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Abstract
This paper examines the theoretical performance
of distributed diffusion models in environments
where computational resources and data avail-
ability vary significantly among workers. Tradi-
tional models centered on single-worker scenarios
fall short in such distributed settings, particularly
when some workers are resource-constrained.
This discrepancy in resources and data diver-
sity challenges the assumption of accurate score
function estimation foundational to single-worker
models. We establish the inaugural generation
error bound for distributed diffusion models in
resource-limited settings, establishing a linear re-
lationship with the data dimension d and consis-
tency with established single-worker results. Our
analysis highlights the critical role of hyperparam-
eter selection in influencing the training dynamics,
which are key to the performance of model gener-
ation. This study provides a streamlined theoreti-
cal approach to optimizing distributed diffusion
models, paving the way for future research in this
area.

1. Introduction
Diffusion models have significantly challenged the promi-
nence of Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) and have become a central focus in the
realm of data generation (Yang et al., 2023; Song & Ermon,
2019; Dhariwal & Nichol, 2021). These models operate
by introducing noise to data through a forward process and
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subsequently learning to reverse this perturbation to gen-
erate new samples (Yang et al., 2023; Song et al., 2020),
leading to notable advancements across fields like computer
vision (Harvey et al., 2022; Saharia et al., 2022), natural
language processing (Austin et al., 2021; Li et al., 2022),
and temporal data modeling (Lopez Alcaraz & Strodthoff,
2023; Tashiro et al., 2021).

Theoretical research on diffusion models has traditionally
been framed within the single-worker paradigm, yielding
substantial progress in defining polynomial error bounds.
These studies generally use measures such as total variation
distance or KL divergence to quantify the discrepancies
between true and approximate paths. Notable advance-
ments include using Girsanov’s methodology to achieve
error bounds that scale linearly with data dimensions under
early-stopping conditions (Benton et al., 2024) and adopting
stochastic control perspectives to derive comparable bounds
under specific smoothness conditions (Conforti et al., 2023).
These insights significantly aid single-worker training of
diffusion models.

However, the trend towards geographically dispersed data
sources makes centralizing data for processing not only
costly but also privacy-invasive, prompting a shift towards
distributed diffusion model training (Tun et al., 2023). De-
spite this practical shift, theoretical exploration remains
largely anchored in the single-worker setup, leaving the
impacts of distributed training on diffusion models largely
unexplored and not well understood (Li et al., 2024).

To effectively develop theoretical insights for distributed dif-
fusion models, several critical questions must be addressed:
(1) How to facilitate distributed collaboration in diffu-
sion model training? Privacy preservation is paramount,
as diffusion models often handle sensitive data like sound
and images. Traditional methods that distribute fragments
of data for collaborative training do not adequately safe-
guard privacy, rendering them unsuitable (Li et al., 2024).
Furthermore, the resource variance among workers com-
plicates participation; low-resource workers may struggle
with full model training, potentially leading to an unfair
model. Simultaneously, accommodating slower workers
could introduce delays, known as the straggler problem,
thus hindering overall training efficiency. Balancing inclu-
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sivity and efficiency is therefore essential for successful
distributed collaboration. (2) How to evaluate the genera-
tion quality of collaboratively trained diffusion models?
The collaboration of multiple workers, each with differ-
ent resource constraints and data heterogeneity, introduces
unique challenges in assessing the theoretical performance
of diffusion models. Limited resources might force some
workers to engage in sparse training, potentially accumu-
lating errors that degrade model performance. Moreover,
variations in the original data distributions among work-
ers can cause inconsistencies in the quality of data gen-
erated by the unified model, complicating the application
of traditional single-worker evaluation metrics like accu-
rate score function estimation (Benton et al., 2024; Chen
et al., 2023b;a). (3) Can appropriate hyperparameters
be selected to optimize generation quality? Certain hy-
perparameters, including learning rate and noise scheduling,
critically influence the generation quality of diffusion mod-
els. For example, noise scheduling plays a pivotal role in
the denoising phase, directly affecting the quality and di-
versity of the generated outputs. Therefore, identifying and
adjusting these hyperparameters is crucial to maximize the
efficiency and effectiveness of the diffusion model.

In this paper, we present the first theoretical performance
evaluation for distributed diffusion models under resource-
constrained scenarios. Initially, to maintain data privacy,
each worker independently processes the noising and de-
noising stages using locally scheduled discrete-time noise,
learning a parameterized score function that is shared with
a central server. Specially, we allow for sparse training
tailored to each worker’s available resources, enhancing
computational efficiency significantly. To evaluate the gen-
eration quality of the models, we utilize Girsanov’s theorem
to link discrepancies between ideal and actual data distri-
butions to factors such as time discretization, distributed
training dynamics, and equivalent loss substitution. For
distributed training dynamics, we manage sparse training er-
rors through coordinate-wise model aggregation and bound
the impact of data distribution heterogeneity with auxiliary
functions. Additionally, we calculate the expected devia-
tion in the drift terms caused by time discretization and
demonstrate that score matching during the denoising phase
incurs a consistent numerical error. Lastly, by carefully
adjusting hyperparameters, including the learning rate and
the intervals of discrete time, we ensure that the generation
error bound is predominantly dictated by the dynamics of
distributed training, thereby elevating the overall efficacy of
the diffusion models.

The core contributions can be summarized as follows:

• We propose an innovative training mechanism for dis-
tributed diffusion models that prioritizes data privacy
by keeping private data localized through synchronized

noise scheduling, while adapting to varying resource
constraints via local sparse training.

• To the best of our knowledge, this is the first time a
generation error bound has been established for dis-
tributed diffusion models under resource limitations,
which matches the best-known results of the single-
worker paradigm (Benton et al., 2024) and shows a
linear relationship with the data dimension d.

• We detail strategic hyperparameter adjustments, such
as noise scheduling and learning rate optimization, to
ensure that the generation error bound is chiefly in-
fluenced by the dynamics of distributed training, thus
enhancing overall model performance.

2. Related Work
Diffusion models have recently risen to prominence due to
their exceptional performance in various domains such as
computer vision (Harvey et al., 2022), natural language pro-
cessing (Li et al., 2022), and multi-modal learning (Ramesh
et al., 2022), challenging the once-dominant Generative Ad-
versarial Networks (GANs) in terms of both stability and
efficiency of generation (Dhariwal & Nichol, 2021).

Theoretical investigations into diffusion models have deep-
ened our understanding of their mechanics, particularly re-
garding convergence rates, stability, and data generation
quality. Initial theoretical explorations required stringent
assumptions about data distributions, such as compliance
with log-Sobolev inequalities (Yang & Wibisono, 2022),
and often resulted in either non-quantitative bounds (Pid-
strigach, 2022) or exponential dependency on problem pa-
rameters (Block et al., 2020). Recent advancements have
mitigated these limitations, with studies like those by Chen
et al. (2023b) achieving polynomial error bounds in total
variation distance without restrictive data distribution as-
sumptions, using the Girsanov change of measure to quan-
tify discrepancies between true and approximated reverse
processes. Further progress by Chen et al. (2023a) refines
this approach by expanding the Girsanov methodology and
introducing pivotal theorems that address the behavior of KL
divergence in relation to data dimensions and the impacts
of early-stopping on error magnitudes. Moreover, Benton
et al. (2024) have significantly advanced this line of work
by establishing state-of-the-art error bounds that are linear
in the data dimension, even in the absence of smoothness
assumptions on the data distribution.

