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Abstract

Retrosynthesis prediction aims to infer the
reactant molecule based on a given product
molecule, which is a fundamental task in chem-
ical synthesis. The development of inter-
pretable retrosynthesis models is crucial for
chemist’s decision by providing meaningful
explanation. Building on this, we propose
Retro-Expert, an interpretable retrosynthesis
reasoning framework that combines domain-
specific small models with large language mod-
els (LLMs) to generate human-readable rea-
soning alongside predictions via reinforcement
learning. Unlike black-box data-driven models,
Retro-Expert outputs natural language explana-
tions grounded in chemical logic (e.g., reaction
rules, principles) through three components: (1)
specialized small models ensuring chemically
valid candidates for reasoning, (2) LLM-driven
reasoning to synthesize a decision-making path-
way, and (3) reinforcement learning optimiz-
ing interpretable decision policy. Experiments
show Retro-Expert achieves higher accuracy
than single models while producing expert-
aligned explanations, bridging Al predictions
with actionable chemical insights.

1 Introduction

Retrosynthesis prediction aims to deduce poten-
tial reactants and reaction pathways for synthesiz-
ing a target product molecule based on its struc-
tural characteristics (Somnath et al., 2021; Segler
and Waller, 2017; Sun et al., 2021), holding sig-
nificant application value in drug discovery and
molecular design (Hu et al., 2025; Wang et al.,
2023, 2018). Existing data-driven models predom-
inantly rely on data memorization mechanisms,
which learn mappings between product SMILES
and reactant SMILES from datasets, framing the
task as either classification or auto-regressive se-
quence generation (Yao et al., 2023; Chen and
Jung, 2021; Yao et al., 2023; Zheng et al., 2019).
This paradigm exhibits dual deficiencies: (1) The

RS
Vol

Interpretable
retrosynthesis

| Opaque results

& Lack of interpretability
Existing Retrosynthesis Strong & readily available

Small Model specialized capabilities

m@’Td @ —

Outstanding logical

Large Language Model reasoning capability
C Lack of domain knowledge

g‘ & Expensive training cost

Figure 1: Core highlights of Retro-Expert: the first inter-
pretable retrosynthesis framework capable of generating
step-by-step reasoning in natural language, enabled by
the collaboration the reasoning capabilities of LLMs
with the specialized capabilities of small models.

model can only generate reactant SMILES strings,
with no transparency in its internal reasoning pro-
cess. (2) predictions lack natural language expla-
nations grounded in chemical logic, critically hin-
dering real-world adoption. These limitations lead
to a lack of reliable basis for the predictions in
chemical principles, which severely undermines
chemists’ trust in practical applications. Notably,
recent breakthroughs (Wang et al., 2025; Xie et al.,
2025; Chen et al., 2025) in large language mod-
els (LLMs) have demonstrated their potential to
address complex specialized problems through
specialized-knowledge-based reasoning, enhanced
by reinforcement learning via GRPO (Shao et al.,
2024). These advancements motivate us to explore
how to leverage LLMs’ emergent reasoning capa-
bilities to enhance the interpretability of retrosyn-
thesis prediction.

Therefore, we focus on chemical knowledge-
based retrosynthetic reasoning by LLMs to gen-
erate reactant results along with explainable rea-
soning process, ensuring interpretable and trans-
parent retrosynthesis prediction. However, LLMs
cannot directly and effectively achieve retrosyn-
thetic reasoning. When employing supervised fine-
tuning (SFT) approaches, LLMs typically achieve



