
Published in Transactions on Machine Learning Research (02/2023)

Approximation, Estimation and Optimization Errors for a
Deep Neural Network

B. Keene keene@ucf.edu
Department of Mathematics
University of Central Florida
Orlando, FL 32816, USA

G. Welper gerrit.welper@ucf.edu
Department of Mathematics
University of Central Florida
Orlando, FL 32816, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= dzND5haNvA

Abstract

The error of supervised learning is typically split into three components: approximation,
estimation and optimization errors. While all three have been extensively studied in the
literature, a unified treatment is less frequent, in part because of conflicting assumptions.
Current approximation results rely on carefully hand crafted weights or practically unavail-
able information, which are difficult to achieve by gradient descent. Optimization theory is
best understood in over-parametrized regimes with more weights than samples, while clas-
sical estimation errors require the opposite regime with more samples than weights. This
paper contains two results which bound all three error components simultaneously for (non-
convex) training of the second but last layer of deep fully connected networks on the unit
sphere. The first uses a regular least squares loss and shows convergence in the under-
parametrized regime. The second uses a kernel based loss function and shows convergence
in both under and over-parametrized regimes.

1 Introduction

In this paper, we consider supervised learning of fully connected neural networks without bias: For network
fθ with weights θ and normalized training samples (xi, yi) on the d-dimensional sphere, we minimize the loss

ℓ(θ) = 1
2N

N∑
i=1

|fθ(xi) − yi|2

by gradient descent. We also consider alternative losses, which allow more flexibility with regard to the num-
ber of samples and network size. The main results provide a complete error analysis including approximation
errors, estimation errors and optimization errors (Shalev-Shwartz & Ben-David, 2014).

1.1 Literature Review

Approximation Error: If the data points yi = f(xi) are generated by some unknown target function f ,
how well can the network approximate it, i.e. how large is the error infθ ∥fθ − f∥L2(D) on some domain D,
ignoring error contributions from sampling and optimization algorithms? Typical results establish bounds

inf
θ

∥fθ − f∥L2(D) ≤ cn(θ)−r, f ∈ K, (1)
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for some rate r > 0, with an asymptotic rate n(θ)−r, where n(θ) is a complexity measure of the network,
e.g. width, depth or total number of weights. Any quantifiable rate requires some prior conditions on f ,
here given by membership in a compact set K, which typically consists of functions with bounded Sobolev,
Besov, Barron or other smoothness norms.

First results show universal approximation properties (Cybenko, 1989; Hornik et al., 1989; Barron, 1993;
Zhou, 2020; Lu et al., 2017; Hanin & Sellke, 2017) and reproduction of classical approximation rates for targets
with Sobolev and Besov regularity (Gribonval et al., 2022; Gühring et al., 2020; Opschoor et al., 2020; Li
et al., 2019; Suzuki, 2019). More recent papers provide super-convergence results, where networks outperform
classical methods, as well as optimality benchmarks like manifold width, for the price of discontinuous weight
assignments (Yarotsky, 2017; 2018; Yarotsky & Zhevnerchuk, 2020; Daubechies et al., 2022; Shen et al., 2019;
Lu et al., 2021). Approximation results with smoothness requirements more tailored to neural networks use
Barron and related spaces (Bach, 2017; Klusowski & Barron, 2018; Weinan et al., 2022; Li et al., 2020; Siegel
& Xu, 2020; 2022a; Bresler & Nagaraj, 2020). Several surveys are given in (Pinkus, 1999; DeVore et al.,
2021; Weinan et al., 2020; Berner et al., 2022).

In the above results, the weights are not trained by practical optimizers, but rather hand-picked or sampled
from practically unknown distributions. Practical networks do not always achieve the theoretical bounds
Adcock & Dexter (2021); Grohs & Voigtlaender (2023) The papers Jentzen & Riekert (2022); Ibragimov
et al. (2022); Gentile & Welper (2022); Welper (2024b;a) are closely related to the results in this paper and
provide an analysis of approximation errors in combination with gradient descent training. Finally Siegel
& Xu (2022b); Siegel et al. (2023); Beck et al. (2022); Herrmann et al. (2022) consider approximation or
estimation with alternative optimizers like greedy algorithms.

Generalization and Estimation errors: Practically, one can neither evaluate nor optimize the L2(D)
error directly, and therefore trains the sample or empirical loss, resulting in the empirical risk minimizer θ̂.
The resulting expected loss is called the generalization error and split into the approximation error and a
remaining estimation error, (Shalev-Shwartz & Ben-David, 2014):

∥fθ̂ − f∥2
L2(D) = inf

θ
∥fθ − f∥2

L2(D) +
(

∥fθ̂ − f∥2
L2(D) − inf

θ
∥fθ − f∥2

L2(D)

)
.

There are many techniques to bound generalization and estimation errors, for example by establishing
uniform bounds between the expected and sample loss

sup
θ

∣∣∣∣∣∥fθ − f∥2
L2(D) − 1

2N

N∑
i=1

|fθ(xi) − f(xi)|2
∣∣∣∣∣ ≲ C +N−1/2 (2)

for some complexity measure C of the neural networks like VC-dimension or Rademacher complexity. VC-
dimension bounds of the form VC-dim ≲ Õ(Ln(θ)) for total number of weights n(θ) and depth L are in
Neyshabur et al. (2017); Bartlett et al. (1998); Harvey et al. (2017). Bounds for the Rademacher complexity

tend to be independent of the size of the network as e.g. O
(√

L
∏L

ℓ=1
∥W ℓ∥F√

N

)
for weight W ℓ in the Frobenius

norm from Golowich et al. (2018). Similar bounds are in Neyshabur et al. (2015); Liang et al. (2019); Tu
et al. (2020). While the norm ∥W ℓ∥F may grow for wide networks with standard scaling, newer results
depend on the difference ∥W ℓ −W ℓ

0 ∥ to some reference or initial weights W ℓ
0 in Frobenius and other matrix

norms, which tends to be small in the over-parametrized limit and leads to some combined generalization
and gradient descent convergence results (Cao & Gu, 2020). Other Rademacher complexity bounds rely on
smoothness (Weinan et al., 2022; 2019). Further techniques include margin theory (Jakubovitz et al., 2019;
Neyshabur et al., 2018; Bartlett et al., 2017) mutual information (Asadi et al., 2018; Steinke & Zakynthinou,
2020) compression (Arora et al., 2018) and Besov regularity (Suzuki, 2019). Empirical observations show
that against conventional wisdom neural networks generalize well in over-parametrized regimes, with enough
weights to fit random data, (Neyshabur et al., 2017; Zhang et al., 2017; Geiger et al., 2019).

Optimization Error: Both the empirical loss minimizer θ̂ = argmin ℓ(θ) and the approximation error
infθ ∥fθ−f∥2

L2(D) build on an optimization problem. Since these are non-convex, can we practically compute
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the minimizers, or at least a sufficiently good substitute? This question is addressed in the optimization
literature for neural networks. The approach in this paper relies on the neural tangent kernel (NTK) coined
in Jacot et al. (2018) and introduced simultaneously in Li & Liang (2018); Allen-Zhu et al. (2019); Du et al.
(2019b;a). The concept is further developed in Zou et al. (2020); Arora et al. (2019a;b); Su & Yang (2019);
Lee et al. (2019); Song & Yang (2019); Zou & Gu (2019); Kawaguchi & Huang (2019); Chizat et al. (2019);
Oymak & Soltanolkotabi (2020); Ji & Telgarsky (2020); Nguyen & Mondelli (2020); Bai & Lee (2020); Chen
et al. (2021); Song et al. (2021); Lee et al. (2022); Gentile & Welper (2022); Welper (2024b;a). In this paper
we use lower bounds for the NTK that originate from Bietti & Mairal (2019); Geifman et al. (2020); Ji et al.
(2020); Chen & Xu (2021). The optimization literature contains may other approaches that we only mention
briefly: Landscape analysis (Nguyen & Hein, 2017; Ge et al., 2018; Du & Lee, 2018; Soltanolkotabi et al.,
2019; Venturi et al., 2019), Wasserstein gradient flow (Soudry & Carmon, 2016; Safran & Shamir, 2018;
Chizat & Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2020),
as well as several overviews (Weinan et al., 2020; Berner et al., 2022; Roberts et al., 2022).

Generalization and Optimization: The definition of stochastic gradient descent intertwines optimiza-
tion with sampling and the literature provides positive effects on generalization. This can be analyzed in
abstract settings, e.g. the paper Hardt et al. (2016) bounds the generalization error between empirical and
expected risk of SGD iterates of general convex and non-convex objective functions. In addition, it bounds
the expected loss between SGD and empirical risk minimizers in the convex case.

Other papers are more specific to neural networks, i.e. Cao & Gu (2020); Nitanda & Suzuki (2021) consider
a combination of estimation and optimization in over-parametrized regimes. The latter proves generalization
errors for stochastic gradient descent by comparing its dynamics with an NTK idealization, yielding minimax
optimal SGD convergence rates. In addition, it does not require any lower bounds on the NTK eigenvalues,
similar to Welper (2024b) and the current paper. The papers Wang & Ma (2023); Liu et al. (2022); Park
et al. (2022); Neu et al. (2021) find improved estimation bounds by explicitly incorporating gradient descent
dynamics. Another closely related set of results is Drews & Kohler (2022); Kohler & Krzyzak (2022), which
consider all three error contributions and control the optimization error based on the contributions of the
final layer.

1.2 New Contributions

This paper contains generalization error bounds of the form

∥fθ − f∥2
L2(Sd−1) ≲ m−a +mbN−c,

where m is the width of the fully connected network fθ, N is the number of samples and a, b, c ≥ 0 are
constants specified more closely in the main Theorems 2.2, 2.4. The weights θ on the left hand side are
the output of gradient descent training on two different discrete losses. For simplicity, we confine the data
to uniform samples on the unit sphere and train only the non-convex second but last layer. The new
contributions of this bound are as follows:

Less Over-Parametrization: While over-parametrization in total number of weights is common in prac-
tical neural networks, current optimization theory heavily relies on much larger networks with more width
than samples m ≫ N . In contrast, successful architectures like AlexNet Krizhevsky et al. (2012) or ResNet
He et al. (2016) are much thinner m < N (including channels, width and height).

Our result does not require any relation between m and N . For b > 0, this provides small bounds in
m < N regimes (including under-parametrization). For a kernel based loss, Theorem 2.4 achieves b = 0,
resulting in small bounds for any regime m ⋚ N (including under- and over-parametrization). To the best
of our knowledge, this is the first result that shows gradient descent convergence for deep neural networks
independent of the relation between network size and number of samples.

Unified Analysis: The given bound contains approximation errors (m−a), estimation errors (mbN c) and
optimization errors (θ is trained by GD). These bounds can be found in the literature in isolation, but
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rarely in one single theorem because of conflicting assumptions. The optimization literature requires over-
parametrization so that all data yi = f(xi) can be correctly reproduced by the network yi = fθ(xi). This
directly entails maximally large Rademacher complexity and hence conflicts with common assumptions for
estimation error bounds. In the infinite sample limit considered in approximation theory, this also confines
the target functions f to neural networks themselves, instead of rich classes of practical relevance. Therefore,
the approximation literature ignores the optimization problem in favour of simpler hand-picked weights.

Only a few papers in the literature can balance all required assumptions and provide bounds for approxi-
mation, estimation and optimization in one single theorem. The papers Drews & Kohler (2022); Kohler &
Krzyzak (2022), use non-standard architectures, which allow a derivation of error bounds from the last layer
alone. This is a convex training objective, in contrast to this paper, which analyzes the training contribu-
tions form non-convex layers of standard fully connected networks. The papers Cao & Gu (2020); Nitanda
& Suzuki (2021) include estimation and optimization errors, but require excessive over-parametrization as
is typical in the current literature.

Estimation: The prior work Gentile & Welper (2022); Welper (2024b;a) establishes approximation and
optimization error bounds. This paper contributes a corresponding analysis of the estimation errors, based
on two alternative approaches. The first follows more traditional lines and bounds the complexity of the
network directly. The second relies on smoothness bounds that arise from gradient descent training.

1.3 Overview

We use the following two techniques to show estimation errors.

Network Complexity: The most common complexity measures are VC-dimension and Rademacher com-
plexity, which in turn can be bounded by chaining techniques, i.e. by Dudley’s inequality (Shalev-Shwartz
& Ben-David, 2014). In our case, it is convenient to skip the Rademacher complexity and use Dudley’s
inequality directly because it has already been used to establish NTK concentration inequalities for the
approximation and optimization error bounds (Welper, 2024b).

We minimizes the sample loss

ℓ(θ) = 1
2

N∑
i=1

|fθ(xi) − f(xi)|2 (3)

for N uniformly random normalized samples xi on the unit sphere Sd−1 with gradient descent. We show
that as long as the error does not satisfy the approximation and estimation error estimate

∥fθ − f∥2
L2(Sd−1) ≲ m−a +mbN−c,

with network width m, the gradient descent error decreases exponentially. The rates a, b and c are specified in
Theorem 2.2 below and depend on the Sobolev smoothness of the target function f . Although we optimize the
discrete sample loss, we bound the error in the continuous L2(Sd−1) norm and therefore obtain the expected
or generalization error. The result is comparable to standard machine learning theory. In particular, the
second term requires that the number of samples N is larger than the width m of the network (up to some
power).

