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Abstract

Stochastic variance reduction has proven effective at accelerating first-order algorithms for
solving convex finite-sum optimization tasks such as empirical risk minimization. Incorpo-
rating second-order information has proven helpful in further improving the performance of
these first-order methods. Yet, comparatively little is known about the benefits of using vari-
ance reduction to accelerate popular stochastic second-order methods such as Subsampled
Newton. To address this, we propose Stochastic Variance-Reduced Newton (SVRN), a finite-
sum minimization algorithm that provably accelerates existing stochastic Newton methods
from O(α log(1/ε)) to O

( log(1/ε)
log(n)

)
passes over the data, i.e., by a factor of O(α log(n)), where

n is the number of sum components and α is the approximation factor in the Hessian esti-
mate. Surprisingly, this acceleration gets more significant the larger the data size n, which
is a unique property of SVRN. Our algorithm retains the key advantages of Newton-type
methods, such as easily parallelizable large-batch operations and a simple unit step size. We
use SVRN to accelerate Subsampled Newton and Iterative Hessian Sketch algorithms, and
show that it compares favorably to popular first-order methods with variance reduction.

1 Introduction

Consider a convex finite-sum minimization task:

find x∗ = argmin
x∈Rd

f(x) for f(x) = 1
n

n∑
i=1

ψi(x). (1)

This optimization task naturally arises in machine learning through empirical risk minimization, where x is
the model parameter vector and each function ψi(x) corresponds to the loss incurred by the model on the
i-th element in a training data set (e.g., square loss for regression, or logistic loss for classification). Many
other optimization tasks, such as solving semi-definite programs and portfolio optimization, can be cast in
this general form. Our goal is to find an ε-approximate solution, i.e., x̃ such that f(x̃)− f(x∗) ≤ ε.

Naturally, one can use classical iterative optimization methods for this task (such as gradient descent and
Newton’s method), which use first/second-order information of function f to construct a sequence x0,x1, ...
that converges to x∗. However, this does not leverage the finite-sum structure of the problem. Thus, extensive
literature has been dedicated to efficiently solving finite-sum minimization tasks using stochastic optimization
methods, which use first/second-order information of randomly sampled component functions ψi, that can
often be computed much faster than the entire function f . Among first-order methods, variance-reduction
techniques such as SAG (Roux et al., 2012), SDCA (Shalev-Shwartz & Zhang, 2013), SVRG (Johnson &
Zhang, 2013), SAGA (Defazio et al., 2014), Katyusha (Allen-Zhu, 2017) and others (Frostig et al., 2015;
Konecný et al., 2015; Allen-Zhu & Yuan, 2016), have proven particularly effective. One of the most popular
variants of this approach is Stochastic Variance-Reduced Gradient (SVRG), which achieves variance reduction
by combining frequent stochastic gradient queries with occasional full batch gradient queries, to optimize the
overall cost of finding an ε-approximate solution, where the cost is measured by the total number of queries
to the components ∇ψi(x).
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Many stochastic second-order methods have also been proposed for solving finite-sum minimization, including
Subsampled Newton (Erdogdu & Montanari, 2015; Roosta-Khorasani & Mahoney, 2019; Bollapragada et al.,
2018; Berahas et al., 2020), Newton Sketch (Pilanci & Wainwright, 2016; 2017; Dereziński et al., 2021), and
others (Kovalev et al., 2019; Moritz et al., 2016; Tripuraneni et al., 2018; Mokhtari et al., 2018). These
approaches are generally less sensitive to hyperparameters such as the step size, and they typically query
larger random batches of component gradients/Hessians at a time, as compared to stochastic first-order
methods. The larger queries make these methods less sequential, allowing for more effective vectorization
and parallelization.

A number of works have explored whether second-order information can be used to accelerate stochastic
variance-reduced methods, resulting in several algorithms such as Preconditioned SVRG (Gonen et al.,
2016), SVRG2 (Gower et al., 2018) and others (Gower et al., 2016; Liu et al., 2019). However, these are
still primarily stochastic first-order methods, highly sequential and with a problem-dependent step size.
Comparatively little work has been done on using variance reduction to accelerate stochastic Newton-type
methods for convex finite-sum minimization (see discussion in Section 2.3). To that end, we ask:

Can variance reduction accelerate local convergence of Stochastic Newton
in convex finite-sum minimization?

We show that the answer to this question is positive. The method that we use to demonstrate this, which
we call Stochastic Variance-Reduced Newton (SVRN), retains the positive characteristics of second-order
methods, including easily parallelizable large-batch gradient queries, as well as minimal hyperparameter
tuning (e.g., accepting a unit step size). We prove that, when the number of components ψi is sufficiently
large, SVRN achieves a better parallel complexity than SVRG, and a better sequential complexity than the
corresponding Stochastic Newton method (see Table 1).

2 Main result

In this section, we present our main result, which is the parallel and sequential complexity analysis of the
local convergence of SVRN. The algorithm itself is discussed in detail in Section 3.

We now present the assumptions needed for our main result, starting with µ-strong convexity of f and
λ-smoothness of each ψi. These are standard for establishing linear convergence rate of SVRG. Our result
also requires Hessian regularity assumptions (Definition 1), which are standard for Newton’s method and
only affect the size of the local convergence neighborhood.

Assumption 1 We assume that f(x) = 1
n

∑n
i=1 ψi(x) has continuous first and second derivatives, as well

as a bounded condition number κ = λ/µ, where µ and λ are defined as follows:

1. Function f is µ-strongly convex, i.e.,

f(x) ≥ f(x′) +∇f(x′)>(x− x′) + µ

2 ‖x− x′‖2;

2. Each of the n components ψi is λ-smooth, i.e.,

ψi(x) ≤ ψi(x′) +∇ψi(x′)>(x− x′) + λ

2 ‖x− x′‖2.

To highlight the parallelizability of SVRN due to large mini-batches, as well as the effect of variance reduction
on its performance, we will consider two standard complexity measures:

1. Parallel complexity: Number of batch gradient queries, i.e., times the algorithm computes a
gradient at an iterate, either over the full batch or a mini-batch. This corresponds to the standard
PRAM model.

2. Sequential complexity: Number of passes over the data. One pass corresponds to n queries of
component gradients ∇ψi(x), possibly at different iterates. This is a standard measure of complexity
for stochastic first-order methods.
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Second-order Parallel (batch queries) Sequential (data passes) Speed-up
Gradient Descent x O(κ log(1/ε)) O(κ log(1/ε)) x
Accelerated GD x O(

√
κ log(1/ε)) O(

√
κ log(1/ε)) x

Stochastic Newton O(α log(1/ε)) O(α log(1/ε)) x
Mini-batch SVRG x O(κ log(1/ε)) O(log(1/ε)) O(κ)

Mini-batch Katyusha x O(
√
κ log(1/ε)) O(log(1/ε)) O(

√
κ)

SVRN (this work) O(α log(1/ε)) O
( log(1/ε)

log(n)
)∣∣∣ O(α log(n))

Table 1: Comparison of local convergence behavior for SVRN and related stochastic methods in the big data
regime, i.e., n � κ, along with full-batch Gradient Descent (GD), and Accelerated GD. Time complexities
are obtained by first optimizing parallel time (batch queries), and then optimizing sequential time (data
passes). For the second-order methods, we assume a Hessian α-approximation (2) where α� κ.

Our goal is to design a highly parallelizable algorithm, so in our analysis, we will first optimize over parallel
complexity, and then over sequential complexity. Note that for any algorithm using only full gradients
(such as the standard versions of gradient descent or Subsampled Newton), the two notions of complexity
are exactly equivalent. For example, in gradient descent (GD), both parallel and sequential complexity is
O(κ log(1/ε)). By introducing stochastic gradients and variance reduction, as in SVRG, we can improve upon
the sequential complexity of GD, while preserving (but not improving) its parallel complexity. Specifically,
when n � κ, then SVRG with optimal mini-batch size takes O(log(1/ε)) sequential time to find an ε-
approximate solution, however it still needs O(κ log(1/ε)) parallel time (Table 1).

We can avoid the dependence of parallel complexity on the condition number κ by using second-order
information. In particular, suppose that in each iteration we compute the full gradient ∇f(x) and are given
access to a (typically stochastic) Hessian estimate H̃ such that for some 1 ≤ α� κ,

(Hessian α-approximation) 1√
α
∇2f(x) � H̃ �

√
α∇2f(x), (2)

Then, a standard Stochastic Newton (SN) update, given below in (3), can achieve parallel and sequential
complexity of O(α log(1/ε)) locally in the neighborhood of the optimum. It is thus natural to ask whether
we can use stochastic gradients and variance reduction to accelerate the local sequential complexity of this
method, while preserving its parallel complexity. Our main result shows not only that this is possible, but
also, remarkably, that this acceleration gets more significant the larger the data size n. See also Theorem 3
for algorithmic details and convergence analysis.

Theorem 1 (informal Theorem 3) Suppose that Assumption 1 holds and: (a) f has a Lipschitz Hessian,
or (b) f is self-concordant. Moreover, let n � κ � α. There is an algorithm (SVRN) and an open
neighborhood U such that, given any x ∈ U with a corresponding Hessian α-approximation as in (2), the
cost of returning x̃ such that f(x̃)− f(x∗) ≤ ε · (f(x)− f(x∗)) is as follows:

Parallel time = O
(
α log(1/ε)

)
batch queries and Sequential time = O

( log(1/ε)
log(n)

)
data passes.

