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Abstract

Multimodal models play a key role in empa-
thy detection, but their performance can suffer
when modalities provide conflicting cues. To
understand these failures, we examine cases
where unimodal and multimodal predictions di-
verge. Using fine-tuned models for text, audio,
and video, along with a gated fusion model,
we find that such disagreements often reflect
underlying ambiguity, as evidenced by annota-
tor uncertainty. Our analysis shows that domi-
nant signals in one modality can mislead fusion
when unsupported by others. We also observe
that humans, like models, do not consistently
benefit from multimodal input. These insights
position disagreement as a useful diagnostic
signal for identifying challenging examples and
improving empathy system robustness.

1 Introduction

Empathy recognition in human communication is
a nuanced and multifaceted task, and a core com-
ponent of socially intelligent communication sys-
tems (Fung et al., 2016). Empathy, commonly
defined as the capacity to understand and share
the emotional experiences of others, encompasses
both cognitive perspective-taking and affective res-
onance (Baumeister and Vohs, 2007). In human
interactions, language, speech, and visual cues
jointly convey emotional intent (Holler and Levin-
son, 2019). For example, a seemingly neutral ut-
terance might be perceived as warm or concerned
when accompanied by a sympathetic tone or facial
expression. For Al systems, effectively interpreting
these multimodal signals requires not only accurate
unimodal representations but also robust integra-
tion of potentially conflicting information across
modalities. Despite recent advances in multimodal
emotion recognition (Jabeen et al., 2021), empa-
thy recognition remains particularly complex, as
empathy often arises from subtle contextual cues
that may not align across modalities (Hasan et al.,
2023).
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Figure 1: Given classifications provided by a single
modality, we identify cases where integrating additional
modalities leads to a different prediction. We analyze
these flips to understand when and why they occur.

Our work investigates such complexity by exam-
ining when and why multimodal models misclassify
empathy compared to their unimodal counterparts.
We extend methods from prior work on dataset diffi-
culty and human—-model agreement (Swayamdipta
et al., 2020; Saha et al., 2022), to the underex-
plored domain of empathy modeling. Through a
combination of model-driven analysis and human-
subject experiments, we pinpoint instances where
unimodal and multimodal model predictions di-
verge, indicating conflicting cross-modal cues. By
linking modality disagreement to human disagree-
ment, we offer new insight into the limitations
of current empathy modeling and highlight the
value of disagreement-based analysis in socially
grounded language tasks.

2 Related Work

Empathy Modeling. Early computational work
on empathy focused on generating emotionally rel-
evant textual responses (Rashkin et al., 2019; Li
et al., 2019), but these approaches are inherently
limited by the absence of non-verbal cues criti-
cal to empathic understanding. Recent datasets
such as EMPATHICSTORIES++ (Shen et al., 2024),
MEDIC (Zhu et al., 2023), EMMI (Galland et al.,



2024) and Chen et al. (2024) address this limitation
by incorporating speech, facial expressions, and
interaction context, enabling more comprehensive
modeling of empathy. These resources have moti-
vated frameworks like PEGS (Zhang et al., 2024),
which integrate text and visual stickers for affec-
tive generation. Despite these advances, empathy
remains difficult to model due to its reliance on
subtle, often conflicting signals across modalities.
Prior work has largely focused on improving fu-
sion strategies under the assumption that modalities
are complementary (Zadeh et al., 2017; Tsai et al.,
2019), but has paid less attention to when fusion
may fail or introduce noise.

Dataset Difficulty. Complementary lines of work
have investigated data difficulty and model dis-
agreement as tools for understanding model behav-
ior. Swayamdipta et al. (2020) propose the dataset
cartography method to identify hard or ambiguous
training samples; Saha et al. (2022) demonstrate
that difficult instances are also harder for both hu-
mans and models to explain; Wang et al. (2023)’s
Learning-From-Disagreement (LFD) framework
underscores the importance of examining disagree-
ments between models to gain deeper, actionable
insights into their behaviors.

Yet, these methods remain underexplored in
empathy modeling, where ambiguity is often in-
trinsic. Our work bridges this gap by using
model-modality disagreement to identify inher-
ently ambiguous empathy examples—cases where
fusion misleads models, and where annotators also
exhibit uncertainty.

