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Abstract

Large Language Models (LLMs) have shown
significant capability across various tasks, with
their real-world effectiveness often driven by
prompt design. While recent research has fo-
cused on optimizing prompt content, the role
of prompt formatting—a critical but often over-
looked dimension—has received limited sys-
tematic investigation. In this paper, we intro-
duce Content-Format Integrated Prompt Opti-
mization (CFPO), an innovative methodology
that jointly optimizes both prompt content and
formatting through an iterative refinement pro-
cess. CFPO leverages natural language mu-
tations to explore content variations and em-
ploys a dynamic format exploration strategy
that systematically evaluates diverse format op-
tions. Our extensive evaluations across multi-
ple tasks and open-source LLMs demonstrate
that CFPO demonstrates measurable perfor-
mance improvements compared to content-only
optimization methods. This highlights the im-
portance of integrated content-format optimiza-
tion and offers a practical, model-agnostic ap-
proach to enhancing LLM performance. Code
is available at this link.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive achievements across various
domains (OpenAl, 2024a). The effectiveness of
LLMs in real-world applications is fundamentally
dependent on the design of effective prompts,
which serve as an essential interface between hu-
man users or developers and the LLM system. Stud-
ies have shown that expert-designed prompts could
significantly enhance LLM performance (Brown
etal., 2020; Wei et al., 2023; Schulhoff et al., 2024).

However, manual design of prompts presents
significant challenges, primarily due to the high
sensitivity of LLMs to subtle variations in prompt
characteristics, including both textual content and
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Figure 1: The crucial role of prompt formatting and its
interaction with content. (A): Model-specific format
biases: Illustrates the performance sensitivity of two
LLMs to different format styles on the GSMS8K task,
showing substantial variability in the effectiveness of
10 randomly selected formats. (B): For seven different
prompt contents evaluated across 24 distinct formats,
performance variations show the complex, interdepen-
dent relationship between prompt content and structure,
demonstrating that no single format universally maxi-
mizes effectiveness.

structural format (Jiang et al., 2022; Zamfirescu-
Pereira et al., 2023; Salinas and Morstatter, 2024).
These sensitivities are further complicated by varia-
tions across different models and tasks (Zhuo et al.,
2024; Sclar et al., 2024). To alleviate these diffi-
culties, automated prompt optimization techniques,
often leveraging the power of LLMs themselves,
have proven to be an effective approach to adapt
and refine prompts (Pryzant et al., 2023; Schnabel
and Neville, 2024; Yang et al., 2024). However,
existing research primarily focuses on optimizing
prompt content, while overlooking a critical and
largely unexplored dimension: the prompt format-
ting.

Our preliminary investigations, as illustrated in
Figure 1, provide valuable insights into the role of
prompt format in prompt optimization. We have
observed that different LLMs display distinct pref-
erences, with some formats performing well on one
model but failing on another. This suggests sophis-
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Figure 2: Illustration of the CFPO pipeline within a single iteration round. In the initial Component-wise Content
Optimization stage, case-diagnosis and Monte-Carlo sampling are employed for content mutation. Subsequently,
the Format Optimization stage identifies the most suitable format for each content candidate. The yellow dashed
line indicates where the LLM optimizer is employed to guide the optimization process.

ticated, model-specific format biases (Sclar et al.,
2024). Furthermore, we have identified a com-
plex interplay between prompt content and format,
where no single format consistently outperforms
others across all contents. This lack of a univer-
sally optimal format highlights the impracticality
of predefining format, and underscores the need
for a joint optimization approach that treats prompt
content and format as interdependent variables.

To address these limitations, we introduce
Content-Format Integrated Prompt Optimiza-
tion (CFPO), an innovative methodology that con-
currently optimizes both prompt content and format
through an iterative refinement process. CFPO em-
ploys distinct optimization strategies tailored to the
unique search spaces of content and format. Con-
tent optimization is guided by performance feed-
back and Monte Carlo sampling, leveraging natural
language mutations to enhance prompt effective-
ness. For format optimization, CFPO explores a
discrete set of format options through a dynamic
exploration strategy designed to identify optimal
formats without requiring prior knowledge.

Specifically, CFPO’s format optimizer lever-
ages the principles of structured thinking, oper-
ating along two key dimensions: the Prompt Ren-
derer, which governs the organizational structure
of all components within a prompt (He et al.,
2024), and the Query Format, which dictates the
presentation of in-context learning examples and
queries (Voronov et al., 2024a; Salinas and Morstat-
ter, 2024). By integrating these two dimensions,
CFPO defines a structured template that effec-
tively distinguishes between content and format
types, enabling the efficient identification of high-
performing prompts.

Our primary contributions are threefold: (1) We

propose CFPO, an innovative approach to simul-
taneously optimizes prompt content and format
using an iterative process. (2) We introduce an ef-
ficient strategy for dynamic format optimization
that generates new formats in an iterative manner
and evaluates formats instance through a scoring
system to select the best option. (3) Through exten-
sive evaluations across diverse tasks and multiple
open-source LL.Ms, we demonstrate that CFPO
consistently improves LLM performance in a mea-
surable and effective manner.

2 Related Work

Optimization via LLM The remarkable capacity
of LLMs has been demonstrated in various tasks
as optimizers, leveraging their ability to enhance
performance, such as code generation (Haluptzok
et al., 2023; Zelikman et al., 2024; Askari et al.,
2024), tool-making (Cai et al., 2024), and agent sys-
tem design (Hu et al., 2024). However, recent stud-
ies indicate that LLMs face significant challenges
in achieving completely automatic optimization.
These models often rely on human intervention
for designing workflows and struggle with tasks
requiring complex decomposition and iterative re-
finement (Zhang et al., 2024; Li et al., 2024).

Automatic Prompt Optimization Automatic
prompt optimization plays a crucial role in en-
hancing the performance of LLMs by refin-
ing prompts without requiring human interven-
tion. Various approaches have been explored to
search for the optimal prompt, including reinforce-
ment learning (Zhang et al., 2023), Monte Carlo
Search (Zhou et al., 2023), Monte Carlo Tree
Search (MCTS) (Wang et al., 2024b), feedback-
based methods (Pryzant et al., 2023; Das et al.,
2024), and agent-driven frameworks (Wang et al.,
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Figure 3: An illustrative example of our Structured Prompt Template. This template systematically organizes the
prompt into distinct components, each serving a specific functional role. When formulating a prompt, the template
first employs a Query format to present examples and queries, and then integrates all content components via the
Prompt Renderer to construct the comprehensive prompt string.

2024a; Khattab et al., 2024; WHO, 2023). While
these methods focus on optimizing the overall
prompt, they often lack the capability for fine-
grained modifications. (Khattab et al., 2024; Schn-
abel and Neville, 2024) introduce phrase-level mu-
tations, but they fail to address format mutations or
implement them in a systematic manner.