retrosynthesis by memorizing common reaction
patterns from the training dataset, rather than rea-
soning based on the underlying chemical principles.
In contrast, reinforcement learning (RL) methods
can leverage the inherent knowledge of LLMs to
simulate expert-like reasoning, enabling the gener-
ation of both predictions and interpretable reason-
ing paths, thus representing a promising direction.
However, directly applying RL to incentivize mod-
els for retrosynthetic reasoning faces two critical
challenges: (1) Domain Knowledge Disparity. Ret-
rosynthesis demands not only logical reasoning but
also mastery of specialized chemical knowledge.
Pre-trained LLMs fail to adequately internalize and
apply specific chemical principles when reasoning
solely based on molecular SMILES. (2) Lack of
Specialized Capabilities. The retrosynthesis work-
flow inherently requires coordinated execution of
interdependent subtasks, including reaction type
classification and reaction center location (Gao
et al., 2022; Wang et al., 2021; Yan et al., 2020).
Vanilla LLMs struggle to execute these specialized
subtasks, while dedicated small models, each in-
dividually optimized for a specific subtask, have
achieved expert-level performance with no train-
ing costs incurred (Wang et al., 2023; Chen and
Jung, 2021; Somnath et al., 2021). These small
models can offer valuable chemical guidance to
LLMs during retrosynthesis. Therefore, we aim to
synergistically integrate the specialized capabilities
of small models with the advanced reasoning ca-
pability of LLMs through reinforcement learning,
establishing a new paradigm where small models
provide chemical knowledge guidance, upon which
LLMs perform explainable decision-making.
Building upon these insights, we present
Explainable and Cooperative retrosynthesis frame-
work, Retro-Expert, the first explainable retrosyn-
thesis framework that integrates natural language-
based expert reasoning with model-agnostic com-
patibility.  Retro-Expert achieves dual break-
throughs in prediction accuracy and chemical in-
terpretability by strategically orchestrating small
models’ domain expertise and the LLM’s logi-
cal reasoning capabilities. The framework oper-
ates through three interconnected modules: (1)
Specialized Multi-Model Candidate Generation.
Leveraging specialized small models (e.g., reac-
tion type classifiers and reactant generators) to
produce stage-specific candidate predictions for
a target product. (2) Collaborative Interaction
Mechanism between Large and Small Models.

Leveraging their powerful semantic understand-
ing and logical reasoning capabilities, large lan-
guage models perform integrated analysis and in-
depth reasoning over the multi-stage candidate re-
sults generated by small models, ultimately pro-
ducing the final reactant prediction along with in-
terpretable, natural language-based reasoning pro-
cess. (3) Knowledge-Constrained Decision Pol-
icy Optimization. Retro-Expert optimizes the
large model’s reasoning strategy over candidate
results via reinforcement learning. A multi-stage
reward mechanism is established during training
to guide the model toward learning an optimal and
trustworthy reasoning path.

Our contributions are summarized as follows:
1. This work represents the first retrosynthesis
study capable of generating natural language in-
terpretable reasoning processes. It fills a long-
standing interpretability gap in the field, signifi-
cantly enhancing chemists’ trust in the model and
its practical applicability in real-world scenarios.
2. We propose Retro-Expert, a collaborative ret-
rosynthesis framework integrating large and small
models. It not only improves retrosynthesis predic-
tion accuracy but generates human-understandable
step-by-step reasoning processes. Notably, Retro-
Expert allows seamless integration of arbitrary
small models during inference, enabling flexible
expansion without retraining.
3. Systematic experiments validate the advantages
of the large-small model collaboration in Retro-
Expert. Furthermore, its performance scales with
improvements in small model accuracy, demon-
strating strong generalization and scalability.

2 Related Work

2.1 Retrosynthesis Prediction

Existing retrosynthesis prediction methods can
be broadly categorized into three modeling
paradigms: template-based, semi-template-based,
and template-free approaches (Gao et al., 2022;
Somnath et al., 2021; Sun et al., 2025). Template-
based methods (Chen and Jung, 2021; Coley et al.,
2017; Dai et al., 2019) apply an appropriate tem-
plate to the product module via subgraph matching
and generate the corresponding reactants. Semi-
template-based methods (Yan et al., 2020; Wang
et al., 2021; Somnath et al., 2021) first predict the
product’s reaction center, indicating the location
of the leaving group addition for reactants gener-
ation. Template-free methods (Sun et al., 2021;



Sacha et al., 2021; Zhong et al., 2022) incorporate
auxiliary information such as reaction type (Sacha
etal., 2021; Zhang et al., 2024; Liu et al., 2024), to
facilitate learning of the direct transformation from
product SMILES to reactant SMILES. While each
paradigm focuses on distinct aspects of the predic-
tion process to extract intermediate guidance, they
often overlook the complementarity and synergy
among this intermediate information. Moreover,
most existing methods only output the final reac-
tant predictions, which limits the interpretability of
the models.

