
FEATHERS: Federated Architecture and
Hyperparameter Search

Jonas Seng1 Pooja Prasad2 Devendra Singh Dhami2 Martin Mundt1 Kristian Kersting1,3,4,5

1
Technical University Darmstadt

2
Technical University Eindhoven

3
hessian.ai

4
Centre of Cognitive Science TU Darmstadt

5
German Research Centre AI (DFKI)

Abstract Deep neural architectures have a profound impact on achieved performance in many of to-

day’s AI tasks, yet their design still heavily relies on human prior knowledge and experience.

Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to

reduce this dependence. However, state-of-the-art NAS and HO rapidly become infeasible

with increasing amounts of data being stored in a distributed fashion. This is mainly because

these methods are not designed for distributed environments and typically violate data

privacy regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS—

FEderated ArchiTecture and HypERparameter Search, a method that not only optimizes

both neural architectures and optimization-related hyperparameters jointly in distributed

data settings, but further provably preserves data privacy through the use of differential

privacy (DP). We show that FEATHERS efficiently optimizes architectural and optimization-

related hyperparameters alike while demonstrating convergence on classification tasks at

no detriment to model performance when complying with privacy constraints.

1 Introduction
Method NAS HO DP Fed.

DARTS (Liu et al., 2019) ✓ ✗ ✗ ✗
DP-FNAS (Singh et al., 2020) ✓ ✗ ✓ ✓
FedNAS (He et al., 2020a) ✓ ✗ ✗ ✓
DP-FTS-DE (Dai et al., 2021) ✗ ✓ ✓ ✓
FedEx (Khodak et al., 2021) ✗ ✓ ✗ ✓
RTFedNAS (Zhu and Jin, 2021) ✓ ✗ ✗ ✓

FEATHERS ✓ ✓ ✓ ✓

Table 1: We compare the capabilities of FEATHERS

with the capabilities of other recent ap-

proaches on federated HO/NAS.

Federated learning (FL) is a distributed machine

learning paradigm aiming to learn a shared

model on data distributed at different locations

without ever exchanging the data itself (McMa-

han et al., 2017), rendering it a promising way

to leverage ML in industries with high privacy

standards (e.g. healthcare). As in classical ma-

chine learning (ML), neural architectures and

other hyperparameters have to be set in FL be-

fore training. Although increasingly more data

is stored in decentralized systems and privacy awareness is rising, most NAS/HO approaches are

still tailored to classical, i.e. centralized, ML settings. (Kairouz et al., 2021; Zoph and Le, 2017;

Pham et al., 2018; Liu et al., 2019; Agrawal et al., 2021). Recent approaches tackle NAS and HO

in federated environments (He et al., 2020a; Khodak et al., 2021; Singh et al., 2020; Zhu and Jin,

2021). However, they optimize neural architectures or hyperparameters, thus disregarding inherent

dependence between hyperparameters and neural architectures (Zela et al., 2018). Performing NAS

and HO sequentially as a naive solution is often infeasible in FL due to high communication costs

since models are exchanged several times during learning. The regular model exchange uncovers

another shortcoming: Model- and hyperparameters carry sensitive information about the training

data (Fredrikson et al., 2015; Papernot and Steinke, 2022; Huang et al., 2022) or can be poisoned (Ye

et al., 2022). However, existing federated NAS/HO do not provide privacy-preserving mechanisms

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:jonas.seng@tu-darmstadt.de
mailto:pooja.prasd@gmail.com
mailto:d.s.dhami@tue.nl
mailto:martin.mundt@tu-darmstadt.de
mailto:kersting@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/

to protect sensitive information. To address these challenges, we propose FEATHERS – FEderated
ArchiTecture and HypERparameter Search, a novel method that synergizes differentiable NAS

and bandit-inspired HO in an alternating optimization process, thus optimizing architectures and

hyperparameters jointly, while enabling privacy-preserving federated learning (see Fig. 1, Tab. 1).

Client 1 Client 2

…………………

Central Server

HyperparametersArchitecture

Update
FedAvg

Update
reward

global
parameters

Client C

Figure 1: FEATHERS jointly optimizes neural archi-

tectures and hyperparameters in FL while

providing privacy guarantees. Differentiable

NAS paired with FedAvg enables efficient

federated architecture search while bandit-

based HO optimitzes hyperparameters.

Overall, we make the following contribu-

tions: (1) We propose a novel method, FEATH-

ERS, that jointly optimizes neural architectures

and hyperparameters in distributed data set-

tings. (2) Further, we prove convergence prop-
erties of the HO and NAS phase of FEATHERS

and (3) provide and prove privacy guarantees

during the search- and evaluation stage. (4)We

empirically show that FEATHERS finds well-

suited architectures and hyperparameters on

various classification tasks.

2 Related Work

To accommodate the increasing amount of data

being stored in distributed systems and in-

creasing privacy requirements, in FL, a set of

clients aim to collaboratively learn a shared

global model without exchanging training

data (McMahan et al., 2017). Instead, clients

train a local private copy of the global model, whose parameters are updated regularly via param-

eter aggregation. Like in classical ML, hyperparameter optimization (HO) algorithms have been

developed for FL to obtain high-performing models automatically. For example, FLoRA (Zhou et al.,

2021) and FedEx (Khodak et al., 2021) view the HO problem as a bandit problem and find hyperparam-

eter configurations by optimizing a reward function indicating the performance of configurations.

Other approaches adapt hyperparameters during FL using gradient information (Koskela and

Honkela, 2018), reinforcement learning (Mostafa, 2019), evolutionary search (Agrawal et al., 2021).

In FL, neural networks are widely used, thus performing federated neural architecture search (NAS)

is increasingly important to obtain state-of-the-art models. Since differentiable-based NAS methods

naturally allow for parameter averaging commonly used in FL, prominent approaches leverage

such algorithms for federated NAS (Zhu et al., 2021; He et al., 2020a,b; Singh et al., 2020).

A pressing concern in FL is the protection of private information since models are shared

regularly and both model parameters of neural networks and hyperparameters can carry private

information of the training data (Fredrikson et al., 2015; Papernot and Steinke, 2022; Huang et al.,

2022). Differential Privacy (DP) (Dwork, 2006) protects sensitive information in data via randomiza-

tion of query outputs and has been successfully employed in FL to avoid privacy leakage (Abadi

et al., 2016; Dai et al., 2021).

3 FEATHERS – Joint NAS and HO under Privacy Guarantees

Consider a FL setting with 𝐶 clients C, each holding a dataset 𝐷1, ..., 𝐷𝐶 that is split into train-

ing ⟨X(𝑐)
𝑡𝑟𝑎𝑖𝑛

, y(𝑐)
𝑡𝑟𝑎𝑖𝑛
⟩ and validation data ⟨X(𝑐)

𝑣𝑎𝑙
, y(𝑐)

𝑣𝑎𝑙
⟩. We aim to find an architecture a ∈ A and

hyperparameters h ∈ H minimizing the global validation loss, i.e., to optimize

min

a,h

∑︁
𝑐∈C

𝑣𝑐 · La,h(w∗,X(𝑐)𝑣𝑎𝑙
, y(𝑐)

𝑣𝑎𝑙
) with w∗ = argmin

w

∑︁
𝑐∈C

𝑣𝑐 · La,h(w,X(𝑐)𝑡𝑟𝑎𝑖𝑛
, y(𝑐)

𝑡𝑟𝑎𝑖𝑛
) . (1)

2

Here, w ∈ R𝑛
refers to the parameters of a neural network (model parameters) and 𝑣𝑐 :=

|X(𝑐)
𝑣𝑎𝑙
|∑

𝑐∈C |X
(𝑐)
𝑣𝑎𝑙
|

is the weight of a client 𝑐 , i.e., how much the local validation loss of 𝑐 contributes to the global

validation loss. We denote the global training- and validation loss as La,h(w,X𝑡𝑟𝑎𝑖𝑛, y𝑡𝑟𝑎𝑖𝑛) and
La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙) respectively. Additionally, we require (𝜖, 𝛿)-differential privacy w.r.t. model

parameters, architectural parameters, and rewards. Loosely speaking, (𝜖, 𝛿)-privacy balances the

privacy of user data against the practical usability of the data where a small privacy budget 𝜖

implies strong privacy guarantees (see App. A.3). We omit DP for now due to readbility.

