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Abstract001

Retrosynthesis prediction aims to infer the002
reactant molecule based on a given product003
molecule, which is a fundamental task in chem-004
ical synthesis. The development of inter-005
pretable retrosynthesis models is crucial for006
chemist’s decision by providing meaningful007
explanation. Building on this, we propose008
Retro-Expert, an interpretable retrosynthesis009
reasoning framework that combines domain-010
specific small models with large language mod-011
els (LLMs) to generate human-readable rea-012
soning alongside predictions via reinforcement013
learning. Unlike black-box data-driven models,014
Retro-Expert outputs natural language explana-015
tions grounded in chemical logic (e.g., reaction016
rules, principles) through three components: (1)017
specialized small models ensuring chemically018
valid candidates for reasoning, (2) LLM-driven019
reasoning to synthesize a decision-making path-020
way, and (3) reinforcement learning optimiz-021
ing interpretable decision policy. Experiments022
show Retro-Expert achieves higher accuracy023
than single models while producing expert-024
aligned explanations, bridging AI predictions025
with actionable chemical insights.026

1 Introduction027

Retrosynthesis prediction aims to deduce poten-028

tial reactants and reaction pathways for synthesiz-029

ing a target product molecule based on its struc-030

tural characteristics (Somnath et al., 2021; Segler031

and Waller, 2017; Sun et al., 2021), holding sig-032

nificant application value in drug discovery and033

molecular design (Hu et al., 2025; Wang et al.,034

2023, 2018). Existing data-driven models predom-035

inantly rely on data memorization mechanisms,036

which learn mappings between product SMILES037

and reactant SMILES from datasets, framing the038

task as either classification or auto-regressive se-039

quence generation (Yao et al., 2023; Chen and040

Jung, 2021; Yao et al., 2023; Zheng et al., 2019).041

This paradigm exhibits dual deficiencies: (1) The042
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Figure 1: Core highlights of Retro-Expert: the first inter-
pretable retrosynthesis framework capable of generating
step-by-step reasoning in natural language, enabled by
the collaboration the reasoning capabilities of LLMs
with the specialized capabilities of small models.

model can only generate reactant SMILES strings, 043

with no transparency in its internal reasoning pro- 044

cess. (2) predictions lack natural language expla- 045

nations grounded in chemical logic, critically hin- 046

dering real-world adoption. These limitations lead 047

to a lack of reliable basis for the predictions in 048

chemical principles, which severely undermines 049

chemists’ trust in practical applications. Notably, 050

recent breakthroughs (Wang et al., 2025; Xie et al., 051

2025; Chen et al., 2025) in large language mod- 052

els (LLMs) have demonstrated their potential to 053

address complex specialized problems through 054

specialized-knowledge-based reasoning, enhanced 055

by reinforcement learning via GRPO (Shao et al., 056

2024). These advancements motivate us to explore 057

how to leverage LLMs’ emergent reasoning capa- 058

bilities to enhance the interpretability of retrosyn- 059

thesis prediction. 060

Therefore, we focus on chemical knowledge- 061

based retrosynthetic reasoning by LLMs to gen- 062

erate reactant results along with explainable rea- 063

soning process, ensuring interpretable and trans- 064

parent retrosynthesis prediction. However, LLMs 065

cannot directly and effectively achieve retrosyn- 066

thetic reasoning. When employing supervised fine- 067

tuning (SFT) approaches, LLMs typically achieve 068
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retrosynthesis by memorizing common reaction069