Prompt structure and format Structured prompt-
ing, which organizes prompts into distinct compo-
nents such as instructions, examples, and queries,
holds significant potential in prompt engineer-
ing (Fernando et al., 2023). Empirical rules for
prompt design always lack integration with auto-
matic optimization techniques, limiting their scala-
bility and effectiveness (Nigh, 2023; Google, 2024).
Frameworks like LangGPT (Wang et al., 2024a)
have introduced structured prompting paradigms,
emphasizing reusable designs inspired by program-
ming principles. However, these efforts primar-
ily focus on content-level refinements and fail to
adequately address the critical role of prompt for-
matting. Studies have highlighted the impact of
formatting on prompt performance (Salinas and
Morstatter, 2024). Sclar et al. (2024) revealed that
modifications to separators and spacing within a
query could substantially impact performance. He
et al. (2024) reveals that the format of prompts
significantly impacts GPT-based models’ perfor-
mance, with no single format excelling universally.
Voronov et al. (2024b) focuses on the format of
few-shot examples and suggests that it is beneficial
to maintain a consistent format across examples.
However, despite the recognition of formatting’s
importance, there remains a lack of comprehen-

sive understanding regarding the optimization of
prompt format in a systematic manner.

3 CFPO: Content-Format Integrated
Prompt Optimization

As we have established, the effectiveness of LLMs
is profoundly influenced by both the content and
format of prompts. Existing automated prompt
optimization methods have largely overlooked the
format dimension, which exhibits a strong model
bias. To address this critical limitation, we in-
troduce Content-Format Integrated Prompt Opti-
mization (CFPO) framework that jointly optimizes
both prompt content and format. This contrasts
with prior approaches focusing solely on content
optimization. Our goal is to identify an optimal
prompt p*, comprising both content (c¢*) and format
(f*), that maximizes performance on an evaluation
dataset D, given by:

*: * *\ D
pri (e f7) = arg max_mc, fD),

ey

within the coherent natural language space £ and
the space of all possible formats F, guided by a
metric function m(-) that assesses the prompt’s
quality.

To effectively search this complex space, CFPO
employs a two-pronged iterative approach, detailed
in Figure 2, that consists of two concurrently-run
optimizers: a Component-wise Content Optimizer
and a Format Optimizer. The content optimizer
refines the textual content of a prompt, while the
format optimizer explores the structural arrange-
ment of its elements. Importantly, our framework
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Figure 4: Built-in formats and rendering effects in our initial format pool. The final format configuration is achieved
by selecting and combining elements from both the Prompt Renderer and the Query Format categories.

acknowledges the inherent interdependence of con-
tent and format and thus iterates between optimiz-
ing them, to find their optimal combination. The
following sections detail our structured prompt tem-
plate (Section 3.1), our innovative format optimiza-
tion approach (Section 3.2), and finally our inte-
grated optimization process (Section 3.3).

3.1 Structured Prompt Template

To enable fine-grained and targeted optimization,
our framework adopts a structured prompt tem-
plate inspired by guidelines from OpenAl (2024b)
and Google (2024). This template decomposes
prompts into distinct functional components, facili-
tating both analysis and selective mutations. Specif-
ically, our template divides a prompt into content-
based components and format-based components,
as illustrated in Figure 3.
The Content-based Components are:
Task Instruction defines the primary goal, guiding
the model’s overall behavior.
Task Detail offers supplementary task-specific in-
formation, including resolution steps.
Output Format specifies the desired output struc-
ture (e.g., JSON, bullet points, etc.).
Few-shot Examples provide contextual learning
patterns, consisting of:
» Examples: specific instances pertinent to the
task, including inputs and expected outputs.
* Example Hinter (optional): a brief hint indi-
cating that examples segment will follow, e.g.,
’Here are some examples:’.

* CoT Hinter (optional): encourages a chain-of-
thought reasoning process, e.g., 'Let’s think
step by step’.

Query shows the question or request to be an-
swered by the LLM.

The Format-based Components are:

Query Format: defines how to structure the ren-
dering of examples and queries.

Prompt Renderer defines how to aggregate all
components into a structured prompt.

The formulation of the structured prompt tem-
plate is fundamental to our optimization approach.
This design yields two key advantages: first, it facil-
itates a structured component functionality where
each part serves a specific purpose, promoting a
more organized prompting framework; second, it
enables fine-grained optimization by decoupling
format from content, thus allowing targeted and
precise modifications of individual components.

3.2 Format Optimizer Design

The key aspect of our work is the format optimiza-
tion methodology. To efficiently explore the ex-
tensive range of prompt formats, the CFPO format
optimizer adopts an approach that utilizes a format
pool with a scoring system and an LL.M-assisted
format generation module. It strategically explores,
evaluates, and refines formatting choices, all while
learning from previous iterations.



3.2.1 Format Pool with Scoring System

The format pool is designed to hold the format con-
figurations we use to generate prompts. As shown
in Figure 4, these configurations are separated into
two dimensions: the Prompt Renderer, which dic-
tates the overall structure of the prompt, and the
Query Format, which governs the rendering of in-
context examples and queries. This distinction al-
lows us to explore both macro and micro-level for-
matting variations.

To dynamically evaluate the potential of each
format, we developed a scoring system for assess-
ing the performance of each format f, represented
as Q(f). This system updates the performance
score of f across various prompt contents using the
formula Q(f) < Q(f)+>_.m(c, f), where c rep-
resents each content instance in current round. Ad-
ditionally, we maintain N (f) to count the number
of times a format has been visited, which facilitates
score normalization.

To initialize the exploration, we constructed an
initial format search space F, comprising a set of
predefined commonly used formats, as illustrated
in Figure 4. We also incorporate diverse variations
of these predefined formats into the initial search
space, such as adjustments to spacing, punctuation,
and the use of special symbols. This establishes a
starting point for our optimization.

3.2.2 LLM-assisted Format Generation

The variability of format space requires an auto-
mated process for effective expansion and explo-
ration. To that end, we introduce an LLM-based
format generator, LLM e, which autonomously
generates new formats based on information in the
existing format pool.

This evolutionary approach integrates the format
generation into each optimization round, allowing
for the creation of new and potentially beneficial
formats. To enhance the efficiency of this process,
we guide the LLM towards more promising areas
by informing it of the performance function, %
This iterative process not only diversifies the for-
mat pool but also ensures that our system can adapt
to and incorporate a wide range of formats, thereby
enhancing its utility and effectiveness. More de-
tailed information of our format generation process
is provided in the Appendix A.2.

3.2.3 Search Format via Format Optimizer

For each content candidate generated by the con-
tent optimizer, the format optimizer aims to identify

Algorithm 1 Searching Optimal Format Given a
Prompt Candidate
Input: py = (co, fo): initial prompt, p = (¢, -):
current prompt candidate(with content c), F:
dynamic format pool, k: number of formats,
m(-): evaluation metric, D: evaluation data.
1: Initialize: Q(f) < m(co, f), N(f) < 1 for
all f € F
2: Format Selection: Fejeot < {f € F : fis
in the top k w.r.t. UCT(f)}
3: Format Generation:
4: foreach:=0,1,...,k do
5. Generate format: frew < LLMy gen(F)
6:  Collect frew to Fyen, and add fre to F
7
8
9

: end for
: Format Evaluation:
: for each f € Fyereer U Fyen do
10:  Evaluate m(c, f) with dataset D
1 Q(f) « Q(f) +mlc, f)
122 N(f)«< N(f)+1
13:  Update UCT(f) by Eq. 2
14: end for
15: f < argmaxyer, ,...UFpen m(e, f)
Output: The optimal format f for content ¢

the most appropriate format from format pool. To
navigate the balance between exploring new for-
mats and exploiting known effective ones, we im-
plemented the Upper Confidence Bounds applied
to Trees (UCT) algorithm (Kocsis and Szepesvari,
2006). The UCT algorithm employs a selection
criterion given by:

o [E N
UCT(f) = ~ N~ @

where o serves as a balancing hyper-parameter,
adjusting the trade-off between exploration and
exploitation.