FEATHERS operates in two stages, the search stage and the evaluation stage. The search stage

alternates between optimizing a neural architecture and optimizing hyperparameters of that search

(referred to as phases). The evaluation stage retrains the found architecture, where the HO scheme

is applied again to optimize the hyperparameters of the final model. We now describe the HO and

NAS phases and provide convergence results in App. A.2.

Algorithm 1: FEATHERS method server

side search stage

Data: set of clients C, client weight
𝑣𝑐∀𝑐 ∈ C, search spacesH and A,

local steps HO 𝑒𝐻 , local steps NAS 𝑒𝑁
1 initialize parameters w, a; r← 0;
2 𝜋 ← softmax(r);
3 for 𝑝 in phases do
4 if 𝑝 == ’ho’ then
5 𝑒 ← 𝑝;

6 sample𝑚 configs h from 𝜋 ;

7 r(𝑒) ← 0;
8 ℓa,w, ℓa′,w′ ← client_step(h,w, a, 𝑒𝐻);
9 r(𝑒) [ℎ] ← ∑

𝑐∈C 𝑣𝑐 · (ℓ𝑐a,w − ℓ𝑐a′,w′);
10 r← update_rewards(r, r(𝑒));
11 𝜋 ← softmax(r);
12 if 𝑝 == ’nas’ then
13 h∗ ← H[argmaxh r[h]];
14 w, a← client_step(h∗, w, a, 𝑒𝑁);
15 return

Hyperparameter Optimization (HO).
To identify well-working hyper-

parameters h we have to solve

h∗ = argminh La∗,h(w∗;X𝑣𝑎𝑙 , y𝑣𝑎𝑙). Here, w∗
denote model parameters minimizing the

training-loss under architecture a∗ that in
turn is a minimizer of the validation-loss

under hyperparameters h ∈ H whereH is a

discrete set of hyperparameter instantiations.

To tackle this problem, a 𝑛-armed bandit

approach with a strategy similar to 𝜖-greedy

as shown in Algorithm 1 is employed. After

initializing the parameters, architecture and

reward estimates (Line 1-3), we randomly

sample 𝑚 hyperparameter configurations

from a distribution 𝜋 over H. All sampled

configurations are sent to the clients that

perform a few local training steps given

the same weights w and architecture a.
This yields an approximation of a∗ and w∗,
denoted as w′ and a′ respectively. For each
hyperparameter configuration, all clients

compute their local validation loss before (ℓ
(𝑐)
a,w) and after (ℓ

(𝑐)
a′,w′) performing local training as

shown in Algorithm 2 (Line 1-11). Note that a′ is fixed during evaluation. The reward-signal

𝑟
(𝑒)
h =

∑
𝑐∈C 𝑣𝑐 ·

(
ℓ
(𝑐)
a,w − ℓ (𝑐)a′,w′

)
indicates how well configuration h performed in HO phase 𝑒 . After

testing each sampled h, in r(𝑒) each entry corresponds to one hyperparameter configuration in H:

For configurations h sampled in HO round 𝑒 , r(𝑒) contains the reward, all other entries are zero.
The reward-estimates r are then updated by r = r + (i ◦ 𝛼 · (r(𝑒) − r)) + ((1 − i) ◦ (𝛼 · r) − r). Here,
◦ is the Hadamard product, i is a binary vector indicating which hyperparameter configurations

were sampled in HO round 𝑒 and 𝛼 is a constant factor determining how aggressively the reward

estimate is updated. The update rule corrects the rewards for all sampled configurations by the

error of the current reward estimate and weights down estimates of all other configurations

since the minimizer of the HO problem might change over time due to weight sharing. The

hyperparameter configuration maximizing the reward is used in the next NAS phase or training

iteration. Besides that, the reward estimates are used to set the distribution 𝜋 = softmax(r) from
which the next configuration candidates are sampled. Also, 𝜋 is used to determine the number

3

of communication rounds of the next HO phase, thus controlling the exploration-exploitation

trade-off during HO. We compute the number of communication rounds as 𝜅 = rnd(𝛽𝐻) where 𝛽
is a constant set by the user and 𝐻 =

∑
h∈H ln(𝜋 (h)) · 𝜋 (h). If 𝜋 is a high-entropy distribution (i.e.

high 𝐻), FEATHERS invests more resources to explore the search space H while it invests less

resources when 𝐻 is low, i.e. we identified configurations beating most of the others.

Neural Architecture Search. Once the HO-phase yields a hyperparameter configuration h, the
architecture is optimized under h for a certain number of communication rounds as shown

in Algorithm 1 (Line 14-15), thereby solving a∗ = argmina La,h(w∗,X𝑣𝑎𝑙 , y𝑣𝑎𝑙) where w∗ =

argminw La,h(w,X𝑡𝑟𝑎𝑖𝑛, y𝑡𝑟𝑎𝑖𝑛). We follow DARTS (Liu et al., 2019) and apply differentiable NAS

on the client side (see App. A.1 for details). To optimize the architecture, first, the architecture is up-

dated by following the gradient∇aLa,h(ŵ,X𝑣𝑎𝑙 , y𝑣𝑎𝑙) where ŵ = w − 𝜂∇wLa,h(w,X𝑡𝑟𝑎𝑖𝑛, y𝑡𝑟𝑎𝑖𝑛). As
a second step, the model parameters are updated by following the gradient ∇wLa,h(w,X𝑡𝑟𝑎𝑖𝑛, y𝑡𝑟𝑎𝑖𝑛).
As shown in Algorithm 2 (Line 4-9), in each communication round each client 𝑐 yields new archi-

tectural and model parameters a′𝑐 and w′𝑐 . The differentiable architecture search allows FedAvg to

aggregate all clients’ model and architecture parameters after each communication round. After

the termination of the search, we apply a simple discretization method described in App. A.1.

Differential Privacy (DP). We add independent Gaussian noise to the parameters and rewards sent

to the server to achieve (𝜖, 𝛿)-differential privacy of FEATHERS. To achieve differential privacy w.r.t.
model- and architectural parameters we follow Abadi et al. (2016) and obtain a new SGD update rule

with DP-guarantees: 𝜃 ← 𝛼𝜃
1

𝐵

∑𝐵
𝑖=1 g

(𝑖)
𝜃
+N (0, 𝜎2

𝜃
𝐶2

𝜃
I). Here, 𝜃 ∈ {w, a}, i.e. 𝜃 refers to the model-

or architectural parameters, 𝐵 denotes the batch size, N is the normal distribution, 𝜎𝜃 is a scaling

parameter, 𝐶𝜃 is the maximum gradient norm, I the identity matrix, g(𝑖)
𝜃

represents the clipped

version of ∇𝜃La,h(w, x(𝑖) , y(𝑖)) and 𝛼𝜃 is the learning rate for parameters 𝜃 . The scaling parameter

𝜎𝜃 inversely depends on 𝜖 s.t. lower 𝜖 imply larger noise variance, i.e., stronger privacy guarantees.

We apply DP to the HO rewards analogously. We prove privacy guarantees of FEATHERS in App.

A.3 and show pseudo-code with DP.

4 Experiments and Results
To empirically demonstrate FEATHER’s capabilities, we aim to answer the following questions:

(Q1) How does FEATHERS joint architecture and hyperparameter search compare to prominent

HO- and NAS methods in FL settings at various scales and label skews? (Q2) How well does

FEATHERS perform if DP is employed to preserve privacy at privacy budget 𝜖?

Experimental Protocol. FEATHERS was evaluated against DARTS and FedEx on Fashion-MNIST,

CIFAR-10, Tiny-Imagenet, and a real-world fraud detection dataset containing anonymized bank

account data from bank customers. The task is to predict the fraud risk (high or low) given customer

information
1
. All datasets were partitioned randomly on a set of clients such that each client holds

approximately the same number of samples. Since in FL, it is common to have skewed data across

clients, we conducted experiments with label skew in the data (referred to as ls; see App. B.2). The
architecture search space contained CNN/MLP architectures, and the hyperparameter search space

contained five real-valued hyperparameters (see App. B.3). The best-performing cell architecture

found during the search was discretized with 𝑘 = 2 (see App. A.1) and used to build and train a larger

validation network from scratch while employing FEATHER’s HO stage with a slightly different

hyperparameter search space (see App. B.3). Since we assume a cross-silo setting, we allowed all

clients to participate in each communication round. Additionally, we evaluated FEATHERS with

and without DP for fraud detection to show that adding DP does not prevent learning a suitable

architecture. For further details, refer to App. B.

