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Abstract
Multimodal models play a key role in empa-001
thy detection, but their performance can suffer002
when modalities provide conflicting cues. To003
understand these failures, we examine cases004
where unimodal and multimodal predictions di-005
verge. Using fine-tuned models for text, audio,006
and video, along with a gated fusion model,007
we find that such disagreements often reflect008
underlying ambiguity, as evidenced by annota-009
tor uncertainty. Our analysis shows that domi-010
nant signals in one modality can mislead fusion011
when unsupported by others. We also observe012
that humans, like models, do not consistently013
benefit from multimodal input. These insights014
position disagreement as a useful diagnostic015
signal for identifying challenging examples and016
improving empathy system robustness.017

1 Introduction018

Empathy recognition in human communication is019

a nuanced and multifaceted task, and a core com-020

ponent of socially intelligent communication sys-021

tems (Fung et al., 2016). Empathy, commonly022

defined as the capacity to understand and share023

the emotional experiences of others, encompasses024

both cognitive perspective-taking and affective res-025

onance (Baumeister and Vohs, 2007). In human026

interactions, language, speech, and visual cues027

jointly convey emotional intent (Holler and Levin-028

son, 2019). For example, a seemingly neutral ut-029

terance might be perceived as warm or concerned030

when accompanied by a sympathetic tone or facial031

expression. For AI systems, effectively interpreting032

these multimodal signals requires not only accurate033

unimodal representations but also robust integra-034

tion of potentially conflicting information across035

modalities. Despite recent advances in multimodal036

emotion recognition (Jabeen et al., 2021), empa-037

thy recognition remains particularly complex, as038

empathy often arises from subtle contextual cues039

that may not align across modalities (Hasan et al.,040

2023).041

Figure 1: Given classifications provided by a single
modality, we identify cases where integrating additional
modalities leads to a different prediction. We analyze
these flips to understand when and why they occur.

Our work investigates such complexity by exam- 042

ining when and why multimodal models misclassify 043

empathy compared to their unimodal counterparts. 044

We extend methods from prior work on dataset diffi- 045

culty and human–model agreement (Swayamdipta 046

et al., 2020; Saha et al., 2022), to the underex- 047

plored domain of empathy modeling. Through a 048

combination of model-driven analysis and human- 049

subject experiments, we pinpoint instances where 050

unimodal and multimodal model predictions di- 051

verge, indicating conflicting cross-modal cues. By 052

linking modality disagreement to human disagree- 053

ment, we offer new insight into the limitations 054

of current empathy modeling and highlight the 055

value of disagreement-based analysis in socially 056

grounded language tasks. 057

2 Related Work 058

Empathy Modeling. Early computational work 059

on empathy focused on generating emotionally rel- 060

evant textual responses (Rashkin et al., 2019; Li 061

et al., 2019), but these approaches are inherently 062

limited by the absence of non-verbal cues criti- 063

cal to empathic understanding. Recent datasets 064

such as EMPATHICSTORIES++ (Shen et al., 2024), 065

MEDIC (Zhu et al., 2023), EMMI (Galland et al., 066
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2024) and Chen et al. (2024) address this limitation067