patterns from the training dataset, rather than rea-070

soning based on the underlying chemical principles.071

In contrast, reinforcement learning (RL) methods072

can leverage the inherent knowledge of LLMs to073

simulate expert-like reasoning, enabling the gener-074

ation of both predictions and interpretable reason-075

ing paths, thus representing a promising direction.076

However, directly applying RL to incentivize mod-077

els for retrosynthetic reasoning faces two critical078

challenges: (1) Domain Knowledge Disparity. Ret-079

rosynthesis demands not only logical reasoning but080

also mastery of specialized chemical knowledge.081

Pre-trained LLMs fail to adequately internalize and082

apply specific chemical principles when reasoning083

solely based on molecular SMILES. (2) Lack of084

Specialized Capabilities. The retrosynthesis work-085

flow inherently requires coordinated execution of086

interdependent subtasks, including reaction type087

classification and reaction center location (Gao088

et al., 2022; Wang et al., 2021; Yan et al., 2020).089

Vanilla LLMs struggle to execute these specialized090

subtasks, while dedicated small models, each in-091

dividually optimized for a specific subtask, have092

achieved expert-level performance with no train-093

ing costs incurred (Wang et al., 2023; Chen and094

Jung, 2021; Somnath et al., 2021). These small095

models can offer valuable chemical guidance to096

LLMs during retrosynthesis. Therefore, we aim to097

synergistically integrate the specialized capabilities098

of small models with the advanced reasoning ca-099

pability of LLMs through reinforcement learning,100

establishing a new paradigm where small models101

provide chemical knowledge guidance, upon which102

LLMs perform explainable decision-making.103

Building upon these insights, we present104

Explainable and Cooperative retrosynthesis frame-105

work, Retro-Expert, the first explainable retrosyn-106

thesis framework that integrates natural language-107

based expert reasoning with model-agnostic com-108

patibility. Retro-Expert achieves dual break-109

throughs in prediction accuracy and chemical in-110

terpretability by strategically orchestrating small111

models’ domain expertise and the LLM’s logi-112

cal reasoning capabilities. The framework oper-113

ates through three interconnected modules: (1)114

Specialized Multi-Model Candidate Generation.115

Leveraging specialized small models (e.g., reac-116

tion type classifiers and reactant generators) to117

produce stage-specific candidate predictions for118

a target product. (2) Collaborative Interaction119

Mechanism between Large and Small Models.120

Leveraging their powerful semantic understand- 121

ing and logical reasoning capabilities, large lan- 122

guage models perform integrated analysis and in- 123

depth reasoning over the multi-stage candidate re- 124

sults generated by small models, ultimately pro- 125

ducing the final reactant prediction along with in- 126

terpretable, natural language-based reasoning pro- 127

cess. (3) Knowledge-Constrained Decision Pol- 128

icy Optimization. Retro-Expert optimizes the 129

large model’s reasoning strategy over candidate 130

results via reinforcement learning. A multi-stage 131

reward mechanism is established during training 132

to guide the model toward learning an optimal and 133

trustworthy reasoning path. 134

Our contributions are summarized as follows: 135

1. This work represents the first retrosynthesis 136

study capable of generating natural language in- 137

terpretable reasoning processes. It fills a long- 138

standing interpretability gap in the field, signifi- 139

cantly enhancing chemists’ trust in the model and 140

its practical applicability in real-world scenarios. 141

2. We propose Retro-Expert, a collaborative ret- 142

rosynthesis framework integrating large and small 143

models. It not only improves retrosynthesis predic- 144

tion accuracy but generates human-understandable 145

step-by-step reasoning processes. Notably, Retro- 146

Expert allows seamless integration of arbitrary 147

small models during inference, enabling flexible 148

expansion without retraining. 149

3. Systematic experiments validate the advantages 150

of the large-small model collaboration in Retro- 151

Expert. Furthermore, its performance scales with 152

improvements in small model accuracy, demon- 153

strating strong generalization and scalability. 154

2 Related Work 155

2.1 Retrosynthesis Prediction 156

Existing retrosynthesis prediction methods can 157

be broadly categorized into three modeling 158

paradigms: template-based, semi-template-based, 159

and template-free approaches (Gao et al., 2022; 160

Somnath et al., 2021; Sun et al., 2025). Template- 161

based methods (Chen and Jung, 2021; Coley et al., 162

2017; Dai et al., 2019) apply an appropriate tem- 163

plate to the product module via subgraph matching 164

and generate the corresponding reactants. Semi- 165

template-based methods (Yan et al., 2020; Wang 166

et al., 2021; Somnath et al., 2021) first predict the 167

product’s reaction center, indicating the location 168

of the leaving group addition for reactants gener- 169

ation. Template-free methods (Sun et al., 2021; 170
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Sacha et al., 2021; Zhong et al., 2022) incorporate171