Remark 1 SVRN improves on the sequential complexity of Stochastic Newton by O(α log(n)), while retain-
ing the same parallel complexity. Moreover, if α ≤ 2, then the algorithm accepts a unit step size, and still
achieves O(log(n)) acceleration. Note that this acceleration improves with the problem size n, which is a
unique property of SVRN.

Remark 2 To find an initialization point for SVRN, one can simply run a few iterations of a Subsampled
Newton method with line search. In Section 4, we propose a globally convergent algorithm based on this
approach (SVRN-HA; see Algorithm 1), and in Section 5 we show empirically that it substantially accelerates
Subsampled Newton.
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2.1 Discussion

In this section, we compare the local convergence complexity of SVRN to standard stochastic first-order and
second-order algorithms. In this comparison, we focus on what we call the big data regime, i.e., n� κ, which
is of primary interest in the literature on Subsampled Newton methods. Then, in Section 2.2, we illustrate
how SVRN can be further improved via sketching and importance sampling, when solving problems with
additional structure, such as least squares.

Comparison to SVRG and Katyusha. As we can see in Table 1, first-order algorithms, including
variance-reduced methods such as SVRG (Johnson & Zhang, 2013), and its accelerated variants like Katyusha
(Allen-Zhu, 2017), suffer from a dependence on the condition number κ in their parallel complexity. Namely,
they require either O(κ log(1/ε)) or O(

√
κ log(1/ε)) batch gradient queries, compared to O(α log(1/ε)) for

SVRN and Stochastic Newton, where α is the Hessian approximation factor, which is often much smaller
than

√
κ. This is because, unlike SVRN, these methods do not scale well to large mini-batches, making them

less parallelizable.

Another difference between SVRN and SVRG or Katyusha is that, when the Hessian approximation is
sufficiently accurate (α ≤ 2), then SVRN accepts a unit step size, which leads to optimal convergence rate
without any tuning. On the other hand, the optimal step size for SVRG depends on the strong convexity
and smoothness constants µ and λ, and thus, requires tuning.

Comparison to Stochastic Newton. We next compare SVRN with Stochastic Newton methods such
as Subsampled Newton and Newton Sketch. Here, the most standard proto-algorithm considered in the
literature is the following update:

x̃s+1 = x̃s − H̃−1∇f(x̃s). (3)

As mentioned earlier, this update uses only full gradients, so both its parallel and sequential complexity is
O(α log(1/ε)) (see Stochastic Newton in Table 1). On the other hand, SVRN provides a direct acceleration
of the sequential complexity without sacrificing any parallel complexity.

The Hessian α-approximation H̃ ≈ ∇2f(x̃s) can be produced in a number of ways, but perhaps the most
relevant for this discussion is Hessian subsampling, a.k.a. Subsampled Newton (e.g., see Roosta-Khorasani
& Mahoney, 2019). In this setting, an α-approximation with α ≤ 2 can be obtained with high probability
by sampling k = O(κ log(d)) component Hessians (see Appendix D.2). To obtain a coarser but still useful
approximation (i.e., with a moderately larger α), we can often use far fewer samples, e.g., as shown by
(Erdogdu & Montanari, 2015). On the other hand, if we wanted to recover SVRN’s sequential complexity
of O

( log(1/ε)
log(n)

)
by improving the Hessian approximation in Subsampled Newton, the required Hessian sample

size k would become at least as large as n, meaning that we would essentially have to use the exact Hessian
(i.e., Newton’s method), which is highly undesirable.

We note that some of the literature on Subsampled Newton proposes to subsample both the Hessian and
the gradient (e.g., Bollapragada et al., 2018), which would be akin to x̃s+1 = x̃s − H̃−1 1

m

∑m
i=1∇ψIi(x̃s).

However, as is noted in the literature, to maintain linear convergence of such a method, one has to keep
increasing the gradient sample size at an exponential rate, which means that, for finite-sum minimization,
we quickly revert back to the full gradient (see experiments in Section 5.2).

2.2 Accelerating SVRN with sketching and importance sampling

When the minimization task possesses additional structure, then we can combine SVRN with Hessian and
gradient estimation techniques other than uniform subsampling. For example, one such family of techniques,
called randomized sketching (Drineas & Mahoney, 2016; Woodruff, 2014; Dereziński & Mahoney, 2021), is
applicable when the Hessian can be represented by a decomposition ∇2f(x) = Af (x)>Af (x) + C, where
Af (x) is a tall n × d matrix and C is a fixed d × d matrix. This setting applies for many empirical risk
minimization tasks, including linear and logistic regression, among others.
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Sketching can be used to construct an estimate of the Hessian by applying a randomized linear transformation
to Af (x), represented by a k×n random matrix S, where k = Õ(d) is much smaller than n. Using standard
sketching techniques, such as Subsampled Randomized Hadamard Transforms (SRHT, Ailon & Chazelle,
2009), Sparse Johnson-Lindenstrauss Transforms (SJLT, Clarkson & Woodruff, 2017; Meng & Mahoney,
2013; Nelson & Nguyên, 2013) and Leverage Score Sparsified embeddings (LESS, Dereziński et al., 2021),
we can construct a Hessian estimate that satisfies the requirements of Theorem 1 at the cost of Õ(nd+ d3),
which corresponds to a nearly-constant number of data passes and d × d matrix multiplies. In particular,
this eliminates the dependence of Hessian estimation on the condition number.

Another way of making SVRN more efficient is to use importance sampling in the stochastic gradient mini-
batches. Importance sampling can be introduced to any finite-sum minimization task (1) by specifying an
n-dimensional probability vector p = (p1, ..., pn), such that

∑
i pi = 1, and sampling the component gradient

ψIi
(x) so that the index Ii is drawn according to p. With the right choice of importance sampling, we can

substantially reduce the smoothness parameter λ, and thereby, the condition number κ of the problem (see
Appendix A.4).

The above techniques can be used to accelerate SVRN, for instance, in the important task of solving least
squares regression. Here, given an n×d matrix A with rows a>i and an n-dimensional vector y, the objective
being minimized is the following quadratic function:

f(x) = 1
2n‖Ax− y‖2 = 1

n

n∑
i=1

1
2(a>i x− yi)2. (4)

One of the popular methods for solving the least squares task, known as the Iterative Hessian Sketch (IHS,
Pilanci & Wainwright, 2016), is exactly the Stochastic Newton update (3), where the Hessian estimate H̃ is
constructed via sketching. In this context, SVRN can be viewed as an accelerated version of IHS. To fully
leverage the structure of the least squares problem, we use a popular importance sampling technique called
leverage score sampling (Drineas et al., 2006; 2012), where the importance probabilities are (approximately)
proportional to pi ∝ a>i (A>A)−1ai. Through an adaptation of our main result, we show that a version
of SVRN for least squares, with sketched Hessian and leverage score sampled gradients, improves on the
state-of-the-art complexity for reaching a high-precision solution to a preconditioned least squares task from
O(nd log(1/ε)) (Rokhlin & Tygert, 2008; Avron et al., 2010; Meng et al., 2014) to O

(
nd log(1/ε)

log(n/d)
)
. See

Appendix A.4 for proof and further discussion.

Theorem 2 (Fast least squares solver) Given A ∈ Rn×d and y ∈ Rn, after O(nd logn + d3 log d) pre-
processing cost to find the sketched Hessian estimate H̃ and an approximate leverage score distribution,
SVRN finds x̃ so that

f(x̃) ≤ (1 + ε)f(x∗) in O
(
nd log(1/ε)

log(n/d)

)
time.

Crucially, the SVRN-based least squares solver only requires a preconditioner H̃ that is a constant factor
approximation of the Hessian, i.e., α = O(1). Interestingly, our approach of transforming the problem via
leverage score sampling appears to be connected to a weighted and preconditioned SGD algorithm of (Yang
et al., 2017) for solving a more general class of `p-regression problems. We expect that Theorem 2 can be
similarly extended beyond least squares regression.

2.3 Further related work

As mentioned in Section 1, a number of works have aimed to accelerate first-order variance reduction meth-
ods by preconditioning them with second-order information. For example, (Gonen et al., 2016) proposed
Preconditioned SVRG for ridge regression. The effect of this preconditioning, as in related works (Liu
et al., 2019), is a reduced condition number κ of the problem. This is different from Theorem 1, which uses
preconditioning to make variance reduction effective for large mini-batches and with a unit step size.

Some works have shown that, instead of preconditioning, one can use momentum to accelerate variance
reduction, and also to improve its convergence rate when using mini-batches. These methods include Catalyst
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(Lin et al., 2015) and Katyusha (Allen-Zhu, 2017). However, unlike SVRN, these approaches are still limited
to fairly small mini-batches, as demonstrated in Table 1.

A number of works have proposed applying techniques inspired by variance reduction to stochastic Newton-
type methods in settings which are largely incomparable to ours. First, (Rodomanov & Kropotov, 2016; Ko-
valev et al., 2019) consider algorithms where the Hessian and gradient information is incrementally updated
with either individual samples or mini-batches. However, the approximate Hessian information required
by these methods is quite different than the one used in SVRN: they require the Hessian estimate to be
initialized with all n component Hessians, possibly computed at different locations (compared to, e.g., a
subsampled estimate). For example, in the case of least squares, this means computing the exact Hessian,
which costs O(nd2) time and renders the task trivial (compare this to our Theorem 2, where the Hessian
estimate required by SVRN can be approximated efficiently). Setting this aside, we can still compare the
local convergence rate of SVRN with the Stochastic Newton method of (Kovalev et al., 2019, Theorem 1) us-
ing the same mini-batch size. Assuming n� κ and using the setup from Theorem 1, their method achieves
O(log(1/ε)) sequential complexity, whereas SVRN obtains the accelerated complexity of O

( log(1/ε)
log(n)

)
data

passes.