2.2 Large Language Model Reasoning

In recent years, large language models’ deep rea-
soning has been developed to solve specialized
scientific problems (Liu et al., 2023; Su et al.,
2025; Tang et al., 2025; Putri et al., 2025; Pan
et al., 2025). Some studies have shown that a small
amount of supervised fine-tuning (SFT) data can
enhance a model’s reasoning abilities (Zhou et al.,
2023; Huang et al., 2025).

However, SFT primarily aims to memorize com-
mon patterns from existing datasets to replicate suc-
cessful reasoning strategies, and its ability to han-
dle more complex tasks remains limited. As a re-
sult, reinforcement learning (RL)-based reasoning
models like DeepSeek-R1 (Guo et al., 2025; Zhou
et al., 2024; Ziegler et al., 2019; Feng et al., 2025)
have recently achieved significant progress (Guo
et al., 2025; Zhou et al., 2024; Ziegler et al., 2019).
Furthermore, some approaches (Team et al., 2025;
Chu et al., 2025) have demonstrated the promise
of combining long-chain reasoning with reinforce-
ment learning to address highly complex problems,
indicating that a strategy that integrates SFT with
reinforcement learning may offer a flexible and
effective pathway to solve more challenging tasks.

3 Methodology

3.1 Overview

This paper presents Retro-Expert, an interpretable
retrosynthesis framework that synergistically com-
bines the complementary strengths of both small
and large language models, aiming to enhance the
accuracy of retrosynthesis predictions while gener-
ating human-understandable reasoning processes.
As illustrated in Figure 2, Retro-Expert primarily
comprises three core stages. Given the target prod-
uct, pre-trained specialized small retrosynthesis
models are employed to generate candidate pre-

dictions for different sub-tasks in retrosynthesis.
These candidates serve as the knowledge foun-
dation for the large model’s in-depth reasoning
(Specialized Multi-Model Candidate Generation).
Leveraging the large model’s logical reasoning ca-
pabilities, cross-stage analysis is performed on the
multi sub-task candidate results. Through multi-
step reasoning, the optimal results for each sub-
task are identified, and a complete natural language
reasoning chain is constructed (Collaborative inter-
action mechanism between large and small mod-
els). Using the reinforce learning combined with a
multi-stage rule-based reward mechanism and via
GRPO (Shao et al., 2024), feedback signals are gen-
erated by comparing the large model’s intermediate
reasoning results with ground-truth labels. This op-
timizes the large model’s reasoning strategy, guid-
ing it to autonomously learn the optimal retrosyn-
thesis reasoning path (Knowledge-Constrained De-
cision Policy Optimization module).

3.2 Task Definition

The objective of the retrosynthesis task Tieo iS to
predict the set of reactants { M }¢ | (C' > 1) corre-
sponding to a target product M, where M,,, M, €
S, and S represents the valid SMILES space. In
real-world expert retrosynthesis prediction, this
process typically involves solving n logically
connected subtasks Tiewo = {7Z0,71,.-.,Tn},
where collaboration among subtasks enables expert-
level accuracy. Given an environment £ con-
taining N(N > n) specialized models M =
{mg, mq,...,my}, each dedicated to a retrosyn-
thesis subtask, the input product M, is processed
by each model m,; to generate Top-K candidate
predictions P; for its corresponding subtask:

P, ={PF} ., PF~p(mi|M0), (1)

where 0 denotes the parameters of model m;, and
Pf represents the k-th candidate result. The total
inference path space 7 is defined as the Cartesian
product of candidate results from all subtasks:

T:(PO)Plv"')Pn)a (2)

with a space size of K. Retrosynthesis reasoning
is modeled as a sequential decision-making process
in this path space: a LLM My interacts with &,
analyzes the Top-K candidates from models in M,
and sequentially selects the correct answer P, (P €
P;) for each subtask. This generates a reasoning
path Tiom = (B, Py, .. ., P,,) alongside a natural-
language explanation R. Retro-Expert has two core



objectives: generating the correct set of reactants
a = {M}}<_,, and identifying the optimal path T**
with the highest reward within 7

arg max Reward (T 1m)
Tum€eT
S.t. MLLM(M}’M TLLM) =a. 3)

Here, Reward(+) is a function evaluating the quality
of the reasoning path. This framework improves
the accuracy of the explainable reasoning R by
simultaneously ensuring correct reactant predic-
tion and maximizing the path reward—a critical
enhancement not addressed in prior work.