auxiliary information such as reaction type (Sacha172

et al., 2021; Zhang et al., 2024; Liu et al., 2024), to173

facilitate learning of the direct transformation from174

product SMILES to reactant SMILES. While each175

paradigm focuses on distinct aspects of the predic-176

tion process to extract intermediate guidance, they177

often overlook the complementarity and synergy178

among this intermediate information. Moreover,179

most existing methods only output the final reac-180

tant predictions, which limits the interpretability of181

the models.182

2.2 Large Language Model Reasoning183

In recent years, large language models’ deep rea-184

soning has been developed to solve specialized185

scientific problems (Liu et al., 2023; Su et al.,186

2025; Tang et al., 2025; Putri et al., 2025; Pan187

et al., 2025). Some studies have shown that a small188

amount of supervised fine-tuning (SFT) data can189

enhance a model’s reasoning abilities (Zhou et al.,190

2023; Huang et al., 2025).191

However, SFT primarily aims to memorize com-192

mon patterns from existing datasets to replicate suc-193

cessful reasoning strategies, and its ability to han-194

dle more complex tasks remains limited. As a re-195

sult, reinforcement learning (RL)-based reasoning196

models like DeepSeek-R1 (Guo et al., 2025; Zhou197

et al., 2024; Ziegler et al., 2019; Feng et al., 2025)198

have recently achieved significant progress (Guo199

et al., 2025; Zhou et al., 2024; Ziegler et al., 2019).200

Furthermore, some approaches (Team et al., 2025;201

Chu et al., 2025) have demonstrated the promise202

of combining long-chain reasoning with reinforce-203

ment learning to address highly complex problems,204

indicating that a strategy that integrates SFT with205

reinforcement learning may offer a flexible and206

effective pathway to solve more challenging tasks.207

3 Methodology208

3.1 Overview209

This paper presents Retro-Expert, an interpretable210

retrosynthesis framework that synergistically com-211

bines the complementary strengths of both small212

and large language models, aiming to enhance the213

accuracy of retrosynthesis predictions while gener-214

ating human-understandable reasoning processes.215

As illustrated in Figure 2, Retro-Expert primarily216

comprises three core stages. Given the target prod-217

uct, pre-trained specialized small retrosynthesis218

models are employed to generate candidate pre-219

dictions for different sub-tasks in retrosynthesis. 220

These candidates serve as the knowledge foun- 221

dation for the large model’s in-depth reasoning 222

(Specialized Multi-Model Candidate Generation). 223

Leveraging the large model’s logical reasoning ca- 224

pabilities, cross-stage analysis is performed on the 225

multi sub-task candidate results. Through multi- 226

step reasoning, the optimal results for each sub- 227

task are identified, and a complete natural language 228

reasoning chain is constructed (Collaborative inter- 229

action mechanism between large and small mod- 230

els). Using the reinforce learning combined with a 231

multi-stage rule-based reward mechanism and via 232

GRPO (Shao et al., 2024), feedback signals are gen- 233

erated by comparing the large model’s intermediate 234

reasoning results with ground-truth labels. This op- 235

timizes the large model’s reasoning strategy, guid- 236

ing it to autonomously learn the optimal retrosyn- 237

thesis reasoning path (Knowledge-Constrained De- 238

cision Policy Optimization module). 239

3.2 Task Definition 240

The objective of the retrosynthesis task Tretro is to 241

predict the set of reactants {M i
r}Ci=1(C ≥ 1) corre- 242

sponding to a target product Mp, where Mp,Mr ∈ 243

S, and S represents the valid SMILES space. In 244

real-world expert retrosynthesis prediction, this 245

process typically involves solving n logically 246

connected subtasks Tretro = {T0, T1, . . . , Tn}, 247

where collaboration among subtasks enables expert- 248

level accuracy. Given an environment E con- 249

taining N(N ≥ n) specialized models M = 250

{m0,m1, . . . ,mN}, each dedicated to a retrosyn- 251

thesis subtask, the input product Mp is processed 252

by each model mi to generate Top-K candidate 253

predictions Pi for its corresponding subtask: 254

Pi = {P k
i }Kk=1, P k

i ∼ p(mi|Mp; θ), (1) 255

where θ denotes the parameters of model mi, and 256

P k
i represents the k-th candidate result. The total 257

inference path space T is defined as the Cartesian 258

product of candidate results from all subtasks: 259

T = (P0, P1, . . . , Pn), (2) 260

with a space size of Kn. Retrosynthesis reasoning 261

is modeled as a sequential decision-making process 262

in this path space: a LLM MLLM interacts with E , 263

analyzes the Top-K candidates from models in M, 264

and sequentially selects the correct answer P ′
i (P

′
i ∈ 265

Pi) for each subtask. This generates a reasoning 266

path TLLM = (P ′
0, P

′
1, . . . , P

′
n) alongside a natural- 267

language explanation R. Retro-Expert has two core 268
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objectives: generating the correct set of reactants269