Despite these theoretical advances, the focus remains pre-
dominantly on single-worker setups. The shift towards dis-
tributed training, as seen in works like those by Zhou et al.
(2024) and Lian et al. (2017), highlights the evolving land-
scape in response to the scalability demands of big data.
Tun et al. (2023) explore the FL strategy to train diffusion
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models, paving the way for the development of federated
diffusion models. Stanley Jothiraj & Mashhadi (2024) intro-
duce Phoenix that integrates various strategies to enhance
the diversity of generated samples, even when the training
data exhibit statistical heterogeneity. DistriFusion (Li et al.,
2024) exemplifies this trend, facilitating the parallel process-
ing of diffusion models across multiple devices to reduce
latency in sample generation without sacrificing quality.

However, a theoretical understanding of how distributed dif-
fusion models perform under resource constraints remains
underexplored, indicating a crucial gap in the literature that
future research needs to address. This presents an oppor-
tunity to extend the robust theoretical groundwork laid by
single-worker studies to more complex, distributed environ-
ments, potentially unlocking new efficiencies and capabili-
ties in diffusion model applications.

3. Training Description
In our framework for training distributed diffusion models,
we employ a setup that includes N workers and a central
server. For each worker-n (n = 1, · · · , N ), the initial phase
is to progressively transform the given data distribution
qn,0, into a known prior distribution. This is referred to
as the forward process, and it can be described using the
Ornstein-Uhlenbeck (OU) process via the stochastic differ-
ential equation (SDE) (Pedrotti et al., 2024):

dXn,t = −Xn,tdt+
√
2dBn,t, Xn,0 ∼ qn,0 (1)

where (Bn,t)t∈[0,T ] denotes a standard Brownian motion
on Rd. Equation (1) aligns with a methodology known as
Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020), and is also referred to as Variance Preserving
SDE in (Song et al., 2020). The OU process is favored for
its analytically tractable transition densities, and it holds
that Xn,t|Xn,0 ∼ N (Xn,0e

−t, (1− e−2t)Id).

We use qn,t(Xn,t), t ∈ [0, T ] to denote the marginals of
the forward process for each worker-n (n = 1, · · · , N ) and
then the ideal reverse process satisfies the SDE:{

dXn,t = −{Xn,t + 2∇ log qn,t(Xn,t)}dt+
√
2dB̃n,t

Xn,0 ∼ qn,0
(2)

where (B̃n,t)t∈[0,T ] is another standard Brownian motion
on Rd. Aligning with the idea of reconstructing the data
distribution from noise, the reverse process (2) can be trans-
formed to a forward one by inverting the time direction t
with T − t and setting Xn,t = Yn,T−t:{

dYn,t = {Yn,t + 2∇ log qn,T−t(Yn,t)}dt+
√
2dB

′

n,t

Yn,0 ∼ qn,T
(3)

where (B
′

n,t)t∈[0,T ] is the standard Brownian motion on Rd.
Ideally, the process (Yn,t)t∈[0,T ] can thus generate samples
from the distribution qn,0 by sampling Yn,0 ∼ qn,T .

For each worker-n (n = 1, · · · , N ), the score function
∇ log qn,T−t(Yn,t) described in equation (3) is not directly
accessible, necessitating the use of an estimated function
sθ(Yn,t, T − t) to approximate ∇ log qn,T−t(Yn,t) through-
out the interval t ∈ [0, T ].

Given that equation (3) outlines a continuous-time process,
practical implementation requires discretization of the time
variable. This is achieved by segmenting the continuous
timeline into a series of discrete intervals 0 = t0 < t1 <
t2 < · · · < tK ≤ T . The process begins with sampling
Yn,0 from the distribution qn,T , followed by sequentially
solving the SDE, also referred to as the exponential integra-
tor (Zhang & Chen, 2023; Bortoli, 2022; Chen et al., 2023a),
for each interval [tk, tk+1] where k = 0, · · · ,K − 1.:

dYn,t = {Yn,t + 2sθ(Yn,tk , T − tk)}dt+
√
2dB̂n,t

where (B̂n,t)t∈[0,T ] is a standard Brownian motion. We
denote the length of the k-th discretized time interval by
γk = tk+1 − tk.

Considering the potential constraints on the quality and
quantity of training data available to each worker, our objec-
tive is to leverage the collective capabilities of N workers to
collaboratively train a score function estimator sθ(·). Typ-
ically parameterized as a neural network, this function is
defined by a parameter vector θ ∈ RD. Our primary goal is
to optimize the performance of this model by minimizing
the following loss function:

1

N

N∑
n=1

Ln(θ) (4)

where the local objective Ln(θ) is denoted as Ln(θ) =
K−1∑
k=0

γkE[∥ ∇ log qn,T−tk(Yn,tk)− sθ(Yn,tk , T − tk) ∥2].

To address the unavailability of the score function
∇ log qn,T−tk(Yn,tk), we replace Ln(θ) with an equivalent
objective Fn(θ) using denoising score matching (Vincent,
2011). The equivalence of the two is given by Lemma 4.8.
And Fn(θ) is expressed as follows:

K−1∑
k=0

γkE[∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2]

(5)

Due to the inherent randomness in sampling during train-
ing, we introduce a stochastic local loss function, denoted
as fn(θ, ξn). Specifically, we assume that fn(θ, ξn) is un-
biased, which is a common assumption in distributed set-
tings (Lian et al., 2017), meaning that E[fn(θ, ξn)] = Fn(θ).

3



How Distributed Collaboration Influences the Diffusion Model Training? A Theoretical Perspective

��,�

��,�,�

��,�

��,�,�

��,�
(Unknown)

��,��

��

R
eplace

��

��

��

��
�

T-δ
T

δ

Worker-1 FORWARD

REVERSE

N
oising

D
enoising

Worker-2

Worker-N

Server

��,�,� ��,�,�

��,�,�

��

5. Coordinate-wise 
update for next round

2.Randomly 
sample

1. Receive the global 
model and perform 

local pruning

3. Local 
training with 
pruned model

. . .4. Local pruned 
model transmission

Obtain ���(∙) for data generation

��,�,�

Figure 1. The illustration of distributed diffusion model training with pruning.