In the non-convex setting, variance reduction was used by (Zhou et al., 2019; Zhang et al., 2022) to accelerate
Subsampled Newton with cubic regularization. They use variance reduction both for the gradient and the
Hessian estimates. Also, (Wang et al., 2017) incorporate variance reduction into a stochastic quasi-Newton
method. However, due to the non-convex setting, these results are incomparable to ours, as we are focusing
on strongly convex optimization.

3 Local convergence analysis of SVRN

In this section, we present the convergence analysis for SVRN, leading to the proof of Theorem 1.

Notation. For d × d positive semidefinite matrices A and B, we define ‖v‖A =
√

v>Av, and we say
that A ≈ε B, when (1 − ε)B � A � (1 + ε)B, where � denotes the positive semidefinite ordering (we
define analogous notation a ≈ε b for non-negative scalars a, b). We use c and C to denote positive absolute
constants, and let I ∼ [n] denote a uniformly random sample from {1, .., n}.

We will present the analysis in a slightly more general setting of expected risk minimization, i.e., where
f(x) = Eψ∼D[ψ(x)]. Here, D is a distribution over convex functions ψ : Rd → R. Clearly, this setting
subsumes (1), since we can let D be a uniformly random sample ψi. Thanks to this extension, our results
can apply to importance sampling of component functions, as in Theorem 2.

Definition 1 We define the local convergence neighborhood Uf (ε), parameterized by ε ∈ (0, 1), as:

1. If f has an L-Lipschitz Hessian, then Uf (ε) = {x : ‖x− x∗‖∇2f(x∗) < εµ3/2/L};

2. If f is self-concordant, then we use Uf (ε) = {x : ‖x− x∗‖∇2f(x∗) < ε/4}.

Our local convergence analysis is captured by the following theorem, which provides the rate of convergence
after one outer iteration of SVRN (stated below), for a range of mini-batch sizes m.

Theorem 3 (Convergence rate of SVRN) Suppose that Assumption 1 holds, α ≥ 1, and either: (a) f
has a Lipschitz continuous Hessian, or (b) f is self-concordant. There is an absolute constant c > 0 such
that if x̃s ∈ Uf (1/cα), and we are given the gradient g̃s = ∇f(x̃s) as well as a Hessian α-approximation,
i.e., H̃ such that 1√

α
∇2f(x̃s) � H̃ �

√
α∇2f(x̃s), then, letting x0 = x̃s and:

xt+1 = xt − ηH̃−1
(

1
m

m∑
i=1
∇ψi(xt)−∇ψi(x̃s) + g̃s

)
, ψ1, ..., ψm ∼ D,
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Complexity of SVRN

Parallel complexity

Sequential complexity

Figure 1: Illustration of the local convergence complexity analysis for SVRN, as a function of the mini-batch
size m, with the number of inner iterations set to tmax = n/m. As we decrease the mini-batch size from
n (standard Stochastic Newton; SN) downto m ≈ n

α log(n/κ) (optimal SVRN), the sequential complexity
(number of passes over the data) improves by O(α log(n)), while the parallel complexity (number of batch
gradient queries) remains optimal.

after t iterations with mini-batch size m ≥ cα2κ log(t/δ) and step size η = min{
√

2/α, 1}, the iterate
x̃s+1 = xt (i.e., one outer iteration of SVRN) with probability 1− δ satisfies:

f(x̃s+1)− f(x∗)
f(x̃s)− f(x∗) ≤

(
1− 1

2α

)t
+ cα2 log(t/δ) κ

m
.

The proof of Theorem 3, which is given in Appendix A, relies on a new high-probability bound for the error
of the variance-reduced gradient estimates in the large mini-batch regime, measured using the vector norm
defined by the inverse Hessian at the optimum (Lemma 3). Unlike results from prior work, which hold in
expectation, this bound crucially relies on the iterate being in the local neighborhood. Also, unlike standard
SVRG analysis, we achieve our convergence guarantee for the last iterate of SVRN’s inner loop (as opposed
a random or averaged iterate), which is again enabled by exploiting local second-order information.

Discussion. For simplicity, let us fix the number of inner iterations tmax = n/m, so that a single outer
iteration of SVRN always takes O(1) passes over the data. Then, we can define the linear convergence rate
after one outer iteration as a function of mini-batch size m:

ρm :=
(

1− 1
2α

)n/m
+ Õ(κ/m).

Let us assume the big data regime, i.e., n � κ. If we only use full-batch gradients (m = n), then the first
term in the rate dominates, and we have ρm ≈ 1− 1

2α , which is similar to what we would get using standard
Stochastic Newton (3). As we decrease m (and change tmax accordingly), the first term in ρm decreases,
whereas the second term increases. As a result, the overall rate rapidly improves, reaching its optimal value
of ρm = Õ(κ/n) for m ≈ n

α log(n/κ) .

Complexity analysis. The complexity analysis given in Theorem 1 follows directly from the above dis-
cussion, since the sequential complexity (number of data passes needed to improve by factor ε) is given by
O
( log(1/ε)

log(1/ρm)
)
, whereas the parallel complexity (number of batch gradient queries) is O

(
tmax · log(1/ε)

log(1/ρm)
)
. In

Figure 1, we illustrate how these quantities change as a function of m. In particular, we observe that the
batch gradients essentially stay flat at O(α log(1/ε)) as we decrease m, until reaching n

α log(n/κ) . On the other
hand, the data pass complexity decreases linearly with m, until it reaches the optimal value of O

( log(1/ε)
log(n/κ)

)
,

which, for sufficiently large n, recovers Theorem 1.
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Input: iterate x̃0, gradient batch size m, Hessian sample size k, and local iterations tmax;
Initialize step size η−1 = 0 and Hessian estimate H̃−1 = 0;
for s = 0, 1, 2, . . . do

Compute the subsampled Hessian: Ĥs = 1
k

∑k
i=1∇2ψi(x̃s), for ψ1, ..., ψk ∼ D;

Compute the Hessian average: H̃s = s
s+1H̃s−1 + 1

s+1Ĥs;
Compute the full gradient: g̃s = ∇f(xs);
if ηs−1 < 1 then

Compute the descent direction ṽs by solving: H̃sṽs = −g̃s;
else

Initialize x0 = x̃s;
for t = 0, . . . , tmax − 1 do

Compute ĝt(xt) and ĝt(x̃s), for ĝt(x) = 1
m

∑m
i=1∇ψi(x), ψ1, ..., ψm ∼ D;

Compute variance-reduced gradient ḡt = ĝt(xt)− ĝt(x̃s) + g̃s;
Compute the descent direction vt by solving: H̃svt = −ḡt;
Update xt+1 = xt + vt

end
Compute the descent direction: ṽs = xtmax − x̃s;

end
Compute ηs for iterate x̃s and direction ṽs using the Armijo condition;
Update x̃s+1 = x̃s + ηsṽs;

end
Algorithm 1: SVRN with Hessian Averaging (SVRN-HA)

4 Globally convergent algorithm

We next present a practical stochastic second-order method (see Algorithm 1, called SVRN-HA) which uses
SVRN to accelerate its local convergence phase.

The key in implementing SVRN is that the algorithm is guaranteed to converge with unit step size only once
we reach a local neighborhood of the optimum, and if we have a sufficiently accurate Hessian estimate. For
this reason, we introduce an initial phase of the algorithm, in which a standard Stochastic Newton method
is ran, using the Armijo line search to select the step size. Once the method reaches the local convergence
neighborhood, as long as the Hessian estimates are accurate enough, the line search is guaranteed to return
a unit step size. At this point, the algorithm switches to SVRN and achieves acceleration. Finally, to ensure
that we reach a sufficiently accurate Hessian estimate, our Stochastic Newton method should gradually
increase the accuracy of the Hessian estimates.

Based on these insights, we propose an algorithm called Stochastic Variance-Reduced Newton with Hessian
Averaging (SVRN-HA). In the initial phase, this algorithm is a variant of Subsampled Newton, based on a
method proposed by (Na et al., 2022), where, at each iteration, we construct a subsampled Hessian estimate
based on a fixed sample size k. To increase the accuracy over time, all past Hessian estimates are averaged
together, and the result is used to precondition the full gradient. At each iteration, we check whether
the last line search returned a unit step size. If yes, then we start running SVRN with local iterations
tmax = blog2(n/d)c and gradient batch size m = bn/ log2(n/d)c, where n is the number of data points and d
is the dimension. In the following result, we establish global convergence of SVRN-HA, by showing that the
global phase of this method will not only reach any local neighborhood, but also that the Hessian estimate
will get progressively more accurate, eventually reaching the desired approximation accuracy.

Theorem 4 Let f be as in Theorem 3. For any neighborhood U around the optimum, Algorithm 1 will
almost surely reach a point where: (a) x̃s belongs to the neighborhood U , and (b) the Hessian estimate H̃s

satisfies the condition in Theorem 3. At this point, the line search will return ηs = 1.

8



Under review as submission to TMLR

(a) Convergence (b) Runtime

Figure 2: Convergence and runtime comparison of SVRN-HA on the EMNIST dataset against three baselines:
classical Newton, SVRG (after parameter tuning), and Subsampled Newton with Hessian Averaging (SN-
HA), i.e., the global phase of Algorithm 1, ran without switching to SVRN. Further results on the CIFAR-10
dataset are in Appendix B.