â = {M i
r}Ci=1, and identifying the optimal path T ∗270

with the highest reward within T :271

argmax
TLLM∈T

Reward(TLLM)272

s.t. MLLM(Mp, TLLM) = â. (3)273

Here, Reward(·) is a function evaluating the quality274

of the reasoning path. This framework improves275

the accuracy of the explainable reasoning R by276

simultaneously ensuring correct reactant predic-277

tion and maximizing the path reward—a critical278

enhancement not addressed in prior work.279

3.3 Specialized Multi-Model Candidate280

Generation Module281

Following the actual retrosynthetic reasoning pro-282

cess of chemists and effectively integrating the do-283

main knowledge required, we propose the Special-284

ized Multi-Model Candidate Generation module.285

The core concept is to leverage existing pre-trained286

retrosynthesis models tailored for different sub-287

tasks to generate initial candidate results for each288

sub-task in the retrosynthesis process.289

Specifically, the module invokes pre-trained spe-290

cialized small models (e.g., reaction type prediction291

models, reaction center localization models) to out-292

put candidate results for sub-tasks such as possible293

retrosynthesis reaction types and reaction center294

positions of Mp. Since all employed models are295

pre-trained retrosynthesis models, they can easily296

generate predictions for each sub-task without ad-297

ditional training costs, significantly enhancing the298

scalability and usability of Retro-Expert. Notably,299

the candidate results generated by sub-task models300

exhibit high recall: their Top-K predictions already301

contain most correct answers, thus providing suffi-302

cient prior knowledge support for the large model’s303

subsequent in-depth reasoning.304

Furthermore, the module is highly flexible in de-305

sign. It not only supports the integration of small306

retrosynthesis models of any type (e.g., reactant307

generation models, functional group analysis mod-308

els) but also incorporates external domain knowl-309

edge k (e.g., natural language descriptions of prod-310

uct functional groups, known reaction rules), fur-311

ther enriching the diversity and comprehensiveness312

of candidate information. Ultimately, the candi-313

date results from all sub-task models and external314

knowledge are aggregated into a unified informa-315

tion set, which is input to the next stage for collab-316

orative reasoning.317

3.4 Collaborative Interaction Mechanism 318

between Large and Small Models 319

Although LLMs exhibit exceptional capabilities 320

in complex logical reasoning, they lack domain- 321

specific knowledge in retrosynthesis tasks, making 322

it difficult to directly predict reactants based solely 323

on the molecular structure of the product. Thus, the 324

core design goal of Retro-Expert is to use candidate 325

results provided by small models as domain knowl- 326

edge anchors, guiding LLMs to shift from “directly 327

predicting reactants” to “step-by-step reasoning 328

based on candidate sets”, thereby reducing LLMs’ 329

reliance on domain knowledge. 330

The collaborative mechanism between small and 331

large models is implemented through the follow- 332

ing key steps: First, based on the logical chain of 333

chemists’ actual retrosynthetic reasoning, we or- 334

der different sub-task models. Simultaneously, we 335

deduplicate and integrate candidate results from 336

models addressing the same sub-task. This process 337

ultimately forms n logically connected, difficulty- 338

increasing candidate result sets T . These candidate 339

sets, combined with external domain knowledge 340

k, collectively construct the reasoning prompt for 341

the LLM. Second, the constructed prompt is in- 342

put to the LLM, which is then tasked with per- 343

forming step-by-step analysis and reasoning on 344

each sub-task. The LLM must derive conclusions 345

for the current step (e.g., localize reaction cen- 346

ter) by integrating selection results from previous 347

steps (e.g., confirmed reaction type), ultimately out- 348

putting predicted answers for each sub-task and an 349