With this formulation, our objective can be rewritten as the
following optimization problem:

min
θ∈RD

F (θ) :=
1

N

N∑
n=1

E[fn(θ, ξn)]︸ ︷︷ ︸
:=Fn(θ)

(6)

Given the potential constraints and variability in available
resources across workers, we enable each worker to train
only a subset of the full model parameters. More specifically,
the learning process in round r for achieving (6) can be
described in detail as follows:

• Mask Generation and Model Pruning: Each worker-
n generates a mask mr,n ∈ {0, 1}D based on its own
resources. Once worker-n receives the latest global
model parameter θr ∈ RD from the server, it performs
pruning operations based on its local mask, resulting in
the initial pruned model parameters θr,n,0 = θr⊙mr,n

in this round r.

• Local Training with Pruned Model: Each worker-
n performs S steps of local training on the pruned
model. The model parameters are updated in each step
according to the gradient of the local loss ∇fn and the
local mask mr,n:

θr,n,s = θr,n,s−1 − η∇fn(θr,n,s−1, ξn,s−1)⊙mr,n

(7)

Here, s represents the current step, θr,n,s−1 is the
model parameter from the previous step, and η is the
local learning rate.

• Model Update and Synchronization: After S steps of
local training, each worker-n obtains the final pruned
model parameters θr,n,S in the round r. These param-
eters are then sent back to the server to update and
synchronize the global model. For each coordinate
i = 1, 2, · · · , D, the parameter is updated as:

θ
(i)
r+1 =

1

|N (i)
r |

∑
n∈N

(i)
r

θ
(i)
r,n,S (8)

where N
(i)
r = {n : mi

r,n = 1} and we denote Γ∗ =

minr,i |N (i)
r | ≥ 1.

After completing R rounds of distributed training (each with
S steps), we obtain the score function estimation sθR(·).
We can then solve the following process to approximate the
initial data distribution qn,0:

dYn,t = {Yn,t + 2sθR(Yn,tk , T − tk)}dt+
√
2dB̂n,t,

t ∈ [tk, tk+1]

Yn,0 ∼ qn,T
(9)

Since the initial distribution qn,T is not directly accessible,
we instead sample Yn,0 from the standard Gaussian distri-
bution πd leveraging the fact that the Ornstein-Uhlenbeck
(OU) process converges exponentially fast to the standard
Gaussian (Bakry et al., 2014; Chen et al., 2023a).

Furthermore, rather than running (9) to approximate the
initial data distribution qn,0 we opt to approximate qn,δ
as an early-stopping measure (Song et al., 2020), setting
tK = T − δ. This approach is justified by the fact that for
a sufficiently small δ , the difference between qn,0 and qn,δ
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is negligible. Additionally, this strategy mitigates potential
issues where ∇ log qn,t may grow rapidly or even “explode”
as t approaches zero, particularly in cases involving non-
smooth data distributions.

As a result, starting from a pure noise state Yn,0 ∼ πd, the
noise is gradually transformed to approximate the data distri-
bution qn,δ for each worker-n. And (Yn,t)t∈[0,T ] can be de-
fined by the following SDE for each interval t ∈ [tk, tk+1]:

dYn,t = {Yn,t + 2sθR(Yn,tk , T − tk)}dt+
√
2dB̃n,t

(10)

where (B̃n,t)t∈[0,T ] is a standard Brownian motion, and
the marginals of this process can be denoted by pn,ts. For
k = 0, · · · ,K − 1, the above (10) can be solved explicitly
by

Yn,tk+1
=eγkYn,tk + 2(eγk − 1)sθR(Yn,tk , T − tk)

+
√
e2γk − 1 · ϵn,k

Yn,0 ∼ πd

where ϵn,k ∼ N (0, Id). For additional details, please refer
to Appendix B. An illustration of distributed diffusion model
training with pruning is provided in Figure 1.

To provide a theoretical foundation for deploying diffu-
sion models on geographically distributed and resource-
constrained devices, we analyze the effects of incorporating
pruning techniques into distributed diffusion model training
in Section 4.

4. Main Results
In this section, we quantify the difference between the ideal-
ized data distribution qn,δ generated by process (3) and the
actual data distribution pn,tK obtained from process (10),
using KL divergence as the measurement metric.

Before presenting the formal results, we introduce the as-
sumptions required for our theoretical analysis.
Assumption 4.1 (Lipschitzian Gradient). Loss function
Fn(·)s are with Lipschitzian gradients. i.e., For ∀θ, ϕ ∈ RD,
it holds that

∥ ∇Fn(θ)−∇Fn(ϕ) ∥≤ L ∥ θ − ϕ ∥ .

Assumption 4.1 (Lian et al., 2017) is commonly adopted to
guarantee the stability and solvability of optimization prob-
lems. It ensures that the gradients of the loss functions vary
smoothly, avoiding abrupt fluctuations, which is crucial for
the convergence of gradient-based optimization algorithms.
Assumption 4.2 (Pruning-induced Error). For an arbitrary
mask mn,r ∈ {0, 1}D and a model θr ∈ RD (r = 1, · · · , R
and n = 1, · · · , N ), we assume that there exists w2 ∈
[0, 1):

∥ θr − θr ⊙mr,n ∥2≤ w2.

Assumption 4.2 (Qiao et al., 2023) ensures that the pruning
operation, which typically involves using a binary mask,
does not degrade the model’s performance beyond a certain
threshold.

Assumption 4.3 (Bounded Variance). For any model θ and
sample ξ, there exist σ1 > 0 and σ2 > 0:

E ∥ ∇fn(θ, ξ)−∇Fn(θ) ∥2≤ σ2
1 ,

E ∥ ∇Fn(θ)−∇F (θ) ∥2≤ σ2
2 .

Assumption 4.3 (Lian et al., 2017) imposes constraints on
the influence of randomness, such as stochastic gradients,
and regulates the divergence between local and global gra-
dients. This ensures that these variations remain controlled
and do not substantially disrupt the optimization process.

Assumption 4.4 (Data Distribution). The data distribution
qn,0 of each worker-n has finite second moments Mn,2.

Assumption 4.4 ensures that the data distribution of each
worker has finite second moments, which is necessary for
the convergence of the forward process in the diffusion
model (Benton et al., 2024; Chen et al., 2023b;a).

Based on the above assumptions, our main results are estab-
lished through the following steps:

Step 1: In Lemma 4.5, we establish an error bound for the
discretization of the reverse SDE (3). This result extends the
findings from previous work (Section 3.1 of (Benton et al.,
2024)), which originally analyzed diffusion model training
in a single-worker framework.

Step 2: We evaluate the impact of distributed collabo-
ration on diffusion model training through a three-step
analysis. First, we characterize the convergence behav-
ior of distributed score function estimation in Lemma 4.6,
capturing the effects of iterative updates, pruning opera-
tions, and stochastic errors. Next, leveraging this con-
vergence behavior and the construction of auxiliary func-
tions, we derive an upper bound on the local loss for
each worker, as presented in Lemma 4.7. Finally, we ex-
amine the discrepancy between the ideal loss, given by
K−1∑
k=0

γkE ∥ sθR(Yn,tk , T − tk) −∇ log qn,T−tk(Yn,tk) ∥2,

and the practical loss Fn(θR), which arises due to the ap-
plication of the denoising score matching technique. This
inconsistency is formally analyzed in Lemma 4.8.