1
The dataset is available at https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

4

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Dataset Fashion-MNIST CIFAR-10 Tiny-Imagenet

w/o ls w/ ls w/o ls w/ ls w/o ls w/ ls

DARTS (f, 10 clients)
†

0.91 ± 0.02 0.92 ± 0.02 0.91 ± 0.03 0.89 ± 0.04 0.68 ± 0.02 0.67 ± 0.03
DARTS (f, 100 clients)

†
0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.02 0.89 ± 0.03 0.67 ± 0.02 0.67 ± 0.03

FedEx (10 clients)* 0.78 ± 0.03 0.78 ± 0.02 0.51 ± 0.04 0.51 ± 0.03 0.41 ± 0.03 0.40 ± 0.04
FedEx (100 clients)* 0.65 ± 0.03 0.64 ± 0.04 0.46 ± 0.05 0.47 ± 0.04 0.38 ± 0.04 0.38 ± 0.05
FEATHERS (10 clients) 0.93 ± 0.01 0.93 ± 0.03 0.92 ± 0.02 0.89 ± 0.04 0.68 ± 0.02 0.68 ± 0.02
FEATHERS (100 clients) 0.94 ± 0.02 0.93 ± 0.03 0.90 ± 0.03 0.89 ± 0.03 0.68 ± 0.03 0.67 ± 0.03
*Training performed using architecture found by DARTS.

†The same hyperparameter-settings as described in (Liu et al., 2019) were used.

Table 2: FEATHERS outperforms prominent methods for NAS (DARTS) and HO (FedEx) on various
image classification tasks. The mean accuracy and standard deviation are reported for 5

repeats of each experiment. Colors are interpolated from green to blue (high to low accuracy).

0.60 0.63 0.65 0.68 0.70 0.73 0.75 0.78 0.80
F1-Score

1.25

2.0

3.5

25

250

400

 (
Pr

iv
ac

y
Bu

dg
et

)

FEATHERS 5 Clients
FEATHERS 10 Clients
FEATHERS 100 Clients

Figure 2: FEATHERS achieves the same performance
with DP as without DP for reasonable
𝜖. The performance decreases for low 𝜖

(stronger privacy guarantees). We set 𝛿 = 1

2·𝑆
where 𝑆 is the size of the dataset.

Results. Our experiments show that FEATH-

ERS beats the baselines on Fashion-MNIST,

CIFAR-10, and Tiny-Imagenet (see Tab. 2). De-

spite DARTS using hyperparameters that have

been tuned manually, our method beats DARTS

(94% vs. 92% on Fashion-MNIST, 93% vs. 92%

on CIFAR-10, 69% vs. 67% on Tiny-Imagenet)

in most distributed learning settings while op-

timizing for a larger set of parameters, even in

label-skew scenarios.

To assess the scalability of FEATHERS, we

performed experiments for an increasing num-

ber of clients (see Tab. 2). We find that, in

contrast to FedEx, the number of participating

clients does not seem to influence the perfor-

mance of FEATHERS negatively and hypothe-

size that FEATHER’s stability is due to more extensive exploration during HO. Each client holds a

smaller subset of data for an increasing number of clients since the datasets used have fixed sizes.

Thus, the stochastic gradients per client tend to have a higher variance, leading to higher parameter

changes across clients. While FEATHERS invests more time in exploring good hyperparameters,

FedEx directly applies sampled configurations. Thus, FedEx is more likely to use bad performing

hyperparameters, especially with noisy gradients.

Finally, Fig. 2 shows that FEATHERS identifies high-performing architectures and hyperparam-

eters while giving privacy guarantees well-suited for practical purposes (i.e., 𝜖 ≥ 25). As expected,

the performance deteriorates for small values of 𝜖 , i.e., larger noise variances. We thus answer (Q1)
and (Q2) affirmatively and conclude that FEATHERS identifies high-performing architectures and

hyperparameters while providing privacy guarantees. See App. B.4 for more results.

5 Broader Impact & Limitations

FEATHERS provides a novel practical way to jointly perform architecture and hyperparameter

optimization in sensitive data regimes such as healthcare. Also, we hope that this work serves

as a starting point for further HO- and NAS methods in FL with privacy guarantees. The main

limitation of FEATHERS is that it requires a discrete hyperparameter search space. Additionally,

the HO algorithm is stateless at this stage of development and could be extended to incorporate the

current training state (e.g., the architecture). We envision to improve upon that in future work.

5

6 Conclusion

We introduced FEATHERS, a federated learning method that efficiently optimizes both neural

architectures and hyperparameters jointly while providing provable privacy guarantees. Our

empirical investigation demonstrates that FEATHERS is more than competitive with prominent

NAS- and HO algorithms while optimizing a larger space of hyperparameters.

Acknowledgements. This work was supported by the National High-Performance Computing

Project for Computational Engineering Sciences (NHR4CES). Furthermore, this work benefited

from the cluster project “The Third Wave of AI”. The Eindhoven University of Technology authors

received support from their Department of Mathematics and Computer Science and the Eindhoven

Artificial Intelligence Systems Institute.

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS).

Agrawal, S., Sarkar, S., Alazab, M., Maddikunta, P. K. R., Gadekallu, T. R., and Pham, Q.-V. (2021). Ge-

netic cfl: Hyperparameter optimization in clustered federated learning. Computational Intelligence
and Neuroscience.

Dai, Z., Low, B. K. H., and Jaillet, P. (2021). Differentially private federated bayesian optimization

with distributed exploration. Advances in Neural Information Processing Systems (NeurIPS).

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architec-

ture search. In International Conference on Learning Representations.

Dwork, C. (2006). Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener, I.,

editors, Automata, Languages and Programming.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. page 211–407.

Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science.

Dwork, C., Rothblum, G. N., and Vadhan, S. (2010). Boosting and differential privacy. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pages 51–60.

Fredrikson, M., Jha, S., and Ristenpart, T. (2015). Model inversion attacks that exploit confidence

information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS).

Haddadpour, F. and Mahdavi, M. (2019). On the convergence of local descent methods in federated

learning. CoRR, abs/1910.14425.

He, C., Mushtaq, E., Ding, J., and Avestimehr, S. (2020a). Fednas: Federated deep learning via

neural architecture search. Workshop on Neural Architecture Search and Beyond for Representation
Learning (CVPR).

He, C., Ye, H., Shen, L., and Zhang, T. (2020b). Milenas: Efficient neural architecture search via

mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

6

Huang, H., Zhang, Z., Shen, Y., Backes, M., Li, Q., and Zhang, Y. (2022). On the privacy risks of

cell-based NAS architectures. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. ACM.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles,

Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning.

Foundations and Trends in Machine Learning.

Khodak, M., Tu, R., Li, T., Li, L., Balcan, M.-F. F., Smith, V., and Talwalkar, A. (2021). Federated

hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. In Advances
in Neural Information Processing Systems, volume 34, pages 19184–19197. Curran Associates, Inc.

Koskela, A. and Honkela, A. (2018). Learning rate adaptation for federated and differentially private

learning. arXiv:1809.03832.

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR).

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-

efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics.

McSherry, F. D. (2009). Privacy integrated queries: An extensible platform for privacy-preserving

data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, page 19–30.

Mostafa, H. (2019). Robust federated learning through representation matching and adaptive

hyper-parameters. arXiv:1912.13075.

Papernot, N. and Steinke, T. (2022). Hyperparameter tuning with renyi differential privacy.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search

via parameter sharing. CoRR.

Singh, I., Zhou, H., Yang, K., Ding, M., Lin, B., and Xie, P. (2020). Differentially-private federated

neural architecture search. arXiv:2006.10559.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.

Ye, J., Maddi, A., Murakonda, S. K., Bindschaedler, V., and Shokri, R. (2022). Enhanced membership

inference attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Zela, A., Klein, A., Falkner, S., and Hutter, F. (2018). Towards automated deep learning: Efficient

joint neural architecture and hyperparameter search. CoRR, abs/1807.06906.

Zhou, Y., Ram, P., Salonidis, T., Baracaldo, N., Samulowitz, H., and Ludwig, H. (2021). Flora:

Single-shot hyper-parameter optimization for federated learning. arXiv:2112.08524.