5 Experiments

We next demonstrate numerically that SVRN can be effectively used to accelerate stochastic Newton methods
in practice. We also show how variance reduction can be incorporated into a globally convergent Subsampled
Newton method in a way that is robust to hyperparameters and preserves its scalability thanks to large-batch
operations.1

5.1 Logistic regression experiment

In this section, we present numerical experiments for solving a regularized logistic loss minimization task.
For an n × d data matrix A with rows a>i , an n-dimensional target vector y (with ±1 entries yi) and a
regularization parameter γ, our task is to minimize:

f(x) = 1
n

n∑
i=1

log(1 + e−yia>i x) + γ

2 ‖x‖
2. (5)

As a dataset, we used the Extended MNIST dataset of handwritten digits (EMNIST, Cohen et al., 2017) with
n = 500k datapoints, transformed using a random features map (with dimension d = 1000). Experimental
details, as well as further results on the CIFAR-10 dataset and several synthetic data matrices, are presented
in Appendix B.

In Figure 2, we compared SVRN-HA to three baselines which are most directly comparable: (1) the classical
Newton’s method; (2) SVRG with the step size and number of inner iterations tuned for best wall-clock
time; and (3) Subsampled Newton with Hessian Averaging (SN-HA), i.e., the method we use in the global
phase of Algorithm 1 (without the SVRN phase). All of the convergence plots are averaged over multiple
runs. For both SVRN-HA and SN-HA we use Hessian sample size k = 4d.

From Figure 2(a), we conclude that as soon as SVRN-HA exits the initial phase of the optimization, it
accelerates dramatically, to the point where it nearly matches the rate of classical Newton. This accelera-
tion corresponds to the improvement in sequential complexity from O(α log(1/ε)) for Stochastic Newton to
O( log(1/ε)

log(n) ) for SVRN. Finally, the convergence of SVRG is initially quite fast, but over time, it stabilizes at a
slower rate, indicating that the Hessian information plays a significant role in the performance of SVRN-HA.

In Figure 2(b), we plot the wall clock time of the algorithms. Here, SVRN-HA also performs better than
all of the baselines, despite some additional per-iteration overhead. We expect that this can be further

1The code is available at https://github.com/svrnewton/svrn.
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(a) Comparison of three variants of SVRN-HA (alongside
SN-HA), depending on how frequently we resample data
points used to compute the gradient estimate. We consider
three variants of SVRN-HA: (1) sampling once for the entire
optimization, (2) sampling once for each full gradient stage
(per stage), (3) sampling in each small step (per step).

(b) Comparison of SVRN-HA (alongside SN-HA) against
Subsampled Newton with Gradient Subsampling (SNGS-
HA), which is implemented exactly like SVRN-HA except
without the variance-reducing correction.

Figure 3: How different types of gradient estimation affect the convergence properties of SVRN.

optimized. Finally, we note that Newton’s method is drastically slower than all other methods due to the
high cost of solving a large linear system, and the per-iteration time of SVRG is substantially slowed by its
sequential nature.

5.2 Further investigations on a least squares task

We next study the setting of least squares regression (4) to analyze the trade-offs in convergence for different
implementations of SVRN, as we vary the gradient and Hessian estimation schemes. We evaluated the
algorithms on synthetic data matrices, as defined in Appendix B.

Frequency of gradient resampling. Our theoretical analysis requires that for each small step of SVRN,
a fresh sample of components ψi is used to compute the gradient estimates. However, in Lemma 3 we showed
that, after variance reduction, the gradient estimates are accurate with high probability, which suggests that
we might be able to reuse previously sampled components. While this technically does not improve the
number of required gradient queries, it can substantially reduce the communication cost for some practical
implementations. In Figure 3(a), we investigate how much the convergence rate of SVRN-HA is affected by
the frequency of component resampling for the gradient estimates. Recall that in all our experiments, we
use a gradient sample size of m = bn/ log2(n/d)c. We consider the following variants:

1. Sampling once: an extreme policy of sampling one set of components and reusing them for all
gradient estimates;

2. Sampling per stage: an intermediate policy of resampling the components after every full gradient
computation.

3. Sampling per step: the policy which is used in our theory, i.e., resampling the gradients at every
step of the inner loop of the algorithm.

From Figure 3(a) we conclude that, while all three variants of SVRN-HA converge and are competitive with
SN-HA, the extreme policy of sampling once leads to a substantial degradation in convergence rate, whereas
sampling per stage and sampling per step perform very similarly. Thus, our overall recommendation is
to resample the components at every stage of SVRN-HA, but reuse the sample for the small steps of the
algorithm (this is what we used for the EMNIST and CIFAR-10 experiments).

10
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(a) Convergence comparison of SVRN and SN using fixed
Hessian estimates (i.e., without Hessian averaging). Here,
h denotes the number of Hessian samples used to generate
the estimate.

(b) Convergence comparison of SVRN-HA and SN-HA,
with and without preconditioning using a Randomized
Hadamard Transform (RHT), for a high-coherence least
squares dataset.

Figure 4: How Hessian sample size and data coherence affect the convergence properties of SVRN.

Effect of variance reduction. We next investigate the effect of variance reduction on the convergence
rate of SVRN. While gradient subsampling has been proposed by many works in the literature on Subsampled
Newton, e.g., see (Roosta-Khorasani & Mahoney, 2019), these works have shown that the gradient sample
size must be gradually increased to retain fast local convergence (which means that after a few iterations,
we must use the full gradient). On the other hand, in SVRN, instead of increasing the gradient sample size,
we use variance reduction with a fixed sample size, which allows us to retain the accelerated convergence
indefinitely.

To illustrate this point, in Figure 3(b) we plot how the convergence behavior of our algorithm changes if
we take variance reduction out of it. The resulting method is called Subsampled Newton with Gradient
Subsampling (SNGS-HA). For this experiment, we resample the gradient estimate at every small step (for
both SNGS-HA and SVRN-HA). For the sake of direct comparison, all of the other parameters are retained
from SVRN-HA. In particular, one iteration of SNGS-HA corresponds to blog2(n/d)c steps using resampled
gradients, and Hessian averaging occurs once every such iteration. As expected, we observe that, while
initially converging at a fast rate, eventually SNGS-HA reaches a point where the subsampled gradient
estimates are not sufficiently accurate, resulting in a sudden dramatic drop-off in the convergence rate, to
the point where the method virtually stops converging altogether. On the other hand, SVRN-HA continues to
converge at the same fast rate throughout the optimization procedure without any reduction in performance.
This indicates that variance reduction does improve the accuracy of gradient estimates, especially when our
goal is to converge to a high-precision solution.

Effect of Hessian accuracy. In our experiments, for both SVRN and SN, we used Hessian averaging (Na
et al., 2022) to construct the Hessian estimates. This approach is desirable in practice, since it gradually
increases the accuracy of the Hessian estimate as we progress in the optimization. As a result, it is more
robust to the Hessian sample size and we are guaranteed to reach sufficient accuracy for SVRN to work well.
In the following experiment, we take Hessian averaging out of the algorithms to provide a better sense of how
the performance of SVRN and SN depends on the accuracy of the provided Hessian estimate. For simplicity,
we focus here on least squares, where the Hessian is the same everywhere, so we can simply construct an
initial Hessian estimate and then use it throughout the optimization. However, our insights apply more
broadly to local convergence for general convex objectives. In Figure 4(a), we plot the performance of the
algorithms as we vary the accuracy of the subsampled Hessian estimates, where h denotes the number of
samples used to construct the estimate. In all the results, we keep the gradient sample size and local steps
in SVRN fixed as before.

11
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Remarkably, the performance of SVRN is affected by the Hessian accuracy very differently than SN. We
observe that SVRN requires a certain level of Hessian accuracy to provide any acceleration over SN. As
soon as this level of Hessian accuracy is reached (by increasing the Hessian sample size h), the peformance
of SVRN quickly jumps to the fast convergence we observed in the other experiments. Further increasing
the accuracy no longer appears to affect the convergence rate of SVRN. This is in contrast to SN, whose
convergence slowly improves as we increase the Hessian sample size. This intriguing phenomenon is actually
fully predicted by our theory for SVRN (together with prior convergence analysis for SN). Our convergence
result (Theorem 3) requires a sufficiently accurate Hessian inverse estimate for SVRN to work with a unit
step size (which is what is used in SVRN-HA), but the actual rate of convergence is independent of the
Hessian accuracy (only the required number of small steps is affected). We conclude that SVRN is more
desirable than SN when we have a small budget for Hessian samples.

Effect of high coherence. We next analyze the performance of SVRN and SN on a slightly modified least
squares task. For this experiment, we modify the data matrix A, by multiplying the ith row by 1/√gi for
each i, where gi is an independent random variable distributed according to the Gamma distrution with shape
2 and scale 1/2. This is a standard transformation designed to produce a matrix with many rows having
a high leverage score. Recall that the leverage score of the ith row of A is defined as `i = a>i (A>A)−1ai,
see Appendix A.4. This can be viewed as affecting the component-wise smoothness of the objective, which
hinders subsampling-based estimators of the Hessian and the gradient.

In Figure 4(b), we illustrate how the performance of SVRN-HA and SN-HA degrades for the high-coherence
least squares task, and we also show how this can be addressed by relying on the ideas developed in Section
2.2 (and further discussed in Appendix A.4). First, notice that not only is the convergence rate of both
SVRN-HA and SN-HA worse on the high-coherence dataset than on the previous least squares examples
(e.g., compare with Figure 3(b)), but also, the acceleration coming from variance reduction is drastically
reduced to the point of being negligible. The former effect is primarily caused by the fact that uniform Hessian
subsampling is much less effective at producing accurate approximations for high-coherence matrices, and
this affects both algorithms similarly (we note that one could construct an even more highly coherent matrix,
for which these methods would essentially stop converging altogether). The latter effect is the consequence
of the fact that gradient subsampling is also adversely affected by high coherence, so it becomes nearly
impossible to produce gradient estimates with uniform sampling that would lead to an accelerated rate, even
with variance reduction. This corresponds to the regime of κ ≥ n in our theory.