3.3 Specialized Multi-Model Candidate
Generation Module

Following the actual retrosynthetic reasoning pro-
cess of chemists and effectively integrating the do-
main knowledge required, we propose the Special-
ized Multi-Model Candidate Generation module.
The core concept is to leverage existing pre-trained
retrosynthesis models tailored for different sub-
tasks to generate initial candidate results for each
sub-task in the retrosynthesis process.

Specifically, the module invokes pre-trained spe-
cialized small models (e.g., reaction type prediction
models, reaction center localization models) to out-
put candidate results for sub-tasks such as possible
retrosynthesis reaction types and reaction center
positions of M. Since all employed models are
pre-trained retrosynthesis models, they can easily
generate predictions for each sub-task without ad-
ditional training costs, significantly enhancing the
scalability and usability of Retro-Expert. Notably,
the candidate results generated by sub-task models
exhibit high recall: their Top- K predictions already
contain most correct answers, thus providing suffi-
cient prior knowledge support for the large model’s
subsequent in-depth reasoning.

Furthermore, the module is highly flexible in de-
sign. It not only supports the integration of small
retrosynthesis models of any type (e.g., reactant
generation models, functional group analysis mod-
els) but also incorporates external domain knowl-
edge k (e.g., natural language descriptions of prod-
uct functional groups, known reaction rules), fur-
ther enriching the diversity and comprehensiveness
of candidate information. Ultimately, the candi-
date results from all sub-task models and external
knowledge are aggregated into a unified informa-
tion set, which is input to the next stage for collab-
orative reasoning.

3.4 Collaborative Interaction Mechanism
between Large and Small Models

Although LLMs exhibit exceptional capabilities
in complex logical reasoning, they lack domain-
specific knowledge in retrosynthesis tasks, making
it difficult to directly predict reactants based solely
on the molecular structure of the product. Thus, the
core design goal of Retro-Expert is to use candidate
results provided by small models as domain knowl-
edge anchors, guiding LLMs to shift from “directly
predicting reactants” to “step-by-step reasoning
based on candidate sets”, thereby reducing LLMs’
reliance on domain knowledge.

The collaborative mechanism between small and
large models is implemented through the follow-
ing key steps: First, based on the logical chain of
chemists’ actual retrosynthetic reasoning, we or-
der different sub-task models. Simultaneously, we
deduplicate and integrate candidate results from
models addressing the same sub-task. This process
ultimately forms n logically connected, difficulty-
increasing candidate result sets 7. These candidate
sets, combined with external domain knowledge
k, collectively construct the reasoning prompt for
the LLM. Second, the constructed prompt is in-
put to the LLM, which is then tasked with per-
forming step-by-step analysis and reasoning on
each sub-task. The LLM must derive conclusions
for the current step (e.g., localize reaction cen-
ter) by integrating selection results from previous
steps (e.g., confirmed reaction type), ultimately out-
putting predicted answers for each sub-task and an
interpretable reasoning basis in natural language.

In this process, the logical ordering of sub-tasks
(from simple to complex, global to local) is crit-
ical for ensuring the coherence of the reasoning
chain. This collaborative large-small model mech-
anism integrates the efficient domain knowledge
acquisition capabilities of small models with the
complex logical reasoning capabilities of LLMs.
It not only enhances the accuracy of reactant pre-
diction through expert knowledge constraints but
also constructs logically coherent and traceable ret-
rosynthetic reasoning paths, significantly improv-
ing the interpretability of model decisions.