by incorporating speech, facial expressions, and068

interaction context, enabling more comprehensive069

modeling of empathy. These resources have moti-070

vated frameworks like PEGS (Zhang et al., 2024),071

which integrate text and visual stickers for affec-072

tive generation. Despite these advances, empathy073

remains difficult to model due to its reliance on074

subtle, often conflicting signals across modalities.075

Prior work has largely focused on improving fu-076

sion strategies under the assumption that modalities077

are complementary (Zadeh et al., 2017; Tsai et al.,078

2019), but has paid less attention to when fusion079

may fail or introduce noise.080

Dataset Difficulty. Complementary lines of work081

have investigated data difficulty and model dis-082

agreement as tools for understanding model behav-083

ior. Swayamdipta et al. (2020) propose the dataset084

cartography method to identify hard or ambiguous085

training samples; Saha et al. (2022) demonstrate086

that difficult instances are also harder for both hu-087

mans and models to explain; Wang et al. (2023)’s088

Learning-From-Disagreement (LFD) framework089

underscores the importance of examining disagree-090

ments between models to gain deeper, actionable091

insights into their behaviors.092

Yet, these methods remain underexplored in093

empathy modeling, where ambiguity is often in-094

trinsic. Our work bridges this gap by using095

model–modality disagreement to identify inher-096

ently ambiguous empathy examples—cases where097

fusion misleads models, and where annotators also098

exhibit uncertainty.099

3 Experiment 1: Identifying Complex100

Examples from Modality Disagreement101

Disagreement between models trained on different102

modalities can reveal challenging, nuanced, or am-103

biguous examples. Here, we identify and analyze104

such cases of disagreement in empathy classifica-105

tion using a multimodal English empathy speech106

dataset collected from Youtube (Chen et al., 2024)107

(referred to as EMPSPEECH) consisting of 1,718108

manually annotated English speech segments la-109

beled as empathetic or neutral (Appendix B).110

Experimental Setup. Examples in EMP-111

SPEECH are comprised of video segments112

spanning three modalities: text (transcript), audio113

(speech), and video.114

We finetune two models per modality on the115

Modality Model Accuracy F1

Text RoBERTa 0.75 0.73
DeBERTa 0.69 0.68

Audio HuBERT 0.72 0.71
Wav2Vec2 0.68 0.63

Video VideoMAE 0.77 0.77
TimesFormer 0.64 0.62

Fusion (All Modalities) 0.76 0.72

Table 1: Performance of fine-tuned models across
modalities on the empathy classification task.

train set from EMPSPEECH: ROBERTA (Liu et al., 116

2019) and DEBERTA (He et al., 2021) for text, HU- 117

BERT (Hsu et al., 2021) and WAV2VEC2 (Baevski 118

et al., 2020) for audio, and VIDEOMAE (Tong 119

et al., 2022) and TIMESFORMER (Bertasius et al., 120

2021) for video (Appendix A.1).1 Then, we ex- 121

tract embeddings from each best-performing uni- 122

modal model (ROBERTA, HUBERT, and VIDEO- 123

MAE, Table 1) to train a multimodal fusion model 124

that projects all three modality embeddings into a 125

shared latent space (Appendix A.2). 126

Results. We evaluate all models (unimodal and 127

multimodal) on the test split of EMPSPEECH to 128

identify disagreements, or examples where two 129

models with varying input modalities assign dif- 130

ferent labels, highlighting cases where different 131

modalities may carry ambiguous, conflicting, or 132

modality-specific signals. 133

Text disagrees most frequently with the other 134

modalities (Table 2), suggesting that it does not 135

frequently align with speech and visual cues. In 136

contrast, audio and video are better aligned, likely 137

due to a shared reliance on nonverbal expressive 138

signaling such as prosody and facial expression. 139

Our fusion model disagrees least with text, sug- 140

gesting it relies more heavily on verbal content. 141

This also may reveal an over-reliance on text-based 142

signals by the original annotators. 143

Figure 2 visualizes disagreement regions be- 144

tween each unimodal model and the fusion model. 145

We plot unimodal confidence (x-axis) against fu- 146

sion confidence (y-axis) in the correct label; hence 147

confidence greater than 0.5 resulted in a correct pre- 148

diction. This yields four quadrants: green (mul- 149

timodal correct, unimodal incorrect), red (mul- 150

timodal incorrect, unimodal correct), blue (both 151

correct), and yellow (both incorrect). Red and 152

green quadrants are disagreement regions which 153

we explore to identify complex examples. 154

1The hidden layer dimensions of all models we consider
are similar.
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Figure 2: Comparing predictions between unimodal (text, audio, video) and multimodal models. We highlight
regions where model predictions agree (blue and yellow quadrants) and disagree (red and green quadrants).

Modality Text Audio Video

Text – 0.338 0.318
Audio 0.338 – 0.253
Video 0.318 0.253 –
Full 0.214 0.383 0.331

Table 2: Pairwise disagreement rates between top uni-
modal models and between each unimodal model and
the full model, measured as the proportion of test exam-
ples with differing predictions.

Feature Red vs. Blue Green vs. Blue

p-value Direction p-value Direction

valence 0.0047 µblue > µred 0.5166 µgreen > µblue
arousal 0.0065 µblue > µred 0.0136 µblue > µgreen
Mean Pitch 0.0100 µblue > µred 0.0001 µblue > µgreen
dominance 0.0108 µblue > µred 0.0667 µblue > µgreen
Min Pitch 0.0333 µblue > µred 0.0001 µblue > µgreen
Jitter 0.0347 µred > µblue 0.0667 µgreen > µblue
Max Intensity 0.1260 µred > µblue 0.0023 µgreen > µblue

Table 3: Statistically significant t-test results comparing
red vs. blue and green vs. blue examples for audio fea-
tures. See Appendix D for full table.