The overall process, outlined in Algorithm 1, se-
lects 2k formats for evaluation in each optimization
round: k promising formats from the pool (based
on UCT score), and k new formats generated by
the LLMy g4en. The selected formats from both
the existing pool (Fseiect) and the newly generated
pool (Fyep) are then evaluated using a predefined
metric function m(-), and the best-performing for-
mat among the tested candidates will be identified.
The result is then incorporated into the pool for
future iterations.

By iteratively evaluating formats, the format op-

Q(f)



timizer ensures a balance between exploring new
formats and refining current ones, converging to
the best format configuration.

3.3 Integrated Optimizer Design

CFPO orchestrates the Component-wise Content
Optimization and Format Optimization within an
iterative framework to jointly optimize content and
format. This iterative process (illustrated in Fig-
ure 2) is key to our methodology.

Component-wise Content Optimization: This
stage employs two primary strategies for mutat-
ing the content of prompts. The first strategy is
case-diagnosis and revision, leveraging test cases
to assess the efficacy of the current prompt. The
outcomes of these test cases, including both correct
and incorrect samples, are analyzed by the LLM op-
timizer. This optimizer evaluates the performance
and pinpoints specific components in need of op-
timization. Subsequently, targeted feedback is ap-
plied to these identified components for enhance-
ment, resulting in improved prompts. For example,
if the output is not in the specified format, the out-
put format component will be altered. Addition-
ally, a Mote-Carlo sampling strategy is employed
to enhance the optimization robustness by gener-
ating synthetic content with same semantics for
randomly selected components. After this step, we
select top-performing content candidates based on
an evaluation dataset for the next stage.

Format Optimization: As discussed in Sec-
tion 3.2, this stage identifies the most effective
format for each candidate prompt content from
the previous content-optimization step. The format
optimizer applies our dynamic format exploration
and evaluation process, tracking performance, and
updating the format pool’s scoring system. The
Format Optimizer meticulously tracks the perfor-
mance of all evaluated formats, providing valuable
insights to guide the selection of formats in subse-
quent iterations. Simultaneously, it retains only the
most effective format for each prompt, ensuring
the diversity of prompt content candidates during
beam search.

In summary, the two optimizers work in tandem,
leveraging the strengths of the LLM to facilitate
swift adaptation and customization. Importantly,
this iterative process allows for the optimization of
format and content, thereby significantly enhancing
the quality of the generated prompts.

4 Experiments

4.1 Experimental Setups

Dataset and Models. To rigorously evaluate
CFPO, we selected a diverse set of tasks and mod-
els. Our benchmark tasks span various domains
and complexities, including:

* Reasoning: GSM8K (Cobbe et al., 2021) and
MATHS500 (Hendrycks et al., 2021; Lightman
et al., 2023) which require complex mathemat-
ical reasoning abilities.

* Multiple-choice: ARC-Challenge (Clark
et al., 2018), demanding understanding and
selection among alternatives.

* Classification: The Implicatures task from
the Big-Bench benchmark (bench authors,
2023) to evaluate classification proficiency.

Our model selection includes a mix of foundational
and instruction-tuned models to understand the gen-
eralizability of our approach:

* Foundational Models: Mistral-7B-v0.1
(Jiang et al., 2023) and LLaMA-3.1-8B (Meta,
2024b) represent pre-trained models.

* Instruction-Tuned Models: LLaMA-3-8B-
Instruct (Meta, 2024a) and Phi-3-Mini-
Instruct (Microsoft, 2024) represent models
specifically fine-tuned for instruction follow-
ing.

Furthermore, we use GPT-4 (2024-05-01-preview)
as the LLM optimizer for content mutation and
format generation (OpenAl, 2024a).
Implementation Details. The training process
involved 20 iterative rounds, each consisting of
content and format optimization. During content
optimization, case-diagnosis and Monte Carlo sam-
pling each generate 4 prompts per round. A set of
40 test cases is used, with 5 correct and incorrect
cases leveraged for case-diagnosis. The number
of prompt-structured components decreases pro-
gressively from 4 to 1, narrowing the search space
over time to enhance efficiency. For format opti-
mization, 4 UCT-selected formats and 4 newly gen-
erated formats are used to generate new prompts.
The coefficient in the UCT selection process «
is set to le — 3. Beam search, with a budget of
8, is employed during mutations to ensure effec-
tive exploration. Eval data sizes are configured as
50, 300, 500, and 500 for BigBench-Classification,
MATHS500, GSM8K, and ARC-Challenge, respec-
tively. The best-performing prompt on the evalua-
tion set for each method was selected and reported
on the test set.



Method Mistral-7B-v0.1

LLaMA-3.1-8B LLaMA-3-8B-Instruct

Phi-3-Mini-Instruct

GSMS8K
Baseline (1-shot cot) 36.85 50.03 74.00 83.45
Baseline (8-shot cot) 38.21 51.02 73.46 85.75
GRIPS 39.04 50.27 74.53 83.47
APE 40.33 52.39 75.13 83.85
ProTeGi 45.72 54.74 75.36 84.84
SAMMO 43.82 54.74 75.89 84.76
CFPO (Ours) 53.22 63.38 80.74 89.16
MATH-500
Baseline (1-shot cot) 4.60 10.58 12.20 12.60
Baseline (4-shot cot) 10.20 23.40 14.00 40.40
GRIPS 13.40 15.80 23.60 10.80
APE 11.60 12.80 22.80 30.60
ProTeGi 10.80 17.00 18.40 28.80
SAMMO 12.20 15.40 25.80 42.40
CFPO (Ours) 14.80 26.99 33.33 44.20
ARC-Challenge
Baseline 67.15 73.81 75.94 84.39
GRIPS 77.05 77.90 79.61 87.46
APE 75.85 77.05 78.67 87.63
ProTeGi 76.54 77.22 79.86 87.54
SAMMO 77.22 77.13 79.86 87.03
CFPO (Ours) 79.35 78.50 80.63 88.23
Big-Bench Classification
Baseline 56.00 64.00 70.00 54.00
GRIPS 86.00 67.00 84.00 69.00
APE 73.00 65.00 60.00 63.00
ProTeGi 83.00 81.00 82.00 76.00
SAMMO 86.00 80.00 86.00 78.00
CFPO (Ours) 94.00 90.00 91.00 87.00

Table 1: Main results on math reasoning tasks and commonsense reasoning tasks.

Baselines. To evaluate the effectiveness of CFPO,
we compared against several commonly used and
popular baselines. GrIPS (Prasad et al., 2023)
performs syntactic phrase-level edits in instruc-
tion, representing a non-LLM-based optimization
approach. APE (Zhou et al., 2023) and Pro-
TeGi (Pryzant et al., 2023) both employ LLM to
optimize prompt content, but differ in mutation
strategy. APE adopts an instruction induction ap-
proach, while ProTeGi leverages test cases feed-
back with LLM to guide the mutation process.
SAMMO (Schnabel and Neville, 2024) introduces
a structured framework that incorporates a prelimi-
nary format mutation strategy, which relies on ran-
dom selection from a predefined format pool. This
choice of baselines enables a comprehensive assess-
ment of CFPQO’s capabilities against various types
of optimization approaches. All methods were eval-
uated using consistent experimental configurations
to ensure a fair comparison.