Fortunately, for least squares regression, this phenomenon can be addressed easily. As outlined in Appendix
A.4, we can use one of two strategies: (1) use importance sampling proportional to the leverage scores
of A for both the Hessian and gradient estimates; or (2) precondition the problem using the Randomized
Hadamard Transform (RHT) to uniformize all the leverage scores, and then use uniform subsampling. Both
of these methods require roughly O(nd logn) preprocessing cost and eliminate dependence on the condition
number for both SVRN-HA and SN-HA. The latter strategy is somewhat more straightforward since it does
not require modifying the optimization algorithms, and we apply it here for our high coherence least squares
task: we let SVRN-HA-RHT and SN-HA-RHT denote the two optimization algorithms ran after applying
the RHT preconditioning to the problem. Note that this not only improves the convergence rate of both
methods but also brings back the accelerated rate enjoyed by SVRN-HA in the previous experiments. In
fact, our least squares results (Theorem 2 and Lemma 6) can be directly applied to SVRN-HA-RHT, so
this method and its accelerated convergence rate of Õ(d/n) is provably unaffected by any high-coherence
matrices.

6 Conclusions

We propose and analyze Stochastic Variance-Reduced Newton (SVRN), a provably effective strategy of
incorporating variance reduction into popular stochastic Newton methods for solving finite-sum minimization
tasks. We show that SVRN improves the local convergence complexity of Subsampled Newton (per data
pass) from O(α log(1/ε)) to O

( log(1/ε)
log(n)

)
, while retaining all the benefits of second-order optimization, such

as a simple unit step size and easily scalable large-batch operations.
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A Proofs for local convergence analysis of SVRN

In this section, we provide the proofs of our main technical results, i.e., local convergence analysis for SVRN.
First, we prove the result for the general case (Theorem 3), then we prove the result for least squares
(Theorem 2).

A.1 Preliminaries

First, let us recall the formal definitions of the standard Hessian regularity assumptions used in Theorem 3.
For all our results, it is sufficient that the function f satisfies either one of these assumptions.

Assumption 2 Function f : Rd → R has Lipschitz continuous Hessian with constant L, i.e., ‖∇2f(x) −
∇2f(x′)‖ ≤ L ‖x− x′‖ for all x,x′ ∈ Rd.

Assumption 3 Function f : Rd → R is self-concordant, i.e., for all x,x′ ∈ Rd, the function φ(t) = f(x+tx′)
satisfies: |φ′′′(t)| ≤ 2(φ′′(t))3/2.

In the proof, we use the following version of Bernstein’s concentration inequality for random vectors (Corol-
lary 4.1 in Minsker, 2017).
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Lemma 1 Let v1, ...,vm ∈ Rd be independent random vectors such that E[vi] = 0 and ‖vi‖ ≤ R almost
surely. Denote σ2 :=

∑m
i=1 E ‖vi‖2. Then, for all t2 ≥ σ2 + tR/3, we have

Pr
{∥∥∥ m∑

i=1
vi
∥∥∥ > t

}
≤ 28 exp

(
− t2/2
σ2 + tR/3

)
.

We also use the following lemma to convert from convergence in the norm, ‖x − x∗‖H, to convergence in
excess loss, f(x) − f(x∗), in the neighborhood around the optimum x∗. The proof of this lemma, given in
Appendix A.3, uses Quadratic Taylor’s Theorem.

Lemma 2 If f satisfies Assumption 1 and either Assumption 2 or 3, then for any ε ∈ [0, 1] and x ∈ Uf (εl),
we have:

∇2f(x) ≈εl
∇2f(x∗) and f(x)− f(x∗) ≈εl

1
2‖x− x∗‖2∇2f(x∗).

A.2 Proof of Theorem 3

To simplify the notation, we will drop the subscript s, so that x̃ = x̃s and g̃ = g̃s. Also, let us define
ĝ(x) = 1

m

∑m
i=1∇ψi(x). We use g(x) = ∇f(x), gt = g(xt), Ht = ∇2f(xt), H = ∇2f(x∗), ĝt = ĝ(xt), and

ḡt = ĝt − ĝ(x̃) + g̃ as shorthands. Also, we will use ∆t = xt − x∗. We start by splitting up the error bound
into two terms: the first one is an error term that would arise if we were using the exact gradient gt instead
of the gradient estimate ḡt; and the second term addresses the error coming from the noise in the gradient
estimate. Initially, we use the error ‖∆t‖H to analyze the convergence rate in one step of the procedure,
where recall that ‖v‖M =

√
v>Mv. We then convert that to get convergence in function value via Lemma

2.

We first address the assumption that H̃ is an α-approximation of Ht, as defined by the condition (2). Note
that, via Lemma 2, for any xt ∈ Uf (εl) we have that Ht ≈εl

H, which for a sufficiently small εl implies that
Ht is a 1.1-approximation of H in the sense of (2). This, in turn implies that H̃ is a 1.1α-approximation
of H, because H̃ �

√
αHt �

√
1.1αH (the other direction is analogous). For the sake of simplicity, we will

replace 1.1α with α and say that H̃ is an α-approximation of H (this can be easily accounted for by adjusting
the constants at the end).

Now, suppose that after t inner iterations, we get xt ∈ Uf (εl) satisfying ‖∆t‖H ≤ ‖∆0‖H. Our decomposition
of the error into two terms proceeds as follows, where we use p̃t = H̃−1ḡt:

‖∆t+1‖H = ‖(xt − ηp̃t)− x∗‖H

= ‖∆t − ηH̃−1gt + ηH̃−1gt − ηH̃−1ḡt‖H

≤ ‖∆t − ηH̃−1gt‖H + η‖H̃−1(gt − ḡt)‖H (6)

To bound the second term in (6), we first observe that H̃−1 �
√
αH−1, which in turn yields H1/2H̃−1H1/2 �√

α I. Thus, we can write ‖H1/2H̃−1H1/2‖ ≤
√
α and we get:

‖H̃−1(gt − ḡt)‖H = ‖H1/2H̃−1H1/2H−1/2(gt − ḡt)‖
≤ ‖H1/2H̃−1H1/2‖ · ‖H−1/2(gt − ḡt)‖
≤
√
α · ‖gt − ḡt‖H−1

We now break ‖gt − ḡt‖H−1 down into two parts, introducing ĝ(x∗) and separating ĝ(x̃) from ĝt:

‖gt − ḡt‖H−1 = ‖gt − (ĝt − ĝ(x̃) + g̃)‖H−1

≤ ‖gt − (ĝt − ĝ(x∗))‖H−1 + ‖g̃− (ĝ(x̃)− ĝ(x∗))‖H−1 .

We bound the above two terms using the following lemma, which gives a new high-probability error bound
for the variance reduced gradient estimates in the large mini-batch regime which, unlike results from prior
work that hold in expectation, crucially relies on the iterate being in the local neighborhood Uf (1) around
the optimum x∗.
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Lemma 3 There is an absolute constant C > 0 such that for any x ∈ Uf (1), letting H = ∇2f(x∗), the
gradient estimate ĝ(x) = 1

m

∑m
i=1∇ψi(x) using m ≥ κ log(1/δ) samples, with probability 1− δ satisfies:∥∥ĝ(x)− ĝ(x∗)−∇f(x)

∥∥2
H−1≤ C log(1/δ) κ

m
‖x− x∗‖2H.

Proof We will apply Bernstein’s concentration inequality for random vectors (Lemma 1) to vi = ∇ψi(x)−
∇ψi(x∗) − ∇f(x). First, observe that E∇ψi(x) = ∇f(x) and E∇ψi(x∗) = ∇f(x∗) = 0, so in particular,
E[vi] = 0.

In the next step, we will use the fact that for any λ-smooth function g, we have ‖∇g(x)‖2 ≤ 2λ · (g(x) −
minx′ g(x′)), which follows because:

min
x′

g(x′) ≤ g
(
x− 1

λ∇g(x)
)

≤ g(x)− 1
λ
‖∇g(x)‖2 + λ

2
1
λ2 ‖∇g(x)‖2

= g(x)− 1
2λ‖∇g(x)‖2.

We will use this fact once on f , and also a second time, on the function g(x) = ψi(x) − ψi(x∗) − (x −
x∗)>∇ψ(x∗), which is λ-smooth because ψi is λ-smooth, observing that ∇g(x) = ∇ψi(x) − ∇ψi(x∗) and
that minx′ g(x′) = g(x∗) = 0. Thus, we have

‖vi‖2 ≤ 2‖∇ψi(x)−∇ψi(x∗)‖2 + 2‖∇f(x)‖2

≤ 4λ ·
(
ψi(x)− ψi(x∗)− (x− x∗)>∇ψ(x∗)

)
+ 4λ ·

(
f(x)− f(x∗)

)
≤ 2λ2‖x− x∗‖2 + 2λ2‖x− x∗‖2 = 4λ2‖x− x∗‖2,

where in the last step we used again that ψi and f are λ-smooth. To bound the expectation E ‖vi‖2, we use
the intermediate inequality from the above derivation, obtaining:

E ‖vi‖2 = E
[
‖∇ψi(x)−∇ψi(x∗)‖2

]
− 2E

[
∇ψi(x)−∇ψi(x∗)

]>∇f(x) + ‖∇f(x)‖2

= E
[
‖∇ψi(x)−∇ψi(x∗)‖2

]
− ‖∇f(x)‖2

≤ E
[
‖∇ψi(x)−∇ψi(x∗)‖2

]
≤ E

[
2λ ·

(
ψi(x)− ψi(x∗)− (x− x∗)>∇ψi(x∗)

)]
= 2λ ·

(
f(x)− f(x∗)− (x− x∗)∇f(x∗)

)
= 2λ ·

(
f(x)− f(x∗)

)
.