interpretable reasoning basis in natural language. 350

In this process, the logical ordering of sub-tasks 351

(from simple to complex, global to local) is crit- 352

ical for ensuring the coherence of the reasoning 353

chain. This collaborative large-small model mech- 354

anism integrates the efficient domain knowledge 355

acquisition capabilities of small models with the 356

complex logical reasoning capabilities of LLMs. 357

It not only enhances the accuracy of reactant pre- 358

diction through expert knowledge constraints but 359

also constructs logically coherent and traceable ret- 360

rosynthetic reasoning paths, significantly improv- 361

ing the interpretability of model decisions. 362

3.5 Knowledge-Constrained Decision Policy 363

Optimization Module 364

Inspired by recent advances in leveraging reinforce- 365

ment learning (RL) to enhance the reasoning ca- 366

pabilities of large language models (LLMs), we 367
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Stage 1: Specialized Multi-Model Candidate Generation

Product SMILES: [CH3:1][NH:2][c:3]1[cH:4][c:5]([F:6])[cH:7][cH:8][c:9]1[C:10]([CH3:11])=[O:12]

Stage 2: Collaborative Interaction Mechanism between Large and Small Models

Reactants Prediction

Stage 3: Knowledge-Constrained Decision Policy Optimization

KRD-PO

Reasoning Reward
•  Accuracy Reward 
•  Stage Reward
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External 
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Reasoning

Generate
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Figure 2: Overview of Retro-Expert. Retro-Expert first invokes multiple specialized small models to perform
retrosynthesis analysis on the product and extracts their Top-K predictions as intermediate information to guide
the prediction process of the LLM (Stage 1). Based on the candidate results from each model, the LLM then
performs multi-step selection and decision-making to adaptively identify a viable retrosynthesis pathway (Stage 2).
To optimize the quality and interpretable of the LLM’s decision path, we employ KRD-PO to perform end-to-end
optimization of the reasoning path.

extend RL to retrosynthetic reasoning to improve368

the LLM’s ability to infer from candidate results.369

The objective function for this optimization can be370

formally defined as follows:371

max
πθ

Eq∼D, y∼πθ(·|q;E) [rϕ(q, y)]

−β Dkl [πθ(y | q; E) ∥πref(y | q; E)]
(4)372

Here, πθ and πref denote the policy model and373

reference model, respectively; rϕ represents the374

reward function, and Dkl is the KL divergence mea-375

sure. is a question sampled from the dataset (com-376

posed of the candidate result set T and domain377

knowledge k); y is the model-generated output, en-378

compassing the large model’s reasoning path TLLM379

and the final reactant prediction result a. To opti-380

mize this objective function, we introduce Group381

Relative Policy Optimization (GRPO) (Shao et al.,382

2024) and combine it with a rule-based multi-stage383

reward mechanism to specifically enhance the large384

model’s reasoning capability over the candidate re- 385

sults from retrosynthesis small models. 386

Compared to previous methods that focus solely 387

on the correctness of the final reactant prediction, 388

we emphasize that the accuracy of the decision- 389

making path during retrosynthetic reasoning is 390

equally critical. In practical applications, chemists’ 391

trust in the model stems more from the interpretable 392

reasoning process than from a single result. Thus, 393

relying solely on coarse-grained “answer correct- 394

ness” rewards is insufficient. We need to design 395

finer-grained reward signals to enhance the authen- 396

ticity and interpretability of retrosynthesis predic- 397

tions. Based on this, we propose a Knowledge- 398

Constrained Decision Policy Optimization (KRD- 399

PO) mechanism. KRD-PO seamlessly integrates 400

the domain knowledge of retrosynthesis small mod- 401

els, aiming to maintain overall prediction accuracy 402

while significantly improving the correctness of 403
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retrosynthetic reasoning paths, thereby enhancing404