Initial Prompts. To establish a reasonable starting
point, we employed a single in-context example
without any further instruction as the initial prompt
for each model and task, except for GrIPS which
requires an initial instruction. Chain-of-Thought

examples were employed for the reasoning tasks.
We also report common baseline prompts, includ-
ing 8-shot for GSM8K and 4-shot for MATHS500.
A comprehensive list of our initial prompts is in
Appendix C.

4.2 Main Results

Table 1 summarizes the performance of CFPO in
comparison with several state-of-the-art methods
across four datasets. The results highlight the su-
perior performance of CFPO, significantly outper-
forming the baseline prompt as well as competing
methods. We observed that pre-trained models ex-
hibit greater sensitivity to prompt formatting, lead-
ing to substantial improvements when optimized by
CFPO. Notably, optimized prompts for pre-trained
models tend to be longer and incorporate more
in-context examples, suggesting that these charac-
teristics better align with the optimization needs of
pre-trained models (see Appendix D.1). In contrast,
instruction-tuned models display relatively more
robust results and smaller gains, likely due to their
inherent adaptability and generalization.

For the reasoning tasks, GSM8K and MATH,
prompt optimization is especially impactful due to



the sensitivity of these tasks to prompt structure.
CFPO, which integrates unified content and for-
mat optimization, delivers significant performance
gains. Specifically, the improvement for GSM8K
is more evident compared to the more challeng-
ing MATH task, where the inherent complexity
limits the magnitude of improvement. Moreover,
feedback-based methods like ProTeGi, SAMMO,
and CFPO, consistently outperform the other base-
lines because they leverage iterative feedback for
prompt refinement. In contrast, GRIPS, which is
limited to phrase-level mutations, exhibits marginal
improvements. These results underline the effec-
tiveness of the integrated optimization strategy
adopted by CFPO. The selected optimal prompts
discovered by our approach can be found in Ap-
pendix D.

4.3 Ablation Study

Impact of the Format Optimizer. CFPO incorpo-
rates a unique format optimization process, lever-
aging LLM for format generation and a UCT-based
strategy for format selection. To evaluate its ef-
fectiveness, we evaluated two variations of our
method: (1) CFPO., which optimizes content while
keeping format fixed, and (2) CFPO.+Format,
which first optimizes content, then performs a sep-
arate format optimization step. Table 2 shows that
both CFPO, and CFPO.+Format underperform
compared to the full CFPO approach, highlight-
ing the importance of the integrated content and
format optimization approach. The need for a joint
optimization process which addresses the interde-
pendence of content and format is essential for
prompt optimization.

Task Method LLaMA-3.1-8B | LLaMA-3-8B-Instruct
ProTeGi 54.74 75.36
CFPO. 58.07 77.71

GSMBK | RO, +Format 61.94 79.30
CFPO 63.38 80.74
ProTeGi 81.00 82.00

BBC CFPO. 85.00 85.00
CFPO_.+Format 88.00 89.00
CFPO 90.00 91.00

Table 2: Ablation study of the format optimizer and con-
tent optimizer. CFPOc performs content optimization
with a fixed format. CFPOc+Format performs format
optimization after content optimization.

Effectiveness of Format Generation. We com-
pared the full CFPO approach against a variant that
uses format from initial format pool without us-
ing LLM for generation. As presented in Table 4,
CFPO with format generation consistently outper-
forms the baseline relying solely on the initial pool.
These results demonstrate the effectiveness of the

proposed format exploration mechanism in enhanc-
ing both the quality and diversity of prompts.

Task Method LLaMA-3.1-8B | LLaMA-3-8B-Instruct
w/o Format Gen 62.70 78.85

GSMBK | (iith Format Gen 63.38 80.74

BBC w/o Format Gen 88.00 87.00
with Format Gen 90.00 91.00

Table 3: Impact of format generation during prompt
optimization.

Effectiveness of Format Selection. We further
evaluated our UCT-based format selection process,
compared it to a random selection from the format
pool and a greedy selection without exploration
(using o = 0 in Eq. (2)). As presented in Table3,
CFPO consistently achieves the best performance
across all experimental settings, demonstrating the
efficacy of the UCT-based selection strategy.

Task Method LLaMA-3.1-8B | LLaMA-3-8B-Instruct
Random 62.40 78.82

GSMSK | UCT(a = 0) 63.23 79.08
UCT(ours) 63.38 80.74
Random 85.00 87.00

BBH UCT(« = 0) 86.00 88.00
UCT(ours) 90.00 91.00

Table 4: Impact of different format selection strategies
during optimization.

Effectiveness of the Content Optimizer. As pre-
sented in Table 2, we include ProTeGi (Pryzant
et al., 2023), a baseline that optimizes only the con-
tent. In contrast, our CFPO., which incorporates
structured prompting and integrates correct cases
for diagnosis, achieves significant performance im-
provements, which highlights the effectiveness of
our content optimization strategy.

5 Conclusion

This paper introduces Content-Format Integrated
Prompt Optimization (CFPO), an innovative
methodology that concurrently optimizes both
prompt content and format. CFPO incorporates
the Prompt Renderer and the Query Format within
a structured prompt template. By leveraging dis-
tinct optimization strategies, CFPO discovers high-
performing prompts that outperform content-only
methods, addressing a critical gap in existing re-
search. Our results demonstrate the substantial sig-
nificant influence of format on LLLM performance,
underscoring the necessity of a joint optimization
approach. These findings emphasize the impor-
tance of integrating content and format consider-
ations in prompt engineering. CFPO represents a
significant advancement, empowering developers
to design effective prompts and unlocking the full
potential of LLMs across diverse applications.



Limitations While the proposed method demon-
strates promising results, there are several limita-
tions worth noting. First, the effectiveness of the
approach is task- and model-dependent. While the
method generates promising prompts for specific
tasks and models, it may not generalize as effec-
tively to others—particularly tasks that are less
sensitive to prompt structure or models that already
possess strong reasoning capabilities, thereby limit-
ing its broader applicability. Moreover, the iterative
nature of the optimization process, with multiple
mutation strategies, introduces computational com-
plexity, which could hinder scalability in resource-
constrained environments. Finally, while the for-
mat generation mechanism shows strong potential,
its stability can be an issue, as the optimization
process may not always yield consistent or optimal
results across different datasets or configurations.
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A Appendix: Detailed Optimization
Process and Meta-Prompts

A.1 Meta-Prompt Header Setup

At the beginning of the prompt, we introduce the
task and provide a detailed explanation of the
prompt’s components, followed by the current ver-
sion of the prompt. Below is the structure of the
meta-prompt header, where placeholders are de-
noted in [ALL CAPS]:

I'm trying to write a prompt to [TASK INTENTION].

The current prompt consists of several key
components, including:
[DESCRIPTION OF COMPONENTS]

The complete prompt is as follows:
"""[CURRENT PROMPT]"""

A.2 Format Generation

Our format generation process is a two-step pro-
cedure designed to create diverse and effective
prompt formats. We focus on generating two key
components of a prompt’s format: the Prompt
Renderer and the Query Format. The appendix
presents examples of the format generated using
this pipeline.