Smoothness: While requiring more samplesN than widthmmatches common wisdom in machine learning
theory, it does not explain the empirical observation that neural networks generalize well in over-parametrized
regimes. To establish generalization error bounds in this regime, we rely on a different complexity measure:
The approximation and optimization results in Welper (2024b;a) establish that the Sobolev norm of the
gradient descent iterates ∥fθn −f∥Hs(Sd−1) remains uniformly bounded, independent of the size of the network.
If s > 1+d/2, Sobolev embedding theorems imply that fθ is uniformly Lipschitz and therefore the estimation
error bound (2) can be proven by uniform laws of large numbers (Vershynin, 2018, Section 8.2).
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Unfortunately, the current theory only provides bounds for s < 1/2, insufficient for the argument. We may,
however, proceed with the kernel loss

ℓk(θ) = 1
2N

N∑
i=1

⟨k(xi, ·), fθ − f⟩2
, (4)

with uniformly random xi, which probes the residual fθ − f with an integral kernel k(x, y), x, y ∈ Sd−1 in
the L2 inner product ⟨·, ·⟩ and is easier to bound in low regularity settings. Moreover, for common kernels
like the heat kernel, Gaussian kernel e−|x−y|2/σ2 or Laplacian kernel e−|x−y|/σ, this loss converges to the
standard mean squared loss (3) for σ → 0 and proper normalization.

Although our interest in this kernel loss is of theoretical nature, to explore new arguments for generalization
in over-parametrized regimes, it is similar to variational losses in VPINNs (Kharazmi et al., 2019; 2021),
used to solve PDEs with neural networks. In this application, it is common that PDE solutions do not admit
continuous point evaluations, and instead one probes the residual ⟨fθ − f, v⟩ with test functions v from some
linear subspace, for which the given kernels would be one example.

The kernel loss also bears a resemblance with randomized smoothing (Cohen et al., 2019): In order to
mitigate adversarial attacks on a classifier fθ for Y classes, these methods choose the class that is most likely
under normal perturbations ϵ ∼ N (0, δ2)

g(x) = arg max
c∈Y

Pr [fθ(x+ ϵ) = c] .

In comparison, for a Gaussian kernel with variance δ2, the kernel loss is identical to the mean squares loss
of the averaged network

gθ(x) = E [fθ(x+ ϵ)] = ⟨k(x, ·), fθ⟩ .

The second main result shows that for the kernel loss, gradient descent decreases exponentially until it
reaches the approximation and estimation error

∥fθ − f∥2
L2(Sd−1) ≲ m−a +N−c,

again with rates a and c dependent on the Sobolev regularity of f as specified in Theorem 2.4. The two error
contributions on the left hand side are decoupled and we achieve the worst case of the approximation error
m−a and the sample error N−c. Contrary to the first result and conventional machine learning theory, this
allows meaningful generalization errors even in over-parametrized regimes with more samples N than width
m.

Estimation and Gradient Descent: To obtain the results, we do not bound the difference between
empirical and expected loss (2) directly. Instead, we compare the gradient descent evolution to an idealized
method trained on the continuous L2 loss:

θn : trained by gradient descent on loss (3) or (4).

θ̄n : trained by gradient descent on loss 1
2∥fθ̄ − f∥2

L2(Sd−1).

Convergence of the latter is established in Welper (2024a). From this we prove convergence for the former
based on perturbation analysis and sample errors for the respective gradients (not the loss as in standard
analysis (2)). This approach is reminiscent of Cohen et al. (2002), which analyzes adaptive PDE solvers
by comparing them with idealized infinite dimensional ones. The sample errors are established by Dudley’s
inequality for the sample loss (3) and by matrix Bernstein inequalities for the kernel loss (4).

2 Main Results

This section contains the main results of the paper.
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2.1 Setup

The setup is almost identical to Welper (2024b;a), with the major difference that the references train on an
idealized continuous L2(Sd−1) loss, whereas we train on practical sample losses.

Notations We denote generic constants by c, which may be different in each occurrence, but do not depend
on the width m, number of samples N or input dimension d. Alternatively, we use the shorthand a ≲ b,
a ≳ b, a ∼ b to denote a ≤ cb, a ≥ cb, a ≲ b ≲ a, respectively.

For integer s, Sobolev spaces Hs(Sd−1) consist of all functions on Sd−1 with L2(Sd−1) bounded weak deriva-
tives of order s. For non-integer s, these spaces can be defined by the decay of their expansion

∥f∥2
Hα(Sd−1) =

∞∑
l=0

ν(l)∑
j=1

(
1 + l1/2(l + d− 2)1/2

)2α ∣∣∣〈Y jl , f〉∣∣∣2 (5)

in spherical harmonics

Y jℓ , ℓ = 0, 1, 2, . . . , 1 ≤ j ≤ ν(ℓ), (6)

for suitable numbers ν(ℓ), see e.g. Barceló et al. (2020). We denote the corresponding inner product by
⟨·, ·⟩Hs(Sd−1).

Network We consider fully connected networks without bias

f1(x) = W 0x,

f ℓ+1(x) = W ℓm
−1/2
ℓ σ

(
f ℓ(x)

)
, ℓ = 1, . . . , L

(7)

of depth L, with normalized inputs in the unit sphere x ∈ D := Sd−1 and standard scaling. We summarize
all trainable weights in the parameter θ and abbreviate the network by fθ(x) := fL+1(x). To obtain a simple
non-convex model problem, we optimize the second but last layer WL−1 and initialize all weights randomly

WL ∈ {−1,+1}1×mL i.i.d. Rademacher not trained,
WL−1 ∈ RmL×mL−1 , i.i.d. N (0, 1) trained
W ℓ ∈ Rmℓ+1×mℓ , ℓ = 1, . . . , L− 2 i.i.d. N (0, 1) not trained
W 0 ∈ Rm1×d, i.i.d. N (0, 1) not trained.

All hidden layers are of comparable size, the input d-dimensional and the output scalar:

m := mL−1, 1 = mL+1 ≤ mL ∼ · · · ∼ m1 ≥ d.

Activation Functions We require smooth activation functions with no more than linear growth and
derivatives bounded as follows:

|σ (x) | ≲ |x|, |σ(i)(x)| ≲ 1 i = 1, 2, |σ(j)(x)| ≤ p(x), j = 3, 4, (8)

for some polynomial p(x).

Training All networks are trained by gradient descent

θn+1 = θn − γ∇θℓ(θn), (9)

with learning rate γ > 0. We use different losses ℓ(θ) for the main results and define them in the respective
sections.

6



Published in Transactions on Machine Learning Research (02/2023)

Neural Tangent Kernel The main results require coercivity of the neural tangent kernel, which has been
shown in Welper (2024b) for ReLU activations based on Bietti & Mairal (2019); Geifman et al. (2020); Chen
& Xu (2021), but remains open for smoother activations (8) used in this paper. Since we only train the
second but last layer, in our case the neural tangent kernel (NTK) is informally defined as

Γ(x, y) = lim
width→∞

R∑
r=1

∂rfθ(x)∂rfθ(y), (10)

with partial derivatives ∂WL−1
ij

abbreviated by a single index ∂r with r = 1, . . . , R := mLmL−1. The
coercivity condition is then stated as

⟨f,Hf⟩HS(Sd−1) ≳ ∥f∥HS−β(Sd−1), Hf :=
∫
D

Γ(·, y)f(y) dy (11)

for some β > 0, all S ∈ {0, s}, some smoothness level 0 ≤ s ≤ β
2 and all f ∈ Hs(Sd−1). Again, for networks

with ReLU activations, bias and all layers trained this is true with β = d/2, see Welper (2024b).

In addition, the main results require

Σk(1) ̸= 0, k = 1, . . . , L, (12)

for the Gaussian process that describes the forward evaluation of the random initial network in the infinite
width limit (Jacot et al., 2018). Its correlation matrices Σ(x, y) = Σ(xT y) only depend on the angle between
x, y ∈ Sd−1 and are, defined by

Σℓ+1(x, y) := Eu,v∼N (0,A) [σ (u) , σ (v)] , A =
[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]
, Σ0(x, y) = xT y,

As for coercivity, this property is known for ReLU activations, where Σ(1) = 1, see Chen & Xu (2021), and is
expected to be a minor technical assumption for smoother activations (8). The condition is directly related
to the NTK coercivity and with it left for future work.

2.2 Result I: Pointwise Sampling

For the first result, we use the standard least squares loss

ℓ(θ) = 1
2

1
N

N∑
i=1

[fθ(xi) − f(xi)]2, (13)

with N independent uniform samples xi ∈ Sd−1. We first collect all major assumptions.
Assumption 2.1. Assume:

1. The neural network (7) - (8) is trained by gradient descent (9).

2. The NTK satisfies coercivity (11) for 0 ≤ 2s ≤ β and the forward process satisfies (12).

3. All hidden layers are of similar size: m0 ∼ · · · ∼ mL−1 =: m.

4. Smoothness is bounded by 0 < s < 1/2.

5. Define h and τ as follows and choose learning rate γ and an arbitrary α so that

h = chm
− 1

2
1

1+α , τ = h2αm, γ ≲ h
√
m, 0 ≤ α < 1 − s.

for some constant ch that may depend on the initial error ∥fθ0 − f∥L2(Sd−1).
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The following result is similar to Welper (2024a, Theorem 2.2), which only considers approximation and
optimization errors. While the reference trains on the continuous L2(Sd−1) loss, we train on the discrete
sample loss and therefore also include estimation errors.
Theorem 2.2. Assume we train the sample loss (13), let Assumption 2.1 be satisfied, let ∥f∥L∞(Sd−1) ≲ m1/2,
and define

∆sample(m,N) = c∆
m3/2

N1/2h
1− αs

2β ∥fθ0 − f∥−1
Hs(Sd−1)

for some sufficiently large c∆. Then with residual κn := fθn − f and probability at least 1 − cL(e−m + e−τ ),
while the gradient descent error exceeds the final approximation and estimation error

∥κk∥2
L2(Sd−1) ≥ ca

(
m− 1

2
α

1+α + ∆sample(m,N)
) s

β ∥κ0∥2
Hs(Sd−1), k < n, (14)

we have

∥κn∥2
L2(Sd−1) ≤ Ce−γ[hα+∆sample(m,N)]n∥κ0∥2

L2(Sd−1), ∥κn∥2
Hs(Sd−1) ≤ C∥κ0∥2

Hs(Sd−1).

for sufficiently large constants ca, c and C independent of m, κ0 and κn.

The proof is in Section B.2. The assumptions relate the smoothness, the size of the network and number of
samples. The only major assumption is the coercivity (11), (12), which is open for our activations but can
be easily inferred from the literature (Bietti & Mairal, 2019; Geifman et al., 2020; Chen & Xu, 2021) for
ReLU activations. In the latter case, β depends on the input dimension d and therefore all other bounds are
also dimension dependent, although this is not explicit in the stated results. See Welper (2024b) for details,
and numerical verification for smoother activations required in the theorem.

The result shows that gradient descent converges exponentially fast until the error is sufficiently small (14)
and we have

∥κn∥2
L2(Sd−1) < ca

(
m− 1

2
α

1+α + ∆sample(m,N)
) s

β ∥κ0∥2
Hs(Sd−1), (15)

The first summand, m− 1
2

α
1+α together with the smoothness ∥κ0∥2

Hs(Sd−1) provides a typical approximation
error bound of the form (1). The second term ∆sample, bounds the sample error and has the typical N−1/2

dependence on the number of samples together with some factors of m and h that measure the complexity
of the network. In particular, for the overall error to be small, we must have more samples N than width m.
Remark 2.3. We can simplify the final error bound (15) as follows. First, we allow all constants to depend
on the initial value κ0 and drop all terms that contain it. Next, we distribute the outer exponent s/β to the
summands, for the price of a slightly worse constant, and obtain

∥κn∥2
L2(Sd−1) ≲ m− 1

2
α

1+α
s
β + ∆sample(m,N)

s
β .

Next, we unravel the definitions of ∆sample and h to arrive at

∥κn∥2
L2(Sd−1) ≲ m− 1

2
α

1+α
s
β +

(
m3/2

N1/2h
1− αs

2β

) s
β

≲ m− 1
2

α
1+α

s
β +

(
m3/2

N1/2

[
m− 1

2
1

1+α

]1− αs
2β

) s
β

Observing the constraints on s, β and α, we abbreviate the exponents by some numbers a, b, c ≥ 0 to obtain

∥fθ − f∥2
L2(Sd−1) ≲ m−a +mbN−c.

2.3 Result II: Kernel Sampling

Motivation Generalization errors can be derived from bounds of the form

sup
θ

∣∣∣∣∣∥fθ − f∥L2(Sd−1) − 1
2N

N∑
i=1

|fθ(xi) − f(xi)|
∣∣∣∣∣ ≤ C +N−1/2,

8
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which controls the difference between the expected and empirical loss, uniformly in all parameters θ contained
in a set Θ of all relevant parameters. The bound on the right hand side depends on some complexity measure
C such as Rademacher complexity. By the supremum in the estimate, the complexity bound usually depends
on the size of the hypothesis class {fθ | θ ∈ Θ}. In Theorem 2.2, this gives rise to the m dependent
∆sample(m,N) and therefore to the requirement of more samples than network size (although we technically
apply the argument to the gradient, not the loss).