Zhu, H. and Jin, Y. (2021). Real-time federated evolutionary neural architecture search. IEEE
Transactions on Evolutionary Computation, 26(2):364–378.

Zhu, H., Zhang, H., and Jin, Y. (2021). From federated learning to federated neural architecture

search: a survey. Complex & Intelligent Systems.

Zoph, B. and Le, Q. (2017). Neural architecture search with reinforcement learning. In International
Conference on Learning Representations (ICLR).

7

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] In section 4 we have shown that FEATHERS outperforms

prominent NAS and HO methods in FL.

(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [No] We don’t think

that our work presents any notable or specific negative impacts.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] All experiments were run on the

same machines, additionally each dataset has used performance metrics from previous

publications to allow easy comparability of results

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] See Sec.4 as well as Appendix C

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] Yes each experiment was

repeated 5 times and each time a different random seed was used

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] See Table 3 and 2

(e) Did you report the statistical significance of your results? [Yes] Spread and error metrics

are reported. (e.g. Table 3) Estimates of significance between different experiments however

are not given, as a sample size of 5 runs per experiment is not sufficient enough to do that

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] No, since not

all datasets we used are available in benchmarks (e.g. Fraud detection dataset).

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] We report the final performance and final runtime (App. C).

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See appendix B

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We analyzed the benefit of an additional HO phase during evaluation, see App. B.4

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] Yes a link to the code was provided in the

Appendix.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] A readme is given in the repository which shows how to setup and

run the code.

8

https://2022.automl.cc/ethics-accessibility/

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] See readme and Code itself

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] Experiments were conducted over a prolonged time period and not all

raw results exsist anymore.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The repository contains code to

produce the plots.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] For widely used datasets such as CIFAR-10

and Imagenet, we did not cite; for fraud detection, we provided a link to Kaggle.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] public data used

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No, the fraud detection dataset was anonymized by

the providers and thus does not contain personal information of bank customers anymore.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Yes, see Appendix

B.

(b) Did you include complete proofs of all theoretical results? [Yes] Yes, see Appendix B.

9

A FEATHERS Details

Here we give further details on the FEATHERS algorithms.

A.1 Neural Architecture Search

Inspired by Differentiable Architecture Search (DARTS) (Liu et al., 2019) we solve this optimization

problem as follows: We define our search space to be a space over cells. A cell is a Directed Acyclic

Graph (DAG) in which each node is a feature representation and each edge is a mixed operation.
The feature representation of some node 𝑧 is computed using all its parent-nodes and the mixed

operations defining the edges between 𝑧 and its parent, i.e. for some node 𝑧 𝑗 the representation

is computed as: 𝑧 𝑗 =
∑

𝑖< 𝑗 𝑜
(𝑧𝑖 ,𝑧 𝑗) (x𝑧𝑖) Here, 𝑜 (𝑧𝑖 ,𝑧 𝑗) is a mixed operation and x𝑧𝑖 is the feature

representation of node 𝑧𝑖 . A mixed operation connecting nodes 𝑧1 and 𝑧2 is defined as a weighted

sum over a set of operations O:

𝑜 (𝑧1,𝑧2) =
∑︁
𝑜∈O

exp(𝑎 (𝑧1,𝑧2)𝑜)∑
𝑜′∈O exp(𝑎 (𝑧1,𝑧2)

𝑜′)
𝑜 (x) (2)

Here, 𝑎
(𝑧𝑖 ,𝑧 𝑗)
𝑜 are the architectural parameters to be learned. We use two types of cells: Normal cells

and reduction cells. Normal cells keep the dimensions of the input, while reduction cells apply an

additional reduction operation.

Discretization. Since we employ a continuous relaxation of the architecture space A, the architec-

ture learned by FEATHERS has to be discretized after training. This is done by selecting the top 𝑘

operations with the highest architectural weight over all cells. Also, no operation is allowed to

connect the same two nodes. The discretized architecture is then retrained in the evaluation stage

where only the HO phase from Algorithm 1 is applied.

Algorithm 2: FEATHERS method client side search stage

Data: Network parameters w, architecture a, hyperparameter configurations H, data X𝑡𝑟𝑎𝑖𝑛 ,

X𝑣𝑎𝑙 , y𝑡𝑟𝑎𝑖𝑛 y𝑣𝑎𝑙 , local steps 𝑒
1 for h ∈ H do
2 l1, l2 ← [], [];
3 𝑙1 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
4 for 𝑖 ∈ [𝑒] do
5 w∗ ← 𝑆𝐺𝐷 (∇wLa,w(·),w, h);
6 ga ← clip(∇aLa,w∗ (·));
7 a← 𝑆𝐺𝐷 (1

𝐵

∑𝐵
𝑖=1 ga,𝑖 , a, h);

8 gw ← clip(∇wLa,w(·));
9 w← 𝑆𝐺𝐷 (1

𝐵

∑𝐵
𝑖=1 gw,𝑖 ,w, h);

10 𝑙2 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
11 append 𝑙1 to l1 and 𝑙2 to l2;
12 if 𝑝 == ho then
13 reset w and a to the ones passed;

14 return l1, l2, w, a;

10

Algorithm 3: FEATHERS Framework Client-side Evaluation stage

Data: Network parameters w, architecture a, hyperparameter configuration h, data X𝑡𝑟𝑎𝑖𝑛 ,

X𝑣𝑎𝑙 , y𝑡𝑟𝑎𝑖𝑛 y𝑣𝑎𝑙 , local steps 𝑒
1 𝑙1 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
2 for 𝑖 ∈ [𝑒] do
3 w← 𝑆𝐺𝐷 (∇wLa,h(·),w, h);
4 𝑙2 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
5 return 𝑙1, 𝑙2, w, a;

A.2 Convergence Analysis

We that FEATHERS’ convergence properties in distributed settings coincide with the convergence

properties of DARTS in centralized settings with high probability, only scaled by a controllable

factor arising from using FedAvg. For simplicity, we do not consider DP in our analysis.

Theorem 1. Given a joint distribution 𝑝 (𝑋1, . . . , 𝑋𝑛, 𝑦) over random variables 𝑋1, . . . , 𝑋𝑛, 𝑦 from
which each client 𝑐 ∈ C of a set of clients C samples a dataset ⟨X(𝑐) , y(𝑐)⟩ ∼ 𝑝 , FEATHERS enjoys the
same convergence properties as DARTS in a centralized setting if applied on a dataset ⟨X, y⟩ where
X =

⋃
𝑐∈C X(𝑐) and y =

⋃
𝑐∈C y(𝑐) .

Proof. We treat the HO-phase of FEATHERS as an oracle and assume that it returns optimal

hyperparameters h∗. Once h∗ was obtained, it is fixed for a certain number of communication

rounds 𝜅. In each communication round 𝑖 epochs of DARTS are performed locally on each of

the 𝐶 clients. Since we employ FedAvg to average model parameters after 𝑖 local epochs, we

exploit that FedAvg converges with rate O(1√
𝐶𝜅
) under the assumption that the loss is L-smooth

and the 𝜇-Polyak-Łojasiewicz (PL) assumption holds (Haddadpour and Mahdavi, 2019). Since

FedAvg converges and parameter-updates are only propagated during NAS-phases, it follows that

FEATHERS enjoys the same convergence properties as DARTS in each NAS-phase scaled by the

convergence of FedAvg O(1√
𝐶𝜅
). □

Since the above proof assumes that our method selects optimal hyperparameters h∗ for each
NAS-phase, we will now show that the HO-phase converges with high probability in non-stationary

bandit-environments.

Theorem 2. Given a fixed hyperparameter-space H and noisy, non-stationary rewards 𝑟 (𝑗)h ∼
N (𝜇 (𝑗)h , 𝜎h) where 𝜇 (𝑗)h is the expected value of the reward at iteration 𝑗 , 𝜎h its standard devia-
tion and h ∈ H, the HO-strategy of FEATHERS is at most off by 𝛼 · 3𝜎h for learning rate 𝛼 with
probability 0.997 once h ∈ H is sampled.