We now use the assumption that x ∈ Uf (1), which implies via Lemma 2 that f(x)−f(x∗) ≤ 2 · 12‖x−x∗‖2H =
‖x− x∗‖2H. Thus, we can use Lemma 1 with R = 2λ‖x− x∗‖ and σ2 = 2mλ‖x− x∗‖2H, as well as µ-strong
convexity of f , obtaining that, for some absolute constant C, with probability 1− δ, we have:

‖ĝ(x)− ĝ(x∗)−∇f(x)‖2H−1 ≤
1
µ

∥∥∥ 1
m

m∑
i=1

vi
∥∥∥2

≤ C

µ

(σ2 log(1/δ)
m2 + R2 log2(1/δ)

m2

)
≤ C

µ

(
2λ‖x− x∗‖2H log(1/δ)

m
+ 4λ2‖x− x∗‖2 log2(1/δ)

m2

)
≤ 4C

(
κ log(1/δ)

m
+ κ2 log2(1/δ)

m2

)
· ‖x− x∗‖2H

≤ 8C log(1/δ) · κ
m
‖x− x∗‖2H,
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where in the last step we used that m ≥ κ log(1/δ).

Letting εg=
√

2C log(t/δ)κ/m, Lemma 3 implies that with probability 1− δ/t2,

‖gt − (ĝt − ĝ(x̃) + g̃)‖H−1 ≤ εg
(
‖∆t‖H + ‖∆0‖H

)
≤ 2εg‖∆0‖H.

Finally, we return to the first term in (6), i.e., ‖∆t − ηH̃−1gt‖H. To control this term we introduce the
following lemma which is potentially of independent interest to the local convergence analysis of Newton-type
methods.

Lemma 4 Suppose that f satisfies Assumption 1 and either one of the Assumptions 2 or 3, and take any
x ∈ Uf (εl) (see Definition 1) for εl ≤ 1/cα for a sufficiently large absolute constant c > 0. Let H = ∇2f(x∗)
and consider a pd matrix H̃ that satisfies 1√

α
H � H̃ �

√
αH. Then, for η := min{

√
2/α, 1}, we have:

‖x− ηH̃−1∇f(x)− x∗‖H ≤
(

1− 1
1.9α

)
‖x− x∗‖H.

Proof Let ∆0 := x− x∗ and ∆1 := x− ηH̃−1∇f(x)− x∗. Using that ∇f(x∗) = 0, we have:

∆1 = ∆0 − ηH̃−1∇f(x)
= ∆0 − ηH̃−1(∇f(x)−∇f(x∗))

= ∆0 − ηH̃−1
∫ 1

0
∇2f(x∗ + θ∆0)∆0dθ

= (I− ηH̃−1H̄)∆0,

where we defined H̄ :=
∫ 1

0 ∇
2f(x∗ + θ∆0)dθ. It follows that we can bound the norm of ∆1 using a norm

defined by the matrix H̄:

‖∆1‖H̄ = ‖H̄1/2(I− ηH̃−1H̄)∆0‖
= ‖(I− ηH1/2H̃−1H̄1/2)H̄1/2∆0‖
≤ ‖I− ηH̄1/2H̃−1H̄1/2‖ · ‖∆0‖H̄.

Observe that for any θ ∈ [0, 1], the vector x∗ + θ∆0 belongs to Uf (εl), which via Lemma 2 implies that

∇2f(x∗ + θ∆0) ≈εl
H ∀θ ∈ [0, 1].

where H = ∇2f(x∗). In particular, this means that H̄ ≈εl
H, which, combined with the α-approximation

property of H̃, allows us to write the following:

H̃−1 �
√
αH−1 �

√
α(1 + εl)H̄−1 and H̃−1 � 1√

α
H−1 � 1− εl√

α
H̄−1.

Putting these inequalities together, we obtain that:

η
1− εl√

α
I � ηH̄1/2H̃−1H̄1/2 � η

√
α(1 + εl)I.

Now, using the fact that η = min{
√

2/α, 1}, we conclude that:

‖I− ηH̄1/2H̃−1H̄1/2‖ ≤ max
{
η
√
α(1 + εl)− 1, 1− η 1− εl√

α

}
≤ max

{√
2(1 + εl)− 1, 1−

√
2(1− εl)
α

, 1− 1− εl√
2

}
≤ max

{
1− 1

1.8 , 1− 1
α

}
≤ 1− 1

1.8α,
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where we used that εl ≤ 1/c for a sufficiently large constant c > 0 such that max{
√

2(1 + εl)− 1, 1− 1−εl√
2 } ≤

1− 1
1.8 . Now, we analyze convergence in the norm induced by H, instead of H̄, by relying again on the fact

that H̄ ≈εl
H, obtaining:

‖∆1‖H ≤
1√

1− εl
‖∆1‖H̄ ≤

1√
1− εl

(
1− 1

1.8α

)
‖∆0‖H̄

≤
√

1 + εl
1− εl

(
1− 1

1.8α

)
‖∆0‖H ≤

(
1− 1

1.9α

)
‖∆0‖H,

where the last step requires εl = 1/cα for sufficiently large absolute constant c > 0.

Using Lemma 4 to bound the first term in (6), we obtain that:

‖∆t − ηH̃−1
t gt‖H ≤

(
1− 1

1.9α

)
‖∆t‖H.

Putting everything together, we obtain the following bound for the error of the update that uses the stochastic
variance-reduced gradient estimate:

‖∆t+1‖H = ‖∆t − ηp̃t‖H

≤ ‖∆t − ηH̃−1gt‖H + η‖H̃−1(gt − ḡt)‖H

≤
(

1− 1
1.9α

)
‖∆t‖H + 2η

√
αεg‖∆0‖H

≤
(

1− 1
1.9α

)
‖∆t‖H + 3εg‖∆0‖H.

Note that, as long as 3εg ≤ 1
2α (which can be ensured by our assumption on m), this implies that ‖∆t+1‖H ≤

‖∆0‖H and so xt+1 ∈ Uf (εl). Thus, our analysis can be applied recursively at each inner iteration. To expand
the error recursion, observe that if we apply a union bound over the high-probability events in Lemma 3 for
each inner iteration t using failure probability δt = δ/t2, then they hold for all t with probability at least
1−

∑∞
t=1 δ/t

2 ≥ 1− δπ2/6. We obtain:

‖∆t‖H ≤
(

1− 1
1.9α

)
‖∆t−1‖H + 3εg‖∆0‖H

≤
(

1− 1
1.9α

)t
‖∆0‖H +

( t−1∑
i=0

(
1− 1

1.9α

)i)
· 3εg‖∆0‖H

≤
((

1− 1
1.9α

)t
+ 9αεg

)
· ‖∆0‖H.

Applying Lemma 2, we convert this to convergence in function value:

f(xt)− f(x∗) ≤ 1
1− εl

1
2‖∆t‖2H

≤ 1
1− εl

1
2

((
1− 1

1.9α

)t
+ 9αεg

)2
‖∆0‖2H

≤ 1 + εl
1− εl

((
1− 1

1.9α

)2t
+ 92α2ε2g

)
· (f(x0)− f(x∗))

≤
((

1− 1
2α

)t
+ C ′α2κ log(t/δ)

m

)
· (f(x0)− f(x∗)),

where C ′ is an absolute constant, and we again used that εl ≤ 1/cα for a sufficiently large c, thus concluding
the proof.
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A.3 Proof of Lemma 2

First, we show that the Hessian at x ∈ Uf (εl) is an εl-approximation of the Hessian at the optimum x∗.
This is broken down into two cases, depending on which of the two Assumptions 2 and 3 are satisfied.

Case 1: Assumption 2 (Lipschitz Hessian). Using the shorthand H = ∇2f(x∗) and the fact that strong
convexity (Assumption 1) implies that ∇2f(x) � µI, we have:

‖H−1/2(∇2f(x)−H)H−1/2‖ ≤ 1
µ
‖∇2f(x)−H‖ ≤ L

µ
‖x− x∗‖ ≤ L

µ3/2 ‖x− x∗‖H ≤ εl,

which implies that ∇2f(x) ≈εl
H.

Case 2: Assumption 3 (Self-concordance). The fact that ∇2f(x) ≈εl
H follows from the following property

of self-concordant functions (Boyd & Vandenberghe, 2004, Chapter 9.5), which holds when ‖x− x∗‖H < 1:

(1− ‖x− x∗‖H)2 ·H � ∇2f(x) � (1− ‖x− x∗‖H)−2 ·H,

where we again let H = ∇2f(x∗).

We next use a version of Quadratic Taylor’s Theorem, as given below. See Theorem 3 in Chapter 2.6 of
(Jerrard, 2018) and Chapter 2.7 in (Folland, 2002).

Lemma 5 Suppose that f : Rd → R has continuous first and second derivatives. Then, for any a and v,
there exists θ ∈ (0, 1) such that:

f(a + v) = f(a) +∇f(a)>v + 1
2v>∇2f(a + θv)v.