3.5 Knowledge-Constrained Decision Policy
Optimization Module

Inspired by recent advances in leveraging reinforce-
ment learning (RL) to enhance the reasoning ca-
pabilities of large language models (LLMs), we
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Figure 2: Overview of Retro-Expert. Retro-Expert first invokes multiple specialized small models to perform
retrosynthesis analysis on the product and extracts their Top-K predictions as intermediate information to guide
the prediction process of the LLM (Stage 1). Based on the candidate results from each model, the LLM then
performs multi-step selection and decision-making to adaptively identify a viable retrosynthesis pathway (Stage 2).
To optimize the quality and interpretable of the LLM’s decision path, we employ KRD-PO to perform end-to-end

optimization of the reasoning path.

extend RL to retrosynthetic reasoning to improve
the LLM’s ability to infer from candidate results.
The objective function for this optimization can be
formally defined as follows:

max Eqp, yormo (i) [76(0 )] @)

—BDwi [mo(y | ¢;E) || mret(y | 45 E)]

Here, mg and ,.; denote the policy model and
reference model, respectively; ry represents the
reward function, and Dy, is the KL divergence mea-
sure. is a question sampled from the dataset (com-
posed of the candidate result set 7 and domain
knowledge k); y is the model-generated output, en-
compassing the large model’s reasoning path 771 s
and the final reactant prediction result a. To opti-
mize this objective function, we introduce Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) and combine it with a rule-based multi-stage
reward mechanism to specifically enhance the large

model’s reasoning capability over the candidate re-
sults from retrosynthesis small models.

Compared to previous methods that focus solely
on the correctness of the final reactant prediction,
we emphasize that the accuracy of the decision-
making path during retrosynthetic reasoning is
equally critical. In practical applications, chemists’
trust in the model stems more from the interpretable
reasoning process than from a single result. Thus,
relying solely on coarse-grained “answer correct-
ness”’ rewards is insufficient. We need to design
finer-grained reward signals to enhance the authen-
ticity and interpretability of retrosynthesis predic-
tions. Based on this, we propose a Knowledge-
Constrained Decision Policy Optimization (KRD-
PO) mechanism. KRD-PO seamlessly integrates
the domain knowledge of retrosynthesis small mod-
els, aiming to maintain overall prediction accuracy
while significantly improving the correctness of



retrosynthetic reasoning paths, thereby enhancing
the model’s interpretability and credibility. Specif-
ically, for a sampled decision path y, the reward
function is defined as:

n
r(HLM) y) = Z T'i + Treactant 1+ Tformat, 5

=1

where 7; denotes the stage reward for the i-th sub-
task (where r; = 1 if the prediction matches the
sub-task’s ground truth label, and O otherwise),
Treactant 18 the correctness reward for the final reac-
tant prediction, and 7forma i the format compliance
reward for the reasoning process.

Notably, candidate results generated by small
models exhibit a probabilistic bias: the correct an-
swer appears in the Top-1 position with signifi-
cantly higher probability than in subsequent posi-
tions. Without constraints, the LLM might directly
select Top-1 results to maximize rewards during
training (i.e., the “reward hacking”), leading to a
loss of reasoning authenticity. To address this, we
pre-shuffle the positions of correct answers in the
training samples’ candidate results: using a phased
decay strategy, we gradually reduce the probability
of the correct answer appearing in the top position
and increase its distribution in later positions. This
operation not only simulates the true Top-K proba-
bility distribution of small models but also avoids
path selection distortion caused by reward mecha-
nism bias during training. Through KRD-PO op-
timization, Retro-Expert transcends the limitation
of “accuracy-centric prediction”, instead gener-
ating coherent, interpretable, and high-quality
retrosynthetic reasoning thought chains. Addi-
tionally, it ensures that the reasoning process aligns
with chemical principles and expert knowledge,
significantly enhancing the model’s practical appli-
cation value in real-world scenarios.