the model’s interpretability and credibility. Specif-405

ically, for a sampled decision path y, the reward406

function is defined as:407

r(TLLM, y) =
n∑

i=1

ri + rreactant + rformat, (5)408

where ri denotes the stage reward for the i-th sub-409

task (where ri = 1 if the prediction matches the410

sub-task’s ground truth label, and 0 otherwise),411

rreactant is the correctness reward for the final reac-412

tant prediction, and rformat is the format compliance413

reward for the reasoning process.414

Notably, candidate results generated by small415

models exhibit a probabilistic bias: the correct an-416

swer appears in the Top-1 position with signifi-417

cantly higher probability than in subsequent posi-418

tions. Without constraints, the LLM might directly419

select Top-1 results to maximize rewards during420

training (i.e., the “reward hacking”), leading to a421

loss of reasoning authenticity. To address this, we422

pre-shuffle the positions of correct answers in the423

training samples’ candidate results: using a phased424

decay strategy, we gradually reduce the probability425

of the correct answer appearing in the top position426

and increase its distribution in later positions. This427

operation not only simulates the true Top-K proba-428

bility distribution of small models but also avoids429

path selection distortion caused by reward mecha-430

nism bias during training. Through KRD-PO op-431

timization, Retro-Expert transcends the limitation432

of “accuracy-centric prediction”, instead gener-433

ating coherent, interpretable, and high-quality434

retrosynthetic reasoning thought chains. Addi-435

tionally, it ensures that the reasoning process aligns436

with chemical principles and expert knowledge,437

significantly enhancing the model’s practical appli-438

cation value in real-world scenarios.439

4 Experiments440

4.1 Dataset & Evaluation Metric441

We conduct experiments using the benchmark442

dataset USPTO-50K (Schneider et al., 2016) which443

contains 50,000 atom-mapped reaction records,444

and split the dataset into training, validation, and445

test sets with a ratio of 8:1:1 following prior446

works (Dai et al., 2019; Yan et al., 2020). Based447

on previous methods (Somnath et al., 2021; Zeng448

et al., 2024), we standardize the product SMILES449

and reorder the atom mapping numbers within the450

product, and reassign atom mapping numbers in451

Category Model Top-1 Acc (%)
Natural Language

Interpretable

Template-based
LocalRetro 63.9 ×

GLN 64.2 ×

Template-free
Retroformer 63.5 ×

UAlign 66.2 ×

Semi-Template
GraphRetro 63.9 ×
RetroPrime 64.8 ×
Graph2Edits 67.2 ×

Retro-Expert (ours)
+ LocalRetro 64.1 ✓

+ UAlign 67.0 ✓
+ GraphRetro 64.1 ✓

Table 1: Top-1 retrosynthesis accuracy (%) on the
USPTO-50K test set. Retro-Expert surpasses the perfor-
mance of small models and achieves natural language in-
terpretability. During inference, Retro-Expert supports
ANY small models, allowing them to provide candidate
results for sub-tasks without individual training.

the corresponding reactant SMILES. Considering 452

that practical applications typically focus only on 453

the highest-probability prediction, we employ Top- 454

1 accuracy as the metric, defined as the proportion 455

of test cases where the GT reactant appears in the 456

first prediction. Following prior work (Coley et al., 457

2017; Zheng et al., 2019), we compute the accuracy 458

by comparing the canonical SMILES of predicted 459

reactants to the ground truth. 460

4.2 Implementation Details 461

We employ three specialized small models, includ- 462

ing a reaction type prediction model (T5Chem (Lu 463

and Zhang, 2022)), a reaction center prediction 464

model (GraphRetro (Somnath et al., 2021)), and a 465

reactant prediction model (GraphRetro), to provide 466

the necessary information required for expert-level 467

retrosynthesis analysis. During inference, ANY 468

small models can be used to provide candidate 469

results for sub-tasks. To balance accuracy and op- 470

timization efficiency, we use Top-3 candidate pre- 471

dictions from each model. We utilize Qwen2.5-3B- 472

Instruct as the LLM and train it with reinforcement 473

learning using only 12k samples. To prevent re- 474

ward hacking, during training, the correct answers 475

in the small model’s candidate predictions are dis- 476

tributed across positions 1, 2, and 3 with a ratio of 477

5:3:2 to ensure balanced label distribution. 478

4.3 Comparison Results 479

For evaluating overall performance, we com- 480

pare Retro-Expert with existing classic retrosyn- 481

thesis methods that rely on template-based (Lo- 482

calRetro (Chen and Jung, 2021), GLN (Dai 483

et al., 2019)), template-free (Retroformer (Yao 484

et al., 2023), UAlign (Zeng et al., 2024)) 485
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Strategy Setting (Train -> Test) Top-1 Acc
Natural Language

Interpretable

SFT
Product -> Reactants 43.2 ×
Product -> Reactants + CoT 32.9 ✓

RL
Product -> Reactants 0 ✓
Product + 4 Choice -> Reactants 28.9 ✓
Retro-Expert + GraphRetro 64.1 ✓

Table 2: SFT v.s. RL. LLMs lack sufficient chemical
knowledge to independently complete retrosynthesis.