Applying Talyor’s theorem with a = x∗ and v = x− x∗, there is a z = x∗ + θ(x− x∗) such that:

f(x)− f(x∗) = 1
2‖x− x∗‖2∇2f(z),

where we use that ∇f(x∗) = 0. Since we assumed that x ∈ Uf (εl), and naturally also x∗ ∈ Uf (εl), this means
that z ∈ Uf (εl), given that Uf (εl) is convex. Thus, using that ∇2f(z) ≈εl

H, we have ‖x − x∗‖2∇2f(z) ≈εl

‖x− x∗‖2H.

A.4 Proof of Theorem 2

In this section, we discuss how the convergence analysis of SVRN can be adapted to using leverage score
sampling when solving a least squares task (proving Theorem 2).

Consider an expected risk minimization problem f(x) = E[ψ(x)], where ψ = 1
npI

ψI and I is an index from
{1, ..., n}, sampled according to some importance sampling distribution p. More specifically, consider a least
squares task, where the components are given by ψi(x) = 1

2 (a>i x− yi)2. Then, the overall minimization task
becomes:

E[ψ(x)] = E
[ 1
npI

ψI(x)
]

= 1
2n

n∑
i=1

(a>i x− yi)2. (7)

Moreover, we have f(x)− f(x∗) = 1
2n‖A(x− x∗)‖2 = 1

2‖x− x∗‖2H, where H = ∇2f(x) = 1
nA>A. Also,

∇ψi(x) = (a>i x− yi)ai, ∇2ψi(x) = aia>i .

Naturally, since the Hessian is the same everywhere for this task, the local convergence neighborhood Uf
is simply the entire Euclidean space Rd. Let us first recall our definition of the condition number for this
task. Assumption 1 states that each ψi is λ-smooth, i.e., ‖∇2ψi(x)‖ = ‖ai‖2 ≤ λ and f is µ-strongly
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convex, i.e., λmin(H) = 1
nσ

2
min(A) ≥ µ, and the condition number of the problem is defined as κ = λ/µ ≥

maxi{n‖ai‖2}/σ2
min(A). Can we reduce the condition number of this problem by importance sampling?

Consider the following naive strategy which can be applied directly with our convergence result. Here, we let
the importance sampling probabilities be pi ∝ ‖ai‖2, so that the smoothness of the new reweighted problem
will be λ̃ = 1

n

∑n
i=1 ‖ai‖2. In other words, it will be the average smoothness of the original problem, instead

of the worst-case smoothness. Such importance sampling strategy can theoretically be applied to a general
finite-sum minimization task with some potential gain, however we may need different sampling probabilities
at each step. For least squares, the resulting condition number is κ̃ = λ̃/µ = (

∑
i ‖ai‖2)/σ2

min(A). This is
still worse than what we claimed for least squares, but it is still potentially much better than κ.

Next, we will show that by slightly adapting our convergence analysis, we can use leverage score sampling
to further improve the convergence of SVRN for the least squares task. Recall that the ith leverage score of
A is defined as `i = ‖ai‖2(A>A)−1 = 1

n‖ai‖
2
H−1 , and the laverage scores satisfy

∑n
i=1 `i = d. This result will

require showing a specialized version of Lemma 3, which bounds the error in the variance-reduced subsampled
gradient. In this case we show a bound in expectation, instead of with high probability.

Lemma 6 Suppose that f defines a least squares task (7) and the sampling probabilities satisfy pi ≥
‖ai‖2(A>A)−1/(Cd). Then, ĝ(x) = 1

m

∑m
i=1

1
npIi
∇ψIi

(x), where I1, ..., Im ∼ p, satisfies:

E ‖ĝ(x)− ĝ(x∗)−∇f(x)‖2H−1 ≤ C
d

m
· ‖x− x∗‖2H.

Proof We define vi = 1
npIi

(∇ψIi
(x)−∇ψIi

(x∗))−∇f(x). Note that E[vi] = 0, so we have:

E ‖ĝ(x)− ĝ(x∗)−∇f(x)‖2H−1 = E
∥∥∥ 1
m

m∑
i=1

vi
∥∥∥2

H−1
= 1
m
E ‖v1‖2H−1

≤ 1
m
E

1
n2p2

I1

‖∇ψI1(x)−∇ψI1(x∗)‖2H−1

= 1
m
E
‖aI1‖2H−1

n2p2
I1

(
a>I1

(x− x∗)
)2

≤ 1
m
Cd · E

(a>I1
(x− x∗))2

npI1

= C · d
m
‖x− x∗‖2H,

where we used that ‖ai‖2H−1 = n ‖ai‖2(A>A)−1 ≤ Cndpi.

Since the above bound is obtained in expectation, to insert it into our high probability analysis, we apply
Markov’s inequality. Namely, it holds with probability 1− δ that:

‖ĝ(x)− ĝ(x∗)−∇f(x)‖2H−1 ≤
Cd

δm
‖x− x∗‖2H.

Compared to Lemma 3, the dependence on the condition number κ is completely eliminated in this result.
Letting m = n/ log(n/d) and the number of local iterations of SVRN to be t = O(log(n/d)), we can apply
the union bound argument from the proof of Theorem 3 by letting δ = 1/(Ct), so that with probability
1− 1/C, one stage of leverage score sampled SVRN satisfies:

f(x̃s+1)− f(x∗) ≤ ρ ·
(
f(x̃s)− f(x∗)

)
for ρ = O

(d log2(n/d)
n

)
.

Alternatively, our main convergence analysis can be adapted (for least squares) to convergence in expectation,
obtaining that E[f(x̃s+1)− f(x∗)] ≤ ρ̃ · E[f(x̃s)− f(x∗)] for ρ̃ = O(d log(n/d)/n).

The time complexity stated in Theorem 2 comes from the fact that constructing a preconditioning matrix
H̃ that is an α-approximation of H with α = O(1), together with approximating the leverage scores, takes
O(nd logn+d3 log d) (Drineas et al., 2012), whereas one stage of SVRN takes O(nd+d2 log(n/d)). Here, the
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preconditioning matrix can be formed by applying a k × n sketching transformation S to the data matrix
A, and then computing the Hessian estimate 1

nA>S>SA ≈ H. For example, if we use the Subsampled
Randomized Hadamard Transform (SRHT, Ailon & Chazelle, 2009), then it suffices to use k = O(d log d).
Finally, the initial iterate x̃0 can be constructed using the same sketching transformation via the so-called
sketch-and-solve technique (Sarlos, 2006):

x̃0 = argmin
x
‖SAx− Sy‖2.

With k = O(d log d), this initial iterate will satisfy f(x̃0) ≤ O(1) ·f(x∗), so the number of iterations of SVRN
needed to obtain f(x̃s) ≤ (1 + ε)f(x∗) is only s = O

( log(1/ε)
log(n/d)

)
.

We note that another way to implement SVRN with approximate leverage score sampling is to first precon-
dition the entire least squares problem with a Randomized Hadamard Transform (i.e., SRHT without the
subsampling):

Ã = HDA and ỹ = HDy, (8)

where H is a Hadamard matrix scaled by 1/
√
n and D is a diagonal matrix with random sign entries. This is

a popular technique in Randomized Numerical Linear Algebra (Woodruff, 2014; Drineas & Mahoney, 2016;
Dereziński & Mahoney, 2021). The cost of this transformation is O(nd logn), thanks to fast Fourier transform
techniques, and the resulting least squares task is equivalent to the original one, because ‖Ãx − ỹ‖2 =
‖Ax − y‖2 for all x. Moreover, with high probability, all of the leverage scores of Ã are nearly uniform,
so, after this preconditioning, we can simply implement SVRN with uniform gradient subsampling and still
enjoy the condition-number-free convergence rate from Theorem 2. This strategy is as effficient as direct
leverage score sampling when A is a dense matrix, but it is less effective when we want to exploit data
sparsity.

B Further experimental details

In this section we provide additional details regarding our experimental setup in Section 5, as well as some
further results on logistic regression with several datasets.

As a dataset, in Section 5, we used the Extended MNIST dataset of handwritten digits (EMNIST, Cohen
et al., 2017) with n = 500k datapoints. Here, we also include results on the CIFAR-10 image dataset
with n = 50k datapoints. Both datasets are preprocessed in the same way: Each image is transformed
by a random features map that approximates a Gaussian kernel having width 0.002, and we partitioned
the classes into two labels 1 and -1. We considered two feature dimensions: d = 500 and d = 1000, and
we used the regularization parameter γ = 10−8. To measure the error in the convergence plots, we use
‖xt − x∗‖2H/‖x0 − x∗‖2H, where H = ∇2f(x∗).

We next present further results, studying the convergence properties of SVRN on synthetic datasets with
varying properties, for the logistic regression task as in (5). To construct our synthetic data matrices, we
first generate an n× d Gaussian matrix G, and let G = UDV be the reduced SVD of that matrix (we used
n = 500k and d = 1000). Then, we replace diagonal matrix D with a matrix D̃ that has singular values
spread linearly from 1 to κA. We then let A = UD̃V be our data matrix. To generate the vector y for
logistic regression, we first draw a random vector x ∼ N (0, 1/d · Id), and then we let y = sign(Ax).

For the least squares tasks in Section 5.2, we generated the same synthetic matrices A, but with the vector
y generated as follows: y = Ax + ξ where ξ is the Gaussian noise ξ ∼ N (0, 0.1 · In). Here, we observed
little difference in convergence behavior when varying κA (we show the results for κA = 103).