4 Experiments

4.1 Dataset & Evaluation Metric

We conduct experiments using the benchmark
dataset USPTO-50K (Schneider et al., 2016) which
contains 50,000 atom-mapped reaction records,
and split the dataset into training, validation, and
test sets with a ratio of 8:1:1 following prior
works (Dai et al., 2019; Yan et al., 2020). Based
on previous methods (Somnath et al., 2021; Zeng
et al., 2024), we standardize the product SMILES
and reorder the atom mapping numbers within the
product, and reassign atom mapping numbers in

Natural Language

Category Model Top-1 Acc (%) Interpretable
LocalRetro 63.9 X
Template-based GLN 642 <
Template-free Retrof(‘)rmer 63.5 X
UAlign 66.2 X
GraphRetro 63.9 X
Semi-Template RetroPrime 64.8 X
Graph2Edits 67.2 X
+ LocalRetro 64.1 v
Retro-Expert (ours) + UAlign 67.0 v
+ GraphRetro 64.1 v

Table 1: Top-1 retrosynthesis accuracy (%) on the
USPTO-50K test set. Retro-Expert surpasses the perfor-
mance of small models and achieves natural language in-
terpretability. During inference, Retro-Expert supports
ANY small models, allowing them to provide candidate
results for sub-tasks without individual training.

the corresponding reactant SMILES. Considering
that practical applications typically focus only on
the highest-probability prediction, we employ Top-
1 accuracy as the metric, defined as the proportion
of test cases where the GT reactant appears in the
first prediction. Following prior work (Coley et al.,
2017; Zheng et al., 2019), we compute the accuracy
by comparing the canonical SMILES of predicted
reactants to the ground truth.

4.2 Implementation Details

We employ three specialized small models, includ-
ing a reaction type prediction model (TSChem (Lu
and Zhang, 2022)), a reaction center prediction
model (GraphRetro (Somnath et al., 2021)), and a
reactant prediction model (GraphRetro), to provide
the necessary information required for expert-level
retrosynthesis analysis. During inference, ANY
small models can be used to provide candidate
results for sub-tasks. To balance accuracy and op-
timization efficiency, we use Top-3 candidate pre-
dictions from each model. We utilize Qwen2.5-3B-
Instruct as the LLM and train it with reinforcement
learning using only 12k samples. To prevent re-
ward hacking, during training, the correct answers
in the small model’s candidate predictions are dis-
tributed across positions 1, 2, and 3 with a ratio of
5:3:2 to ensure balanced label distribution.

4.3 Comparison Results

For evaluating overall performance, we com-
pare Retro-Expert with existing classic retrosyn-
thesis methods that rely on template-based (Lo-
calRetro (Chen and Jung, 2021), GLN (Dai
et al., 2019)), template-free (Retroformer (Yao
et al.,, 2023), UAlign (Zeng et al., 2024))



Natural Language

Strategy Setting (Train -> Test) Top-1 Acc

Interpretable
SFT Product -> Reactants 432 X
Product -> Reactants + CoT 329 v
Product -> Reactants 0 v
RL Product + 4 Choice -> Reactants 28.9 v
Retro-Expert + GraphRetro 64.1 v

Table 2: SFT v.s. RL. LLMs lack sufficient chemical
knowledge to independently complete retrosynthesis.

Candidate Sets Top-1 Accuracy
RT J plev[ gentlevr[ l;eact;:[n Type Center Reactant Interpretable
v v v 174 333 29.4 v
VY v 75.6  36.5 31.0 v
v v |V 75.6 845 64.1 v
v v v | 756 845 63.9 X

Table 3: Performance of different sub-tasks on Reason-
ing and Memorization. “R” and “M” denotes using
reasoning (LLM) or memorization (small model) to pro-
vide candidates.

and semi-template-based (GraphRetro (Somnath
et al.,, 2021), RetroPrime (Wang et al., 2021),
Graph2Edits (Zhong et al., 2023)).

As shown in Table 1, we selected three repre-
sentative models of different types to provide can-
didate results for Retro-Expert. Retro-Expert con-
sistently surpasses the standalone Top-1 accuracy
of specialized retrosynthesis models while main-
taining proportional performance gains as baseline
model accuracy increases. Crucially, our frame-
work uniquely generates chemically grounded nat-
ural language explanations, a distinguishing feature
absent in conventional methods.