In order to decouple the size of the network form the number of samples, we use the observation from Welper
(2024b) or Theorem 2.2 that in the initial NTK regime the Sobolev norm Hs(Sd−1) of the residual κ := fθ−f
does not grow, i.e. ∥κn∥Hs(Sd−1) ≤ ∥κ0∥Hs(Sd−1). Hence, we may replace the sample error with a bound of
the form

sup
∥κ∥

Hs(Sd−1)≤∥κ0∥
Hs(Sd−1)

∣∣∣∣∣∥κ∥2
L2(Sd−1) − 1

2N

N∑
i=1

|κ(xi)|2
∣∣∣∣∣ ≤ C +N−1/2, (16)

which is independent of the network size. If s is sufficiently large so that Hs(Sd−1) is embedded into L∞(Sd−1)
with some margin, this estimate can be shown by a uniform law of large numbers, as e.g. in Vershynin (2018,
Chapter 8.2). Such an embedding also ensures a bounded loss function, which is assumed for standard VC
dimension and Rademacher complexity bounds of the generalization error. For small s, a favorable right
hand side cannot be expected. Indeed, the map κ → ∥κ∥2

∗ := 1
2N
∑N
i=1 |κ(xi)|2 from Hs to R must be

continuous, otherwise one can find a perturbation κ̃ so that ∥κ∥L2 − ∥κ̃∥L2 ≤ ∥κ− κ̃∥L2 ≤ ∥κ− κ̃∥Hs is small
and ∥κ∥∗ − ∥κ̃∥∗ is large and as a result the left hand side of (16) must be large for either κ or κ̃. By the
Sobolev embedding theorem (Adams & Fournier, 2008) the continuity holds for s ≥ d/2 and fails otherwise.
Unfortunately, our results provide low Sobolev regularity s < 1/2, insufficient for this embedding.

For a first theoretical exploration of alternative complexity measures and in order to stay compatible with
earlier approximation and optimization results, we change the point evaluation to localized integrals

ℓk(θ) := 1
2N

N∑
i=1

⟨k(xi, ·), fθ − f⟩2
, (17)

with uniformly random xi and some integral kernel k : Sd−1 × Sd−1 → R that is smoothing and allows
continuous evaluation for all s > 0. Note that many standard kernels, like heat, Gaussian and Laplacian
kernels, converge to the Dirac delta for their “width” going to zero. As a result, the loss ℓk converges to the
regular mean square loss ℓ in (13). See Section 2.4 for more details.

Kernels Before we state the main result, we need some properties of the kernel. First, we assume it is
zonal, i.e. that k(x, y) = k(xT y). As a result, by the Funk-Hecke formula (Atkinson & Han, 2012) the
eigenfunctions are spherical harmonics Y jl (6) and for the corresponding eigenvalues λlj , we require

1 ≲ λlj ≲ 1, l ≤ L, 1 ≤ j ≤ ν(l),
λlj ≲ 1, l > L, 1 ≤ j ≤ ν(l),

(18)

so that up to a limiting level L > 0 the eigenvalues are of unit size and falling thereafter. In addition, the
kernels are bounded

sup
x∈D

∥k(x, ·)∥L2(Sd−1) ≤ Ck. (19)

We defer a more thorough discussion of kernels with the given properties to Section 2.4 and for the time
being consider a convolutional kernel on the line instead of zonal kernel on the sphere, to avoid technicalities.
In this case, a natural example is the Gaussian kernel kG(x − y) = 1√

2πte
− |x−y|2

t2 . It is diagonalized by the
Fourier transform with continuous eigenvalues

λ(ω) = k̂G(ω) = 1
2
√
π
e− ω2t2

4

for which we obtain (18) by the simple observation

λ(ω) ≲ 1, ω ∈ R, λ(ω) ≳ 1, ω2t2 ≤ 1 ⇔ |ω| ≤ 1
t
,

9
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Similar kernels on the sphere are more technical and discussed in Section 2.4.

Result Unlike more traditional complexity measures in machine learning, the smoothness ∥κn∥Hs(Sd−1) ≤
∥κ0∥Hs(Sd−1) is a byproduct of the gradient descent method and independent of the size of the network. This
yields error bounds with decoupled approximation and sampling error in the following theorem.
Theorem 2.4. Assume we train the kernel loss (17) with conditions (18), (19) and corresponding constants
Ck and L. Let Assumption 2.1 be satisfied and for arbitrary τN ≲ N define

∆sample(m,N) = c∆

[
C2
k

(τN
N

)1/2
+ C−2

k

(
N

τN

)1/2
L−s + L−s

]
.

for some sufficiently large c∆. Then with κn := fθn −f and probability at least 1−ce−τ−2τN [eτN − τN − 1]−1

while the gradient descent error exceeds the final approximation and estimation error

∥κk∥2
L2(Sd−1) ≥ ca

(
m− 1

2
α

1+α + ∆sample(m,N)
) s

β ∥κ0∥2
Hs(Sd−1), k < n,

we have

∥κn∥2
L2(Sd−1) ≤ Ce−γ[hα+∆sample(m,N)]n∥κ0∥2

L2(Sd−1), ∥κn∥2
Hs(Sd−1) ≤ C∥κ0∥2

Hs(Sd−1).

for sufficiently large constants ca, c and C independent of m, κ0 and κn.

As for Theorem 2.2 the error decays exponentially until the final sum of approximation and sample error
is reached. Unlike Theorem 2.2, the sample error ∆sample(m,N) does not depend on the network size m.
Hence, the final error is the worse of the approximation and the sample error and provides meaningful error
bounds both in under- and over-parametrized regimes.

If we choose the best possible ratio N
τN

= C4
kL

s between the number of samples N and the success probability
parameter τN , given the parameters L and Ck of the kernel, we obtain

∆sample(m,N) ≤ (1 + c∆)L−s/2, (20)

converging to zero for large L corresponding to locally concentrated kernels, see Section 2.4.

The theorem contains the inequality∥κn∥2
Hs(Sd−1) ≤ C∥κ0∥2

Hs(Sd−1) and therefore κn = fθn − f remains
bounded in the Sobolev norm. Hence, for the generalization error, we consider the hypothesis class of
bounded Sobolev functions, instead of neural networks with bounded weights as in typical Rademacher or
margin bounds.
Remark 2.5. Analogous to Remark 2.3, we can obtain a simplified error bound after training

∥fθ − f∥2
L2(Sd−1) ≲ m−a +N−c.

Here, we use that ∆sample does not depend on m and can be bounded by (20). To eliminate L, we can choose
e.g. τN =

√
N and solve the ratio N

τN
= C4

kL
s for N . Note, however, that Ck and L are not independent,

which is worked out for the heat kernel in (22), below.

2.4 Kernels

In this section, we consider kernels that meet our assumptions (18) and (19).

Heat Kernel We first consider the heat kernel kt(x, y) on the sphere Sd−1, defined as the solution of the
heat equation with Dirac delta as initial condition (Zhao & Song, 2018)

∂tkt(·, y) − ∆kt(·, y) = 0, k0(·, y) = δ(·, y),

10
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where ∆ is the Laplace-Beltrami operator on the sphere and δ(x, y) the Dirac delta distribution on the
sphere. On the flat space Rd, this kernel is identical to the Gaussian kernel (2π)−1/2t−1e−|x−y|2/t2 , while
on the sphere they differ. We use the heat kernel because it allows a particularly simple verification of our
kernel assumptions.

Indeed, since the Laplace-Beltrami operator’s eigenfunctions are spherical harmonics Y jl with eigenvalues
−l(l + d− 2) (Atkinson & Han, 2012), the heat equation has the explicit solution

kt(x, y) =
∑
l,j

e−l(l+d−2)tY jl (x)
〈
Y jl , δ(·, y)

〉
=
∑
l,j

e−l(l+d−2)tY jl (x)Y jl (y) (21)

in its eigenbasis. Therefore, the eigenvalues of the kernel are λlj = e−l(l+d−2)t and with l(l + d− 2)t ≤ 1 ⇔
l ≲ t−1/2 we have

e−1 ≤ λlj ≤ 1, l ≲ t−1/2,

λlj ≤ 1, l ≳ t−1/2

so that the kernel assumption (18) is satisfied with L = ct−1/2. Since the eigenvalues decay exponentially,
the Sobolev norms of the kernel are bounded. More concretely, Lemma D.1 in the supplementary material
shows that

∥kt(·, y)∥2
L2(Sd−1) ≤ C2

k =: ct−d+3/2.

In conclusion, the heat kernel satisfies all assumptions of Theorem 2.4 and the sample error (20) simplifies
to

∆sample(m,N) ≤ (1 + c∆)ts/4,
N

τN
∼ t−

1
2 s−4d+6 (22)

for the given number of samples. By construction, for t → 0 the kernel converges to the Dirac delta and
therefore the kernel loss (17) converges to the sample loss (13).

Gaussian and Laplace Kernels In order to obtain some further insight into permissible kernels, we
consider the Gaussian and Laplacian kernels

kG(x− y) = 1√
2πt

e− |x−y|2

t2 , kL(x− y) = 1
2te

− |x−y|
t

on the real line R. For s < 1/2, these are clearly bounded in Hs(R). Moreover, since these are convolutional
kernels, the eigenvalues correspond to the Fourier coefficients, given by

k̂G(ω) = 1
2
√
π
e− ω2t2

4 , k̂L(ω) =
√

2
π

1
1 + ω2t2

.

Thus, we easily obtain the analogues of the eigenvalue bounds (18):

k̂G(ω) ≲ 1, ω ∈ R, k̂G(ω) ≳ 1, ω2t2 ≤ 1 ⇔ |ω| ≤ 1
t
,

k̂L(ω) ≲ 1, ω ∈ R, k̂L(ω) ≳ 1, ω2t2 ≤ 1 ⇔ |ω| ≤ 1
t
.

Similar results on the sphere are significantly more involved and beyond the scope of this paper. See e.g.
Geifman et al. (2020, Appendix C) for an analysis of the Laplace kernel, without the fine grained dependence
on t required for our purposes.

2.5 Sketch of Proof

Overview This section contains a short overview over the proofs of Theorems 2.2 and 2.4. We start by
introducing a scale of continuous loss functions

ℓS(θ) := 1
2∥fθ − f∥2

HS(D), S ∈ {0, s}.

11
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For S = 0, this loss is the generalization or L2(D) error. For S = s > 0, the loss is used to control the Sobolev
smoothness of the neural networks later in the proof. For convenience, we abbreviate ⟨·, ·⟩s := ⟨·, ·⟩Hs(D) and
κ := fθ − f . A simple calculation and the mean value theorem yield that the loss evolves as

ℓS(θn+1) − ℓS(θn) = −γ
∑
r

⟨κ, ∂rfθ̄⟩S ∂rℓ(θ
n),

for some θ̄ on the line segment between θn and θn+1. On the left hand side, we use the ℓS loss, i.e. the
generalization error or the smoothness, because these are the quantities we ultimately want to control in the
theorems. On the right hand side, we have the discrete loss ℓ that we actually train on. By a perturbation
argument, we replace the discrete loss with the continuous one:

ℓS(θn+1) − ℓS(θn) = −γ
∑
r

⟨κn, ∂rfθ̄⟩S ∂rℓ0(θn) − γ
∑
r

⟨κn, ∂rfθ̄⟩S [∂rℓ(θn) − ∂rℓ0(θn)] .

=: GD0 + Perturbation

The perturbation term will be bounded by

Perturbation ≤ γ∆sample(m,N)∥κk∥0∥κk∥S ,

giving rise to the terms ∆sample(m,N) in the main theorems.

Convergence of GD0 We first consider the case that the perturbation term Perturbation is zero. This
corresponds to training on the continuous L2(D) loss ℓ0 directly and has been studied in Welper (2024b;a).
The convergence analysis is based on the observation that

ℓ0(θn+1) − ℓ0(θn) ≤ −γ ⟨κn, Hκn⟩0 + perturbation,
ℓs(θn+1) − ℓs(θn) ≤ −γ ⟨κn, Hκn⟩s + perturbation,

(23)

where H is the linear integral operator induced by the neural tangent kernel

Γ(x, y) = lim
width→∞

R∑
r=1

∂rfθ0(x)∂rfθ0(y).

In short, the terms −γ ⟨κn, Hκn⟩ are a linearization of the gradient −γ∥∇θfθ∥2, usually found in gradient
descent analysis. This linearization remains accurate because of the crucial observation that the weights
θ0 − θn do not move far from their initial during training.

Ignoring the linearization error, the left hand sides of (23) are bilinear forms and therefore allow simple
convergence proofs if the eigenvalues of H are lower bounded. While this is true in over-parametrized
regimes, for the L2(D) loss, the NTK is a compact operator and the eigenvalues converge to zero. Therefore,
we consider a coupled evolution of the ℓ0 and ℓs losses: The latter ensures that the networks remain uniformly
bounded in the Sobolev norms Hs(D). This implies that the residual κn is concentrated in low frequencies
or equivalently eigenspaces corresponding to large eigenvalues. Therefore, the system is comparable to ones
with lower bounded eigenvalues and allows us to prove convergence of the ℓ0 loss.

Since this theory already contains perturbation terms, the new terms Perturbation from sampling the
gradient can be added to the theory with only minimal changes, shown in Theorem A.1.

Bounds for Perturbation The main new contribution of the paper is to show that Perturbation,
i.e. the difference between the gradients of the continuous loss ℓ0 and the discrete loss ℓ remain small. The
arguments are similar to standard generalization error bounds, which address the difference between ℓ0 − ℓ
directly.

1. Classical techniques to bound generalization errors include VC-dimension or Rademacher complexity,
which, in turn, are sometimes bounded by Dudley’s inequality (Shalev-Shwartz & Ben-David, 2014).

12
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In Section B, we use the latter directly to bound Perturbation for the least squares loss (13).
This is convenient because similar techniques are used in the prior work Welper (2024b) to show
concentration of the NTK. The argument is reminiscent of the uniform law of large numbers as
shown in Vershynin (2018, Chapter 8.2).

2. For the kernel loss (17), we take a different route in Section C. First, in the limit of infinite samples,
heat, Gauss and Laplace kernels do not converge to the L2(D)-loss. They rather converge to a dual
norm ∥fθ − f∥H′ for primal norm ∥ · ∥H = ∥ · ∥2

L2(D) + t∥ · ∥2
Hα(D), some α > 0 and a parameter t for

the width of the kernel.
In the NTK convergence analysis, we have already shown that the residual fθn − f is concentrated
in low frequencies and as a result for carefully chosen t, the L2(D) part of the above norms dominate
the Hα(D) part. Together with concentration results for the kernels, this time shown by matrix
Bernstein inequalities, this implies gradient descent convergence in the L2(D) norm.