Candidate Sets Top-1 Accuracy
Type Center Reactant

Type Center Reactant Interpretable
R M R M R M
✓ ✓ ✓ 17.4 33.3 29.4 ✓

✓ ✓ ✓ 75.6 36.5 31.0 ✓
✓ ✓ ✓ 75.6 84.5 64.1 ✓
✓ ✓ ✓ 75.6 84.5 63.9 ×

Table 3: Performance of different sub-tasks on Reason-
ing and Memorization. “R” and “M” denotes using
reasoning (LLM) or memorization (small model) to pro-
vide candidates.

and semi-template-based (GraphRetro (Somnath486

et al., 2021), RetroPrime (Wang et al., 2021),487

Graph2Edits (Zhong et al., 2023)).488

As shown in Table 1, we selected three repre-489

sentative models of different types to provide can-490

didate results for Retro-Expert. Retro-Expert con-491

sistently surpasses the standalone Top-1 accuracy492

of specialized retrosynthesis models while main-493

taining proportional performance gains as baseline494

model accuracy increases. Crucially, our frame-495

work uniquely generates chemically grounded nat-496

ural language explanations, a distinguishing feature497

absent in conventional methods.498

4.4 Ablation Study499

Reasoning capabilities of LLMs in retrosynthe-500

sis. To validate the necessity of large-small model501

collaboration, i.e., LLMs require specialized mod-502

els to provide domain knowledge they lack, we503

conducted a detailed analysis of LLMs’ reasoning504

capabilities in retrosynthesis.505

As shown in Table 2, we trained LLMs using Su-506

pervised Fine-Tuning (SFT) and RL respectively.507

When predicting reactants with only the product as508

input, the SFT model obtains answers by memoriz-509

ing training data rather than performing reasoning.510

We further used Deepseek-V3 to generate Chain-511

of-Thought (CoT) reasoning processes from prod-512

ucts to reactants for the training set, and finetuned513

the model. Although the LLM could now output514

reasoning processes, its Top-1 accuracy decreased515

by 10.3%, primarily due to numerous chemical516

factual errors in the CoT obtained by Deepseek-517

Top-K Candidates 1 2 3 4 5
Reactant Top-1 66.8 65.0 64.1 62.5 60.5

∆ +2.9 +1.1 +0.2 -1.4 -3.4

Table 4: The effect of the K value in small models’ Top-
K candidates on large model performance. ∆ denotes
the improvement relative to the Top-1 accuracy of small
models’ reactant prediction (63.9%).

V3. To further verify the model’s internal chemical 518

knowledge, we trained the model using RL with 519

a rule-based reward mechanism to directly predict 520

reactants from the product. However, all test pre- 521

dictions were incorrect, indicating that the LLM 522

lacks sufficient knowledge to independently solve 523

retrosynthesis tasks. When provided with the prod- 524

uct and 4 candidate reactants, the model’s Top-1 525

accuracy increased to 28.9%, yet this remains sig- 526

nificantly lower than Retro-Expert (46.1%). This 527

demonstrates that LLMs require specialized mod- 528

els to provide domain knowledge for each stage of 529

retrosynthetic reasoning. 530

Reasoning and memorization in different sub- 531

tasks of retrosynthesis. To validate the respective 532

strengths of small models and large models in ret- 533

rosynthesis, we compared the performance of large 534

model reasoning versus small model memorization 535

across different sub-tasks. Here, “reasoning” refers 536

to small models providing Top-3 candidates for 537

LLM reasoning, while “memorization” refers to 538

small models directly supplying Top-1 candidates 539

to the LLM. When all sub-tasks relied on LLM 540

reasoning, overall performance was poor, indicat- 541

ing that LLMs struggle to obtain accurate chemical 542

knowledge support. When the reaction type sub- 543

task used small model memorization, reaction type 544

performance improved by 58.2%, with concurrent 545

improvements in reaction center and reactant pre- 546

dictions. This suggests that reaction type classifi- 547

cation is better suited for small models to memo- 548

rize based on product SMILES. Further applying 549

memorization to the reaction center sub-task in- 550

creased reactant prediction accuracy from 31.0% to 551

64.1%, indicating that reaction center localization 552

directly impacts reactant prediction performance 553

and provides the most direct information to aid 554

LLM reasoning. 555

Effectivenss of small models’ Top-K candi- 556

dates. We analyze the impact of using different 557

K values for candidate results during inference on 558

LLM reasoning performance in Table 4. During 559

training, small models only provide 3 candidate 560

results for LLM. As K decreases, the number of 561
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Figure 3: Comparison of positional distributions be-
tween the correct answers of small models and the se-
lected positions of LLMs.