4.4 Ablation Study

Reasoning capabilities of LLMs in retrosynthe-
sis. To validate the necessity of large-small model
collaboration, i.e., LLMs require specialized mod-
els to provide domain knowledge they lack, we
conducted a detailed analysis of LLMs’ reasoning
capabilities in retrosynthesis.

As shown in Table 2, we trained LLMs using Su-
pervised Fine-Tuning (SFT) and RL respectively.
When predicting reactants with only the product as
input, the SFT model obtains answers by memoriz-
ing training data rather than performing reasoning.
We further used Deepseek-V3 to generate Chain-
of-Thought (CoT) reasoning processes from prod-
ucts to reactants for the training set, and finetuned
the model. Although the LLM could now output
reasoning processes, its Top-1 accuracy decreased
by 10.3%, primarily due to numerous chemical
factual errors in the CoT obtained by Deepseek-

Top-K Candidates 1 2 3 4 5
Reactant Top-1 66.8 650 64.1 625 60.5
A +29 +11 +0.2 -14 -34

Table 4: The effect of the K value in small models’ Top-
K candidates on large model performance. A denotes
the improvement relative to the Top-1 accuracy of small
models’ reactant prediction (63.9%).

V3. To further verify the model’s internal chemical
knowledge, we trained the model using RL with
a rule-based reward mechanism to directly predict
reactants from the product. However, all test pre-
dictions were incorrect, indicating that the LLM
lacks sufficient knowledge to independently solve
retrosynthesis tasks. When provided with the prod-
uct and 4 candidate reactants, the model’s Top-1
accuracy increased to 28.9%, yet this remains sig-
nificantly lower than Retro-Expert (46.1%). This
demonstrates that LLMs require specialized mod-
els to provide domain knowledge for each stage of
retrosynthetic reasoning.

Reasoning and memorization in different sub-
tasks of retrosynthesis. To validate the respective
strengths of small models and large models in ret-
rosynthesis, we compared the performance of large
model reasoning versus small model memorization
across different sub-tasks. Here, “reasoning” refers
to small models providing Top-3 candidates for
LLM reasoning, while “memorization” refers to
small models directly supplying Top-1 candidates
to the LLM. When all sub-tasks relied on LLM
reasoning, overall performance was poor, indicat-
ing that LLMs struggle to obtain accurate chemical
knowledge support. When the reaction type sub-
task used small model memorization, reaction type
performance improved by 58.2%, with concurrent
improvements in reaction center and reactant pre-
dictions. This suggests that reaction type classifi-
cation is better suited for small models to memo-
rize based on product SMILES. Further applying
memorization to the reaction center sub-task in-
creased reactant prediction accuracy from 31.0% to
64.1%, indicating that reaction center localization
directly impacts reactant prediction performance
and provides the most direct information to aid
LLM reasoning.

Effectivenss of small models’ Top-K candi-
dates. We analyze the impact of using different
K values for candidate results during inference on
LLM reasoning performance in Table 4. During
training, small models only provide 3 candidate
results for LLM. As K decreases, the number of
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Figure 3: Comparison of positional distributions be-
tween the correct answers of small models and the se-
lected positions of LLMs.

candidates the LLM needs to reason over reduces,
lowering the reasoning difficulty (the expected cor-
rect reasoning probability changes from 33.3% to
50%). Consequently, reactants prediction accu-
racy gradually increases. We surprisingly found
that when K equals to 1, reactant accuracy reached
66.8%, exceeding the small model’s Top-1 accu-
racy by 2.9%. This indicates that even when small
models fail to provide the correct answer, the LLM
retains the ability to correct its predictions from
erroneous candidates. As K increases, the LLM’s
reasoning difficulty rises, ultimately leading to a
3.4% decrease in accuracy. We attribute this de-
cline to the training setting, increasing the training
K value could further force the model to enhance
its reasoning capabilities.