3.1 Modality-Based Feature Analysis155

To better understand examples in disagreement re-156

gions, we extract and analyze modality-based hu-157

man interpretable features.158

Audio. We extract 12 prosodic and paralin-159

guistic features from audio signals: 9 low-level160

acoustic features using PRAAT (Boersma and161

Weenink, 1992–2022) and PARSELMOUTH (Jadoul162

et al., 2018), and 3 high-level affective dimen-163

sions—valence, arousal, and dominance—using164

a finetuned WAV2VEC2 (Wagner et al., 2023). We165

compare feature distributions using t-tests for exam-166

ples in disagreement quadrants ( red and green )167

compared to those in the blue quadrant, signifying168

a non-ambiguous, easy examples. Blue examples169

have several significantly elevated pitch-related val-170

ues than red examples (Table 3), suggesting that171

AU p (R vs B) Dir p (G vs B) Direction

AU04 0.0106 red > blue 0.3682 green > blue
AU12 0.0174 blue > red 0.8977 green > blue
AU05 0.1837 blue > red <0.0001 blue > green

Table 4: Statistically significant t-test results comparing
AU activation rates between red vs. blue and green vs.
blue. See Appendix D for full table

stronger prosodic fluctuations are frequently cor- 172

roborated by other modalities. Examples in the 173

green quadrant show significantly higher Max In- 174

tensity than in blue, potentially reflecting the role of 175

volume-based emphasis in aiding unimodal predic- 176

tions. Furthermore, affective dimensions such as 177

valence, arousal, and dominance are significantly 178

lower in red examples, reinforcing the idea that 179

red examples are not simply noisy, but structurally 180

ambiguous: they express strong unimodal signals 181

that are complicated when analyzed alongside other 182

modalities. 183

Video. We examine facial action unit (AU) acti- 184

vations (Baltrušaitis et al., 2016) from video. AU04 185

(Brow Lowerer), AU12 (Lip Corner Puller), and 186

AU05 (Upper Lid Raiser) show significant differ- 187

ences across example types, revealing how specific 188

facial expressions contribute to perceptual ambi- 189

guity (Table 4). AU04 is more active in red ex- 190

amples than blue, indicating that despite its visu- 191

ally strong presence, its signal conflicts with other 192

modalities. In contrast, AU12, associated with pos- 193

itive affect, and AU05, which is linked to attentive- 194

ness (Friesen and Ekman, 1978), both show greater 195

activation in blue examples than in red and green, 196

respectively, suggesting that these expressions may 197

serve as clearer cues that are more consistently in- 198

terpreted across modalities. Our findings indicate 199

that fine-grained facial signals may contribute to 200

perceptual complexity in the visual stream. 201
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Figure 3: UMAP projections of text-only embeddings
for empathetic (left) and neutral (right) examples, col-
ored by modality disagreement class. Red and green
points tend to cluster near the decision boundary, indi-
cating high ambiguity.

Text. Finally, visualizing UMAP (Sainburg et al.,202

2021) projections of text embeddings (Figure 3)203

reveals that examples in disagreement regions (red204

and green) tend to cluster along the boundary be-205

tween consistently correct (blue) and consistently206

incorrect (yellow) examples. Rather than forming207

distinct or isolated groups, disagreement examples208

appear in transition zones within the embedding209

space—areas where semantic cues are less defini-210

tive, supporting our hypothesis that red and green211

examples are inherently ambiguous and difficult212

and illustrating that modality disagreement is a re-213

liable signal of challenging examples in empathy214

detection.215

4 Experiment 2: Characterizing Complex216

Examples217

We further assess whether model disagreements218

stem from data ambiguity by conducting a human219

annotation study to understand whether examples220

where models disagree are similarly challenging221

for human annotators.222

Annotation Setup. We sample 204 examples223

evenly split across the four quadrants of each Fig-224

ure 2 modality plot. For each example, annotators225

provide a binary judgment (empathetic or neutral)226

from a unimodal signal, then a judgment from the227

full multimodal version (see Appendix C for in-228

structions), allowing us to track how human pre-229

dictions shift with additional modality signals and230

understand the cognitive burden of multimodal in-231

tegration. All examples were annotated by one232

author and one external annotator.233

Results. Annotator disagreement, measured with234

Cohen’s Kappa (Cohen, 1960), can signal complex235

phenomena in examples (Jiang and de Marneffe,236

2022; Pavlick and Kwiatkowski, 2019) such as un-237

certainty in meaning leading to discrepancies in238

Quadrant Unimodal Judgment Multimodal Judgment ∆

Red 0.301 0.164 -0.137
Blue 0.379 0.646 0.267
Yellow 0.225 0.329 0.104
Green 0.482 0.218 -0.264