Step 1: Format Description Generation. For
each component (i.e., Prompt Renderer and the
Query Format), we first generate a natural language
description of the format, alongside an example of
how this format would render a sample input. This
description acts as a blueprint, guiding the subse-
quent code generation. We utilize a meta-prompt
to instruct an LLM to perform this task. The meta-
prompt takes existing format examples as context
and generates new format descriptions along with
rendered results. As an illustrative example, here is
a conceptual outline of the meta-prompt employed
for generating new Query Format descriptions:

[META PROMPT HEADER]

We have some preset QUERY_FORMAT candidates,
here are our whole search pool:
[ALL EXISTING QUERY FORMATS DESCRIPTION]

Here are two examples from our QUERY_FORMAT
candidates as for your reference:

<Format name: Question-Answer>

[RENDERED EXAMPLE 1]

<Format name: Instruction-Response>
[RENDERED EXAMPLE 2]

Please generate ONE new format for the
QUERY_FORMAT segment, its description and render
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the provided example using this new format. The
new format could either be a completely new
format or a variation of an existing format.

If you choose to generate a completely new
format, please ensure that the new format is
conventional, structured, and aligned with
commonly used query formats. Avoid overly
creative or unconventional formats that deviate
significantly from standard practices. The new
format should be distinct from the existing
formats.

The variation can focus on two parts, CASING and
SEPARATOR:

CASING refers to both the capitalization of the
text (e.g., f(x) x.title(), f(x) = x.upper(),
f(x) = x.lower()) and the specific wording or
phrasing used (e.g., changing "question” to "
instruction” or "input”).

SEPARATOR: the punctuation or symbols used to

separate the question and answer, there are some
candidates as for your reference {{'', ' ', "\\
n', '"-=', 5\\n', "], '<sep>', " \\n', ":'

"3

Note that focus solely on the format itself
without altering the content of the question and
answer. The format should remain focused on the
existing structure (e.g., Question/Answer or
Instruction/Response) without modifying the
content or introducing any new sections. Avoid
the use of underlines or any unconventional
formatting styles among words. The format name
should only include alphanumeric characters and
underscores. Special characters such as ~ |7,
1T, T#°, T@, and spaces should be avoided.

Please encapsulate the new query format using
the following format:

<START>

<Format name: [format name]>

<Description: [format description]>

[The example rendered by the newly generated
format]

<END>

Step 2: Format Code Generation. Based on the
natural language description and rendered exam-
ple produced in Step 1, we subsequently generate
the corresponding code implementation of the new
format. This code will be used by the system to ren-
der prompts according to the defined format. We
again leverage a meta-prompt to instruct the LLM,
this time to generate the executable code. As an
illustrative example, here is a conceptual outline of
the meta-prompt employed for generating the code
representation of a new Query Format:

[META PROMPT HEADER]

We have some preset QUERY_FORMAT candidates,
here are our whole search pool:



[ALL EXISTING QUERY FORMATS DESCRIPTION]

Here are two code implementations from our
QUERY_FORMAT candidates as for your reference:
<Format name: Question-Answer>

<Renderer code>

[Question-Answer RENDERER CODE]

<Extractor code>

[Question-Answer EXTRACTOR CODE]

<Format name: Instruction-Response>
<Renderer code>

[Instruction-Response RENDERER CODE]
<Extractor code>
[Instruction-Response EXTRACTOR CODE]

Here is the example rendered by the new format:
[RENDERED RESULTS]

Please generate the code for this provided
example based on the new QUERY_FORMAT. Ensure
that both the renderer and extractor functions
are included. The generated code should be plain
Python code without any Markdown syntax or
language identifiers such as ~~~python or "'’
python. Please output the code directly without
any additional formatting. If you need to use
any additional and specific packages, please
import them in the code. Note that the generated
functions should include properly indented
blocks, so they can execute without errors. Note
that the renderer function name should be
query_renderer_{format_name} and the extractor
function name should be query_extractor_{
format_name}.

Please encapsulate the code using the following
format:

<START>

<Format name: {format_name}>
<Description: {format_description}>
<Renderer code>

[Renderer code]

<Extractor code>

[Extractor code]

<END>

A.3 Content Optimization
A.3.1 Case-diagnosis and Revision

As described in Section 3.3, content optimization
is achieved through an iterative process of case-
diagnosis and feedback guided mutation. To fa-
cilitate this process, we utilize three distinct meta-
prompts, each tailored to a specific task within
content optimization.

Case Diagnosis Meta-Prompt. This meta-prompt
analyzes the current prompt’s performance against
a set of test cases. It identifies areas for improve-
ment and suggests specific modifications for the
next iteration.

[META PROMPT HEADER]
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Upon evaluating the current prompt, this prompt
gets the following examples wrong:
[INCORRECT CASES]

Meanwhile, this prompt gets the following
examples correct:
[CORRECT CASES]

Please review the provided examples of correct
and incorrect answers, and identify [NUM OF
DIAGNOSED COMPONENTS] specific area for
improvement in the prompts. Each suggestion
should focus on A SPECIFIC segment of the prompt
that needs optimization. For each suggestion,
provide a comprehensive explanation that
encapsulates all the evaluation results. If you
believe the EXAMPLES segment needs improvement,
you may suggest one example that can be added,
removed, or altered to enhance the EXAMPLES
segment based on the examples given. If you
think there is no need for improvement, do not
return any prompt segment.
Please encapsulate each suggestion using the
following format:

<START>

<Prompt segment: [Segment name]>
[Suggestion goes here]

<END>

Feedback Application Meta-Prompt. Based on
the diagnosis, this meta-prompt generates targeted
textual changes to enhance the prompt’s perfor-
mance. It directly modifies the identified compo-
nents of the prompt based on the feedback.

[META PROMPT HEADER]

The existing [COMPONENT NAME] segment contains:
[CURRENT CONTENT FOR THE COMPONENT]

Here are some suggestions for improving the [
COMPONENT NAME] segments:
[GENERATED DIAGNOSES]

Based on the above information, I wrote [NUMBER
OF GENERATED CONTENT] distinct and improved
versions of the [COMPONENT NAME] segment within
the prompt.

Each revised segment is encapsulated between <
START> and <END>. In case this segment is an
empty string, generate a suitable one referring
to the suggestion.

The [NUMBER OF GENERATED CONTENT] revised [
COMPONENT NAME] segments are:

Feedback Application Meta-Prompt (for Exam-
ples). This meta-prompt specifically handles the
optimization of few-shot examples. It revises exam-
ples by adding, deleting, or modifying one single
instances, ensuring that the in-context learning pro-
cess is effective.

[META PROMPT HEADER]

The existing EXAMPLES segment contains:
[CURRENT IN-CONTEXT EXAMPELS IN PROMPT]



Here are some suggestions for enhancing the
EXAMPLES segment:
[GENERATED DIAGNOSES]

Based on the above information, I have crafted [

NUMBER OF GENERATED EXAMPLES] improved version

of the EXAMPLES segment within the prompt. Each
revision represents ONLY ONE of the following
specific actions:

1. Addition: Incorporating one new example into
the existing set.

2. Deletion: Eliminating one single example from
the current set.

3. Modification: Changing the content of an

example while maintaining its contextual
relevance.

Please present the results without indicating

which action was taken. Each refined EXAMPLES
segment is marked by <START> and <END>.

The [NUMBER OF GENERATED EXAMPLES] revised
EXAMPLES are:

A.3.2 Monte-Carlo Sampling

Monte-Carlo Sampling Meta-Prompt explores a
wider range of semantically equivalent yet syntac-
tically varied instructions, enhancing the chances
of discovering more effective prompts.