3 Experiment 1: Identifying Complex
Examples from Modality Disagreement

Disagreement between models trained on different
modalities can reveal challenging, nuanced, or am-
biguous examples. Here, we identify and analyze
such cases of disagreement in empathy classifica-
tion using a multimodal English empathy speech
dataset collected from Youtube (Chen et al., 2024)
(referred to as EMPSPEECH) consisting of 1,718
manually annotated English speech segments la-
beled as empathetic or neutral (Appendix B).

Experimental Setup. Examples in EMP-
SPEECH are comprised of video segments
spanning three modalities: text (transcript), audio
(speech), and video.

We finetune two models per modality on the

Modality Model Accuracy F1
Text RoBERTa 0.75 0.73

¢ DeBERTa 0.69 0.68
Audi HuBERT 0.72 0.71
udio Wav2Vec2 0.68 0.63
Vid VideoMAE 0.77 0.77
€0 TimesFormer 0.64 0.62
Fusion (All Modalities) 0.76 0.72

Table 1: Performance of fine-tuned models across
modalities on the empathy classification task.

train set from EMPSPEECH: ROBERTA (Liu et al.,
2019) and DEBERTA (He et al., 2021) for text, HU-
BERT (Hsu et al., 2021) and WAV2VEC?2 (Baevski
et al., 2020) for audio, and VIDEOMAE (Tong
et al., 2022) and TIMESFORMER (Bertasius et al.,
2021) for video (Appendix A.1).! Then, we ex-
tract embeddings from each best-performing uni-
modal model (ROBERTA, HUBERT, and VIDEO-
MAE, Table 1) to train a multimodal fusion model
that projects all three modality embeddings into a
shared latent space (Appendix A.2).

Results. We evaluate all models (unimodal and
multimodal) on the test split of EMPSPEECH to
identify disagreements, or examples where two
models with varying input modalities assign dif-
ferent labels, highlighting cases where different
modalities may carry ambiguous, conflicting, or
modality-specific signals.

Text disagrees most frequently with the other
modalities (Table 2), suggesting that it does not
frequently align with speech and visual cues. In
contrast, audio and video are better aligned, likely
due to a shared reliance on nonverbal expressive
signaling such as prosody and facial expression.
Our fusion model disagrees least with text, sug-
gesting it relies more heavily on verbal content.
This also may reveal an over-reliance on text-based
signals by the original annotators.

Figure 2 visualizes disagreement regions be-
tween each unimodal model and the fusion model.
We plot unimodal confidence (x-axis) against fu-
sion confidence (y-axis) in the correct label; hence
confidence greater than 0.5 resulted in a correct pre-
diction. This yields four quadrants: green (mul-

timodal correct, unimodal incorrect), red (mul-
timodal incorrect, unimodal correct), blue (both
correct), and yellow (both incorrect). Red and
green quadrants are disagreement regions which
we explore to identify complex examples.

'The hidden layer dimensions of all models we consider
are similar.
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Figure 2: Comparing predictions between unimodal (text, audio, video) and multimodal models. We highlight
regions where model predictions agree (blue and yellow quadrants) and disagree (red and green quadrants).

Modality Text Audio Video AU p RvsB) Dir p (GvsB) ‘ Direction
Text _ 0338 0318 AU04 0.0106 red > blue 0.3682 green > blue
Audio 0.338 — 0.253 AU12 0.0174 blue >red  0.8977 green > blue
Video 0318 0.253 _ AUO5 0.1837 blue >red  <0.0001 | blue > green
Full 0214 0383 0.331

Table 2: Pairwise disagreement rates between top uni-
modal models and between each unimodal model and
the full model, measured as the proportion of test exam-
ples with differing predictions.

Table 4: Statistically significant t-test results comparing
AU activation rates between red vs. blue and green vs.
blue. See Appendix D for full table

stronger prosodic fluctuations are frequently cor-
roborated by other modalities. Examples in the
green quadrant show significantly higher Max In-
tensity than in blue, potentially reflecting the role of

volume-based emphasis in aiding unimodal predic-
tions. Furthermore, affective dimensions such as
valence, arousal, and dominance are significantly

Feature Red vs. Blue Green vs. Blue
p-value Direction p-value Direction
valence 0.0047 Hblue > Hred 0.5166 Hgreen > Hblue
arousal 0.0065 Hblue > Hred 0.0136 HKblue > Hgreen
Mean Pitch 0.0100 Hblue > Hred 0.0001 Mplue > Hgreen
dominance 0.0108 Hblue > Fred 0.0667 HMblue > Hgreen
Min Pitch 0.0333 blue > Hred 0.0001 Kblue > Hgreen
Jitter 0.0347 Hred > Mblue 0.0667 Hgreen > Hblue
Max Intensity 0.1260 Hred > HMblue 0.0023 Hgreen > Hblue

Table 3: Statistically significant t-test results comparing
red vs. blue and green vs. blue examples for audio fea-
tures. See Appendix D for full table.