Reward hacking. Due to the probabilistic bias
in the Top-K candidate results provided by small
models, i.e., the correct answer appears in the Top-
1 position with significantly higher probability than
in other positions. When using result correctness
as the reward, the LLM will directly select the first
candidate to continuously maximize its reward. To
validate the effectiveness of our candidate position
shuffling strategy, we visualized the positional dis-
tribution of correct answers in the small model’s
K candidates and the distribution of positions se-
lected by the LLM. As shown in Figure 3, using the
original K candidates from small models results in
severe reward hacking, whereas our position shuf-
fling strategy effectively mitigates this issue.

4.5 Case Study

In Figure 4, we visualize the natural language-
based interpretable reasoning process generated
by Retro-Expert. Observations show that small
models effectively provided knowledge anchors for

<think>

To infer the most likely reactants for synthesizing the product, we K
functional groups and the reaction center provided. The product is
which contains a bromomethyl group (—BrCH2—) and a chloropheny!
group (C6H4—Cl). The reaction center is at position 11, 12, which refers to the carbon atom with
the bromomethyl group and the bromine atom.

External Knowledge
d fij ana e lne xe

Based on the given reactants and the product's structure, let's evaluate them:

1. The first reactant is a bromobenzene derivative with a bromine atom attached to a carbon
chain. The second reactant is a chlorophenyl group attached to a nitrogen.

2. The second reactant includes an aldehyde group (-C(=0)NH-), which is useful for the
formation of a carbonyl compound, and a chlorophenyl group.

3. The third reactant is a bromobenzene derivative with a chlorophenyl group attached.

To match the functional groups and reaction center, we need a reactant with a bromomethyl
group (—CH2Br) and a chlorophenyl group (C6H4—Cl). The most plausible reactants from the
given set are:

- The second reactant: "O=C1CCC(=0)N1Br" could yield a bromomethyl group through a reaction
that forms a carbonyl (—C(=0)Br) and then adds a chlorine to form the chlorophenyl group in the
product.

- The third reactant: "CICc1ncc(-c2cccc(Cl)c2)o1" could also potentially serve as a starting point,
but it doesn't have a clear bromomethyl group formation pathway from the given information.

Given the difficulty for the third reactant to form the bromomethyl group directly, the second
reactant "O=C1CCC(=0)N1Br" is a more plausible choice for the reactant that could form the

product through 4functiona| group addition reaction. | Reaction Tvpe

</think>

Figure 4: Demonstration of Interpretable Reasoning
Process. Retro-Expert guides the LLM to derive re-
actants via step-by-step reasoning based on candidate
results from diverse small models. Such interpretable
reasoning processes significantly enhance experts’ trust
in the model and boost its practical applicability.

the LLM through reaction type and reaction center
predictions, prompting the LLM to further leverage
external knowledge for reasoning based on domain
knowledge. Additionally, the LLM analyzed each
candidate’s result provided by small models step-
by-step and ensured the rationality of the generated
results through self-verification.

5 Conclusion

In this paper, we present Retro-Expert, the first
interpretable retrosynthesis framework capable of
generating step-by-step reasoning in natural lan-
guage, addressing long-standing interpretability
limitations in existing methods. By leveraging
reinforcement learning to collaborate small mod-
els’ specialized chemical expertise with LLMs’ ad-
vanced reasoning capabilities, Retro-Expert deliv-
ers both accurate reactant predictions and step-by-
step explanations grounded in chemical logic. Our
experiments show that Retro-Expert not only out-
performs prior approaches with minimal training
data but also accommodates the seamless integra-
tion of arbitrary small models during inference.
This framework enhances model trustworthiness
and bridges the gap between opaque model predic-
tions and chemists’ logic-driven workflows, provid-
ing a practical tool for retrosynthesis planning.



Limitations

Limited by our computational resources, Retro-
Expert was only trained using reinforcement learn-
ing on Qwen-2.5-3B. However, its reasoning ca-
pabilities can be further enhanced with increasing
large language model (LLM) parameter sizes (e.g.,
7B or 32B). Although manual observation indicates
that the interpretable reasoning chains generated
by Retro-Expert are highly accurate, quantitative
evaluation remains necessary. However, how to
conduct such evaluation poses a significant chal-
lenge, as it involves fundamental chemical knowl-
edge, expert reasoning processes, and chemical
reaction feasibility. We will continue to explore
this direction in future work.
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