Step 3: In Theorem 4.11, we quantify the discrepancy be-
tween the idealized data distribution qn,δ and the actual data
distribution pn,tK using KL divergence. This discrepancy
can be decomposed into two key components: the differ-
ence between reverse path measures and the impact of early
stopping. The first component is derived by Steps 1 and 2
using Girsanov’s theorem, as detailed in Lemma 4.9. The
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second component captures the distance between qn,T and
πd following the findings of previous studies (Chen et al.,
2023a;b).

For the time discretization error, we provide the expected
difference between the drift terms at different time.

Lemma 4.5 (Time Discretization Error). (Benton et al.,
2024) Suppose (Yn,t)t∈[0,T ] is the solution to the SDE (3),
and there exists some κ > 0 such that for each dis-
cretized time point t0, · · · , tK , we have γk = tk+1 − tk ≤
κmin{1, T − tk+1}. Then it holds that

K−1∑
k=0

∫ tk+1

tk

E[∥ A1 −A2 ∥2]dt ≲ κ2dK + κMn,2 + κdT

where we write “x ≲ y” to mean x ≤ Cy for an ab-
solute constant C > 0. Additionally, the terms A1 and
A2 are defined as A1 = ∇ log qn,T−t(Yn,t) and A2 =
∇ log qn,T−tk(Yn,tk), respectively.

This proof, originally presented in Section 3.1 of (Benton
et al., 2024), was developed in the context of single-worker
diffusion model training. The core approach relies on a
novel Itô calculus argument, which establishes a differential
inequality for E[∇ log qn,T−t(Yn,t)−∇ log qn,T−s(Yn,s)].

Based on Assumptions 4.1-4.3, we can derive the follow-
ing result for the distributed training of the score function
estimation.

Lemma 4.6 (Distributed Learning Dynamic). If the local

learning rate η satisfies 0 < η ≤ min{
√

Γ∗

640S2L2N , 1},
the following convergence result holds for the distributed
learning of the above model θR:

1

R

R−1∑
r=0

E ∥ ∇F (θr) ∥2≤
8(F (θ0)− F (θR))

ηSR
+ (σ2

1 + σ2
2)

+
160w2LN

Γ∗ +
40Nσ2

2

Γ∗ +
16ηLNσ2

1

(Γ∗)2

where F (θ) = 1
N

N∑
n=1

Fn(θ) and Fn(θ) is defined in (5).

Proof Sketch. We provide a brief outline here, and the de-
tailed proof can be found in Appendix C.

Utilizing the Lipschitzian gradient assumption, we start the
proof by analyzing the change in the global loss function
during one round as the model transitions from θr to θr+1:

E[F (θr+1)]− E[F (θr)]

≤E⟨∇F (θr), θr+1 − θr⟩︸ ︷︷ ︸
B

(r)
1

+
L

2
E ∥ θr+1 − θr ∥2︸ ︷︷ ︸

B
(r)
2

(11)

Based on the local update (7) and the global model aggrega-
tion (8), B(r)

1 and B
(r)
2 can be bounded as follows:

B
(r)
1 ≤ηL2

Γ∗

N∑
n=1

S∑
s=1

E ∥ θr,n,s−1 − θr ∥2 +
ηSNσ2

2

Γ∗

− ηS

2
E ∥ ∇F (θr) ∥2

B
(r)
2 ≤2η2SLNσ2

1

(Γ∗)2
+

2η2SL3

Γ∗

N∑
n=1

S∑
s=1

E ∥ θr,n,s−1 − θr ∥2

+
2η2S2LNσ2

2

Γ∗ + 2η2S2LE ∥ ∇F (θr) ∥2

To further derive E ∥ θr,n,s−1 − θr ∥2, we need to explore
the cumulative entanglement of arbitrary pruning operations
and local multistep training. In other words, it holds that

E ∥ θr,n,s−1 − θr ∥2=E ∥ θr,n,s−1 − θr,n,0 + θr,n,0 − θr ∥2

≤ 2E ∥ θr,n,s−1 − θr,n,0 ∥2︸ ︷︷ ︸
B

(r)
3

+2w2

(12)

where B
(r)
3 can be bounded as

B
(r)
3 =2E ∥ −η

s−1∑
j=1

∇fn(θr,n,j−1, ξn,j−1)⊙mr,n ∥2

≤2η2(s− 1)

s−1∑
j=1

E ∥ ∇fn(θr,n,j−1, ξn,j−1)−

∇Fn(θr,n,j−1) +∇Fn(θr,n,j−1)− Fn(θr)+

∇Fn(θr)−∇F (θr) +∇F (θr) ∥2

≤8η2(s− 1)L2
s−1∑
j=1

E ∥ θr,n,j−1 − θr ∥2 +

8η2(s− 1)2E ∥ F (θr) ∥2 +8η2(s− 1)2(σ2
1 + σ2

2)

By summing (12) from s = 1 to S, from n = 1 to N , and
from r = 1 to R, we can obtain the following inequality:

(1− 8η2S2L2)

R−1∑
r=0

1

Γ∗

N∑
n=1

S∑
s=1

E ∥ θr,n,s−1 − θr ∥2

≤8η2S3NR

Γ∗ (σ2
1 + σ2

2) +
8η2S3N

Γ∗

R−1∑
r=0

E ∥ F (θr) ∥2 +

2w2RSN

Γ∗ (13)

Then summing (12) from r = 1 to R, and substituting (13)
to it, we can further control the appropriate learning rate η
to obtain the final result for distributed learning dynamic.
This completes the proof outline.
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Lemma 4.6 describes the rate at which the average gra-
dient norm converges over all training rounds. The term
8(F (θ0)−F (θR))

ηSR reflects the impact of iterative updates on the
convergence behavior, while the remaining terms capture
the combined effects of pruning operations, randomness,
and local errors.

Based on Lemma 4.6, we can further derive the following
local loss bound:
Lemma 4.7 (Local Loss Bound). If the local learning rate

η satisfis 0 < η ≤ min{
√

Γ∗

640S2L2N , 1}, each local loss
Fn(θR) can be bounded as

Fn(θR) ≤ ∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θR − θ0 ∥ +F (θ0)

+
20ηSRw2LN

Γ∗ +
5ηSRNσ2

2

Γ∗ +
2η2SRLNσ2

1

(Γ∗)2

+
ηSR(σ2

1 + σ2
2)

8

Proof. Based on Lemma 4.6, we can directly obtain the fol-
lowing inequality based on the fact that the average gradient
norm is non-negative:

F (θR) ≤F (θ0) +
ηSR(σ2

1 + σ2
2)

8
+

20ηSRw2LN

Γ∗ +

5ηSRNσ2
2

Γ∗ +
2η2SRLNσ2

1

(Γ∗)2

We now need to bound the discrepancy between local and
global errors ∥ F (θR)− Fn(θR) ∥. Consider the auxiliary
function h(t) = θ0 + t(θR − θ0), then it holds that

F (θR)− F (θ0) =

∫ 1

0

∇F (h(t))T (θR − θ0)dt

Fn(θR)− Fn(θ0) =

∫ 1

0

∇Fn(h(t))
T (θR − θ0)dt

Subtract the above two equations and take the norm to get

∥ Fn(θR)− F (θR) ∥
≤ ∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θR − θ0 ∥

Then the proof can be completed by using the fact that
Fn(θR) ≤∥ Fn(θR)− F (θR) ∥ +F (θR).