3.1 Modality-Based Feature Analysis

To better understand examples in disagreement re-
gions, we extract and analyze modality-based hu-
man interpretable features.

Audio. We extract 12 prosodic and paralin-
guistic features from audio signals: 9 low-level
acoustic features using PRAAT (Boersma and
Weenink, 1992-2022) and PARSELMOUTH (Jadoul
et al., 2018), and 3 high-level affective dimen-
sions—valence, arousal, and dominance—using
a finetuned WAV2VEC2 (Wagner et al., 2023). We
compare feature distributions using t-tests for exam-
ples in disagreement quadrants ( red and green )

compared to those in the blue quadrant, signifying
a non-ambiguous, easy examples. Blue examples
have several significantly elevated pitch-related val-
ues than red examples (Table 3), suggesting that

lower in red examples, reinforcing the idea that
red examples are not simply noisy, but structurally
ambiguous: they express strong unimodal signals
that are complicated when analyzed alongside other
modalities.

Video. We examine facial action unit (AU) acti-
vations (Baltrusaitis et al., 2016) from video. AU04
(Brow Lowerer), AU12 (Lip Corner Puller), and
AUOS5 (Upper Lid Raiser) show significant differ-
ences across example types, revealing how specific
facial expressions contribute to perceptual ambi-
guity (Table 4). AUO4 is more active in red ex-
amples than blue, indicating that despite its visu-
ally strong presence, its signal conflicts with other
modalities. In contrast, AU12, associated with pos-
itive affect, and AUOQS, which is linked to attentive-
ness (Friesen and Ekman, 1978), both show greater
activation in blue examples than in red and green,
respectively, suggesting that these expressions may
serve as clearer cues that are more consistently in-
terpreted across modalities. Our findings indicate
that fine-grained facial signals may contribute to
perceptual complexity in the visual stream.
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Figure 3: UMAP projections of text-only embeddings
for empathetic (left) and neutral (right) examples, col-
ored by modality disagreement class. Red and green
points tend to cluster near the decision boundary, indi-
cating high ambiguity.

Text. Finally, visualizing UMAP (Sainburg et al.,
2021) projections of text embeddings (Figure 3)
reveals that examples in disagreement regions (red
and green) tend to cluster along the boundary be-
tween consistently correct (blue) and consistently
incorrect (yellow) examples. Rather than forming
distinct or isolated groups, disagreement examples
appear in transition zones within the embedding
space—areas where semantic cues are less defini-
tive, supporting our hypothesis that red and green
examples are inherently ambiguous and difficult
and illustrating that modality disagreement is a re-
liable signal of challenging examples in empathy
detection.

4 Experiment 2: Characterizing Complex
Examples

We further assess whether model disagreements
stem from data ambiguity by conducting a human
annotation study to understand whether examples
where models disagree are similarly challenging
for human annotators.

Annotation Setup. We sample 204 examples
evenly split across the four quadrants of each Fig-
ure 2 modality plot. For each example, annotators
provide a binary judgment (empathetic or neutral)
from a unimodal signal, then a judgment from the
full multimodal version (see Appendix C for in-
structions), allowing us to track how human pre-
dictions shift with additional modality signals and
understand the cognitive burden of multimodal in-
tegration. All examples were annotated by one
author and one external annotator.

Results. Annotator disagreement, measured with
Cohen’s Kappa (Cohen, 1960), can signal complex
phenomena in examples (Jiang and de Marneffe,
2022; Pavlick and Kwiatkowski, 2019) such as un-
certainty in meaning leading to discrepancies in

Quadrant Unimodal Judgment Multimodal Judgment A

Red 0.301 0.164 -0.137
Blue 0.379 0.646 0.267
Yellow 0.225 0.329 0.104
Green 0.482 0.218 -0.264

Table 5: Cohen’s Kappa between internal and external
annotators, computed separately for each quadrant and
prediction round.

reasoning. In disagreement regions (red and green),
we see a decrease in annotator agreement between
unimodal and multimodal judgments (Table 5), in-
dicating that humans diverge when weighing sig-
nals across modalities. In contrast, annotator agree-
ment improves on examples where unimodal and
multimodal model predictions are in agreement,
supporting our these examples are relatively un-
ambiguous and reliably interpreted once the full
context is available (Table 5). Collectively, these
results corroborate our hypothesis that modality
disagreement can serve as a valuable signal for
identifying ambiguous, challenging, or complex in-
stances that are also difficult for human annotators.