Remark on Generalization Errors and Optimization Many generalization error bounds in the liter-
ature involve terms like N−1/2∥W ℓ −W ℓ

0 ∥F (or other norms) that include the distance of the weights from
their initial, which stays small in NTK gradient descent convergence proofs. Concretely, if we use the bound
from the first equation in the proof of Theorem A.1, which underlies all main results, we obtain on the
trained layer

∥WL−1 −WL−1
0 ∥F ≤ m1/2∥WL−1 −WL−1

0 ∥ =: m∥θ − θ0∥∗ ≤ mh = m1− 1
2

1
1+α ≤ m1/2

for some α ≥ 0, where ∥ · ∥F is the Frobenius norm, ∥ · ∥ the spectral norm and the middle equality
the definition of the ∥ · ∥∗ norm. Therefore, the generalization error bounds can be further bounded by
N−1/2∥WL−1 − WL−1

0 ∥F ≤ N−1/2m1/2. Hence, to obtain small generalization error, we must be in an
under-parametrized regime with m ≤ N . This conflicts with over-parametrization assumptions in most
NTK convergence results. While the generalization bounds and NTK convergence may be reconciled with
a finer analysis, we rely on the NTK results in Welper (2024b;a), which also work in under-parametrized
regimes.

2.6 Extensions

This section contains a brief outlook on two major assumptions.

Training of all Layers In the main Theorems 2.2 and 2.4, we train only the second but last layer, while
all other weights remain frozen at their random initialization.

Including the remaining layers is relatively simple in standard NTK theory. The training of each layer adds
one matrix Hℓ to the NTK, so that training select layers Λ ⊂ {1, . . . , L} the gradient descent loss reduction
in (23) becomes

ℓ0(θn+1) − ℓ0(θn) ≤ −γ
∑
ℓ∈Λ

〈
κn, Hℓκn

〉
0 + perturbation.

For finite networks and their infinite width limits, the terms
〈
κn, Hℓκn

〉
0 ≥ 0 are non-negative so that

including more layers in the training gives strictly sharper results.

The argument is more delicate for loss ℓs(θn) with smoother s > 0, that we include in (23) to extend
standard NTK theory to under-parametrized regimes. In this case, the terms

〈
κn, Hℓκn

〉
s
, are expected to

be non-negative in the infinite width limit and only approximately so for finite width networks. Therefore,
a careful additional perturbation and concentration analysis would be required to include the training of all
layers in the main theorems, which is beyond the scope of this paper.

Sample distribution The fully connected networks in (7) do not have a bias and as a result, the input
x = 0 always yields output fθ(x) = 0, independent of the network weights. This degenerate case is avoided
by restricting the input to the sphere. Introducing a bias would likely avoid this issue and allow more general
domains, however, this would require a revision of cited results in Appendix D. Non-uniform distributions
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would likely require some changes, in particular, the Sobolev norms in the smoothness bounds would need
to be adapted accordingly.

3 Numerical Experiments

In this section, we supplement the theoretical findings with some preliminary numerical convergence rates
with respect to network width and number of samples. We consider the following test case:

• Network Architecture: Fully connected with bias and ReLU activation.

• Input data: Uniformly distributed on the cube [−1, 1]d.

• Labels: Gaussian density function of the input samples, i.e. yi = e−|xi|2/2.

• Test Loss: In order to approach the L2(D) error, the test loss is computed on a large number of
1000 uniformly sampled xi with mean squared loss, no matter the loss function used for training.

• Kernel Loss: To approximate the kernel loss, we uniformly sample N points zi ∈ [−1, 1]d and then for
each i we sample Nk = 10 samples from the normal distribution N (zi, 0.01) to obtain xij ∈ RN×Nk .
Then, we approximate the kernel by Monte Carlo integration

ℓk(θ) ≈
N∑
i=1

Nk∑
j=1

fθ(xij) − f(xij)

2

.

• Training: 20000 gradient descent steps with learning rate 0.05.

• Repetition: Since the randomness of data and initialization is important for the theoretical results,
all reported losses are an average of 20 trials.

After sufficiently many gradient descent steps, in m and N , Theorems 2.2 and 2.4 guarantee the convergence
rates

∥fθ − f∥2
L2(Sd−1) ≤ m−0.0277 +m0.1991N−0.0833,

∥fθ − f∥2
L2(Sd−1) ≤ m−0.0277 +N−0.0033,

respectively, where we have chosen dimension d = 3, β = d/2, which is true for ReLU activations as described
after (11), s = min{1/2, β/2} = 1/2, which is the maximal allowed value in the theorems and α = 1 − s,
which is the (excluded) upper limit. In addition, for the kernel bound, we use (22), with τN = N/2, to
balance the number of samples and the kernel width.

For comparison, we also consider the best possible rates for functions with bounded Sobolev norm Hs(Sd−1).
The best approximation rate can be computed with manifold width (Lorentz et al., 1996) and the best
possible sampling rate is the minimax rate (Yang, 1999; Tsybakov, 2009), given by

m− s
d , N− s

2s+d ,

respectively. These are higher than the guaranteed rates in the main theorems. For classical approximation
methods, the smoothness s is capped by the polynomial’s degree, which would be two for ReLU activations,
yielding rate m−2/3. The definition of the minimax rate is independent of the neural network and therefore
allows s → ∞ and hence rate N−1/2 (up to possibly growing constants).

Figure 1 and Table 1 contain the estimated convergence rates of the test loss for training with mean squared
loss (MSE) (13) and kernel loss (17). All plots are in log scale so that slopes along the x or y axes correspond
to convergence rates. To compare the rates, note that the MSE loss ∥fθ−f∥2

L2
reported in the tables differers

from the error ∥fθ − f∥L2 in the theoretical bounds by a square.
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(a) MSE Loss, dim=3, depth=5.
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(b) Kernel Loss, dim=3, depth=5.

Figure 1: Test loss for training with mean squared loss (13) (left) and kernel loss (17) (right). All axes are
log-scaled so that the slope corresponds to convergence rates.

Dimension 3 and Depth 5 – Trained with MSE Loss
dof rate N rate

m/N 100 150 200 250 100 150 200 250
40 0.331 1.33 1.33 1.19 1.9 1.36 0.743 0.896
48 0.833 0.328 0.628 1.06 1.86 1.13 0.933 1.25
56 1.13 0.969 1.25 0.434 2.2 1.07 1.08 0.684
64 -1.03 2.05 0.967 1.47 1.56 2.08 0.582 0.985

Dimension 3 and Depth 5 – Trained with Kernel Loss
dof rate N rate

m/N 100 150 200 250 100 150 200 250
40 1.08 0.676 0.748 1.07 1.65 0.939 0.797 0.482
48 0.229 0.517 0.433 1.05 1.23 1.07 0.744 0.987
56 1.69 1.77 1.75 1.11 2.02 1.1 0.734 0.539
64 -0.54 -0.218 0.898 1.19 1.71 1.21 1.25 0.713

Table 1: Estimated convergence rates between neighbouring losses for the given m/N . Left: Rate along the
column, i.e. with respect to m. Right: Rate along rows, i.e. with respect to number of samples N . The first
table is trained with mean squared loss (MSE) (13) and the second with kernel loss (17).

We first observe that the reported rates have significant variance despite being averaged over 20 separate runs.
Individual runs are even more noisy. The majority of the table entries remain below the theoretically optimal
rates, but are higher than the rates guaranteed by the theorems. While the theorems seem pessimistic, it is
worth noting that the optimal rates utilize the high smoothness of the target function s ≥ 2, whereas the
theorems only allow smoothness up to s < 1/2. At the expense of high rates, this does allow much rougher
target functions for which the optimal rates would be lower, as well. More detailed experiments are left for
future work.

Finally note that despite severe over-parametrization, the loss decreases with respect to N , although with
slowing rate. This matches the theoretical results for the kernel loss, which provides bounds in over-
parametrized regimes, but does not decrease below the approximation error. More detailed results, including
the loss and shallow networks, are contained in Appendix E.
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4 Conclusion

The literature contains a large number of papers that bound approximation, estimation and optimization
errors of neural networks. Because of conflicting assumptions, these results are usually not compatible. This
paper contains a unified analysis that bounds all three error components at once. Unlike the contemporary
literature, it does not rely on excessively wide networks or over-parametrization. Instead, we have seen for
kernel loss that the generalization error can be bounded by the maximum of approximation and estimation
errors, independent of any relation between width m and number of samples N .

The generalization errors of this paper are achieved for a bounded number of gradient descent steps, where
the training dynamics is dominated by the neural tangent kernel (NTK). Beyond this bound, the NTK loses
its relevance and more nonlinear behaviour is possible. A rigorous analysis is left for future work.
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A Gradient Descent Convergence

A.1 Convergence Result

In this section, we prove an abstracted convergence result that is the foundation for Theorems 2.2 and 2.4.
To this end, let Θ ⊂ RR be a set of admissible weights, and Hs, s ∈ R a set of Hilbert spaces. Then we
consider

f· : Θ → H0, θ → fθ, (24)

ℓs : Hs → R, θ → ℓs(θ) =: 1
2∥fθ − f∥2

s, (25)

ℓ : H0 → R, θ → ℓ(θ), (26)

where ℓ0 corresponds to the continuous loss, or generalization error, and ℓ to the discrete loss. The Hilbert
spaces have norms ∥ · ∥s = ∥ · ∥Hs and are related by the interpolation inequality

∥ · ∥b ≲ ∥ · ∥
c−b
c−a
a ∥ · ∥

b−a
c−a
c (27)

for for all a, b, c ∈ R. Typically, we choose Sobolev spaces Hs = Hs(D), the neural network θ → fθ(·) ∈
L2(D) = H0, and some discrete loss ℓ, but this is not important throughout this section. The statement of
the following result relies on the empirical NTK and NTK

Hθ,θ̄ :=
R∑
r=1

(∂rfθ)(∂rfθ̄)∗, H := lim
width→∞

R∑
r=1

∂rfθ0∂rf
∗
θ0 ,

where f∗ is the H0-adjoint of f . Note that the adjoint, contained in the dual space (H0)′, applied to a
function v is f∗(v) = ⟨f, v⟩ and as a result, H corresponds to the integral operator induced by the integral
kernel in (11).

The following convergence result is almost identical to Welper (2024a, Theorem 3.1), up to a new error term
for the difference between the Hilbert space loss ℓ0 and the discrete sample loss ℓ in (33).
Theorem A.1. Assume we minimize the loss ℓ of the parametrized function θ → fθ ∈ H0 in (24), with
gradient descent (9) and Hilbert spaces (27). Define the residual κk = fθk − f . Let m be an indicator for the
network size that satisfies the inequalities below. With α > 0 from (31) below, assume that

1. H is coercive for S = 0 and S = s and some β > 2s > 0

∥v∥2
S−β ≲ ⟨v,Hv⟩S , v ∈ HS−β . (28)

2. For some norm ∥·∥∗, the distance of the weights from their initial value is bounded by

∥∥θk − θ0∥∥
∗ ≲ 1, k = 1, . . . , n ⇒

∥∥θn+1 − θ0∥∥
∗ ≲

γ√
m

n∑
k=0

∥κk∥0. (29)

3. The learning rate γ is sufficiently small so that

γ ∥∇θℓ(θn)∥∗ ≲ chm
− 1

2
1

1+α =: h (30)

for some constant ch that may depend on the initial error ∥κ0∥0.

4. For S = 0 and S = s, initial value θ0, any θ̄, θ̃ ∈ Θ and any h̄ > 0, the bounds
∥∥θ0 − θ̄

∥∥
∗ ≤ h̄ and∥∥θ0 − θ̃

∥∥
∗ ≤ h̄ imply

∥Hθ̃,θ0 −Hθ̃,θ̄∥S,0 ≤ ch̄α, ∥Hθ0,θ̃ −Hθ̄,θ̃∥S,0 ≤ ch̄α. (31)
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5. For S = 0 and S = s, we have

∥H −Hθ0,θ0∥S,0 ≤ chm
− 1

2
α

1+α = hα. (32)

6. There is a bound ∆sample(m,N) and sufficiently large constant cA so that

sup
∥θ0−θ∥∗

≤cAh

∥θ0−θ̄∥∗
≤cAh

−
R∑
r=1

〈
κk, ∂rfθ̄

〉
S

[∂rℓ(θ) − ∂rℓ0(θ)] ≤ ∆sample(m,N)∥κk∥0∥κk∥S (33)

for all gradient descent iterates κk with k ≤ n.

Then, while the gradient descent error exceeds the final approximation and estimation error

∥κk∥2
0 ≥ ca

(
m− 1

2
α

1+α + ∆sample(m,N)
) s

β ∥κ0∥2
s, k ≤ n, (34)

we have

∥κn+1∥2
0 ≤ Ce−γ[hα+∆sample(m,N)](n+1)∥κ0∥2

0, ∥κn+1∥2
s ≤ C∥κ0∥2

s

for sufficiently large constants ca, c and C independent of m, κ0 and κn+1.

The theorem has a long list of assumptions, which we verify for the proof of the main theorems in Sections
B and C below. The coercivity (28) is the only major assumption that remains in the main theorems. The
second assumption (29) is used to show that the weights do not move far from their initial and the third
(30) provides bounds for the learning rate. The next two assumptions (31) and (32) are major components
of NTK analysis and require that the NTK is Hölder continuous and that the empirical NTK concentrates
close to the infinite width limit. Finally, assumption (33) bounds the difference between the gradient of the
continuous L2 loss and the discrete loss ℓ. The last assumption is the major concern of this paper, while all
others have been established in Welper (2024b;a).