Lemma 4.7 describes the local loss bound of the score
function estimation after R rounds of collaboration. How-
ever, this result is based on the denoising score matching
technique due to the unavailability of the score function
∇ log qn,T−tk(Yn,tk). We explore its impact in Lemma 4.8:
Lemma 4.8 (Equivalent Denoising Score Matching). If
A2 = ∇ log qn,T−tk(Yn,tk) as defined in Lemma 4.5, and
A3 = sθR(Yn,tk , T − tk), it holds that

K−1∑
k=0

γkE[∥ A3 −A2 ∥2] ≤ Fn(θR) + C1

where C1 is a constant independent of θR.

Proof.

E[∥ A3 −A2 ∥2]
=E ∥ sθR(Yn,tk , T − tk) ∥2 +E ∥ ∇ log qn,T−tk(Yn,tk) ∥2

−2Eqn,0Eqn,T−tk|0⟨sθR(Yn,tk , T − tk),∇ log q(Yn,tk |Xn,0)⟩

=E ∥ sθR(Yn,tk , T − tk) ∥2 +E ∥ ∇ log qn,T−tk(Yn,tk) ∥2

+2E⟨sθR(Yn,tk , T − tk),
Yn,tk − e−(T−tk)Xn,0

1− e−2(T−tk)
⟩

=E ∥ sθR(Yn,tk , T − tk) +
Yn,tk − e−(T−tk)Xn,0

1− e−2(T−tk)
∥2

+E ∥ ∇ log qn,T−tk(Yn,tk) ∥2 − d

1− e−2(T−tk)

=E ∥ sθR(Yn,tk , T − tk) +
Yn,tk − e−(T−tk)Xn,0

1− e−2(T−tk)
∥2 +Ctk

1

=E ∥ sθR(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2 +Ctk
1

where we use the fact that Xn,t = Yn,T−t and Xn,t|Xn,0 ∼
N (Xn,0e

−t, (1 − e−2t)Id) in step 3. Ctk
1 is a constant

independent of θR. Let C1 ≥
K−1∑
k=0

γkC
tk
1 , it holds that

K−1∑
k=0

γkE[∥ A3 −A2 ∥2]

≤
K−1∑
k=0

γkE ∥ sθR(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2

+

K−1∑
k=0

γkC
tk
1 = Fn(θR) + C1

which completes the proof.

Specially, as measures of learning loss, (4) and (6) are equiv-
alent because the only difference between them is a constant.

Then we can bound the distance between path measures by
Girsanov’s theorem, which is the first part of Step 3.

Lemma 4.9 (Distance between Path Measures). Let Qn,
P qn,T be the path measure of the solutions to the process
(3) and (9). They both start from Yn,0 ∼ qn,T and run from
t = 0 to t = tK . Then we establish the following result:

KL(Qn ∥ P qn,T ) ≲
K−1∑
k=0

∫ tk+1

tk

E[∥ A1 −A2 ∥2]dt

+

K−1∑
k=0

γkE[∥ A3 −A2 ∥2]

where A1, A2, and A3 are defined in Lemma 4.5 and
Lemma 4.8.

7
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Proof. Based on Lemma 4.5 and 4.8, it can be directly
derived that

K−1∑
k=0

∫ tk+1

tk

E[∥ A1 −A3 ∥2]dt

≲
K−1∑
k=0

∫ tk+1

tk

E[∥ A1 −A2 ∥2]dt+
K−1∑
k=0

γkE[∥ A3 −A2 ∥2]

<∞

Then according to Girsanov’s theorem, it holds that

KL(Qn ∥ P qn,T ) ≤
K−1∑
k=0

∫ tk+1

tk

E[∥ A1 −A3 ∥2]dt.

This argument is essentially identical to Proposition 3 of
the work (Benton et al., 2024) and Section 5.2 of the work
(Chen et al., 2023b).

The following Lemma 4.10 indicates that the generation
error bound with early stopping can be decomposed into two
parts: the distance between path measures and the distance
between qn,T and πd.

Lemma 4.10 (Influence of Early Stopping). Let Qn, P qn,T

be the path measure of the solutions to the process (3) and
(10) respectively. Under Assumption 4.4, the following result
holds

KL(qn,δ ∥ pn,tK ) ≲ KL(Qn ∥ P qn,T ) + (d+Mn,2)e
−2T .

Proof. Since qn,δ and pn,tK are the pushfowards of the path
measures Qn and P qn,T , it implies that KL(qn,δ ∥ pn,tK ) ≤
KL(Qn ∥ Pπd).

Based on Lemmas 4.9, 4.5 and 4.8, we see that Qn is ab-
solutely continuous with respect to P qn,T for each n =
1, · · · , N . For a path y = (yt)t∈[0,tK ], we can write
dP qn,T

dPπd
(y) =

dqn,T

dπd
(y0), which holds according to the fact

P qn,T and Pπd differ only by a change of starting distribu-
tion. Therefore,

KL(Qn ∥ Pπd) =EQn

[
log

(dP qn,T

dPπd
(Y )

dqn,T
dπd

(Y0)
)]

=KL(Qn ∥ P qn,T ) + KL(P qn,T ∥ πd)

where the first term can be bounded by Lemmas 4.9, 4.5
and 4.8, and for the second one, it can be controlled by the
following inequality (Chen et al., 2023b):

KL(P qn,T ∥ πd) ≲ (d+Mn,2)e
−2T

which completes the proof.

According to the above lemmas, the formal generation error
bound can be summarized as follows.

Theorem 4.11 (Generation Error Bound). Suppose Assump-
tions 4.1-4.4 hold, T ≥ 1, and there exists a constant C1,
and some κ > 0 such that γk ≤ κmin{1, T − tk+1}. Then
under the same settings of η as in Lemma 4.7, for each
worker-n, using the collaboratively learned model θR, it
yields the following result when approximating the data
distribution qn,δ:

KL(qn,δ ∥ pn,tK )

≲ ∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θR − θ0 ∥ +F (θ0) + C1+

ηSRw2LN

Γ∗ +
ηSRN(σ2

1 + σ2
2)

Γ∗ +
η2SRLNσ2

1

(Γ∗)2
+

κ2dK + κMn,2 + κdT + (d+Mn,2)e
−2T

In Theorem 4.11, the term ∥ Fn(θ0)−F (θ0) ∥ +σ2 ∥ θR−
θ0 ∥ captures the local-global error discrepancy. The term
C1 arises from denoising score matching, while κ2dK +
κMn,2 + κdT is due to time discretization approximations,
and (d+Mn,2)e

−2T governs the convergence of the forward
process. The remaining terms are interpreted as the local
loss associated with θR which results from the distributed
learning of score estimation with arbitrary pruning.