Table 5: Cohen’s Kappa between internal and external
annotators, computed separately for each quadrant and
prediction round.

reasoning. In disagreement regions (red and green), 239

we see a decrease in annotator agreement between 240

unimodal and multimodal judgments (Table 5), in- 241

dicating that humans diverge when weighing sig- 242

nals across modalities. In contrast, annotator agree- 243

ment improves on examples where unimodal and 244

multimodal model predictions are in agreement, 245

supporting our these examples are relatively un- 246

ambiguous and reliably interpreted once the full 247

context is available (Table 5). Collectively, these 248

results corroborate our hypothesis that modality 249

disagreement can serve as a valuable signal for 250

identifying ambiguous, challenging, or complex in- 251

stances that are also difficult for human annotators. 252

5 Discussion and Conclusion 253

We have demonstrated how disagreement, both be- 254

tween modalities and between humans and mod- 255

els, can serve as a diagnostic lens to understand 256

the complexity of multimodal empathy detection, 257

challenging the assumption that more signal from 258

other modalities reliably yields better performance. 259

Our analysis reveals that disagreement between uni- 260

modal and multimodal models is often not arbitrary, 261

but instead marks the presence of subtle, ambigu- 262

ous, or context-sensitive cues that challenge fusion 263

models and human annotators alike. Our findings 264

emphasize the necessity of high-quality, context- 265

sensitive annotation in socially complex tasks like 266

empathy detection, where model errors may re- 267

flect genuine human uncertainty. This framework 268

provides a scalable method for identifying ambigu- 269

ity and enhancing model reliability, especially in 270

recognizing complex emotional states that involve 271

inherent disagreement and uncertainty. Our work 272

lays the foundation for several directions of future 273

work, such as creating adversarial test sets to evalu- 274

ate empathy detection systems in realistic scenarios 275

or the identification of challenging examples for 276

human annotation in an active learning setup to 277

improve model robustness. 278
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6 Limitations279

We acknowledge several limitations in our study.280

Our analyses are based on a limited dataset and281

a small number of human annotators. Given that282

empathy is inherently subjective, annotations may283

vary due to individual interpretations, potentially284

introducing biases rather than reflecting universal285

properties of the data. Additionally, we rely on a286

single dataset, and future work should investigate287

whether the patterns we observe hold across other288

datasets and domains.289

Our data is also derived from U.S.-based,290

English-language television and interview content.291

As such, the generalizability of our findings to mul-292

tilingual or culturally diverse settings may be lim-293

ited. Future research should investigate these pat-294

terns in varied cultural and linguistic environments295

to better assess the broader applicability of our con-296

clusions.297

7 Ethics Statement298

We use a publicly available dataset and strictly use299

open-source models for analysis.300

All annotations were conducted by an author and301

an individual affiliated with the research team. No302

participants were recruited via crowdsourcing or303

external platforms, and no monetary compensation304

was provided, as the annotators were contributing305

in a research capacity. We provide detailed infor-306

mation on what we ask the annotators to annotate307

and how we plan to use the data. The annotators308

willingly agreed to participate with full knowledge309

of the task. No sensitive or identifying information310

were collected from annotators.311

We note that empathy expression may vary312

across cultures, and our findings may not gener-313

alize to non-English or non-Western contexts. We314

encourage future work to explore these questions315

in more diverse settings.316

We will release all code and experimental re-317

sources at https://anonymous.4open.sc318

ience/r/multimodal-empathy-disag319

reement-F48B to support reproducibility.320
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A Model Training Details486