The proof is identical to Welper (2024a, Theorem 3.1), with one difference: The error reduction lemma
Welper (2024a, Lemma 3.2) is replaced with Lemma A.2 below. This introduces a new error term form the
sample loss. While this extra error term only requires minimal changes in the proof, for the convenience of
the reader, we include it in Section A.3.

A.2 Gradient Descent Error Reduction

The first step in our convergence proof establishes an error decay in every gradient descent step. It matches
Welper (2024a, Lemma 3.2) up to an additional error term ∆sample(m,J) for the difference between the
continuous and discrete losses.
Lemma A.2. Assume that (30), (31), (32) and (33) hold. Assume that

∥∥θ0 − θn
∥∥

∗ ≤ h. Then

ℓS(θn+1) − ℓS(θn) ≤ −γ ⟨κ,Hκ⟩S + cγhα∥κ∥0∥κ∥S + γ∆sample(m,N)∥κ∥0∥κ∥S .

Proof. Applying the mean value theorem to the gradient descent step θn+1 = θn−∆n with ∆n := γ∇θℓ(θn),
we obtain

ℓS(θn+1) − ℓS(θn) = ℓS(θn − ∆n) − ℓS(θn)
= −ℓ′

S(θn − ξ∆n)∆n,

for some ξ ∈ (0, 1). Abbreviating κ = κn and plugging in the derivatives ℓ′
S(θ)T = [⟨κ, ∂rfθ⟩S ]R

r=1 and
∆n = γ [∂rℓ(θ)]Rr=1, yields

ℓS(θn+1) − ℓS(θn) = −γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S ∂rℓ(θ
n).
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Next, we replace the derivative ∂rℓ(θ) of the discrete loss by the corresponding derivative of the continuous
loss ∂rℓ0(θ) = ⟨κ, ∂rfθ⟩

ℓS(θn+1) − ℓS(θn) = −γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S [∂rℓ0(θn) + [∂rℓ(θn) − ∂rℓ0(θn)]]

= −γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S ⟨κ, ∂rfθn⟩

− γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S [∂rℓ(θn) − ∂rℓ0(θn)]

=: (I) + (II).

Let us first estimate (I). To this end, we express ⟨v, κ⟩ by the H0 dual v∗κ := ⟨v, κ⟩ and obtain

(I) = −γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S ∂r(fθn)∗(κ)

= −γ

〈
κ,

[∑
r

(∂rfθn−ξ∆n)(∂rfθn)∗

]
κ

〉
S

,

= −γ ⟨κ,Hθn−ξ∆n,θnκ⟩S .

Adding and subtracting terms to compare fθn−ξ∆n and fθn with the initial fθ0 , we obtain

(I) = −γ
〈
κ,Hθ0,θ0κ

〉
S

+ γ
〈
κ,Hθ0,θ0 −Hθ0,θnκ

〉
S

+ γ
〈
κ,Hθ0,θn −Hθn−ξ∆n,θnκ

〉
S
.

Assumption (32) implies

−
〈
κ,Hθ0,θ0κ

〉
S

= − ⟨κ,Hκ⟩S +
〈
κ,H −Hθ0,θ0κ

〉
S

≤ − ⟨κ,Hκ⟩S + hα∥κ∥0∥κ∥S

and Assumption (31), with h̄ = h and h̄ = h+ ∥∆n∥∗ implies

∥Hθ0,θ0 −Hθ0,θn∥S,0 ≤ chα,

∥Hθ0,θn −Hθn−ξ∆n,θn∥S,0 ≤ c (h+ ∥∆n∥∗)α .

Combining these inequalities, yields

(I) ≤ −γ ⟨κ,Hκ⟩S + 3cγ
[
h+ ∥∆n∥∗

]α∥κ∥0∥κ∥S ,
≤ −γ ⟨κ,Hκ⟩S + cγhα∥κ∥0∥κ∥S ,

where in the last step we have used that ∥∆n∥∗ = γ ∥∇θℓ(θn)∥∗ ≲ h by assumption (30).

It remains to bound (II). Again, using ∥∆n∥∗ ≲ h and the assumptions of this lemma, we have ∥θ0 − (θn +
ξ∆n)∥ ≲ h for all ξ ∈ [0, 1]. Thus, with Assumption (33) and our abbreviation κ = κn, we obtain

(II) = −γ
∑
r

⟨κ, ∂rfθn−ξ∆n⟩S [∂rℓ(θn) − ∂rℓ0(θn)]

≤ γ∆sample(m,N)∥κ∥0∥κ∥S .

Combining (I) and (II) yields the lemma.

A.3 Proof of Theorem A.1

The following proof is identical to Welper (2024a, Theorem 3.1) up to the additional error term
∆sample(m,N). We include the proof to trace the minor modification and keep the paper self contained.
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Proof of Theorem A.1. The proof is based on the gradient descent error reduction in Lemma A.2. All of its
assumptions are given, except the weight distance

∥∥θn − θ0
∥∥

∗, which we include in the induction hypothesis:
We assume

∥κk∥2
0 ≲ e−γ[hα+∆]k∥κk∥2

0,

hk := max
l≤k

∥∥θl − θ0∥∥
∗ ≲ chm

− 1
2

1
1+α =: h

for all k ≤ n and ∆ = ∆sample(m,N) and prove the case k = n + 1 by induction. With the induction
hypothesis and assumptions (30), (31), (32) and (33), Lemma A.2 together with coercivity (1) implies

∥κn+1∥2
0 − ∥κ0∥2

0 ≤ −γ∥κn∥2
−β + cγhα∥κn∥2

0 + γ∆∥κn∥2
0.

∥κn+1∥2
s − ∥κ0∥2

s ≤ −γ∥κn∥2
s−β + cγhα∥κn∥0∥κn∥s + γ∆∥κn∥0∥κn∥s,

or shorter

∥κn+1∥2
0 − ∥κ0∥2

0 ≤ −γ∥κn∥2
−β + γ[chα + ∆]∥κn∥2

0.

∥κn+1∥2
s − ∥κ0∥2

s ≤ −γ∥κn∥2
s−β + γ[chα + ∆]∥κn∥0∥κn∥s.

This is not a closed iteration of the ∥κn∥2
0 and ∥κ∥2

s residuals because of the ∥ · ∥−β and ∥ · ∥s−β norms. We
eliminate them with the interpolation inequalities 27

∥κ∥0 ≤ ∥κ∥
s

β+s

−β ∥κ∥
β

β+s
s ⇒ −∥κ∥2

−β ≤ −∥κ∥2+ 2β
s

0 ∥κ∥− 2β
s

s ,

∥κ∥0 ≤ ∥κ∥
s
β

s−β∥κ∥
β−s

β
s ⇒ −∥κ∥2

s−β ≤ −∥κ∥
2β
s

0 ∥κ∥2− 2β
s

s

so that

∥κn+1∥2
0 − ∥κ0∥2

0 ≲ −γ∥κn∥2+ 2β
s

0 ∥κn∥− 2β
s

s + γ[hα + ∆]∥κn∥2
0,

∥κn+1∥2
s − ∥κ0∥2

s ≲ −γ∥κn∥
2β
s

0 ∥κn∥2− 2β
s

s + γ[hα + ∆]|κn∥0∥κn∥s.

Error bounds for this iteration are given in Lemma D.5 with n + 1 := ∥κn+1∥2
0, vn+1 := ∥κ∥2

s, ρ = β/s,
a = c = 1 and b = d = hα + ∆. To show the lemma’s assumption (50), we use 2s ≤ β so that(

2 − s

β

)
≤ 2 ⇔ s

β
≤

2 sβ
2 − s

β

⇔ 1
ρ

≤ 2
2ρ− 1 .

Hence, assumption (34) implies

uk = ∥κk∥2
0 ≥

((
m− 1

2
1

1+α

)α
+ ∆

) s
β

∥κ0∥2
s = (hα + ∆)

s
β ∥κ0∥2

s ≳

(
2 b
a

) 1
ρ

v0 ≳

(
d

c

) 2
2ρ−1

v0.

and Lemma D.5 is applicable. Therefore, we obtain

∥κn+1∥2
0 ≲ e−γ[hα+∆](n+1)∥κ0∥2

0, ∥κn+1∥2
s ≲ ∥κ0∥2

s,

which shows the first induction hypothesis.

It remains to bound hn+1 to show the second induction hypothesis. To this end note that

hn+1 = max
k≤n+1

∥∥θk − θ0∥∥
∗ ≲

γ√
m

n∑
k=1

∥κk∥0 ≲
γ√
m

n∑
k=1

e−γ[hα+∆]k∥κ0∥0,

where in the second step we have used assumption (29) and in the third step the induction hypothesis. We
bound the latter sum

n∑
k=1

e−γ[hα+∆]k ≤
∫ ∞

0
e−γ[hα+∆]k dk = 1

γ[hα + ∆] ,

27



Published in Transactions on Machine Learning Research (02/2023)

to conclude that

hn+1 ≤ c
γ√
m

1
γ[hα + ∆]∥κ

0∥0 ≤ c
γ√
m

1
γhα

∥κ0∥0 ≤ c√
m
h−α∥κ0∥0 = h.

In the last step we have used that the definition of h implies

h = chm
− 1

2
1

1+α = ch√
m
m

1
2

α
1+α = c√

m
m

1
2

α
1+α ∥κ0∥0 = c√

m
h−α∥κ0∥0

for constant ch = c∥κ0∥0 dependent on ∥κ0∥0. Together with the first induction hypothesis this concludes
the proof.

B Sampling

In this section, we prove bounds for the error ∆sample(m,N) between continuous and sample loss (Lemma
B.4) and then Theorem 2.2. Throughout the section, we use the following regularity conditions on the
activation function

|σ (x) | ≲ |x|, (35)
|σ (x) − σ (x̄) | ≲ |x− x̄| (36)

|σ̇ (x) | ≲ 1. (37)

Moreover, for the time being, we assume that the weight matrices are bounded∥∥W ℓ
∥∥n−1/2

ℓ ≲ 1,
∥∥W̄ ℓ

∥∥n−1/2
ℓ ≲ 1, ∥x∥ ≲ 1 ∀x ∈ D. (38)

Typically W ℓ will be the initial weight and W̄ ℓ the weight of a later gradient descent step. Likewise, we
denote by θ̄, fθ̄ and f̄ ℓ, etc. the weights, networks and layers based on the perturbed W̄ ℓ. For the main
theorems, these bounds follow from properties of random matrices at the initial weights and the observation
that weights do not move far from their initial in (29).

Throughout the section, we abbreviate D = Sd−1, L2 = L2(D), Hs = Hs(D) and ⟨·, ·⟩Hs = ⟨·, ·⟩Hs(D), when
convenient.

B.1 Concentration

In this section, for the sample loss ℓ(θ) = 1
2N
∑N
i=1 |fθ(xi) − f(xi)|2, we bound the sample error

sup
θ,θ̄

∣∣∣∣∣
R∑
r=1

〈
κk, ∂rfθ̄

〉
HS [∂rℓ(θ) − ∂rℓ0(θ)]

∣∣∣∣∣ .
This establishes assumption (33) in the abstract convergence Theorem A.1 and leads to the proof of the first
main result.

Let us abbreviate

Yθ :=
R∑
r=1

⟨κ, ∂rfθ̄⟩HS [∂rℓ(θ) − ∂rℓ0(θ)] ,

which is a random variable with respect to the sample points xi implicitly contained in the discrete loss ℓ(θ).
Since the ℓ0 loss is the expectation of the sample loss ℓ, it is easy to see that E [Yθ] = 0 and is suffices to show
concentration results. These follow from Dudley’s inequality, for which we proof that Yθ has sub-gaussian
increments, i.e.

∥Yθ − Yϑ∥ψ2 ≲ ∥θ − ϑ∥∗ .
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Throughout the section, we use Orlicz and weight norms

∥X∥ψ2 = inf
{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}
,

∥θ∥∗ := ∥WL−1∥m−1/2
L−1 ,

where we have used that θ = WL−1 because we only train the second but last layer. ∥ · ∥ denotes the
Euclidean norm for vectors and the induced matrix norm for matrices. As in the introduction, we abbreviate
D := Sd−1.

Before we prove sub-gaussian increments, we bound several components involved in Yθ separately. We start
with the factor ⟨κ, ∂rfθ⟩Hs .
Lemma B.1. Let 0 ≤ s < 1 and assume σ satisfies (35), (36), the weights satisfy (38) and are of equivalent
size m0 ∼ · · · ∼ mL−1. Then

R∑
r=1

⟨κ, ∂rfθ⟩2
Hs ≲ ∥κ∥2

Hs .

Proof. By Lemma D.2 cited from Welper (2024b), with ϵ sufficiently small so that s + ϵ < 1 the bilinear
form

B(u, v) =
∫
D

∫
D

u(x)
(

R∑
r=1

∂rfθ(x)∂rfθ(y)
)
v(y) dxdy

=
R∑
r=1

⟨u, ∂rfθ⟩ ⟨∂rfθ, v⟩

for u and v in L2 is bounded by
B(u, v) ≲ ∥u∥H−s∥v∥H−s

and can therefore be extended to all u, v ∈ H−s. In this case the L2 inner product ⟨·, ·⟩ turns into the
H−s ×Hs dual pairing. Denoting by R : Hs → H−s the Riesz map, we obtain

R∑
r=1

⟨κ, ∂rfθ⟩2
Hs =

R∑
r=1

⟨κ, ∂rfθ⟩Hs ⟨∂rfθ, κ⟩Hs

=
R∑
r=1

⟨Rκ, ∂rfθ⟩ ⟨∂rfθ, Rκ⟩ = B(Rκ,Rκ) ≲ ∥Rκ∥2
H−s = ∥κ∥2

Hs ,

which proves the lemma

Next, we consider the loss ∂rℓ(θ) = 1
N

∑N
i=i κ(xi)∂rfθ(xi) and show sub-gaussian increments for the sum-

mands. As usual, we abbreviate L∞(D) = L∞.
Lemma B.2. Let 0 < s < 1 and assume ∥f∥L∞ ≲ m1/2, σ satisfies (35), (36), (37) and the weights satisfy
(38). Let X be a uniform random variable with values in D and set

Xθ := κ(X)∇fθ(X) − E [κ(X)∇fθ(X)]

Then ∥∥∥Xθ −Xϑ∥
∥∥
ψ2

≲ m1/2 ∥θ − ϑ∥∗ ,
∥∥∥Xθ∥

∥∥
ψ2

≲ m1/2.