We next show that we can choose suitable hyperparameters
to control the generation error bound based solely on the
distributed training dynamics.

Remark 4.12 (Hyperparameter Selection). For T ≥ 1,
δ < 1, K ≥ log(1/δ), if we set κ = Θ

(
T+log(1/δ)

K

)
,

T = 1
2 log

(d+Mn,2

F (θ0)

)
, K = Θ

( (d+Mn,2)(T+log(1/δ))2

F (θ0)

)
,

and further control the learning rate to satisfy

η ≤ min{ F (θ0)Γ
∗

SRN(σ2
1+σ2

2)
, F (θ0)Γ

∗

SRNw2L ,
√

F (θ0)(Γ∗)2

SRNLσ2
1
}, we

have KL(qn,δ ∥ pn,tK ) ≲∥ Fn(θ0) − F (θ0) ∥ +σ2 ∥
θR − θ0 ∥ +F (θ0) + C1.

Specially, if the initial samples of all workers are identically
distributed, i.e., qn,0 = qm,0 (for all n,m = 1, · · · , N ),
then all local target loss function Fn(θ) are identical. In this
context, each local loss Fn(θR) can be rewritten as

Fn(θR) ≲F (θ0) +
ηSRw2LN

Γ∗ +
( η

Γ∗ +
η2L

(Γ∗)2

)
SRNσ2

1

At a result, for the generation error bound, it holds that
KL(qn,δ ∥ pn,tK ) ≲ F (θ0) + C1.

Proof. For T ≥ 1, δ < 1, K ≥ log(1/δ), if we set
κ = Θ

(
T+log(1/δ)

K

)
, then there obviously exists a sequence

{tk}Kk=0 such that γk ≤ κmin{1, T − tk+1}. Then, if we

8



How Distributed Collaboration Influences the Diffusion Model Training? A Theoretical Perspective

set K = Θ
( (d+Mn,2)(T+log(1/δ))2

F (θ0)

)
, it holds



κ2dK = Θ
( dF (θ0)

d+Mn,2

)
≲ F (θ0)

κMn,2 = Θ
( Mn,2F (θ0)

(d+Mn,2)(T + log(1/δ))

)
≲ F (θ0)

κdT = Θ
( dTF (θ0)

(d+Mn,2)(T + log(1/δ))

)
≲ F (θ0)

If we set T = 1
2 log

(d+Mn,2

F (θ0)

)
, it holds that (d +

Mn,2)e
−2T = F (θ0). Then we have κ2dK + κMn,2 +

κdT + (d+Mn,2)e
−2T ≲ F (θ0).

Similarly, if we further control the learning rate to satisfy

η ≤ min{ F (θ0)Γ
∗

SRN(σ2
1+σ2

2)
, F (θ0)Γ

∗

SRNw2L ,
√

F (θ0)(Γ∗)2

SRNLσ2
1
}, we have

ηSRw2LN
Γ∗ +

ηSRN(σ2
1+σ2

2)
Γ∗ +

η2SRLNσ2
1

(Γ∗)2 ≲ F (θ0).

These results complete the proof of Remark 4.12.

5. Conclusion
In this paper, we introduced an efficient distributed diffusion
model training mechanism that adapts to varying resource
constraints via local sparse training. Theoretically, we estab-
lished the first generation error bound for distributed diffu-
sion models, which scales linearly with the data dimension
d and aligns with state-of-the-art results in the single-worker
setting. Moreover, we demonstrated that with carefully se-
lected hyperparameters, the generation performance of col-
laboratively trained diffusion models is primarily governed
by the dynamics of distributed training.
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A. Notation Table
In Table 1, we summarize the main notations in this paper.

Table 1. Some key notations and their descriptions.

Notations Descriptions
T The total time of noise scheduling
t The current time of noise scheduling
K The total number of discretized time interval of noise scheduling
tk The k-th discretized time point of noise scheduling, and it holds 0 = t0 < t1 < t2

< · · · < tK ≤ T
Xn,t The data of worker-n at time t of noise scheduling, such as image data
Yn,t The data of worker-n, which satisfies Yn,t = Xn,T−t

qn,t, t ∈ [0, T ] The marginals of the forward process (2) for each worker-n
d The dimension of data
(Bn,t)t∈[0,T ] The standard Brownian motion on Rd

(B̃n,t)t∈[0,T ] The standard Brownian motion on Rd

(B
′

n,t)t∈[0,T ] The standard Brownian motion on Rd

(B̂n,t)t∈[0,T ] The standard Brownian motion on Rd

sθ(Xt, t) The score approximation which can be parameterized by a neural network with
a parameter vector θ ∈ RD

D The dimension of model parameter θ, θ ∈ RD

R The total communication rounds for training the score approximation sθ(·)
r The current communication round for training the score approximation sθ(·)
S The number of local steps during two communication rounds
N The total number of workers
N

(i)
r The set of workers for which the value of coordinate-i in the mask is non-zero,

and N
(i)
r = {n : mi

r,n = 1}
Γ∗ The minimum occurrences of any dimension parameter in the local model,

and Γ∗ = minr,i |N (i)
r | ≥ 1

fn(θr,n,s, ξn,s) The loss of worker-n on a (a batch of) data sample ξn,s in the step s of round r
Fn(θ) The loss function of worker-n, and Fn(θ) = E[fn(θ, ξn)]
mr,n The local mask of worker-n generated based on its own resources, and mr,n ∈ {0, 1}D
η The learning rate for training the score approximation sθ(·)

B. Solution to (10)
Consider (10):

dYn,t = {Yn,t + 2sθR(Yn,tk , T − tk)}dt+
√
2dB̃n,t

We multiply both sides of (10) by e−t to get

d(e−tYn,t) = −2sθR(Yn,tk , T − tk)d(e−t) +
√
2e−tdB̃n,t

For each time interval [tk, tk+1], we perform an integration operation to derive the following result:

e−tk+1Yn,tk+1
= e−tkYn,tk + 2sθR(Yn,tk , T − tk)(e

−tk − e−tk+1) +
√
2

∫ tk+1

tk

e−tdB̃n,t

And then the following can be derived by multiplying both sides of the above equation by etk+1 :

Yn,tk+1
= eγkYn,tk + 2(eγk − 1)sθR(Yn,tk , T − tk) +

√
e2γk − 1ϵn,k

where γk = tk+1 − tk and ϵn,k ∼ N (0, Id).
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C. Detailed Proof of Lemma 4.6
Utilizing the Lipschitzian gradient assumption, we start the proof by analyzing the change in the loss function during one
round as the model transitions from θr to θr+1:

E[F (θr+1)]− E[F (θr)] ≤ E⟨∇F (θr), θr+1 − θr⟩︸ ︷︷ ︸
B

(r)
1

+
L

2
E ∥ θr+1 − θr ∥2︸ ︷︷ ︸

B
(r)
2

(14)

Based on the local update (7) and the global model aggregation (8), it holds that

θ
(i)
r+1 − θ(i)r =

1

|N (i)
r |

∑
n∈N

(i)
r

θ
(i)
r,n,S − θ(i)r

=
1

|N (i)
r |

∑
n∈N

(i)
r

(
θ
(i)
r,n,0 − η

S∑
s=1

∇f (i)
n (θr,n,s−1, ξn,s−1) ·m(i)

r,n

)
− θ(i)r

=
1

|N (i)
r |

∑
n∈N

(i)
r

(
θ(i)r ·m(i)

r,n − η

S∑
s=1

∇f (i)
n (θr,n,s−1, ξn,s−1) ·m(i)

r,n

)
− θ(i)r

=− η · 1
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where the last step follows from the fact that for all n ∈ N
(i)
r , m(i)

r,n = 1.

Then B
(r)
1 and B

(r)
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D∑
i=1
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N∑
n=1

S∑
s=1
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S∑
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1
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+

2η2SL3

Γ∗

N∑
n=1

S∑
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Subtituting B
(r)
1 and B

(r)
2 to (14), we can obtain

E[F (θr+1)]− E[F (θr)]

≤− (
ηS

2
− 2η2S2L)E ∥ ∇F (θr) ∥2 +(

ηL2

Γ∗ +
2η2SL3
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S∑
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(
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2 +

2η2SLNσ2
1

(Γ∗)2
(15)

Next, to further derive E ∥ θr,n,s−1 − θr ∥2, we need to explore the cumulative entanglement of arbitrary pruning operations
and local multistep training. In other words, it holds that

E ∥ θr,n,s−1 − θr ∥2=E ∥ θr,n,s−1 − θr,n,0 + θr,n,0 − θr ∥2

=2E ∥ θr,n,s−1 − θr,n,0 ∥2 +2E ∥ θr ⊙mr,n − θr ∥2

≤ 2E ∥ θr,n,s−1 − θr,n,0 ∥2︸ ︷︷ ︸
B

(r)
3

+2w2 (16)

where B
(r)
3 can be bounded as

B
(r)
3 =2E ∥ −η

s−1∑
j=1

∇fn(θr,n,j−1, ξn,j−1)⊙mr,n ∥2

≤2η2(s− 1)

s∑
j=0

E ∥ ∇fn(θr,n,j , ξn,j)−∇Fn(θr,n,j) +∇Fn(θr,n,j)−∇Fn(θr) +∇Fn(θr)−∇F (θr) +∇F (θr) ∥2
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≤8η2(s− 1)

s−1∑
j=1

E ∥ ∇Fn(θr,n,j−1)−∇Fn(θr) ∥2 +8η2(s− 1)2E ∥ F (θr) ∥2 +8η2(s− 1)2(σ2
1 + σ2

2)

≤8η2(s− 1)L2
s−1∑
j=1

E ∥ θr,n,j−1 − θr ∥2 +8η2(s− 1)2E ∥ F (θr) ∥2 +8η2(s− 1)2(σ2
1 + σ2

2)

By summing (16) from s = 1 to S, from n = 1 to N , and from r = 1 to R, we can obtain the following inequality if the

learning rate satisfies η <
√

1
8S2L2 :

(1− 8η2S2L2)
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r=0
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2) +
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Γ∗
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E ∥ F (θr) ∥2 +
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Γ∗

(17)

Summing (14) from r = 0 to R− 1, we can obtain

E[F (θR)]− E[F (θ0)]

≤− (
ηS

2
− 2η2S2L)

R−1∑
r=0

E ∥ ∇F (θr) ∥2 +
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Specially, we can further set the learning rate

η ≤ 1

8SL
⇔ 1

1− 8η2S2L2
≤ 8 ⇔ ηSL ≤ 1

8

to get 

2η2S2L ≤ ηSL · 2ηS =
ηS

4

2η2SL3 ≤ ηSL · 2ηL2 =
ηL2

4
⇒ ηL2 + 2η2SL3

1− 8η2S2L2
≤ 8(ηL2 +

ηL2

4
) = 10ηL2

2η2S2LN ≤ ηSL · 2ηSN =
ηSN

4
Then

E[F (θR)]− E[F (θ0)]

≤− ηS

4
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r=0

E ∥ ∇F (θr) ∥2 +
10ηL2
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8η2S3NR(σ2
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2
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ηS
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20ηL2Sw2NR

Γ∗ +
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2

4Γ∗ +
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1

(Γ∗)2

(18)

Let
ηS

4
− 80η3S3L2N

Γ∗ ≥ ηS

8
⇔ 80η2S2L2N

Γ∗ ≤ 1

8
⇔ η2 ≤ Γ∗

640S2L2N
It holds that

1

R

R−1∑
r=0

E ∥ ∇F (θr) ∥2≤
8(F (θ0)− F (θR))

ηSR
+ (σ2

1 + σ2
2) +

160w2LN

Γ∗ +
40Nσ2

2

Γ∗ +
16ηLNσ2

1

(Γ∗)2

which completes the proof.
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Figure 2. Training loss of FedDM under the random pruning with different pruning levels.

D. Experimental Details
D.1. Experimental Setup

We conduct experiments using the Cifar-10 (Krizhevsky et al., 2009) SVHN (Netzer et al., 2011), and Fashion-MNIST (Xiao
et al., 2017) datasets. To simulate a distributed learning scenario, we partition the training data among 10 workers. As
described in Section 3, DDPM (Ho et al., 2020) can be viewed as a special case of our work, so we consider its distributed
version (known as FedDM (Vora et al., 2024)) under resource-constrained conditions. In the experiments, we mainly
consider two pruning techniques: Random Pruning (R) and Top-k Pruning (T) based on model weight. In particular, in order
to explore the heterogeneity of pruning policy caused by resource differences among workers, we set for different pruning
levels named F (Full), L (Large), M (Medium) and S (Small):

• F: All workers with full model;

• L: 80% workers with full model, and 20% workers with 75% model parameters;

• M: 60% workers with full model, 20% workers with 80% model parameters, and 20% workers with 75% model
parameters;

• S: 60% workers with full model, and 40% workers with 75% model parameters.

We utilize multiple metrics to evaluate the performance of distributed training diffusion models with different pruning levels:
Training loss is used to assess the convergence for distributed learning of score estimation. Additionally, the Inception Score
(IS) and Fréchet Inception Distance (FID) are employed to evaluate the quality of data generation.

In the training stage of obtaining a score estimation, we use the U-Net backbone containing residual blocks (Tun et al.,
2023). And we use the following settings unless otherwise stated: The number of communication rounds Q is set as 300,
the local training steps S are configured as 5 epochs for Cifar-10 and 2 epochs for both SVHN and Fashion-MNIST, and the
step size η is 0.0001.