5 Discussion and Conclusion

We have demonstrated how disagreement, both be-
tween modalities and between humans and mod-
els, can serve as a diagnostic lens to understand
the complexity of multimodal empathy detection,
challenging the assumption that more signal from
other modalities reliably yields better performance.
Our analysis reveals that disagreement between uni-
modal and multimodal models is often not arbitrary,
but instead marks the presence of subtle, ambigu-
ous, or context-sensitive cues that challenge fusion
models and human annotators alike. Our findings
emphasize the necessity of high-quality, context-
sensitive annotation in socially complex tasks like
empathy detection, where model errors may re-
flect genuine human uncertainty. This framework
provides a scalable method for identifying ambigu-
ity and enhancing model reliability, especially in
recognizing complex emotional states that involve
inherent disagreement and uncertainty. Our work
lays the foundation for several directions of future
work, such as creating adversarial test sets to evalu-
ate empathy detection systems in realistic scenarios
or the identification of challenging examples for
human annotation in an active learning setup to
improve model robustness.



6 Limitations

We acknowledge several limitations in our study.
Our analyses are based on a limited dataset and
a small number of human annotators. Given that
empathy is inherently subjective, annotations may
vary due to individual interpretations, potentially
introducing biases rather than reflecting universal
properties of the data. Additionally, we rely on a
single dataset, and future work should investigate
whether the patterns we observe hold across other
datasets and domains.

Our data is also derived from U.S.-based,
English-language television and interview content.
As such, the generalizability of our findings to mul-
tilingual or culturally diverse settings may be lim-
ited. Future research should investigate these pat-
terns in varied cultural and linguistic environments
to better assess the broader applicability of our con-
clusions.

7 Ethics Statement

We use a publicly available dataset and strictly use
open-source models for analysis.

All annotations were conducted by an author and
an individual affiliated with the research team. No
participants were recruited via crowdsourcing or
external platforms, and no monetary compensation
was provided, as the annotators were contributing
in a research capacity. We provide detailed infor-
mation on what we ask the annotators to annotate
and how we plan to use the data. The annotators
willingly agreed to participate with full knowledge
of the task. No sensitive or identifying information
were collected from annotators.

We note that empathy expression may vary
across cultures, and our findings may not gener-
alize to non-English or non-Western contexts. We
encourage future work to explore these questions
in more diverse settings.

We will release all code and experimental re-
sources at https://anonymous.4open. sc
ience/r/multimodal-empathy—-disag
reement—F48B to support reproducibility.
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A Model Training Details

Data was split into train, test and validation sets
using random sampling, with an 80-10-10 split. We
run fine-tuning and inference for all open-source
models on an A100 GPU in Google Colab.

A.1 Unimodal Model Training Details

Each model is trained on a binary empathy classi-
fication task using precomputed 768-dimensional
embeddings. We freeze all but the final two trans-
former layers and train for 15 epochs with a learn-
ing rate of 5e-6 and batch size of 8.

A.2 Fusion Model Details

Each unimodal model representation is indepen-
dently gated and passed through an attention mech-
anism that computes modality-specific weights.
The weighted embeddings are aggregated and clas-
sified using a three-layer feedforward network with
max pooling. The fusion model is trained for 10
epochs using a learning rate of le-4 and includes
modality dropout during training.