Note that κ(X) is a scalar and ∇fθ(X) = ∇WL−1fθ(X) is a matrix. With the convention ∂WL−1
ij

= ∂r for
suitable r, we may also regard ∇fθ(X) as a vector and thus ∥κ(X)∇fθ(X)∥ as the Euclidean vector norm,
which we do in the following.
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Proof. We split Xθ = Zθ − E [Zθ] into a random part and an expectation, with

Zθ := κ(X)∇fθ(X)

and estimate both terms separately.

1. Estimate
∥∥∥Zθ − Zϑ∥

∥∥
ψ2

: First, we upper bound the ψ2-norm by the L∞-norm and separate the
factor κ: ∥∥∥Zθ − Zϑ∥

∥∥2
ψ2

≤
∥∥∥Zθ − Zϑ∥

∥∥2
L∞

=
∥∥∥κ∇fθ − κ∇fϑ∥

∥∥2
L∞

= sup
x∈D

R∑
r=1

[κ(x) [∂rfθ(x) − ∂rfϑ(x)]]2

≤ ∥κ∥2
L∞

∥∥∇fθ − ∇fϑ∥∥2
L∞

.

(39)

The first factor is bounded by

∥κ∥L∞ ≤ ∥f∥L∞ + ∥fθ̄∥L∞ ≲ m1/2,

where we have used that κ = f − fθ̄ for some weights θ̄ that satisfy (38), that ∥f∥L∞ ≲ m−1/2 by
assumption and ∥fθ̄∥L∞ ≲ m−1/2 by Lemma D.3, cited from Welper (2024b).
To bound the second factor, recall that the derivatives ∂r for r ∈ {1, . . . , R} are shorthand for the
derivatives ∂WL−1

ij
of the second but last layer. A short calculation shows that

∂WL−1
ij

fθ = WL
i m

−1/2
L m

−1/2
L−1︸ ︷︷ ︸

:=wi

σ̇
(
fLi
)︸ ︷︷ ︸

=:ui(θ)

σ
(
fL−1
j

)︸ ︷︷ ︸
=:vj

, (40)

see e.g. Welper (2024b, Proof of Lemma 6.18) for details. The weights WL of the last layer have
only one index because the network is scalar valued. The layer fL−1 does not depend on WL−1 and
therefore vj does not depend on θ = WL−1. Then, for all x ∈ D, we have

∥∇fθ(x) − ∇fϑ(x)∥2 =
∑
ij

[wiui(θ)vj − wiui(ϑ)vj ]2

=
∑
ij

w2
i [ui(θ) − ui(ϑ)]2 v2

j

=
[∑

i

w2
i [ui(θ) − ui(ϑ)]2

]∑
j

v2
j


≤ ∥w∥2

ℓ∞
∥u(θ) − u(ϑ)∥2∥v∥2.

Since WL
i = ±1, we have

∥w∥ℓ∞ ≲ m−1

and from Lemma D.3 cited from Welper (2024b), together with the Lipschitz continuity of σ and σ̇,
we have

∥u(θ) − u(ϑ)∥ ≲ m1/2 ∥θ − ϑ∥∗ , ∥v∥ ≲ m1/2.

Thus, we obtain
∥∇fθ(x) − ∇fϑ(x)∥ ≲ ∥θ − ϑ∥∗

for all x ∈ D and therefore together with (39) that∥∥∥Zθ − Zϑ∥
∥∥
ψ2

≲ m1/2 ∥θ − ϑ∥∗ .
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2. Estimate ∥E [Zθ] − E [Zϑ] ∥: First, using that X is uniform, we factor out the residual κ:

∥E [Zθ] − E [Zϑ] ∥2 ≤
R∑
r=1

[
1

|D|

∫
D

κ(x) [∂rfθ(x) − ∂rfϑ(x)] dx
]2

= 1
|D|

∥κ∥2
L2

R∑
r=1

1
|D|

∫
D

|∂rfθ(x) − ∂rfϑ(x)|2 dx

≤ ∥κ∥2
L∞

∥∥ ∥∂rfθ − ∂rfϑ∥
∥∥2
L∞

where in the first inequality we have used Cauchy-Schwarz and in the last one exchanged the order
of sum and integral. The right hand side is identical to (39) and bounded the same way.

Combining the estimates for Zθ and its expectation and using that the ψ2-norm of a non-negative constant
is upper bounded by the constant itself, we obtain∥∥∥Xθ −Xϑ∥

∥∥
ψ2

≤
∥∥∥Zθ − Zϑ∥

∥∥
ψ2

+
∥∥∥E [Zθ] − E [Zϑ] ∥

∥∥
ψ2

≲ m1/2 ∥θ − ϑ∥∗ ,

which shows the first part of the lemma.

The proof of the second bound
∥∥∥Xθ∥

∥∥
ψ2

≲ m1/2 is identical upon replacing Xϑ and Zϑ with 0 throughout
the proof. Using σ̇(x) ≲ 1, we obtain ∥u(θ)∥ ≲ m1/2 instead of ∥u(θ) − u(ϑ)∥ ≲ m1/2 ∥θ − ϑ∥∗ by Lemma
D.3. Omitting the factor ∥θ − ϑ∥∗ in the left hand side throughout the rest of the proof shows the second
part of the lemma.

The next lemma establishes the sub-gaussian increments of the random variable Yθ.
Lemma B.3. Let 0 < s < 1 and assume ∥f∥L∞ ≲ m1/2, σ satisfies (35), (36), (37) and the weights satisfy
(38). Let X be a uniform random variable on D and for θ, θ̄ ∈ Θ set

Yθ :=
R∑
r=1

⟨κ, ∂rfθ̄⟩HS [∂rℓ(θ) − ∂rℓ0(θ)] .

Then ∥∥Yθ − Yϑ
∥∥
ψ2

≲
(m
N

)1/2
∥κ∥HS ∥θ − ϑ∥∗ ,

∥∥Yθ∥∥ψ2
≲
(m
N

)1/2
∥κ∥HS .

Proof. Plugging in the definitions of the loss ℓ and its continuum limit ℓ0, we have

∂rℓ(θ) = 1
N

N∑
i=1

κ(xi)∂rfθ(xi), ∂rℓ0(θ) = ⟨κ, ∂rfθ⟩ = E [κ∂rfθ]

and therefore

Yθ = 1
N

N∑
i=1

R∑
r=1

⟨κ, ∂rfθ̄⟩HS︸ ︷︷ ︸
=:ur

[κ(xi)∂rfθ(xi) − E [κ(X)∂rfθ(X)]]︸ ︷︷ ︸
=:(Xi

θ
)r

= 1
N

N∑
i=1

uTXi
θ.

With Hoeffding’s inequality, we estimate the ψ2-norm by

∥∥Yθ − Yϑ
∥∥2
ψ2

=
∥∥∥∥∥ 1
N

N∑
i=1

uT (Xi
θ −Xi

ϑ)
∥∥∥∥∥

2

ψ2

≲
1
N2

N∑
i=1

∥∥uT (Xi
θ −Xi

ϑ)
∥∥2
ψ2
.
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The argument of the ψ2-norm is bounded by |uT (Xi
θ −Xi

ϑ)| ≤ ∥u∥∥Xi
θ −Xi

ϑ∥ and thus

∥∥Yθ − Yϑ
∥∥2
ψ2

≤ 1
N2

N∑
i=1

∥u∥2∥∥∥Xi
θ −Xi

ϑ∥
∥∥2
ψ2

≲
1
N2

N∑
i=1

∥κ∥2
HSm ∥θ − ϑ∥2

∗

≲
m

N
∥κ∥2

HS ∥θ − ϑ∥2
∗ ,

where the last inequalities follows from

∥u∥ ≲ ∥κ∥HS ,
∥∥∥Xi

θ −Xi
ϑ∥
∥∥
ψ2

≲ m1/2 ∥θ − ϑ∥∗ ,

by Lemmas B.1 and B.2, respectively. Taking the square root completes the proof of the first inequality.
The second follows analogously by replacing Yϑ and Xϑ with zero throughout the proof.

Lemma B.4. Let 0 < s < 1 and assume ∥f∥L∞ ≲ m1/2, σ satisfies (35), (36), (37) and the weights satisfy
(38). Let Θh := {θ ∈ Θ |

∥∥θ − θ0
∥∥

∗ ≤ h} for h ≲ 1 and some initial (trained) weight θ0 that satisfies (38).
Then with probability at least 1 − 2 exp(−m2h2)

sup
θ∈Θh

∣∣∣∣∣
R∑
r=1

⟨κ, ∂rfθ̄⟩HS [∂rℓ(θ) − ∂rℓ0(θ)]
∣∣∣∣∣ ≲ m3/2

N1/2h∥κ∥HS .

Proof. We abbreviate

Yθ :=
R∑
r=1

⟨κ, ∂rfθ̄⟩HS [∂rℓ(θ) − ∂rℓ0(θ)]

and prove the lemma with Dudley’s inequality. We have established in Lemma B.3 that Yθ has sub-gaussian
increments ∥∥Yθ − Yϑ

∥∥
ψ2

≲
(m
N

)1/2
∥κ∥HS ∥θ − ϑ∥∗ .

Next, we estimate the covering numbers in Dudley’s inequality. The set of eligible parameters Θh is contained
in the ball of radius h in RR in the ∥·∥∗-norm. Hence, for every ϵ ≥ 0 there is an ϵ-covering of at most

N(ϵ) ≤
(

3h
ϵ

)R
ϵ-balls, see e.g. Lorentz et al. (1996, Chapter 15, Proposition 1.3). Then, using log x ≤ x− 1 ≤ x,

∫ ∞

0

√
logN(ϵ) dϵ = R1/2

∫ h

0

√
log
(

3h
ϵ

)
dϵ ≤ R1/2

∫ h

0

√(
3h
ϵ

)
dϵ = 1

2(3hR)1/2h1/2 ≲ mh,

where in the last step we have used that R1/2 ∼ m. Hence, Dudley’s inequality (with tail bounds) implies
that for all u ≥ 0

sup
θ,ϑ∈Θh

|Yθ − Yϑ| ≲
(m
N

)1/2
∥κ∥HS

[∫ ∞

0

√
logN(ϵ) dϵ+ uh

]
holds with probability at least 1 − 2 exp(−u2). Choosing u = m yields

sup
θ,ϑ∈Θh

|Yθ − Yϑ| ≲
(m
N

)1/2
mh∥κ∥HS ,
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with probability at least 1 − 2 exp(−m2). The sub-gaussian bound
∥∥Yθ∥∥ψ2

≲
(
m
N

)1/2 ∥κ∥HS from Lemma
B.3 implies

|Yθ0 | ≲
(m
N

)1/2
mh∥κ∥HS .

with probability at least 1 − 2 exp(−m2h2). Then, the lemma follows from supθ∈Θh
|Yθ| ≤ supθ∈Θh

|Yθ −
Yθ0 | + |Yθ0 |.

B.2 Convergence: Proof of Theorem 2.2

Proof of Theorem 2.2. The theorem follows from Theorem A.1 with Hs = Hs and H0 = L2, for which we
have to verify all assumptions. Most of them have been established in the proof of Welper (2024a, Theorem
2.2), which is identical to the one of this paper, except that it uses a continuous L2 loss instead of a sample
loss. This results in the extra assumption (33), which is the only one left to verify.

By Lemma B.4, with probability at least 1 − 2 exp(−m2h2) we have

sup
θ∈Θh

∣∣∣∣∣
R∑
r=1

〈
κk, ∂rfθ̄

〉
HS [∂rℓ(θ) − ∂rℓ0(θ)]

∣∣∣∣∣ ≲ m3/2

N1/2h∥κk∥HS ,

which provides an estimate for ∆sample(m,N) up to a missing factor ∥κk∥L2 . To insert this factor, we use
the lower bound from Assumption (34): For k ≤ n

∥κk∥2
L2

≥ ca (hα + ∆sample(m,N))
s
β ∥κ0∥2

Hs ≥ cah
α s

β ∥κ0∥2
Hs ,

which implies
1 ≲ h− αs

2β ∥κ0∥−1
Hs∥κk∥L2 .

Inserting this into the application of Lemma B.4 above, we obtain

sup
θ∈Θh

∣∣∣∣∣
R∑
r=1

〈
κk, ∂rfθ̄

〉
HS [∂rℓ(θ) − ∂rℓ0(θ)]

∣∣∣∣∣ ≲
[
m3/2

N1/2h
1− αs

2β ∥κ0∥−1
Hs

]
∥κk∥L2∥κk∥HS .

Comparing to the definition of ∆sample(m,N) in assumption (33), we obtain

∆sample(m,N) ≲ m3/2

N1/2h
1− αs

2β ∥κ0∥−1
Hs ,

which shows the assumption.