All the experiments are implemented in PyTorch 2.5.1, Python 3.12, Cuda 12.1. And we run them on a Cloud Server with
Intel(R) Xeon(R) Platinum 8358P CPU and total 10 RTX 3090 GPUs in Ubuntu 22.04.

D.2. Model convergence for distributed learning of score estimation

We assess the convergence for distributed learning of score estimation on the above three datasets, using Random (R) and
Top-k (T) pruning techniques. Specifically, we establish four pruning levels (F, L, M, and S) to observe the effects on
convergence behavior. This series of experiments is designed to systematically evaluate how various levels of model sparsity
influence the training dynamics.

Figures 2 and 3 illustrate the impact of different pruning strategies and pruning levels on the convergence rate of the
distributed training diffusion model across three datasets. Overall, the training loss in all settings is effectively reduced as
the number of communication rounds increases, verifying the effectiveness of the coordinate-wise aggregation method.
Under both pruning strategies, as the degree of pruning increases (denoted by F, L, M, S), the training loss requires more
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Figure 3. Training loss of FedDM under the Top-k pruning with different pruning levels.

Table 2. IS and FID comparison of FedDM with different pruning levels.

Method Cifar-10 SVHN Fashion-MNIST
IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)

FedDM-F 4.59± 0.13 73.73 2.79± 0.04 163.36 3.58± 0.08 87.59
R-FedDM-L 3.95± 0.12 103.59 2.76± 0.04 93.78 3.47± 0.04 53.70
R-FedDM-M 4.01± 0.08 104.53 2.60± 0.04 127.47 3.32± 0.08 52.31
R-FedDM-S 3.60± 0.07 111.21 2.53± 0.05 120.57 3.46± 0.07 49.94
T-FedDM-L 4.39± 0.08 83.75 2.72± 0.04 157.19 3.59± 0.07 87.85
T-FedDM-M 4.54± 0.10 80.42 2.55± 0.05 146.27 3.54± 0.06 100.69
T-FedDM-S 4.31± 0.13 84.98 2.51± 0.06 193.84 3.63± 0.07 109.83

communication rounds to decrease effectively, and the total reduction diminishes. This is because the reduced model
introduces additional errors, which slows the convergence rate to a certain extent.

D.3. Data Generation Quality

We assess the performance of distributed training DDPM (known as FedDM) with different pruning levels on the above
three datasets. Specifically, we establish four pruning levels (F, L, M, and S) and utilize two indicators, IS and FID, to
observe and compare the average data generation quality.

(a) FedDM-F (b) R-FedDM-L (c) R-FedDM-M (d) R-FedDM-S (e) T-FedDM-L (f) T-FedDM-M (g) T-FedDM-S

Figure 5. Generated samples on SVHN for each pruning setting of the two pruning techniques.
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(a) FedDM-F (b) R-FedDM-L (c) R-FedDM-M (d) R-FedDM-S (e) T-FedDM-L (f) T-FedDM-M (g) T-FedDM-S

Figure 4. Generated samples on CIFAR-10 for each pruning setting of the two pruning techniques.

As shown in Table 2, the experimental results demonstrate that pruning significantly impacts the performance of diffusion
models in distributed learning, with the effects closely related to the pruning strategy, dataset complexity, and model
heterogeneity. On complex datasets such as CIFAR-10 and SVHN, the full model (FedDM-F) achieves the best performance,
while increased pruning levels lead to a substantial decline in the quality of random pruning (R-FedDM), as indicated
by decreased IS scores and increased FID values, particularly at high pruning levels (e.g., S). In contrast, Top-k pruning
(T-FedDM) better preserves model performance by retaining critical parameters, resulting in smaller increases in FID
and performance closer to the full model, especially at moderate pruning levels (e.g., M). For simpler datasets like
Fashion-MNIST, where the data distribution is less complex, pruning has a relatively smaller impact, and the performance
difference between random pruning and Top-k pruning is minimal. Additionally, on Fashion-MNIST, higher pruning levels
unexpectedly improve FID values. This phenomenon can be attributed to the lower capacity requirements of simple data
distributions, where high pruning reduces redundant parameters, acting as a regularization effect to prevent overfitting,
thus smoothing the generated distribution and making it closer to the real distribution. Model heterogeneity introduced by
pruning is another critical factor affecting global performance, with random pruning more likely to cause aggregation errors,
while Top-k pruning alleviates this issue to some extent. Overall, Top-k pruning proves more advantageous for complex
datasets, while random pruning is better suited for resource-constrained scenarios involving simpler tasks.

The generated samples shown in Figures 4-6 further reveal that pruning influences generation quality, particularly on
complex datasets. For CIFAR-10 and SVHN, the full model produces images with more details and consistent color
distribution, whereas aggressive pruning leads to noticeable degradations—such as blurred features, increased noise, and
color distortions. Top-k pruning preserves critical parameters more effectively, yielding images that are more closed to those
produced from the full model, particularly under moderate pruning conditions. For simpler datasets like Fashion-MNIST,
the impact of pruning is less severe; in fact, higher pruning levels sometimes result in better images due to a regularization
effect that eliminates redundant details and prevents overfitting. Future work can focus on optimizing pruning strategies
and aggregation algorithms to further balance model efficiency and performance across various data distributions and task
requirements.

E. Discussion
Our analysis relies on several standard assumptions commonly adopted in the distributed learning literature, such as
bounded gradient variance. While these assumptions facilitate tractable theoretical analysis, they may not fully capture the
complexities of real-world distributed systems.

In our theoretical results, the term w2 reflects the extent of pruning applied to the distributed model. As pruning becomes

17



How Distributed Collaboration Influences the Diffusion Model Training? A Theoretical Perspective

(a) FedDM-F (b) R-FedDM-L (c) R-FedDM-M (d) R-FedDM-S (e) T-FedDM-L (f) T-FedDM-M (g) T-FedDM-S

Figure 6. Generated samples on Fashion-MNIST for each pruning setting of the two pruning techniques.

more aggressive (i.e., fewer parameters are retained), this term increases, leading to a looser error bound. The parameter Γ∗

captures the frequency with which each model parameter is updated across the distributed workers. A small Γ∗ indicates
that some parameters are rarely trained, which may lead to suboptimal or imbalanced updates and thus a larger bound. This
motivates us to seek more effective pruning strategies that achieve a balance between resource availability and generation
quality, which we leave for the future.

While this work provides a theoretical perspective for distributed diffusion models under resource constraints, real-
world constraints are often more complex. These constraints include heterogeneity in computational power, memory
availability, communication latency, and the frequency of parameter updates. Such variability can pose significant challenges
for maintaining model quality. Extending our framework to explicitly model these factors—such as by incorporating
asynchronous optimization or adaptive, resource-aware pruning—also represents an important direction for future research.
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