
“The exhibition explores post-colonial identity through mixed media installations that juxtapose industrial debris with archival
imagery. Each piece is accompanied by minimal curatorial framing, allowing for open-ended engagement. The spatial
arrangement avoids linear narratives, instead emphasizing fragmented temporality and layered symbolism. Visitor responses
ranged from emotional introspection to conceptual confusion. Whether the ambiguity is intentional or a result of aesthetic
overreach remains debatable, yet the collection undeniably provokes sustained reflection.”

Table 15: Examples of Inherently Ambiguous Single-source Texts

Example 1
“The second quarter’s economic indicators reflect a modest uptick in consumer confidence, despite lagging wage growth and
persistent inflationary pressures. Analysts note that housing starts have stabilized, though regional variation remains high.
Meanwhile, the energy sector showed unexpected resilience due to global supply chain recalibrations. Although many forecasts
anticipated stagnation, revised models suggest a delayed soft landing. The Federal Reserve’s policy stance continues to oscillate
between caution and proactive intervention, with uncertainty surrounding long-term bond yields.”

Example 2
“In the novel’s final chapter, the protagonist revisits the childhood home, now transformed by decay and silence. The narrative
perspective shifts from third-person to free indirect discourse, blurring the boundary between memory and present perception.
Sentence rhythms slow, with nested subordinate clauses evoking emotional weight. Yet, this stylistic density is briefly interrupted
by abrupt declaratives, mirroring the character’s psychological fragmentation. Such microstructural choices are atypical but
could be easily altered in paraphrased variants, rendering authorship signals imperceptible to automated systems.”

Table 16: Examples of Fragile Indicator Cases
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