It remains to consider the success probability. From the parts of the proof shown in Welper (2024a),
the bounds fail with probability cL(e−m + e−τ ) and from above with probability e−cm2h2 ≤ ecm because
h = chm

− 1
2

1
1+α ≥ m−1/2 for any α > 0 from (30).

This completes the proof, together with an index shift n+ 1 → n between the statements of Theorems A.1
and 2.2.

C Kernels

In this section, we prove Theorem 2.4 based on bounds for the error ∆sample(m,N) between the L2(D) loss
and the kernel loss

ℓk(θ) := 1
2N

N∑
i=1

⟨k(xi, ·), fθ − f⟩2
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for kernels k(x, y) with x, y ∈ D = Sd−1 and xi uniformly and independently sampled on the domain D. We
denote the corresponding expected loss by

ℓ̄k(θ) := E
[
ℓk(θ)

]
:= 1

2|D|

∫
D

⟨k(x, ·), fθ − f⟩2
dx.

We consider this expectation in Section C.1, which is generally not identical to 1
2 ∥fθ − f∥2

L2(D). Then, we
show corresponding concentration inequalities based on matrix Bernstein inequalities in Section C.2. The
proof of Theorem 2.4 is in Section C.3.

Throughout this section, we abbreviate D = Sd−1, L2 = L2(D), Hs = Hs(D) and ⟨·, ·⟩Hs = ⟨·, ·⟩Hs(D), when
convenient.

C.1 Expectation

Define the inner product and norm that give rise to the expected kernel loss as

⟨u, v⟩k = E

[
1
N

N∑
i=1

⟨u, k(xi, ·)⟩ ⟨k(xi, ·), v⟩

]
, ∥ · ∥2

k := ⟨·, ·⟩k , ℓ̄k(θ) := 1
2∥fθ − f∥2

k. (41)

Unfortunately, the norm ∥ · ∥k is not equivalent to the L2 norm and therefore the expected loss ℓ̄k(θ) is not
equivalent to the L2 loss ℓ0(θ). To bridge this gap, in this section, we construct a modified inner product
and corresponding norm and loss

⟨u, v⟩♯ ∥ · ∥2
♯ := ⟨·, ·⟩♯ , ℓ̄♯(θ) := 1

2∥fθ − f∥2
♯ , (42)

with the following properties:

1. The two inner products ⟨·, ·⟩k and ⟨·, ·⟩♯ are close for smooth functions.

2. The norm ∥ · ∥2
♯ and loss ℓ̄♯(θ) are equivalent to ∥ · ∥L2 and ℓ0(θ), respectively.

To this end, we first characterize the inner product ⟨·, ·⟩k.
Lemma C.1. Assume the symmetric kernel k : D × D → R has L2-orthogonal eigenfunctions ψj with
eigenvalues λj. Then for any u, v ∈ L2

⟨u, v⟩k = E

[
1
N

N∑
i=1

⟨u, k(·, xi)⟩ ⟨k(xi, ·), v⟩

]
=

∞∑
r=1

λ2
j ⟨u, ψr⟩ ⟨ψr, v⟩ .

Proof. We denote the expectation by E. By the law of large numbers, we have

E := E

[
1
N

N∑
i=1

⟨u, k(·, xi)⟩ ⟨k(xi, ·), v⟩

]
= 1

|D|

∫
D

⟨u, k(·, x)⟩ ⟨k(x, ·), v⟩ dx.

Plugging in u, v in eigenbasis

u =
∞∑
s=1

⟨u, ψs⟩ψs, v =
∞∑
t=1

⟨u, ψt⟩ψt,

we obtain

E =
∞∑

s,t=1
⟨u, ψs⟩ ⟨v, ψt⟩

∫
D

⟨ψs, k(·, x)⟩ ⟨k(x, ·), ψt⟩ dx

=
∞∑

s,t=1
⟨u, ψs⟩ ⟨v, ψt⟩λsλt

1
|D|

∫
D

ψs(x)ψt(x) dx

=
∞∑
s=1

λ2
s ⟨u, ψs⟩ ⟨ψs, v⟩ ,
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where in the second step we have used eigenvalue and vector definition ⟨ψs, k(·, x)⟩ = λsψs(x) and in the
last step we have used that ψs is a orthonormal basis, with normalized squared expectation.

In the next lemma, we define the modified inner product ⟨·, ·⟩♯ and prove the properties from the introduction
of this section.
Lemma C.2. Assume the symmetric kernel k : D×D → R has L2-orthogonal eigenfunctions ψj and eigen-
values λj with

1 ≲ λj ≲ 1, j ≤ J,

λj ≲ 1, j > J.

Define a lower bounded perturbation λ̄j of the eigenvalue λj and the corresponding inner product

λ̄j :=
{
λj j ≤ J
max{λj , 1} j ≥ J.

⟨u, v⟩♯ :=
∞∑
r=1

λ̄2
j ⟨u, ψr⟩ ⟨ψr, v⟩ .

For some increasing weights µj ≥ 1 let

∥v∥2
H̄s :=

J∑
j=1

µ2s
j ⟨ψj , v⟩2

be the norm of a Hilbert space H̄s. Then for all u, v ∈ L2 and s ≥ 0∣∣∣⟨u, v⟩k − ⟨u, v⟩♯
∣∣∣ =

∣∣∣∣∣∣
∞∑
j=1

[
λ2
j − λ̄2

j

]
⟨u, ψj⟩ ⟨ψj , v⟩

∣∣∣∣∣∣ ≤ µ−s
J ∥u∥L2∥v∥H̄s ,

and the induced norm ∥ · ∥2
♯ := ⟨·, ·⟩♯ is equivalent to the L2 norm.

The weights µj and H̄s define a smoothness space, which is left generic for now but will be replaced by
Sobolev spaces below.

Proof. We have∣∣∣∣∣∣
∞∑
j=1

[
λ2
j − λ̄2

j

]
⟨u, ψj⟩ ⟨ψj , v⟩

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j>J

[
λ2
j − λ̄2

j

]
⟨u, ψj⟩ ⟨ψj , v⟩

∣∣∣∣∣∣
≤

∑
j>J

∣∣λ2
j − λ̄2

j

∣∣ ⟨u, ψj⟩2

1/2 ∑
j>J

∣∣λ2
j − λ̄2

j

∣∣ ⟨v, ψj⟩2

1/2

≤

∑
j>J

⟨u, ψj⟩2

1/2 ∑
j>J

⟨v, ψj⟩2

1/2

≤ µ−s
J ∥u∥L2∥v∥H̄s ,

where the first equality follows from λj = λ̄j for j ≤ J , the second from Cauchy-Schwarz and the third from
0 ≤ λ̄2

j − λ2
j ≤ 1 by definition of λ̄j for j > J . The last inequality follows from∑

j>J

⟨u, ψj⟩2 ≤ ∥u∥2
L2

and ∑
j>J

⟨u, ψj⟩2 = µ−2s
J

∑
j>J

µ2s
J ⟨u, ψj⟩2 ≤ µ−2s

J

∑
j>J

µ2s
j ⟨u, ψj⟩2 = µ−2s

J ∥u∥2
H̄s .

Finally, by construction, the eigenvalues λ̄j ∼ 1 are upper and lower bounded by one and therefore the norm
∥ · ∥♯ is equivalent to the L2 norm.
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C.2 Concentration

We show concentration for
R∑
r=1

⟨κ, ∂rfθ̄⟩Hs

[
∂rℓ

k(θ) − ∂r ℓ̄
k(θ)

]
which matches Assumption (33), except for the wrong expected loss ℓ̄k(θ) instead of ℓ0(θ), which will
be considered in the next section. Throughout this section, we denote the adjoint of u, by u∗, so that
⟨f, u⟩ = f∗v. For weights θ, θ̄ ∈ Θ, we use the abbreviation

F s
θ,θ̄
κ :=

R∑
r=1

∂rfθ ⟨∂rfθ̄, κ⟩Hs (43)

which shows up repeatedly in the following proofs. We first bound its norm.
Lemma C.3. Assume that σ satisfies the growth and Lipschitz conditions (35), (36) and may be different
in each layer. Assume all weights in the networks, θ, θ̄ and the domain are bounded (38). Then for
0 ≤ S ≤ s < 1

∥FS
θ,θ̄
κ∥Hs ≤ ∥κ∥Hs .

Proof. Let ⟨·, ·⟩ be the H−S ×HS dual pairing and R : HS → H−S the corresponding Riesz map. Since the
Hs-norm is the dual of H−s, we have

∥FS
θ,θ̄
κ∥Hs =

∥∥∥∥∥
R∑
r=1

∂rfθ ⟨∂rfθ̄, κ⟩HS

∥∥∥∥∥
Hs

= sup
∥v∥H−s ≤1

〈
v,

R∑
r=1

∂rfθ ⟨∂rfθ̄, κ⟩HS

〉
= sup

∥v∥H−s ≤1

〈
v,

(
R∑
r=1

∂rfθ∂rf
∗
θ̄

)
Rκ

〉

where in the last step we have used the definition of the adjoint functional f∗
θ̄

∈ H−S so that ⟨fθ̄, κ⟩HS =
⟨fθ̄, Rκ⟩ = f∗

θ̄
(Rκ). Formally, in this argument ⟨·, ·⟩ is the HS ×H−S dual pairing, which reduces to the L2

inner product in case Rκ is in L2, see the proof of Lemma B.1 for more details. By Lemma D.2 cited from
Welper (2024b), with ϵ sufficiently small so that s+ ϵ < 1, we obtain

∥F s
θ,θ̄
κ∥Hs ≲ sup

∥v∥H−s ≤1
∥v∥H−s∥Rκ∥H−s ≤ ∥Rκ∥H−s ≤ ∥Rκ∥H−S = ∥κ∥HS ≤ ∥κ∥Hs ,

where we have used the embeddings ∥ · ∥H−s ≤ ∥ · ∥H−S and ∥ · ∥HS ≤ ∥ · ∥Hs because S ≤ s.

The next lemma shows the main concentration result.
Lemma C.4. Assume that σ satisfies the growth and Lipschitz conditions (35), (36) and may be different
in each layer. Assume all weights in the networks, θ, θ̄ and the domain are bounded (38). Assume the kernel
is bounded by supx∈D ∥k(x, ·)∥L2 ≤ Ck. Then for 0 ≤ s < 1 with probability at least 1 − 2t (et − t− 1)−1 we
have

R∑
r=1

⟨κ, ∂rfθ̄⟩Hs

[
∂rℓ

k(θ) − ∂r ℓ̄
k(θ)

]
≲ C2

k

(√
t

N
+ t

N

)
∥κ∥L2∥κ∥Hs .

for all κ ∈ Hs.

Proof. The lemma states that the gradient of the sample loss is close to its average, with high probability,
which we show by the matrix Bernstein inequality. To this end, we first unravel the definition of the loss to
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define appropriate random matrices:

R∑
r=1

⟨κ, ∂rfθ̄⟩Hs ∂rℓ
k(θ) =

R∑
r=1

⟨κ, ∂rfθ⟩Hs

(
1
N

N∑
i=1

⟨k(xi, ·), κ⟩ ⟨k(xi, ·), ∂rfθ⟩
)

= 1
N

N∑
i=1

R∑
r=1

⟨κ, k(xi, ·)⟩ ⟨k(xi, ·), ∂rfθ⟩ ⟨κ, ∂rfθ̄⟩Hs

=
〈
κ,

1
N

N∑
i=1

k(xi, ·)k(xi, ·)∗
R∑
r=1

∂rfθ ⟨κ, ∂rfθ̄⟩Hs

〉
=
〈
κ,MF s

θ,θ̄
κ
〉

with F s
θ,θ̄
κ defined in (43) and the integral kernel

M := 1
N

N∑
i=1

k(xi, ·)k(xi, ·)∗.

With an analogous computation, we obtain the expectation with respect to the samples xi:

E

[
R∑
r=1

⟨κ, ∂rfθ̄⟩Hs ∂rℓ
k(θ)

]
=
〈
κ, M̄F s

θ,θ̄
κ
〉
,

with

M̄ := E

[
1
N

N∑
i=1

k(xi, ·)k(xi, ·)∗

]
=
∫
D

k(x, ·)k(xi, ·)∗ dx.

It follows that

R∑
r=1

⟨κ, ∂rfθ̄⟩Hs

[
∂rℓ

k(θ) − ∂r ℓ̄
k(θ)

]
=

〈
κ, [M − M̄ ]F s

θ,θ̄
κ
〉

≤ ∥κ∥L2∥M − M̄∥Hs→L2∥F s
θ,θ̄
κ∥Hs (44)

The last term
∥F s

θ,θ̄
κ∥Hs ≲ ∥κ∥Hs (45)

is bounded by Lemma C.3 so that it remains to bound ∥M − M̄∥Hs→L2 . To this end note that M is a
sum of rank one operators, each depending on one independent sample xi. Hence, concentration follows
from dimension free matrix Bernstein inequalities (Hsu et al., 2012; Tropp, 2015; Minsker, 2017). We use a
corollary shown in Gentile & Welper (2022) and stated in the supplementary material Lemma D.4 for which
we only need to bound

∥k(x, ·)∗∥(Hs)∗ = ∥k(x, ·)∥H−s ≤ ∥k(x, ·)∥L2 ≤ Ck

for all x ∈ D, provided by the assumptions of the lemma. With Lemma D.4 this provides

Pr
[∥∥M − M̄

∥∥
Hs→L2

≳ C2
k

(√
t

N
+ t

N

)]
≤ 2t

(
et − t− 1

)−1
.

Together with (44) and (45) this proves the lemma.