[META PROMPT HEADER]

Please create a different version of [COMPONENT
NAME] segment without changing its semantic
meaning. In case this segment is an empty string,
generate a suitable one. The existing [
COMPONENT NAME] segment contains:

[CURRENT CONTENT FOR THE COMPONENT]

The varied [COMPONENT NAME] segment is as
follows:

Monte-Carlo Sampling Meta-Prompt (for Ex-
amples) refines few-shot examples by strategically
adding, deleting, or modifying single instances to
ensure their effectiveness.

[META PROMPT HEADER]

The existing EXAMPLE set contains:
[CURRENT IN-CONTEXT EXAMPELS IN PROMPT]

Please generate a variation of the EXAMPLES set

within the prompt while keeping the semantic

meaning. The revision shoud represent ONLY ONE

of the following specific actions:

1. Addition: Incorporating one new example into
the existing set.

2. Deletion: Eliminating one single example from
the current set.

3. Modification: Changing the content of an

example while maintaining its contextual
relevance.

Please present the results without indicating

which action was taken. The varied EXAMPLES
segment is as follows:

B Appendix: Examples of Generated
Format

Here we select several format generated by GPT4
in CFPO process.

B.1 Query Format
QA _Titlecase_Separator

Question || In 3 years, Jayden will be half of
Ernesto's age. If Ernesto is 11 years old, how
many years old is Jayden now?

Answer || Let's think step by step. Ernesto = 11
+ 3 = <<11+3=14>>14 Jayden = 14/2 = <<14/2=7>>7
in 3 years Now = 7 - 3 = <<7-3=4>>4 Jayden is 4
years old.

QA _Brackets_Colon_Newline

[Question]:

In 3 years, Jayden will be half of Ernesto's age.
If Ernesto is 11 years old, how many years old
is Jayden now?

[Answer]:

Let's think step by step.

Ernesto = 11 + 3 = <<11+3=14>>14 Jayden = 14/2 =
<<14/2=7>>7 in 3 years Now = 7 - 3 = <<7-3=4>>4
Jayden is 4 years old.

QA_CapsBold_ColonNewline

**QUESTION** :

In 3 years, Jayden will be half of Ernesto's age.
If Ernesto is 11 years old, how many years old
is Jayden now?

*xANSWER** :

Let's think step by step.

Ernesto = 11 + 3 = <<11+3=14>>14 Jayden = 14/2 =
<<14/2=7>>7 in 3 years Now = 7 - 3 = <<7-3=4>>4
Jayden is 4 years old.

Cascading_Statements

Question: Statement 1 | Every element of a group
generates a cyclic subgroup of the group.
Statement 2 | The symmetric group S_10 has 10
elements.
Options:

-A True, True

-B False, False

-C True, False

-D False, True

Answer: C

Highlight_Separator_Case

QUESTION > Statement 1 | Every element of a
group generates a cyclic subgroup of the group.
Statement 2 | The symmetric group S_10 has 10
elements.

OPTIONS > (A) True, True (B) False, False (C)
True, False (D) False, True

ANSWER > C

B.2 Prompt Renderer

Concise_Bullet_Points_Renderer



- Task Instruction: Write a function that
returns the sum of two numbers.

- Task Detail: The function should take two
numbers as input and return their sum.

- Examples: Input: 1, 2
OQutput: 3

- Query: Input: 1, 2
OQutput:

Tabular_Sections_Renderer

| Task Instruction | Write a function that
returns the sum of two numbers. |

| Task Detail | The function should take two
numbers as input and return their sum. |

| Examples | Input: 1, 2

OQutput: 3 |

| Query | Input:
OQutput: |

1, 2

Checklist_Format_Renderer

- [ ] **Task Instruction*x
Write a function that returns the sum of two
numbers.

- [ 1 x%Task Detailxx*
The function should take two numbers as input
and return their sum.

- [ 1 *x*Examples*x*

Input: 1, 2

OQutput: 3

- [ 1] **xQueryx*

Input: 1, 2

OQutput:

C Appendix: Initial Prompt

C.1 GSMSK

Prompt Renderer: Directly Joint Query Format:

QA

Q: There are 15 trees in the grove. Grove
workers will plant trees in the grove today.
After they are done, there will be 21 trees. How
many trees did the grove workers plant today?

A: There are 15 trees originally. Then there
were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. The answer is
6.

{{Query placeholder}}

C.2 MATHS00

Prompt Renderer: Directly Joint
Query Format: Question-Answer

A chat between a curious user and an AI
assistant. The assistant gives step-by-step
solutions to the user's questions. In the end of
assistant's response, a final answer is given
in the format of "The answer is: <ANSWER>.".
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Here are some examples:

Question: Let \[f(x) = \left\{
\begin{array}{cl} ax+3, &\text{ if }Ix>2, \\
x-5 &\text{ if } -2 \le x \le 2, \\

2x-b &\text{ if } x <-2.

\end{array}

\right.\]Find $a+b$ if the piecewise function is
continuous (which means that its graph can be
drawn without lifting your pencil from the paper

).

Answer: Let's think step by step. For the
piecewise function to be continuous, the cases
must "meet” at $2%$ and $-2$. For example, $ax+3$
and $x-5% must be equal when $x=2$%. This
implies $a(2)+3=2-5%, which we solve to get $2a
=-6 \Rightarrow a=-3$. Similarly, $x-5% and $2x-
b$ must be equal when $x=-2$%. Substituting, we
get $-2-5=2(-2)-b$, which implies $b=3$. The
answer is: $a+b=-3+3=\boxed{0}$.

{{Query placeholder}}

C.3 ARC-Challenge

Prompt Renderer: Directly Joint
Query Format: MultiChoice_QA

You are a commonsense helper. I will provide
several examples and a presented question. Your
goal is to pick the most reasonable answer among

the given options for the current question.
Please respond with the corresponding label (A/B
/C/D) for the correct answer.

Here are some examples:

Question: Forests have been cut and burned so
that the land can be used to raise crops. Which
consequence does this activity have on the
atmosphere of Earth?

Choices:

A: It reduces the amount of carbon dioxide
production

B: It reduces the production of oxygen

C: It decreases the greenhouse effect

D: It decreases pollutants in the air

Answer: B

{{Query placeholder}}

C.4 Big-Bench Classification

Prompt Renderer: Directly Joint
Query Format: Input-Output

Examples:

Input: Speaker 1: 'You do this often?' Speaker 2:
'"It's my first time.'

Output: no

{{Query placeholder}}

D Appendix: CFPO Results Analysis
D.1 In-context Examples and Text Length

Figure 5 presents an overview of the number of in-
context examples and the text length of optimized
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Figure 5: Overview of in-context examples and text
lengths for various tasks and models.

prompts across various tasks and models. An in-
teresting pattern emerges: pre-trained models con-
sistently prefer prompts with longer text and more
in-context examples compared to instruction-tuned
models. This observation suggests that pre-trained
models benefit more from explicit context and de-
tailed reasoning steps, which align with their less
task-specialized nature. In contrast, the relative
insensitivity of instruction-tuned models to prompt
length and in-context examples supports the notion
that these models have already trained with task-
specific knowledge during fine-tuning, reducing
their dependence on highly detailed prompts.

D.2 Examples of Optimal Prompt

Here we selected several optimal prompts searched
by CFPO.