Proof. Our proof is inspired by convergence results for 𝜖-greedy strategies as stated in (Sutton and

Barto, 2018). We assume that |𝜇 (𝑗+1)h − 𝜇 (𝑗)h | ≤ 𝛿 for finite 𝛿 ∈ R in all iterations and 0 < 𝛼 < 1 in

the update rule. Since the softmax-function cannot evaluate to a point-mass, we can make a strict

positivity assumption of the distribution over hyperparameters, i.e. 𝜋𝑖 [h] > 0 for all h ∈ H. Thus,

with 𝑗 approaching infinity, each h ∈ H will be sampled infinitely many times. At an iteration 𝑗 ,

in the most extreme case, a certain h ∈ H has not been sampled yet. Assume it gets sampled in

iteration 𝑗 . Since 𝑟
(𝑗)
h ∼ N (𝜇 (𝑗)h , 𝜎h) and the current estimate reward-estimate rh = 0, the update

rule reads: rh = 𝛼 · 𝑟 (𝑗)h . Since we assume all rewards being Gaussian distributed, the probability of

obtaining a reward 𝑟
(𝑗)
h in the range of 3𝜎h is 0.997. Since 0 < 𝛼 < 1 holds, our estimate is at most

±𝛼 · 3𝜎h of w.r.t. 𝜇 (𝑗)h in 99.7% of the cases. □

11

As the above only considers the case in which our algorithm terminates after some h ∈ H is

sampled, we also have to consider the following case: Assume h is sampled at iteration 𝑗 and a

reward-estimate is obtained. After that, h is not sampled for 𝑘 subsequent iterations. The following

theorem gives bounds for how much off our estimate will be in this case.

Theorem 3. Under the assumptions of Theorem 2, the reward estimate 𝑟 (𝑗+𝑘)h will be at most off by
𝛼𝑘𝑟

(𝑗)
h − (𝑘𝛿 + 𝜇 (𝑗)h) assuming that h is sampled at iteration 𝑗 and not sampled for 𝑘 subsequent

iterations.

Proof. By assumptions from Theorem 2, the mean will be shifted by at most 𝑘𝛿 after 𝑘 steps. Since

the update rule for 𝑟h is defined as 𝑟h = 𝛼𝑟h, the reward estimate after 𝑘 iterations in which h is not

sampled is 𝛼𝑘𝑟
(𝑗)
h . It follows that, 𝑘 iterations after h was sampled, the reward estimate is off by at

most 𝛼𝑘𝑟
(𝑗)
h − (𝑘𝛿 + 𝜇

(𝑗)
h). □

It turns out that the above bound can be controlled by setting 𝛼 ≤ (1+ 𝑘𝛿

𝜇 (𝑗)
) 1𝑘 assuming we have

access to 𝜇 (𝑗) (see below). In the case 𝜇 (𝑗+1) − 𝜇 (𝑗) = 𝛿 , this relation guarantees that our reward

estimate of some h is still optimal if h was not sampled for 𝑘 HO-rounds. Since we can assume that

the loss decreases between HO-rounds, i.e. 𝜇 (𝑗+1) − 𝜇 (𝑗) < 0, the assumption 0 < 𝛼 < 1 used in the

above theorems is not violated. Using Theorem 2, we can assume that we have an estimate of 𝜇 (𝑗)

fulfilling at least 𝜇 (𝑗) ± 𝛼 · 3𝜎h with high probability for some h sampled the first time in round

𝑗 . Hence, the errors of reward estimates can be controlled within the reasonable bound given by

Theorem 3 in subsequent rounds.

Selection of 𝛼 . Based on the assumptions of Theorem 2 and 3, we have true mean-values of rewards

𝜇 (𝑗) and 𝜇 (𝑗+1) for round 𝑗 and 𝑗 + 1 respectively. Also, we assume that |𝜇 (𝑗+1) − 𝜇 (𝑗) | ≤ 𝛿 for

all 𝑗 . Let’s assume we have access to 𝜇 (𝑗) at round 𝑗 for some h and that h is not sampled for 𝑘

subsequent rounds. Then our estimate of 𝜇 (𝑗+𝑘) would be 𝛼𝑘𝜇 (𝑗) after 𝑘 rounds. To obtain the

correct estimate of 𝜇 (𝑗+𝑘) , the following must hold:

𝛼𝑘 · 𝜇 (𝑗) = 𝜇 (𝑗) + 𝑘 · (𝜇 (𝑗+1)−𝜇 (𝑗)) (3)

We can find the optimal 𝛼 using the following derivation:

𝛼𝑘 · 𝜇 (𝑗) = 𝜇 (𝑗) + 𝑘 · (𝜇 (𝑗+1)−𝜇 (𝑗)) (4)

𝛼𝑘 = 1 + 𝑘 · (𝜇
(𝑗+1) − 𝜇 (𝑗))
𝜇 (𝑗)

(5)

≤ 1 + 𝑘𝛿

𝜇 (𝑗)
(6)

It follows that

𝛼 =

(
1 + 𝑘𝛿

𝜇 (𝑗)

) 1

𝑘

(7)

Note that in case 𝜇 (𝑗+1) − 𝜇 (𝑗) = 𝛿 by applying the above equation we obtain the optimal 𝛼 .

A.3 Differential Privacy

Although in FL no data is exchanged between server and clients, the parameters sent to the server

still leak private information (Fredrikson et al., 2015; Ye et al., 2022; Huang et al., 2022; Papernot and

Steinke, 2022). Differential privacy (DP) is an effective way to provably protect private information

encoded e.g. parameters during Stochastic Gradient Descent (SGD) (Abadi et al., 2016). We adapt

12

this notion and apply DP to all messages being sent during training that might carry private

information.

The Algorithm. Let us start off by revisiting the definition of DP which was introduced in

Dwork (2006):

Definition 1 ((𝜖 , 𝛿)-Differential Privacy). For any two datasets 𝐷 , 𝐷 ′ that differ in exactly one record
a mechanism𝑀 is called 𝜖-𝛿-differential private if ∀𝑥 : Pr[𝑀 (𝐷) = 𝑥] ≤ exp(𝜖)Pr[𝑀 (𝐷 ′) = 𝑥] + 𝛿
holds where Pr[𝑀 (𝐷) = 𝑥] is the probability of mechanism𝑀 outputting 𝑥 if executed on 𝐷 .

In our case 𝑀 is the learning procedure, i.e. SGD. Making SGD differential private can be

achieved by clipping gradients and adding Gaussian noise to the gradient of each sample w.r.t. the

parameters, resulting in an algorithm called DP-SGD (Abadi et al., 2016). Since we update both,

model- and architectural parameters using SGD we simply can follow Abadi et al. (2016) and obtain

the following SGD update rules with DP-guarantees:

𝜃 ← 𝛼𝜃
1

𝐵

𝐵∑︁
𝑖=1

g(𝑖)
𝜃
+N (0, 𝜎2

𝜃
𝐶2

𝜃
I) (8)

In the above equation we use 𝜃 ∈ {w, a} to either refer to the model- or architectural parameters. 𝐵

denotes the batch-size, N is the normal distribution, 𝜎𝜃 is a scaling-parameter, 𝐶𝜃 is the maximum

gradient norm, I the identity matrix, g(𝑖)
𝜃

represents the clipped version of ∇𝜃La,h(w, x(𝑖) , y(𝑖)) and
𝛼𝜃 is the learning rate for parameters 𝜃 . We use DP-SGD for learning both, the model parameters

and the architecture. 𝜖 inversely depends on noise-parameters 𝜎 , hence for high 𝜖-values DP-SGD

achieves approximately SGD-convergence while losing privacy-guarantees. For low 𝜖 we obtain

strong privacy guarantees while giving up convergence-guarantees Abadi et al. (2016). It should

be noted that FedAvg averages the parameters that have been computed by the clients. Since

DP is closed under arbitrary post-processing, averaging does not break DP (Dwork et al., 2014).

Algorithm 4 performs the exact same computations as Algorithm 2 except that it adds independent

noise 𝑁 to the clipped gradients w.r.t. model- and architecture parameters of each batch (Line 3-8).
The results shown in (Papernot and Steinke, 2022) suggest that hyperparameters possibly leak

private information via evaluation metrics. Since the loss of a model can be seen as such a metric,

we add Gaussian noise to the losses computed before and after one optimization step on client-side

to achieve (𝜖 , 𝛿)-differential privacy w.r.t. the hyperparameters. To that end, independent Gaussian

noise is added to the losses computed on client side which are used to compute the rewards for

each hyperparameter configuration (Line 1, 9). The noise is drawn from a Gaussian distribution

with zero mean and variance depending on the privacy budget 𝜖 (lower 𝜖 means higher variance).