Data was split into train, test and validation sets487

using random sampling, with an 80-10-10 split. We488

run fine-tuning and inference for all open-source489

models on an A100 GPU in Google Colab.490

A.1 Unimodal Model Training Details491

Each model is trained on a binary empathy classi-492

fication task using precomputed 768-dimensional493

embeddings. We freeze all but the final two trans-494

former layers and train for 15 epochs with a learn-495

ing rate of 5e-6 and batch size of 8.496

A.2 Fusion Model Details497

Each unimodal model representation is indepen-498

dently gated and passed through an attention mech-499

anism that computes modality-specific weights.500

The weighted embeddings are aggregated and clas-501

sified using a three-layer feedforward network with502

max pooling. The fusion model is trained for 10503

epochs using a learning rate of 1e-4 and includes504

modality dropout during training.505

B Dataset Details506

We use a multimodal empathy dataset (Chen et al.,507

2024) consisting of 346 English-language videos508

totaling approximately 53 hours, collected from509

YouTube between 2020 and 2022 using keywords510

like “empathy” and “empathetic training.” The511

dataset includes empathy training sessions, therapy512

roleplays, interviews, TED Talks, and TV/movie513

scenes, comprising both acted (62%) and sponta-514

neous (38%) speech. Each video was labeled by at515

least three expert annotators as either empathetic516

or neutral, with final labels determined by majority517

vote. Metadata such as speaker gender, topic, and518

emotional context was manually annotated, cover-519

ing themes like therapy, parenting, workplace dy-520

namics, and social relationships. From this collec-521

tion, a subset of 65 videos was transcribed, diarized,522

and manually re-aligned using Praat to ensure accu-523

rate speaker segmentation and time alignment. This524

process resulted in 1,718 annotated segments with525

speaker labels, timestamps, transcripts, and empa-526

thy stage annotations, enabling fine-grained anal-527

ysis of empathy in naturalistic and semi-scripted528

settings.529

C Annotation Instructions530

We employed two annotators, one of the paper’s au-531

thors and an non-author, both fluent English speak-532

ers based in the United States. No additional de- 533

mographic information was collected, as the anno- 534

tation was conducted internally for research pur- 535

poses. 536

Annotators were asked to provide two judgments 537

per example, labeling each as either empathetic or 538

neutral (Figure 4). A excerpt describing empathy 539

(drawn from the Encyclopedia of Social Psychol- 540

ogy, Volume 1, (Baumeister and Vohs, 2007)) was 541

provided to ensure a consistent conceptual founda- 542

tion for annotation: 543

Empathy is often defined as understanding an- 544
other person’s experience by imagining oneself 545
in that other person’s situation: One understands 546
the other person’s experience as if it were be- 547
ing experienced by the self, but without the self 548
actually experiencing it. There are three com- 549
monly studied components of emotional empathy. 550
The first is feeling the same emotion as another 551
person (sometimes attributed to emotional con- 552
tagion, e.g., unconsciously “catching” someone 553
else’s tears and feeling sad oneself). The second 554
component, personal distress, refers to one’s own 555
feelings of distress in response to perceiving an- 556
other’s plight. The third emotional component, 557
feeling compassion for another person, is the one 558
most frequently associated with the study of em- 559
pathy. Cognitive empathy refers to the extent to 560
which we perceive or have evidence that we have 561
successfully guessed someone else’s thoughts and 562
feelings. 563

Annotators were given an annotation flag indi- 564

cating which modality to use for the first pass; for 565

instance, if the flag was text, only the transcript 566

was to be used to make the first prediction. After 567

submitting the first judgment, annotators were then 568

given access to the full video, including all avail- 569

able audio, visual, and textual information. They 570

were then asked to provide a second prediction. 571

D Full Feature Comparisons 572

Tables 6, 7 and 8 provide additional results from 573

the t-tests comparing examples across different con- 574

fidence quadrants. Table 6 provides an internal 575

comparison between the disagreement quadrants. 576

Table 7 presents the full version of the audio fea- 577

ture comparisons summarized in Table 3. Table 8 578

expands on the facial feature comparisons shown 579

in Table 4. 580

E Feature Distributions 581

Figures 5 and 6 visualize the distributions of key 582

features across confidence quadrants. Figure 5 583

presents the distribution of selected audio features 584

(e.g., pitch, intensity) for red, green, and blue ex- 585

amples, highlighting acoustic patterns associated 586
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Figure 4: Annotation interface

Feature t-stat p-value Mean Comparison
Mean Pitch 2.453 0.0159 µred > µgreen
Max Intensity -2.124 0.0366 µgreen > µred
Max Pitch 2.016 0.0465 µred > µgreen
Min Pitch 2.007 0.0475 µred > µgreen
valence -1.908 0.0593 µgreen > µred
arousal 1.827 0.0705 µred > µgreen
speaking_rate 1.773 0.0807 µred > µgreen
dominance 1.712 0.0899 µred > µgreen
Shimmer 0.773 0.4416 µred > µgreen
Jitter 0.622 0.5355 µred > µgreen
Mean Intensity 0.544 0.5886 µred > µgreen
HNR 0.508 0.6129 µred > µgreen
Min Intensity -0.429 0.6685 µgreen > µred