C.3 Convergence: Proof of Theorem 2.4

We first bound ∆sample(m,N) based on the results in the last two sections.
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Lemma C.5. Assume that σ satisfies the growth and Lipschitz conditions (35), (36) and may be different
in each layer. Assume all weights in the networks, θ, θ̄ and the domain are bounded (38). Assume the kernel
k : D ×D → R is zonal, i.e. k(x, y) = k(xT y), and has eigenvalues λlj with

1 ≲ λlj ≲ 1, l ≤ L, 1 ≤ j ≤ ν(l),
λlj ≲ 1, l > L, 1 ≤ j ≤ ν(l)

and index structure and ν(l) matching spherical harmonics (6) and

sup
x∈D

∥k(x, ·)∥L2 ≤ Ck.

Then for 0 ≤ S ≤ s < 1 with probability at least 1 − 2t [et − t− 1]−1 for all κ ∈ Hs we have

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂rℓ

k(θ) − ∂r ℓ̄
♯(θ)

]
≲ C2

k

[√
t

N
+ t

N

]
∥κ∥L2∥κ∥HS + L−s∥κ∥L2∥κ∥Hs ,

with loss ℓ̄♯(θ) defined in (42).

Note that the conclusion of the lemma contains both S and s. This allows S = s, but also the choice S = 0
for which the last summand in the right hand side does not provide a meaningful bound if we insist that
S = s = 0.

Proof. We first split the difference into expectation and concentration components:

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂rℓ

k(θ) − ∂r ℓ̄
♯(θ)

]
=

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂rℓ

k(θ) − ∂r ℓ̄
k(θ)

]
+

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂r ℓ̄

k(θ) − ∂r ℓ̄
♯(θ)

]
:= (I) + (II).

The first part (I) is bounded by Lemma C.4:

(I) ≲ C2
k

(√
t

N
+ t

N

)
∥κ∥L2∥κ∥HS ,

with probability at least 1 − 2t (et − t− 1)−1.

To estimate the expectation part (II), first note that the Funk-Hecke formula (Atkinson & Han, 2012)
implies that the eigenfunctions of the zonal kernel k(·, ·) are spherical harmonics Y jl and thus L2 orthogonal.
Hence, we obtain the loss

ℓ̄♯(θ) := 1
2∥fθ − f∥2

♯ := 1
2
∑
l,j

λ̄2
lj

〈
Y jl , fθ − f

〉2
, λ̄j :=

{
λj j ≤ J,
max{λj , 1} j ≥ J,

by Lemma C.2. The partial derivatives of the modified and expected kernel loss are given by

∂r ℓ̄
♯(θ) =

∑
l,j

λ̄2
lj

〈
κ, Y jl

〉〈
Y jl , ∂rfθ

〉
,

and

∂r ℓ̄
k(θ) = E

[
1
N

N∑
i=1

⟨κ, k(xi, ·)⟩ ⟨k(xi, ·), ∂rfθ⟩
]

=
∑
l,j

λ2
lj

〈
κ, Y jl

〉〈
Y jl , ∂rfθ

〉
,
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by Lemma C.1, respectively. It follows that

(II) =
R∑
r=1

⟨κ, ∂rfθ̄⟩HS

∑
l,j

[
λ2
lj − λ̄2

lj

] 〈
κ, Y jl

〉〈
Y jl , ∂rfθ

〉
=
∑
l,j

[
λ2
lj − λ̄2

lj

] 〈
κ, Y jl

〉〈
Y jl , ∂rfθ

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

〉

=
∑
l,j

[
λ2
lj − λ̄2

lj

] 〈
κ, Y jl

〉〈
Y jl , F

S
θ,θ̄
κ
〉
,

with FS
θ,θ̄
κ defined in (43). Bounding the latter with Lemma C.3 and using Lemma C.2, we conclude that

(II) ≲ µ−s
L ∥κ∥L2∥FS

θ,θ̄
κ∥Hs ≲ µ−s

L ∥κ∥L2∥κ∥Hs ,

where µl are the weights in the definition of the Sobolev space Hs via spherical harmonics (5) and therefore
µl ∼ l. Together with the bounds for (I) this completes the proof.

Proof of Theorem 2.4. The theorem follows from Theorem A.1. It shows gradient descent convergence in
arbitrary scales of Hilbert spaces, for which the natural choice is Hs = Hs. However, we replace the L2 = H0

norm with the equivalent ∥ · ∥♯ norm to utilize our concentration result in Lemma C.5. This choice does
not alter any assumptions or conclusions, except coercivity which uses the H0 inner product instead of the
corresponding norm. We show that coercivity of the L2 inner product implies coercivity of the ∥ · ∥♯ inner
product as well as the sample assumption (33). All other assumptions are proven in Welper (2024b, Theorem
2.2) for an analogous result without sample error.

1. Coercivity (28): Since the neural tangent kernel is zonal, by the Funk-Hecke formula (Atkinson &
Han, 2012), it has spherical harmonics as eigenfunctions with some eigenvalues µlj , so that we have

⟨v,Hv⟩♯ =
∑
l,j

λ̄2
l µljv

2
lj ∼

∑
l,j

µljv
2
lj = ⟨v,Hv⟩ ,

with vlj =
〈
v, Y jl

〉
and the ∥ · ∥♯ norm from (42). Hence, ∥ · ∥♯-coercivity is equivalent to the regular

L2-coercivity.

2. Assumption (33): We show that with high probability for all θ, θ̄ with ∥·∥∗ distance to the initial
θ0 smaller than ≲ h and S ∈ {0, s} we have the bound

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂rℓ

k(θ) − ℓ♯(θ)
]

≤ ∆sample(m,N)∥κ∥L2∥κ∥HS (46)

with

∆sample(m,N) ≲ C2
k

(τN
N

)1/2
+ C−2

k

(
N

τN

)1/2
L−s + L−s, (47)

which provides Assumption (33). To this end, by Lemma C.5 with t = τN and probability at least
1 − 2τN [eτN − τN − 1]−1 for all κ ∈ Hs we have

R∑
r=1

⟨κ, ∂rfθ̄⟩HS

[
∂rℓ

k(θ) − ℓ̄♯(θ)
]
≲ C2

k

(τN
N

)1/2
∥κ∥L2∥κ∥HS + L−s∥κ∥L2∥κ∥Hs . (48)
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This yields the claimed bounds (46), (47) for S = s. For S = 0 the last summand has the wrong
norm: L−s∥κ∥L2∥κ∥Hs instead of L−s∥κ∥L2∥κ∥HS = L−s∥κ∥2

L2
. To replace the Hs norm with an

L2 norm note that assumption (34) yields

∥κk∥2
L2

≥ ca

(
m− 1

2
α

1+α + ∆sample(m,N)
) s

β ∥κ0∥2
Hs ≳ C2

k

(τN
N

)1/2
∥κ0∥2

Hs

for k ≤ n. Moreover, by induction, from Theorem A.1 we have ∥κk∥Hs ≲ ∥κ0∥Hs and therefore
arrive at

∥κk∥2
Hs ≲ C−2

k

(
N

τN

)1/2
∥κk∥L2 .

Together with (48) this yields the claimed bounds (46) and (47) for the case S = 0. Together with
the case S = s above, this establishes assumption (33).

This completes the proof, together with an index shift n+ 1 → n between the statements of Theorems A.1
and 2.2.

D Supplementary Material

D.1 Technical Lemmas

Lemma D.1. Let kt(x, y) be the heat kernel defined in (21). Then for all y ∈ Sd−1

∥kt(·, y)∥2
Hs(Sd−1) ≲ t−s−d+3/2.

Proof. Plugging the definition of the heat kernel (21) into the definition of Sobolev norms (5), we obtain

∥kt(·, y)∥2
Hs(Sd−1) =

∞∑
l=0

ν(l)∑
j=1

(
1 + l1/2(l + d− 2)1/2

)2s ∣∣∣e−l(l+d−2)tY jl (y)
∣∣∣2

≲ 1 +
∞∑
l=0

l2se−2l2t
ν(l)∑
j=1

∣∣∣Y jl (y)
∣∣∣2 .

Since |Y jl (y)|2 ≲ ν(l) and ν(l) ≲ ld−2, see Stein & Weiss (1972, Chapter 4.2, Corollary 2.9), we obtain

∥kt(·, y)∥2
Hs(Sd−1) ≲ 1 +

∞∑
l=0

l2sl2d−4e−2l2t ≲ 1 +
∫ ∞

0
l2s+2d−4e−2l2t dl

= 1 + t−s−d+3/2
∫ ∞

0
x2s+2d−4e−2x2

dx ≲ t−s−d+3/2,

were we have substituted x = l
√
t and used that the latter integral is bounded.

D.2 Results from Gentile & Welper (2022); Welper (2024b;a)

To keep the paper self contained, this section contains several results from Gentile & Welper (2022); Welper
(2024b;a).
Lemma D.2. Assume that σ and σ̇ satisfy the growth and Lipschitz conditions (35), (36) and may be
different in each layer. Assume the weights, perturbed weights and domain are bounded (38) and mL ∼
mL−1 ∼ · · · ∼ m1. Then for 0 < s < 1 and m0 := m1∫∫

D×D
f(x)

(
R∑
r=1

∂rfθ(x)∂rfθ(y)
)
g(y) dx dy ≲ ∥f∥H−s(Sd−1)∥g∥H−s(Sd−1).
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Proof. This is a direct consequence of Welper (2024b, Lemma 7.16) and Welper (2024b, Lemma 6.7). For ϵ
sufficiently small so that s+ ϵ < 1, the former shows that∫∫

D×D
f(x)k(x, y)g(y) dx dy ≤ ∥f∥H−s(Sd−1)∥g∥H−s(Sd−1)∥k∥C0;s+ϵ,s+ϵ(Sd−1),

for k(x, y) =
∑R
r=1 ∂rfθ(x)∂rfθ(y) and where ∥ · ∥C0;s+ϵ,s+ϵ(Sd−1) is a Hölder norm of order s + ϵ in the two

variables x and y. Technically, the reference does not include the case s = 0, which follows directly from
a sup-norm bound and the fact that the domain is bounded. The second reference Welper (2024b, Lemma
6.7) shows that

∥k∥C0;s+ϵ,s+ϵ ≲ 1.

where k(x, y) =
∑R
r=1 ∂rfθ(x)∂rfθ(y) is denoted by ¯̂Γ. Combining the two inequalities yields the result.

Lemma D.3 (Welper (2024b, Lemma 6.2)). Assume that ∥x∥ ≲ 1.

1. Assume that σ satisfies the growth condition (35) and may be different in each layer. Assume the
weights are bounded (38). Then

∥∥f ℓ(x)
∥∥ ≲ m

1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥m−1/2

k .

2. Assume that σ satisfies the growth and Lipschitz conditions (35) and (36) and may be different in
each layer. Assume the weights and perturbed weights are bounded (38). Then

∥∥f ℓ(x) − f̄ ℓ(x)
∥∥ ≲ m

1/2
0

ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥m−1/2

k

ℓ−1∏
j=0
j ̸=k

max
{∥∥W j

∥∥ , ∥∥W̄ j
∥∥}m−1/2

j .

Lemma D.4 (Gentile & Welper (2022, Corollary 6.4)). Let ξi, i = 1, . . . , n be independent random variables,
U , V Hilbert spaces and Xi = Xi(ξi) = vi(ξi)ui(ξi)∗ = viu

∗
i be Bochner integrable rank one operators with

vi ∈ V and u∗
i ∈ U∗. Assume there are µ > 0 and ν > 0 such that for all i = 1, . . . , n

∥u∗∥U∗ ≤ µ, ∥v∥V ≤ ν,

almost surely. Then, for any t > 0,

Pr
[∥∥∥∥∥ 1
n

n∑
i=1

Xi − E [Xi]
∥∥∥∥∥ >

√
8µ2ν2t

n
+ 2µνt

3n

]
≤ 2t

(
et − t− 1

)−1
.

Proof. The only difference to the reference is that we assume ∥u∗∥U∗ ≤ µ instead of ∥u∥U ≤ µ, which is
equivalent due to the Riesz representation theorem.

Lemma D.5 (Welper (2024a, Lemma 3.3)). Let a, b, c, d > 0 and ρ > 1/2. Let un and vn be two sequences
that satisfy

un+1 − un ≤ −γau1+ρ
n v−ρ

n + γbun,

vn+1 − vn ≤ −γcuρnv1−ρ
n + γd

√
unvn.

(49)

Furthermore, assume that

uk ≥
(
d

c

) 2
2ρ−1

v0, uk ≥
(

2 b
a

) 1
ρ

v0, for all k = 0, . . . , n− 1. (50)

Then

un ≤ e−γbnu0, vn ≤ v0.
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(a) MSE Loss, dim=3, depth=2.
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(b) Kernel Loss, dim=3, depth=2.

Figure 2: Test loss for training with mean squared loss (13) (left) and (17) (right). All axes are log-scaled
so that the slope corresponds to convergence rates.

E Extra Numerical Experiments

This appendix contains some extra numerical results for the setup in Section 3.

• Section 3 does not report any losses. They are contained in the extended Table 2.

• This section also contains experiments for shallow networks in three dimensions, shown in Figure 2
and Table 2.

• Figure 3 contains results for the shallow network with MSE loss in 7 dimensions and with larger
range for samples and width.

The observations from Section 3 remain unchanged. The deep networks performs slightly better than the
shallow ones, but have significantly more weights in total.
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Figure 3: Test loss for training with mean squared loss (13) for dimension 7 and depth 2. All axes are
log-scaled so that the slope corresponds to convergence rates.
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Table 2: Loss and estimated convergence rates between neighbouring losses for the given m/N . Left: Rate
along the column, i.e. with respect to m. Right: Rate along rows, i.e. with respect to number of samples
N . The first table is trained with mean squared loss (MSE) (13) and the second with kernel loss (17).
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