LLaMA-3.1-8B on GSMSK

*xUnderstanding the Task: A Foundation for
Mathematical Problem-Solving**
Your task is to methodically analyze the
information provided and logically deduce the
correct answer to the mathematical problem.
Delve into each relevant detail, ensuring no
critical step or aspect is overlooked. Approach
the solution with a detailed-oriented mindset,
ensuring every part of the process is considered
to arrive at an accurate conclusion. Reflect on
all the elements that might influence your
reasoning or calculation, striving for
thoroughness in your analysis.

**Decoding Mathematical Language in Real-World
Scenarios**
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For the most effective problem-solving in
mathematics, particularly when faced with
intricate calculations over periods or under
specific scenarios affecting results, an
attentive and systematic method is key. Start by
accurately determining the base numerical value.
Then proceed by methodically listing every
significant change whether it be increases,
decreases, or modifications that impacts this
base figure as the scenario unfolds, making sure
to include each change in your overall
computations. It's essential to focus on the
concept of compounded operations, whether they'
re applied annually, monthly, or daily, and to
thoughtfully evaluate the consequences of
extraordinary events or circumstances (like an
unexpected inheritance, a yearly loss, or a
singular occurrence with a major impact) that
might significantly shift the end calculations.
Sharpen your attention on the dynamics of
numerical relationships, particularly in cases
involving ratios, proportions, and the impact of
percentage changes over durations, to avoid
common mistakes. Misunderstandings or
misapplications of these numerical relationships
can frequently cause inaccuracies. Thus, it is
critical to scrutinize these mathematical
relationships, whether they are of direct or
inverse proportions, as well as the aggregate
effects of consecutive percentage changes, as
outlined in the problem description. This
intensified attention is pivotal for an accurate
and detailed resolution of complex issues,
marked by multiplicative elements and
interconnected circumstances. Reflect deeply on
the significance of every step in the
calculation process, absorbing the nuances of
these changes, to systematically arrive at the
most precise solution.

**Ensuring Your Solution Fits the Scenario
Perfectlyxx*
In presenting your solution, ensure it comprises
both a numerical answer and a meticulously
detailed explanation of the process leading to
it. Begin with outlining the initial conditions
and sequentially narrate the calculations you
make at each step, highlighting any compounded
operations or adjustments made to account for
unique scenarios or conditions. This progression
should clearly show how each step contributes
to arriving at the final answer. For instance,
if the task involves calculating the total costs
saved over time with additional periodic
benefits, your response should methodically
explain: "Starting with an initial savings of X,
plus Y every Z period, and considering an
additional benefit of A every B period, leads to
a total of...". This comprehensive breakdown
not only bolsters the understanding of the
mathematical principles applied but also
provides a robust framework for identifying and
rectifying any potential inaccuracies throughout
the problem-solving process.

**xExamples to Illuminate the Path#*x

To better grasp the concepts, consider the
following illustrative examples:

Question: There are 15 trees in the grove. Grove
workers will plant trees in the grove today.
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After they are done, there will be 21 trees. How
many trees did the grove workers plant today? /
ANSWER: Think through the problem step by step,
diving into each segment for a thorough

exploration to piece together the final answer.

There are 15 trees originally. Then there were

21 trees after some more were planted. So there

must have been 21 - 15 = 6. The answer is 6.

Question: A book club starts with a membership
of 120. If the club increases its membership by
10% in the first year and then loses 5% of its
members in the second year, what is the total
membership at the end of the second year? /
ANSWER: Think through the problem step by step,
diving into each segment for a thorough
exploration to piece together the final answer.
The club starts with 120 members. In the first
year, it increases by 10%, which is 0.10 * 120 =

12, so there are 120 + 12 = 132 members after
the first year. In the second year, the club
loses 5% of its members, which is 0.05 * 132 =
6.6, but since the number of members must be an
integer, we consider a loss of 7 members (
assuming the figure is rounded up for practical
reasons). Therefore, there are 132 - 7 = 125
members at the end of the second year.

Question: Martin saves $10 every week. In
addition, every third week, he earns an extra
$15 from helping his neighbor. How much has
Martin saved after 9 weeks? / ANSWER: Think
through the problem step by step, diving into
each segment for a thorough exploration to piece
together the final answer. Martin saves $10
each week, so over 9 weeks, he saves 9 * $10 =
$90. Additionally, every third week, he earns an
extra $15, which occurs three times within 9
weeks (in the 3rd, 6th, and 9th weeks). So, he
earns an extra 3 * $15 = $45 from helping his
neighbor. Therefore, the total amount Martin has
saved after 9 weeks is $90 + $45 = $135.

Question: A teacher divides a class into groups
for a project. If the ratio of boys to girls in
the class is 3 to 2, and there are 30 students
in the class, how many boys are in the class? /
ANSWER: Think through the problem step by step,
diving into each segment for a thorough
exploration to piece together the final answer.
The total ratio units for boys to girls in the
class is 3 + 2 = 5. With 30 students in the
class, each ratio unit represents 30 / 5 = 6
students. Therefore, the number of boys,
represented by 3 parts of the ratio, is 3 *x 6 =
18. The answer is 18.

Question: Grandma wants to order 5 personalized
backpacks for each of her grandchildren's first
days of school. The backpacks are 20% off of $20
.00, and having their names monogrammed on the
backpack will cost $12.00 each. How much will
the backpacks cost in total? / ANSWER: Think
through the problem step by step, diving into
each segment for a thorough exploration to piece
together the final answer. The backpacks are
20% off of $20.00, so the price after the
discount is $20.00 - ($20.00 x 20%) = $20.00 -
$4.00 = $16.00 each. The monogramming costs an
additional $12.00 per backpack. Therefore, the
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total cost for each backpack is $16.00 + $12.00
= $28.00. For 5 backpacks, the total cost will

be 5 x $28.00 = $140.00. The correct answer is

$140.00.

**Queryxx

{{query3}}
LLaMA-3-8B-Instruct on MATH-500

- Task Instruction: A chat between a curious
user and an AI assistant focused on solving
mathematical and reasoning tasks. The assistant
is expected to deliver step-by-step solutions to
the user's questions, emphasizing mathematical
accuracy and rigor throughout the process. It
must ensure that each mathematical operation and
logical deduction is carefully examined and
validated to derive the correct solution. At the
conclusion of the response, the final answer
should be presented in the format of "The answer
is: <ANSWER>.", thereby confirming the solution
's validity and demonstrating a thorough
understanding of the problem-solving approach.

- Task Detail: In addressing equation-based
inquiries, precision in algebra, geometry,
piecewise functions, complex numbers, and
financial mathematics is paramount. This
involves a detailed analysis of each equation,
assessing every element and specific condition.
For piecewise functions, it's critical to ensure
continuity by solving for variables that
maintain consistency across sections. In
geometry, integrating measurements such as
angles, lengths, and areas is fundamental.
Algebraic queries require a consideration of all
potential solutions and constraints, ensuring a
comprehensive resolution. The addition of
complex numbers into this mix necessitates a
thorough understanding of their properties and
operations to accurately determine both real and
imaginary solutions. Similarly, tackling
financial mathematics problems demands a deep
comprehension of concepts such as compound
interest, present value, and future value to

make precise financial forecasts and comparisons.

This holistic approach confirms that all
aspects of the problem are considered and that
the solution accounts for every requirement,
assuring mathematical integrity in the
resolution process.

- Output Format: 1. Solutions that involve
fractions, square roots, or crucial mathematical
figures (e.g., pi) must be simplified to their
most fundamental form. This includes reducing
fractions to their lowest terms and expressing

square roots in their least complex radical form.