candidates the LLM needs to reason over reduces,562

lowering the reasoning difficulty (the expected cor-563

rect reasoning probability changes from 33.3% to564

50%). Consequently, reactants prediction accu-565

racy gradually increases. We surprisingly found566

that when K equals to 1, reactant accuracy reached567

66.8%, exceeding the small model’s Top-1 accu-568

racy by 2.9%. This indicates that even when small569

models fail to provide the correct answer, the LLM570

retains the ability to correct its predictions from571

erroneous candidates. As K increases, the LLM’s572

reasoning difficulty rises, ultimately leading to a573

3.4% decrease in accuracy. We attribute this de-574

cline to the training setting, increasing the training575

K value could further force the model to enhance576

its reasoning capabilities.577

Reward hacking. Due to the probabilistic bias578

in the Top-K candidate results provided by small579

models, i.e., the correct answer appears in the Top-580

1 position with significantly higher probability than581

in other positions. When using result correctness582

as the reward, the LLM will directly select the first583

candidate to continuously maximize its reward. To584

validate the effectiveness of our candidate position585

shuffling strategy, we visualized the positional dis-586

tribution of correct answers in the small model’s587

K candidates and the distribution of positions se-588

lected by the LLM. As shown in Figure 3, using the589

original K candidates from small models results in590

severe reward hacking, whereas our position shuf-591

fling strategy effectively mitigates this issue.592

4.5 Case Study593

In Figure 4, we visualize the natural language-594

based interpretable reasoning process generated595

by Retro-Expert. Observations show that small596

models effectively provided knowledge anchors for597

Reaction Center

Reaction Type

Reactant

External Knowledge

Reasoning & Evaluation

Figure 4: Demonstration of Interpretable Reasoning
Process. Retro-Expert guides the LLM to derive re-
actants via step-by-step reasoning based on candidate
results from diverse small models. Such interpretable
reasoning processes significantly enhance experts’ trust
in the model and boost its practical applicability.

the LLM through reaction type and reaction center 598

predictions, prompting the LLM to further leverage 599

external knowledge for reasoning based on domain 600

knowledge. Additionally, the LLM analyzed each 601

candidate’s result provided by small models step- 602

by-step and ensured the rationality of the generated 603

results through self-verification. 604

5 Conclusion 605

In this paper, we present Retro-Expert, the first 606

interpretable retrosynthesis framework capable of 607

generating step-by-step reasoning in natural lan- 608

guage, addressing long-standing interpretability 609

limitations in existing methods. By leveraging 610

reinforcement learning to collaborate small mod- 611

els’ specialized chemical expertise with LLMs’ ad- 612

vanced reasoning capabilities, Retro-Expert deliv- 613

ers both accurate reactant predictions and step-by- 614

step explanations grounded in chemical logic. Our 615

experiments show that Retro-Expert not only out- 616

performs prior approaches with minimal training 617

data but also accommodates the seamless integra- 618

tion of arbitrary small models during inference. 619

This framework enhances model trustworthiness 620

and bridges the gap between opaque model predic- 621

tions and chemists’ logic-driven workflows, provid- 622

ing a practical tool for retrosynthesis planning. 623
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Limitations624

Limited by our computational resources, Retro-625

Expert was only trained using reinforcement learn-626

ing on Qwen-2.5-3B. However, its reasoning ca-627

pabilities can be further enhanced with increasing628

large language model (LLM) parameter sizes (e.g.,629

7B or 32B). Although manual observation indicates630

that the interpretable reasoning chains generated631

by Retro-Expert are highly accurate, quantitative632

evaluation remains necessary. However, how to633

conduct such evaluation poses a significant chal-634

lenge, as it involves fundamental chemical knowl-635

edge, expert reasoning processes, and chemical636

reaction feasibility. We will continue to explore637

this direction in future work.638
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