Algorithm 5 shows the DP variant of the evaluation stage and performs the same computation

as Algorithm 3. Again, the only difference is that the DP variant adds independent Gaussian noise

𝑁 with zero mean and variance depending on 𝜖 to the clipped gradients of a batch and independent

Gaussian noise to the losses computed on client side (Line 1-6).
As for privacy-related applications it is crucial to guarantee a certain level of privacy, we

proceed with deriving privacy guarantees for FEATHERS.

PrivacyGuarantees of FEATHERS. It is worth noting that the architecture and hyperparameters

are optimized w.r.t. validation data while model parameters are optimized w.r.t. training data.

Hence we have to provide guarantees for both datasets. Further, both datasets are distributed over

|C | clients. For our analysis we decompose FEATHERS into three differentially private subroutines:

Let𝑀1 be HO phase,𝑀2 DP-SGD adapting architecture parameters and𝑀3 DP-SGD adapting model

weights. We now state established theorems which our subsequent derivation is based on. First

note that FEATHERS is executed multiple times on the same data. Hence the Basic Composition

theorem applies in our case which reads:

13

Theorem 4 (Basic Composition (Dwork et al., 2010)). For mechanisms 𝑀1, . . . , 𝑀𝑘 each being
(𝜖, 𝛿)-differentially private and data 𝑥 the mechanism𝑀 (𝑥) = (𝑀1(𝑥), . . . , 𝑀𝑘 (𝑥)) enjoys (𝑘𝜖, 𝑘𝛿)-
differential privacy.

Additionally, the HO (𝑀1) and NAS (𝑀2) phases are called subsequently, i.e. 𝑀2 makes use of

the result of𝑀1 which allows us to apply the Adaptive Composition theorem:

Theorem 5 (Adaptive Composition (Dwork et al., 2010)). For any 𝜖 > 0, ˆ𝛿 ∈ [0, 1], 𝛿 ′ ∈ (0, 1], data
𝑥 and 𝑘 (𝜖, ˆ𝛿)-differentially private mechanisms𝑀1, . . . , 𝑀𝑘 where each𝑀 𝑗 takes 𝑥 and the result of
𝑀 𝑗−1 as input, the mechanism𝑀1...𝑘 (𝑥) = 𝑀𝑘 (𝑥,𝑀1...𝑘−1(𝑥)) enjoys (𝜖, 𝛿)-differential privacy where
𝛿 = 𝑘 ˆ𝛿 + 𝛿 ′ and 𝜖 = 𝑘𝜖 (𝑒𝜖 − 1) + 𝜖

√︁
2𝑘 log(1/𝛿 ′).

As we assume that each client holds a distinct dataset, the Parallel Composition theorem applies

to FEATHERS as well:

Theorem 6 (Parallel Composition (McSherry, 2009)). For mechanisms𝑀1, . . . , 𝑀𝑘 each being (𝜖, 𝛿)-
differentially private and disjoint datasets 𝑥1, . . . , 𝑥𝑘 the mechanism 𝑀 (𝑥) = (𝑀1(𝑥1), . . . , 𝑀𝑘 (𝑥𝑘))
enjoys (𝜖, 𝛿)-differential privacy.

FEATHERS aggregates model- and architecture parameters via FedAvg and aggregates rewards

from the HO phase. The Post-Processing theorem guarantees that these post-processing operations

don’t leak private information after aggregation:

Theorem 7 (Post-Processing (Dwork and Roth, 2014)). For a mechanism𝑀 being (𝜖, 𝛿)-differentially
private and any function 𝑓 : range(𝑀) → 𝑅 mapping outputs of 𝑀 to some set 𝑅, 𝑓 (𝑀 (𝑥)) is still
(𝜖, 𝛿)-differential privacy for data 𝑥 .

Before we start our analysis, the following remark is useful for our analysis as𝑀2 and𝑀3 are

DP-SGD instances.

Remark 1 (Privacy of DP-SGD (Abadi et al., 2016)). Assuming each step of DP-SGD is (𝜖, 𝛿)-differential
private, DP-SGD provides (O(𝑞𝜖

√
𝐸), 𝛿)-differential privacy where 𝐸 is the number of training epochs

and 𝑞 the probability of each batch.

We now can state the privacy guarantee of FEATHERS.

Theorem 8 (Privacy of FEATHERS). Assume𝑀1, 𝑀2 to be (𝜖𝐻 , 𝛿𝐻) and𝑀3 to be (𝜖𝐷 , 𝛿𝐷)-differentially
private respectively. Further assume X(𝑐)

𝑣𝑎𝑙
∩ X(𝑐)

𝑡𝑟𝑎𝑖𝑛
= ∅ for all 𝑐 ∈ C and that client’s datasets are

disjoint. Then, FEATHERS is (𝐾𝜖, 𝐾𝛿)-differential private where 𝜖 = max

{
O((𝑞 + 1)𝜖𝐻

√
𝐸)

(
(𝑒𝜖𝐻 −

1) +
√︃
4 log 1

𝛿 ′

)
, 𝐾𝑞𝜖𝐷

√
𝐷

}
and 𝛿 = max{2𝛿𝐻 + 𝛿 ′, 𝛿𝐷 } where 𝐾 is the number of communication

rounds, 𝑞 the probability of some batch being used by DP-SGD and 𝛿 ′ ∈ (0, 1].

Proof. Performing the HO phase once and doing 𝐸 differential private SGD step w.r.t. the architec-

ture on a client 𝑐 can be represented by 𝑀 (X(𝑐)
𝑣𝑎𝑙
) = 𝑀2(X(𝑐)𝑣𝑎𝑙

, 𝑀1(X(𝑐)𝑣𝑎𝑙
)) using 𝑀1 and 𝑀2. Due to

Remark 1 and Theorem 5 we get the following upper bound for 𝜖𝑀 :

O((𝑞 + 1)𝜖𝐻
√
𝐸) (𝑒𝜖𝐻 − 1) +O((𝑞 + 1)𝜖𝐻

√
𝐸)

√︂
4 log

1

𝛿 ′

=O((𝑞 + 1)𝜖𝐻
√
𝐸)

(
(𝑒𝜖𝐻 − 1) +

√︂
4 log

1

𝛿 ′

)

14

Note that due to Theorems 7 and 7 the aggregation performed during the HO phase to identify the

best hyperparamter configuration does not affect privacy. Due to Theorem 5 𝛿𝑀 = 2𝛿𝐻 + 𝛿 ′.
𝑀3 performs DP-SGD on X(𝑐)

𝑡𝑟𝑎𝑖𝑛
, thus enjoying (O(𝑞𝜖𝐷

√
𝐸), 𝛿𝐷)-differential privacy with 𝐸

local training epochs. Note that 𝑀3 uses the results from 𝑀 . Since X(𝑐)
𝑡𝑟𝑎𝑖𝑛
∩ X(𝑐)

𝑣𝑎𝑙
= ∅, Theorem

6 applies, hence the privacy properties do not change for 𝑀3 w.r.t. the training data. Due to

Theorem 6 and 7 ensure that privacy guarantees are retained if𝑀3 is performed on all clients in

parallel and gradients are aggregated. It follows that we can guarantee (𝜖, 𝛿)-differential privacy
for one step of FEATHERS where 𝜖 = max

{
O((𝑞 + 1)𝜖𝐻

√
𝐸)

(
(𝑒𝜖𝐻 − 1) +

√︃
4 log

1

𝛿 ′

)
, 𝐾𝑞𝜖𝐷

√
𝐷

}
and

𝛿 = max{2𝛿𝐻 + 𝛿 ′, 𝛿𝐷 }.
For 𝐾 communication rounds, Theorem 4 implies that FEATHERS is (𝐾𝜖, 𝐾𝛿)-differential

private. □

Note that if clients can be trusted one can save

√
𝐸 of privacy budget by adding noise only in

the last epoch of local training to the gradients w.r.t. architecture- and model parameters, i.e. before

sending model information to the server.