2. Avoid the use of decimals unless the question
explicitly requires it or they are necessary
for conveying the most precise value possible.
3. Present solutions involving square roots in
their reduced radical form, ensuring the
simplification process enhances comprehension
without diluting mathematical integrity.
4. In scenarios involving complex numbers,
represent answers in their standard form (a + bi
), ensuring both 'a' and 'b' are presented in
their simplest, most refined state. This

1424
1425
1426
1427
1428
1429
1430

1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492



1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562

emphasizes the need for a clear, coherent
representation of solutions encompassing complex
numbers.
5. Conclude your explanation with the statement:
"The answer is: \[<ANSWER>\].", reinforcing
consistency and clarity across various
mathematical challenges. This concluding
statement should encapsulate the solution in its
simplest and most direct form, reflecting a
thorough simplification and rationalization
process.

Your explanation must delineate a detailed, step-
by-step progression leading to the final
solution. This approach is not merely about
arriving at the correct answer but about
illuminating the path taken to get there,
ensuring a deep understanding and clear
demonstration of the reasoning behind each step.

- Examples: Here are some examples:

### Instruction:

A rectangle ABCD has sides AB = 8 units and BC =
6 units. A circle with a radius r units is
inscribed within this rectangle. Calculate the
radius r of the inscribed circle, ensuring the
answer is in its simplest form.

### Response:
We'll approach this problem by breaking it down
into manageable steps. We start by understanding
that the radius of the inscribed circle is
equal to the distance from the center of the
rectangle to any of its sides because the circle
is perfectly inscribed. In a rectangle, this
distance is half the length of the rectangle's
shorter side. Therefore, the radius r of the
inscribed circle is half the length of BC, which
is $6 \div 2 = 3% units. The answer is: $r=3$.

### Instruction:

Given a triangle where two sides are represented
by complex numbers (3 + 4i) units and (1 - 2i)
units, and the angle between them is 90 degrees,
calculate the length of the hypotenuse. Ensure
your answer includes a comprehensive breakdown

of complex number operations and geometric
principles applied.

### Response:
We'll approach this problem by breaking it down
into manageable steps. We start by acknowledging
that the length of a side represented by a
complex number can be found using the modulus of
that number. The modulus of the first side is $
\sqrt{3"2 + 472} = 5% units, and the modulus of
the second side is $\sqrt{1%2 + (-2)"2} = \sqrt
{5}% units. Since these sides form a right
triangle and we are given that the angle between
them is 90 degrees, we can apply the
Pythagorean theorem to find the length of the
hypotenuse. The hypotenuse's length squared will
be the sum of the squares of the lengths of the
other two sides, which is $5%2 + (\sqrt{5})"2 =
25 + 5 = 30%. Thus, the length of the
hypotenuse is $\sqrt{303}$ units. The answer is:
$\sqrt{30}$.

- Query:
{{query3}}
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LLaMA-3.1-8B on ARC-C

<div class='TaskInstruction'>
<h2>TaskInstruction</h2>
<p>Your mission is to meticulously assess each
situation presented alongside a specific
question, employing your critical thinking and
analytical skills. Your task comprises not
only identifying the most logical and coherent
choice (A/B/C/D) but also thoroughly
evaluating how each option connects or
diverges from the question's essence. This
requires a deep engagement with both the query
and the choices, ensuring your reasoning is
firmly anchored in the specifics of the
options provided. It is essential to weave
direct elements from the choices into your
analysis, demonstrating a detailed
understanding of how each option relates to
the core question, and articulating why
alternatives may be less fitting given the
scenario. This approach ensures a nuanced and
well-justified selection process, grounded in
the interplay between the question context and
the specific details of the available choices

.</p>

</div>

<div class='TaskDetail'>
<h2>TaskDetail</h2>

<p>In addressing the questions set before you,
it is imperative to delve deeper than mere
superficial observations or initial judgments.
Each scenario or question must be examined
not just in its immediate context but within a
broader spectrum, looking into the
underpinning mechanisms or far-reaching
effects of each option presented. This
necessitates a thorough exploration of the
larger implications and the scientific or
logical foundations that dictate the outcomes.
For instance, in environmental matters, it is
vital to assess not just the immediate
effects but the sustained impact on the
ecosystem. In the realm of science, such as
when discerning chemical processes, it is
crucial to understand the molecular or atomic
level changes that classify a reaction as a
chemical change. This enhanced level of
scrutiny and deeper analysis will lead to more
accurate and well-founded choices, ensuring
your responses are not just correct, but are
also backed by a solid understanding of the
underlying principles or long-term
consequences.</p>
</div>
<div class='OutputFormat'>
<h2>0QutputFormat</h2>
<p>For every query presented, your task is to
identify the right choice from the options (A/
B/C/D) accompanied by a concise rationale for
your selection. This format is vital as it
showcases the thought process leading to your
decision, facilitating a comprehensive grasp
and interaction with the task.</p>

</div>
<div class='Examples'>
<h2>Examples</h2>

<p>Here are some examples:

Question: Forests have been cut and burned so

1563

1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631



1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

that the land can be used to raise crops. Which
consequence does this activity have on the
atmosphere of Earth?

A: It reduces the amount of carbon dioxide in
the atmosphere

B: It reduces the availability of oxygen

C: It lessens the greenhouse effect

D: It lowers the levels of pollutants in the air
Answer: B

Question: What is the most critical practice to

ensure electrical safety while operating devices
5

A: Ensure the device does not come into contact

with water.

B: Use the device with hands covered in oil.

C: Operate the device with wet hands.

D: Leave the device plugged in when not in use.

Answer: A

Question: Placing a plant cell in a hypertonic
solution typically results in which of the
following?

A: The cell expanding as it absorbs water.

B: No significant change due to the rigid cell
wall.

C: The cell shrinking as water exits the cell.
D: Rapid division of the cell.

Answer: C

Question: What is the primary effect of using
fossil fuels on global climate change?

A: It leads to a significant reduction in
greenhouse gases.

B: It decreases the Earth's surface temperature.
C: It increases the amount of greenhouse gases
in the atmosphere.

D: It contributes to a decrease in carbon
dioxide levels.

Answer: C

Question: The process of photosynthesis in
plants primarily involves which of the following
transformations?

A: Converting oxygen and glucose into carbon
dioxide and water

B: Transforming water and carbon dioxide into
oxygen and glucose

C: Changing sunlight into chemical energy

without producing oxygen

D: Producing carbon dioxide and glucose from
oxygen and water

Answer: B

{{ query }}

18



	Introduction
	Related Work
	CFPO: Content-Format Integrated Prompt Optimization
	Structured Prompt Template
	Format Optimizer Design
	Format Pool with Scoring System
	LLM-assisted Format Generation
	Search Format via Format Optimizer

	Integrated Optimizer Design

	Experiments
	Experimental Setups
	Main Results
	Ablation Study

	Conclusion
	Appendix: Detailed Optimization Process and Meta-Prompts
	Meta-Prompt Header Setup
	Format Generation
	Content Optimization
	Case-diagnosis and Revision
	Monte-Carlo Sampling


	Appendix: Examples of Generated Format
	Query Format
	Prompt Renderer

	Appendix: Initial Prompt
	GSM8K
	MATH500
	ARC-Challenge
	Big-Bench Classification

	Appendix: CFPO Results Analysis
	In-context Examples and Text Length
	Examples of Optimal Prompt