Table 6: T-test results comparing audio features between red and green examples. Statistically significant results are
bolded.

with model disagreement. Figure 6 shows acti-587

vation rates for facial Action Units (AUs) in red,588

green, and blue examples, illustrating how specific589

facial expressions vary across agreement condi-590

tions. These visualizations complement the statis-591

tical comparisons reported in Tables 7 and 8, pro-592

viding a more interpretable view of the underlying593

feature dynamics.594
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Feature p (Red vs Blue) Direction p (Green vs Blue) Direction
valence 0.0047 µblue > µred 0.5166 µgreen > µblue
arousal 0.0065 µblue > µred 0.0136 µblue > µgreen
Mean Pitch 0.0100 µblue > µred 0.0001 µblue > µgreen
dominance 0.0108 µblue > µred 0.0667 µblue > µgreen
Min Pitch 0.0333 µblue > µred 0.0001 µblue > µgreen
Jitter 0.0347 µred > µblue 0.0667 µgreen > µblue
Max Intensity 0.1260 µred > µblue 0.0023 µgreen > µblue
Mean Intensity 0.1599 µred > µblue 0.5329 µblue > µgreen
HNR 0.2217 µblue > µred 0.2055 µblue > µgreen
speaking_rate 0.2723 µblue > µred 0.9991 µgreen > µblue
Shimmer 0.4122 µred > µblue 0.1541 µblue > µgreen
Max Pitch 0.6845 µred > µblue 0.2647 µblue > µgreen
Min Intensity 0.7999 µblue > µred 0.1571 µblue > µgreen

Table 7: T-test results comparing audio features between red vs. blue and green vs. blue examples. Statistically
significant p-values are bolded.

AU p (Red vs Blue) Direction p (Green vs Blue) Direction
AU04: Brow Lowerer 0.0106 red > blue 0.3682 green > blue
AU12: Lip Corner Puller 0.0174 blue > red 0.8977 green > blue
AU05: Upper Lid Raiser 0.1837 blue > red <0.0001 blue > green
AU17: Chin Raiser 0.2256 red > blue 0.9802 blue > green
AU10: Upper Lip Raiser 0.2275 blue > red 0.6700 green > blue
AU45: Blink 0.3200 blue > red 0.7462 green > blue
AU07: Lid Tightener 0.3252 blue > red 0.9318 blue > green
AU14: Dimpler 0.4593 red > blue 0.0652 green > blue
AU20: Lip Stretcher 0.5701 blue > red 0.7907 blue > green
AU09: Nose Wrinkler 0.6211 blue > red 0.7639 green > blue
AU25: Lips Part 0.6227 blue > red 0.7492 blue > green
AU01: Inner Brow Raiser 0.6529 blue > red 0.4674 green > blue
AU23: Lip Tightener 0.6630 red > blue 0.3474 green > blue
AU28: Lip Suck 0.6735 red > blue 0.9846 green > blue
AU26: Jaw Drop 0.6851 red > blue 0.4596 blue > green
AU06: Cheek Raiser 0.7097 blue > red 0.3201 green > blue
AU15: Lip Corner Depressor 0.9528 red > blue 0.4834 green > blue
AU02: Outer Brow Raiser 0.9647 blue > red 0.6677 green > blue

Table 8: T-test results comparing AU activation rates between red vs. blue and green vs. blue. Bolded p-values are
statistically significant.
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Figure 5: Distribution of audio features for red, green and blue examples across the confidence quadrants. Red
examples are those correctly classified by the unimodal audio model but misclassified by the multimodal model;
green examples represent the reverse. Blue examples represent those correctly classified by both the unimodal audio
model and the multimodal model. Significant differences appear in pitch and intensity-based features.

Figure 6: AU activation rates for red, green, and blue examples. Red bars indicate examples where the unimodal
visual model predicted correctly but the multimodal model did not (Red: Unimodal > 0.5, Multimodal < 0.5).
Green bars show the reverse. Blue bars indicate examples where both the unimodal and multimodal models correctly
predicted the label.
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