Algorithm 4: FEATHERS Framework Client-side Search stage with DP

Data: Parameters w and architecture a, hyperparameter configurations H, data X𝑡𝑟𝑎𝑖𝑛 , X𝑣𝑎𝑙 ,

y𝑡𝑟𝑎𝑖𝑛 y𝑣𝑎𝑙 , local steps 𝑒
1 for h ∈ H do
2 l1, l2 ← [], [];
3 𝑙1 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
4 for 𝑖 ∈ [𝑒] do
5 w∗ ← 𝑆𝐺𝐷 (∇wLa,w(·),w, h);
6 ga ← clip(∇aLa,w∗ (·));
7 if 𝑖 == 𝑒 then
8 ga ← ga + Na

9 a← 𝑆𝐺𝐷 (1
𝐵

∑𝐵
𝑖=1 ga,𝑖 , a, h);

10 gw ← clip(∇wLa,w(·));
11 if 𝑖 == 𝑒 then
12 gw ← gw + Nw

13 w← 𝑆𝐺𝐷 (1
𝐵

∑𝐵
𝑖=1 gw,𝑖 ,w, h);

14 𝑙2 ← La,h(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙);
15 append 𝑙1 to l1 and 𝑙2 to l2;
16 if 𝑝 == ho then
17 reset w and a to the ones passed;

18 l1, l2 ← l1 + N1, l2 + N2;

19 return l1, l2, w, a;

15

Algorithm 5: FEATHERS Framework Client-side Evaluation stage with DP

Data: Parameters w and architecture a, hyperparameter configuration h, data X𝑡𝑟𝑎𝑖𝑛 , X𝑣𝑎𝑙 ,

y𝑡𝑟𝑎𝑖𝑛 y𝑣𝑎𝑙 , local steps 𝑒
1 𝑙1 ← La,w(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙) + 𝑁𝑙1 ;

2 for 𝑖 ∈ [𝑒] do
3 gw ← clip(∇wLa,w(·));
4 w← 𝑆𝐺𝐷 (1

𝐵

∑𝐵
𝑖=1 gw,𝑖 + 𝑁,w, h);

5 𝑙2 ← La,w(w,X𝑣𝑎𝑙 , y𝑣𝑎𝑙) + 𝑁𝑙2 ;

6 return 𝑙1, 𝑙2, w, a;

B Training Details

In the following, we provide training details of our experiments. We implemented FEATHERS in

Python using the flwr framework for federated learning. We provide our code at https://github.
com/ml-research/FEATHERS.

B.1 General Setup

We trained the supernet in the search stage for 200/500 communication rounds on Fashion-MNIST

and CIFAR-10 respectively. The number of communication rounds per HO phase were computed

as described in Section 3, NAS was performed for 15 rounds after each HO phase. We set 𝛽 = 4

and defined a uniform distribution over the 120 hyperparameter instantiations we use as a search

space. We set 𝛼 = 0.65 in all experiments. In each communication round, all selected clients

train for 5 epochs. Data was shuffled before distribution on clients using a fixed seed. We used

gradient clipping with a value of 5 and chose a batch size of 64. We chose the architecture leading

to the highest accuracy score obtained in during the search stage. This architecture was then used

to build and train an evaluation network as described in Section 3. Training took place for 500

communication rounds where selected clients perform 5 epochs of training in each communication

round. We set 𝛽 = 4 and the number of rounds training under a certain hyperparameter instantiation

h to 15 with 5 epochs of local training. We set gradient clipping to 5 and chose a batch size of 96

for Fashion-MNIST/CIFAR-10 and 128 for Tiny-Imagenet to be comparable to DARTS.

B.2 Label Skew

In FL, commonly, data is not equally distributed across clients. One case often encountered in

the real world is that labels are unequally distributed across clients. Therefore, we simulated this

scenario in our experiments and distributed samples s.t. one client holds 𝑝% of a label 𝑙 while the

remaining 100 − 𝑝% of the samples with label 𝑙 are split equally across clients. In our experiments,

we set 𝑝 = 66%, i.e., one client holds 66% of the samples of a certain label 𝑙 while the remaining 33%

are split equally across all other clients. The label was chosen at random.

B.3 Search Space Image Classification

Search Stage. Our search space for image classification tasks is divided into an architecture search

space A and a non-architectural hyperparameter-search spaceH. A was defined as the space of

cells consisting of 7 nodes, connected by a mixed operation consisting of the following primitives:

Separable/dilated separable convolutions of size 3 × 3 and 5 × 5, max- and average pooling of size

3×3, an identity operation and a zero-operation. We used a stride of one and padding. Convolutional

operations are defined using the ReLU-Conv-BN order and we apply separable convolutions twice.

We stack 8 cells s.t. the input of each cell is the output of its last two predecessors and every

third cell is a reduction cell, the rest are normal cells. The output of each cell is defined as the

16

https://github.com/ml-research/FEATHERS
https://github.com/ml-research/FEATHERS

depth-wise concatenation of the representations of its nodes. In case of fraud detection we are using

a search space over MLPs since we deal with tabular data. Here, operations are defined as small

MLPs which map the input to a lower or higher dimension and which use either Tanh, Sigmoid or

ReLU as activation functions. H consists of candidates for the learning rate used for model- and

architecture parameter-updates sampled from a log-uniform distribution from 10
exp(U (−4,0))

and

10
exp(U (−5,−1))

respectively. Further we included candidates for weight decay used in updates of

both parameter-types sampled from 10
exp(U (−5,−1))

and we included candidates for the momentum

used in SGD-updates of model parameters with momentum candidates sampled from U (0.5, 1). We

used 120 i.i.d. samples from these distributions.

Evaluation Stage. Here we tuned the learning rate, weight decay, momentum and path-dropout

(counteracting over-fitting). On Fashion-MNIST and CIFAR-10 we changed allowed values for

dropout to values between 0 and 0.5. In the evaluation on Tiny-Imagenet we sampled the learning

rates from 10
exp(U (−6,−1))

, weight-decay from 10
exp(U (−5,−2))

, momentum and dropout remained

the same as for CIFAR-10 and Fashion-MNIST. We sampled 240 candidates instead of 120. For

MLPs we replaced path-dropout by regular dropout and sampled 120 i.i.d. samples as above, for

path-dropout we sampled from U (0, 0.3).

B.4 Results

Tab. 3 shows a full version of Tab. 2. We find that FEATHERS is on par with or outperforms the

baselines on all tasks. Fig. 3 compares the result of running the evaluation stage of FEATHERS

with and without the additional HO phase. For that, we identified an architecture using the search

stage of FEATHERS on CIFAR-10 using the NAS-Bench-201 search space. Then, we queried NAS-

Bench-201 to obtain the performance of the given architecture when no additional HO is performed.

Also, we performed the evaluation stage of FEATHERS, i.e., with additional HO. It can be seen

that applying HO significantly improves the final model performance. Also, with an increasing

number of clients, the effect of the additional HO increases as well. We suspect that this is due to

the following reason: When distributing data across clients, the local datasets’ size decreases as

we do not allow the same sample to reside on multiple clients. This can lead to higher variances

in the gradients during optimization, thus making optimization more unstable and prone to end

up with bad parameters. The HO phase during evaluation explores the hyperparameter space

periodically and aims to choose the configuration yielding the best improvement on average across
all clients. This might point FEATHERS towards hyperparameters that “counteract" the increasing

variances of gradients (e.g., lower learning rates), thus stabilizing learning and fostering SGD to

end up at better solutions. Fig. 4 shows that FEATHERS indeed tends to choose more “cautious"

hyperparameters than humans usually use (e.g., low learning rates and lower momentum).

B.5 Runtimes

In terms of runtime, FEATHERS (∼ 2.5 GPU-days) does not add significant overhead compared

to DARTS (∼ 2 GPU-days). The additional HO-phase during the search stage adds an overhead

of approximately 0.1-0.8 GPU-days, depending on the number of instantiations tested in each

HO-round. In contrast, FedEx’ runtime (∼ 1 GPU-day) is much lower compared to DARTS and

FEATHERS since FedEx does not perform NAS and that it performs less exploration than our

method. See Tab. 4 for a detailed listing of runtimes w.r.t. datasets and number of clients.