Logistic regression with varying condition number. To supplement the EMNIST logistic regression
experiments in Section 5, we present convergence of SVRN-HA on the CIFAR-10 dataset, as well as for
the synthetic logistic regression task while varying the squared condition number κ2

A of the data matrix.
Note that, while κ2

A is not the same as the condition number of the finite-sum minimization problem, it
is correlated with it, by affecting the convexity and smoothness of f . From Figure 5, we observe that
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(a) Synthetic LR, κ2
A = 1 (b) Synthetic LR, κ2

A = 10

(c) CIFAR-10, d = 500 (d) CIFAR-10, d = 1000

Figure 5: Convergence comparison of SVRN-HA against SN-HA and Newton for a synthetic logistic regression
task as we vary the condition number of the data matrix, and for the CIFAR-10 dataset.

SVRN-HA outperforms SN-HA for both values of the data condition number. However, the convergence of
both algorithms gets noticeably slower after increasing κ2

A, while it does not have as much of an effect on
the Newton’s method. Given that the increased condition number affects both methods similarly, we expect
that the degradation in performance is primarily due to worse Hessian approximations, rather than increased
variance in the gradient estimates. This may be because we are primarily affecting the global convexity of f ,
as opposed to the smoothness of individual components ψi. See our high-coherence least squares experiments
for a discussion of how the smoothness of component functions affects the performances of SVRN and SN
very differently.

C Related work on Subsampled Newton

In this section, we discuss several important prior works on Subsampled Newton methods to put our results
in context. Specifically, we aim to illustrate how the Hessian approximation condition used in Theorems 1
and 3, i.e., 1√

α
∇2f(x) � H̃ �

√
α∇2f(x), relates to the Hessian estimates used in this line of works when

showing fast local convergence rates. Also, in Appendix D.2, we show that to recover our condition with
α ≤ 2 via uniform Hessian subsampling, one needs O(κ log(d)) samples. Throughout this section, we use
notation from the respective references.

First, we consider the Hessian averaging method studied by (Na et al., 2022). It is important to distinguish
between the condition they impose on the stochastic Hessian oracle Ĥ, and the Hessian approximation
guarantee that they obtain for the actual estimate H̃t that they use (and that we use in SVRN-HA).
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The stochastic oracle is only required to have a sub-exponential tail (see their Assumption 2.1, and also
Example 2.3 illustrating this for Subsampled Newton). However, the actual estimate H̃t is a result of
averaging many samples from that oracle. Their local convergence analysis is only deployed once enough
oracle samples are averaged so that H̃t achieves the approximation guarantee given in their Lemma 3.5, i.e.,
(1− ψ)Ht � H̃t � (1 + ψ)Ht. This approximation guarantee is strictly stronger than ours, but it becomes
equivalent once α ≤ 2.

Next, we consider (Roosta-Khorasani & Mahoney, 2019) which analyzes a broad class of Subsampled Newton
methods. In this paper, the most relevant results are Lemma 2 (Hessian approximation guarantee) and
Theorem 5 (local convergence result). The guarantee reduces to our condition with α ≤ 2, with the only
difference being that their Hessian approximation is restricted to the “cone of feasible directions”, defined
in (3). This restriction is only present in a constrained optimization setting (we focus on unconstrained
optimization). The lemma also shows that the required Hessian sample size is again larger than the condition
number of the problem (their condition number κ1 matches our κ for unconstrained optimization).

Next, we look at (Bollapragada et al., 2018) which presents a convergence analysis of Subsampled Newton
under slightly different assumptions. Here, the key statements for local convergence are Lemma 2.4 in the
journal version (Lemma 2.3 in arxiv), and equation (2.17). The lemma gives an approximation guarantee for
the subsampled Hessian. This guarantee is in some sense weaker than our condition, because it only requires
the Hessian approximation to be good in one direction, i.e., wk −w∗ in their notation. However, examining
the convergence bound in (2.17), for the local convergence analysis to hold, the Hessian sample size must
still satisfy |Sk| ≥ σ2/µ̄2 where σ2 is effectively the upper bound on the component Hessians (potentially as
large as our λ-smoothness) and µ̄ is the lower bound on the component Hessians. The latter is effectively a
component-wise strong convexity constant, which can be much smaller (i.e., worse) than our global strong
convexity µ. In summary, their Hessian approximation condition for local convergence analysis, while slightly
different, also requires the Hessian sample size to be larger than a condition number of the problem. Their
condition number can be much larger than our condition number κ, or even infinite (for problems as simple
as least squares), and is less standard in the literature.

Finally, we examine (Erdogdu & Montanari, 2015), where the authors consider Subsampled Newton with a
possibly low-rank approximation of the Hessian. The most relevant result in that work is Lemma 3.1. Here,
the standard version of Subsampled Newton is recovered when we let Qt = H−1

St
. Then, the standard Hessian

approximation condition appears implicitly through the fact that ξt1 has to be less than 1 for the bound to
be non-vacuous. To see the condition more clearly, we point to Equation (B.1) in the appendix (Equation
A.1 in the arxiv version), which requires that ‖Qt‖ · ‖HSt − H‖ < 1. For Qt = H−1

St
, this is essentially

equivalent to our condition with α ≤ 2. Also, from the bound in Lemma 3.1, we see that once again the
condition requires Hessian sample size to be larger than a condition number of the problem (which is for
them K‖Qt‖, and after some effort, this can be seen as comparable to our condition number). In the main
algorithm of the paper, NewSamp, the authors aim to reduce the required sample size by using a different
Qt computed from a low-rank approximation of HSt

. This roughly corresponds to constructing a Hessian
α-approximation with 1� α� κ.

D Omitted proofs

Here, we include the proofs of the auxiliary results stated in the paper. First, we discuss in detail the global
convergence analysis of SVRN-HA (Theorem 4). Then, we illustrate how the Hessian approximation required
in Theorem 3 can be obtained via subsampling.

D.1 Global convergence of SVRN-HA

Here, we show how the proof of Theorem 4, i.e., global convergence of SVRN-HA (Algorithm 1), follows
from global convergence analysis of Hessian averaging (Na et al., 2022). They show in Lemma 3.5 that if we
were to run the global phase of SVRN-HA exclusively, then for any ε, δ ∈ (0, 1) there is T := T (ε, δ) such
that with probability 1− δ for all s ≥ T we have x̃s ∈ Uf (ε), H̃s ≈ε ∇2f(x̃s), and ηs = 1. This means that,
for any ε, the probability that the above event does not happen with any T <∞ is less than any δ > 0, so it
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must be 0. This implies that SVRN-HA will eventually switch to the local phase (i.e., to SVRN). Note that
it is possible that the switch will occur before the local neighborhood and Hessian approximation conditions
are met. But if this causes SVRN to produce a poor descent direction, it will be caught by the line search
(resulting in ηs < 1) and the method will simply revert back to the global phase. Eventually, the global
phase will ensure that both conditions are met, and we can rely on Theorem 3 for the local convergence
analysis.

D.2 Hessian approximation via subsampling

Here, we illustrate how the Hessian α-approximation condition (2), used in Theorems 1 and 3, can be
obtained via uniformly subsampling O(κ log d) component Hessians. This result follows from Bernstein’s
concentration inequality for random matrices, given below (Tropp, 2012).

Lemma 7 (Matrix Bernstein’s inequality) Let Z1, ...,Zk be independent random symmetric d× d ma-
trices such that 1

k

∑
i E[Zi] = Z̄. Suppose that:

∥∥1
k

∑
i

E[(Zi − E[Zi])2]
∥∥ ≤ σ̄2 and ‖Zi − E[Zi]‖ ≤ R.

Then, for any ε ≥ 0

Pr
(∥∥∥1

k

k∑
i=1

Zi − Z̄
∥∥∥ ≥ ε) ≤ 2d · exp

(
− ε2k/2
σ̄2 + εR/3

)
.

We are now ready to show the approximation guarantee for a subsampled Hessian estimate.

Lemma 8 Suppose Assumption 1, and let D be the sampling distribution for component functions ψ, as in
Theorem 3. Let ψ1, ..., ψk ∼ D be i.i.d. samples from this distribution. There is an absolute constant c such
that if k ≥ cκ log(d/δ), then for any x ∈ Rd, with probability 1 − δ, the matrix H̃ = 1

k

∑k
i=1∇2ψi(x) is an

α-approximation of ∇2f(x) as in (2) with α ≤ 2.

Proof Let H = ∇2f(x). We will use Lemma 7 with Zi = H−1/2∇2ψi(x)H−1/2. First, note that
E[∇2ψi(x)] = ∇2f(x) so that Z̄ = E[Zi] = I. Next, we compute the boundedness parameter R:

‖Zi − E[Zi]‖ ≤ ‖H−1/2∇2ψi(x)H−1/2‖+ 1 ≤ 2κ =: R.

Now, we similarly bound the variance parameter σ̄2:∥∥E[(Zi − E[Zi])2]
∥∥ ≤ ∥∥E[Z2

i ]
∥∥ ≤ ∥∥E[‖Zi‖Zi]∥∥ ≤ κ =: σ̄2.

Thus, Lemma 7 implies that if k ≥ 3κ log(2d/δ)/ε2 then with probability 1− δ we have:

‖H−1/2H̃H−1/2 − I‖ ≤ ε.

We can rewrite this as:
(1− ε)I � H−1/2H̃H−1/2 � (1 + ε)I,

which is equivalent to:
(1− ε)H � H̃ � (1 + ε)H.

Setting ε = 1/4 and adjusting the constants concludes the proof, since 1− ε ≥ 1√
2 and 1 + ε ≤

√
2.
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