FEATHERS dynamically adjusts hyperparameters. Figure 4 shows the hyperparameters selected

by FEATHERS over time for three runs on CIFAR-10. We observe that our method chooses more

”cautious“ hyperparameters than engineers usually do. For example, in DARTS it is common to start

with a learning rate of 0.025, FEATHERS however chooses much lower learning rates most of the

time. Presumably this is due to the properties of our HO-algorithm: In the first HO-round it samples

and tests a small subset of instantiations fromH before greedily selecting the one leading to the

17

Table 3: Achieved accuracies of FEATHERS and baselines. DARTS, FedEx, and FEATHERS were

compared in different FL settings as described in Section 4. Each experiment was performed 5

times, and the mean accuracy and standard deviation were reported. Colors are interpolated

from green to blue (high accuracy to low accuracy).

Dataset Fashion-MNIST CIFAR-10 Tiny-Imagenet

w/o ls w/ ls w/o ls w/ ls w/o ls w/ ls

DARTS (f, 5 clients)
†

0.92 ± 0.02 0.93 ± 0.01 0.92 ± 0.02 0.90 ± 0.02 0.67 ± 0.02 0.67 ± 0.02
DARTS (f, 10 clients)

†
0.91 ± 0.02 0.92 ± 0.02 0.91 ± 0.03 0.89 ± 0.04 0.68 ± 0.02 0.67 ± 0.03

DARTS (f, 100 clients)
†

0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.02 0.89 ± 0.03 0.67 ± 0.02 0.67 ± 0.03
FedEx (5 clients)* 0.82 ± 0.01 0.81 ± 0.01 0.53 ± 0.02 0.54 ± 0.03 0.43 ± 0.04 0.41 ± 0.04
FedEx (10 clients)* 0.78 ± 0.03 0.78 ± 0.02 0.51 ± 0.04 0.51 ± 0.03 0.41 ± 0.03 0.40 ± 0.04
FedEx (100 clients)* 0.65 ± 0.03 0.64 ± 0.04 0.46 ± 0.05 0.47 ± 0.04 0.38 ± 0.04 0.38 ± 0.05
FEATHERS (5 clients) 0.94 ± 0.01 0.93 ± 0.02 0.93 ± 0.03 0.91 ± 0.03 0.69 ± 0.02 0.69 ± 0.03
FEATHERS (10 clients) 0.93 ± 0.01 0.93 ± 0.03 0.92 ± 0.02 0.89 ± 0.04 0.68 ± 0.02 0.68 ± 0.02
FEATHERS (100 clients) 0.94 ± 0.02 0.93 ± 0.03 0.90 ± 0.03 0.89 ± 0.03 0.68 ± 0.03 0.67 ± 0.03
*Training performed using architecture found by DARTS.

†The same hyperparameter-settings as described in (Liu et al., 2019) were used.

5 Clients 10 Clients 100 Clients
Number of Clients

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

NAS-Bench-201
FEATHERS

Figure 3: FEATHERS beats NAS-Bench-201. FEATHERS’ additional HO phase improves the perfor-

mance of a fixed architecture. Note that NAS-Bench-201 only provides averaged results in

centralized settings.

highest decrease in validation loss. In this concrete example, this choice might lead FEATHERS

to choose a lower learning rate than 0.025 because there was no better sample. In subsequent

HO-rounds the goal is to learn a distribution over instantiations maximizing the reward in the

long run. As SGD never truly converges due to its inherent stochasticity, a smaller learning rate is

ultimately beneficial in the later stages of training in order to avoid heavily perturbing away from

a minimum (i.e. too large learning rates will “overshoot”).

Consequently, FEATHER’s ”cautious“ instantiations entail more stable convergence. In that

sense, FEATHERS mimics an annealing mechanism in later training stages, which find frequent

use in Deep Learning problems. To assess the effect of dynamic hyperparameter adjustments, we

compare FEATHERS with NAS-Bench-201 (Dong and Yang, 2020). This benchmark provides a

database which allows to query the performance of architectures trained under fixed and manually

tuned hyperparameters. The architectures in NAS-Bench-201 were chosen such that they cover

widely used architecture search space, including ours. We can easily assess whether our additional

HO mechanism helps improving model performance by comparing to NAS-Bench-201: We first

18

Table 4: GPU days comparison. FEATHERS’ runtime is approximately 0.4 GPU-days higher than the

runtime of DARTS. FedEx has lower runtimes compared to both, FEATHERS and DARTS,

mainly because it does not optimize the architecture and performs less exploration than

FEATHERS. All runtimes in GPU-days.

Fashion-

MNIST

CIFAR-

10

Tiny

Imagenet

Fraud

Detection

FedEx (5 Clients) 0.8 0.9 1.3 0.09

FedEx (10 Clients) 0.8 0.8 1.3 0.07

FedEx (100 Clients) 0.6 0.7 1.1 0.05

DARTS (5 Clients) 1.8 2.1 3.1 0.4

DARTS (10 Clients) 1.7 2.0 2.9 0.3

DARTS (100 Clients) 1.5 1.8 2.7 0.2

FEATHERS (5 Clients) 2.2 2.5 3.6 0.6

FEATHERS (10 Clients) 2.1 2.4 3.5 0.6

FEATHERS (100 Clients) 1.9 2.1 3.1 0.35

run the search stage of FEATHERS to optimize the architecture for 5/10/100 clients. Note that the

architecture found can vary for a different number of clients. Then, we train the architecture found

during the search stage using FEATHER’s validation stage (i.e. with adjustments of hyperparame-

ters) and compare the accuracy of the same architecture reported in NAS-Bench-201 (i.e. trained

with fixed hyperparameters) on CIFAR-10. Figure 3 demonstrates that our dynamic adjustment

helps improving model performance. This observation further supports our claim that our method

adjusts hyperparameters appropriately over time.

1

2

3

4

5

6

7

0

0.002

0.004

0.006

0.008

0.01

0.012

Learning Rate

0

0.002

0.004

0.006

0.008

0.01

0.012

Weight Decay

0

0.2

0.4

0.6

0.8

1

Momentum

0

0.002

0.004

0.006

0.008

0.01

0.012

Arch. Learning Rate

0

0.002

0.004

0.006

0.008

0.01

0.012

Arch. Weight Decay

NAS Round

Figure 4: FEATHERS adjusts hyperparameters over time. The choices of hyperparameters are adapted

during training to optimize the validation loss. In earlier stages (blue lines) higher learning

rates are chosen whereas in later stages of training (red lines) lower learning rates are chosen.

The figure shows hyperparameter-selections of three FEATHERS-runs on CIFAR-10.

FEATHERS preserves privacy. To demonstrate that FEATHERS provides privacy guarantees

without sacrificing predictive performance, we performed classification on the fraud detection

dataset. The same privacy budget 𝜖 ∈ {1.25, 2.0, 3.5, 25, 250, 400,∞} was used for DP applied to

the losses, model parameters and architecture parameters. Accounting was done via the RDP

accountant. It is noteworthy that a privacy budget of∞ corresponds to FEATHERS without DP.

The search stage was performed for 100 communication rounds, all other parameters were set

as above. Note that the dataset is heavily skewed (95% negative class, 5% positive class), we thus

report F1-scores instead of accuracy. We further used oversampling of positive samples on the

client-side to account for label-skew. Figure 2 visualizes the results for different privacy budgets

19

𝜖 . For 𝜖 ≥ 1 we obtained a F1-score of approximately 0.77. This means, FEATHERS-DP performs

equally well as FEATHERS as long as 𝜖 is chosen larger to be larger than 1. Decreasing 𝜖 adds more

noise on the gradients which increases the privacy level while disturbing the gradient-signal. The

effect of this is that for 𝜖 ≤ 3.5 we obtained a significant decrease of the F1-score.

In summary, FEATHERS-DP retains the performance of FEATHERS for appropriate 𝜖 . Finally,

we emphasize that adding DP came with approximately 1.5-2 times longer runtimes on our setup.

A reasonable trade-off to accommodate privacy considerations. The underlying reason is that for

DP the gradient of each sample has to be manipulated, resulting in poorer parallel execution of

automatic differentiation. Hence, there must be found a good trade-off between high performing

models, training runtime and level of privacy in practice.

20

	Introduction
	Related Work
	FEATHERS – Joint NAS and HO under Privacy Guarantees
	Experiments and Results
	Broader Impact & Limitations
	Conclusion
	FEATHERS Details
	Neural Architecture Search
	Convergence Analysis
	Differential Privacy

	Training Details
	General Setup
	Label Skew
	Search Space Image Classification
	Results
	Runtimes