B Dataset Details

We use a multimodal empathy dataset (Chen et al.,
2024) consisting of 346 English-language videos
totaling approximately 53 hours, collected from
YouTube between 2020 and 2022 using keywords
like “empathy” and “empathetic training.” The
dataset includes empathy training sessions, therapy
roleplays, interviews, TED Talks, and TV/movie
scenes, comprising both acted (62%) and sponta-
neous (38%) speech. Each video was labeled by at
least three expert annotators as either empathetic
or neutral, with final labels determined by majority
vote. Metadata such as speaker gender, topic, and
emotional context was manually annotated, cover-
ing themes like therapy, parenting, workplace dy-
namics, and social relationships. From this collec-
tion, a subset of 65 videos was transcribed, diarized,
and manually re-aligned using Praat to ensure accu-
rate speaker segmentation and time alignment. This
process resulted in 1,718 annotated segments with
speaker labels, timestamps, transcripts, and empa-
thy stage annotations, enabling fine-grained anal-
ysis of empathy in naturalistic and semi-scripted
settings.

C Annotation Instructions

We employed two annotators, one of the paper’s au-
thors and an non-author, both fluent English speak-

ers based in the United States. No additional de-
mographic information was collected, as the anno-
tation was conducted internally for research pur-
poses.

Annotators were asked to provide two judgments
per example, labeling each as either empathetic or
neutral (Figure 4). A excerpt describing empathy
(drawn from the Encyclopedia of Social Psychol-
ogy, Volume 1, (Baumeister and Vohs, 2007)) was
provided to ensure a consistent conceptual founda-
tion for annotation:

Empathy is often defined as understanding an-
other person’s experience by imagining oneself
in that other person’s situation: One understands
the other person’s experience as if it were be-
ing experienced by the self, but without the self
actually experiencing it. There are three com-
monly studied components of emotional empathy.
The first is feeling the same emotion as another
person (sometimes attributed to emotional con-
tagion, e.g., unconsciously “catching” someone
else’s tears and feeling sad oneself). The second
component, personal distress, refers to one’s own
feelings of distress in response to perceiving an-
other’s plight. The third emotional component,
feeling compassion for another person, is the one
most frequently associated with the study of em-
pathy. Cognitive empathy refers to the extent to
which we perceive or have evidence that we have
successfully guessed someone else’s thoughts and
feelings.

Annotators were given an annotation flag indi-
cating which modality to use for the first pass; for
instance, if the flag was text, only the transcript
was to be used to make the first prediction. After
submitting the first judgment, annotators were then
given access to the full video, including all avail-
able audio, visual, and textual information. They

were then asked to provide a second prediction.

D Full Feature Comparisons

Tables 6, 7 and 8 provide additional results from
the t-tests comparing examples across different con-
fidence quadrants. Table 6 provides an internal
comparison between the disagreement quadrants.
Table 7 presents the full version of the audio fea-
ture comparisons summarized in Table 3. Table 8
expands on the facial feature comparisons shown
in Table 4.

E Feature Distributions

Figures 5 and 6 visualize the distributions of key
features across confidence quadrants. Figure 5
presents the distribution of selected audio features
(e.g., pitch, intensity) for red, green, and blue ex-
amples, highlighting acoustic patterns associated
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Figure 4: Annotation interface

Feature t-stat p-value | Mean Comparison
Mean Pitch 2.453 0.0159 Mred > Mgreen
Max Intensity -2.124 0.0366 Mgreen > Mred
Max Pitch 2.016 0.0465 Mred > Mgreen
Min Pitch 2.007 0.0475 Mred > Mgreen
valence -1.908 0.0593 Mgreen > red
arousal 1.827 0.0705 Mred > [green
speaking_rate 1.773 0.0807 Mred > [hgreen
dominance 1.712 0.0899 Mred > [green
Shimmer 0.773 0.4416 Mred > [hgreen
Jitter 0.622 0.5355 Mred > [hgreen
Mean Intensity 0.544 0.5886 Mred > [hgreen
HNR 0.508 0.6129 Mred > Mgreen
Min Intensity -0.429 0.6685 Mereen > fhred

Table 6: T-test results comparing audio features between red and green examples. Statistically significant results are
bolded.

with model disagreement. Figure 6 shows acti-
vation rates for facial Action Units (AUs) in red,
green, and blue examples, illustrating how specific
facial expressions vary across agreement condi-
tions. These visualizations complement the statis-
tical comparisons reported in Tables 7 and 8, pro-
viding a more interpretable view of the underlying
feature dynamics.



Feature p (Red vs Blue) Direction p (Green vs Blue) Direction

valence 0.0047 Kblue > Lbred 0.5166 Mgreen > Mblue
arousal 0.0065 Hblue > Lhred 0.0136 Molue > Hgreen
Mean Pitch 0.0100 Hbolue > Mred 0.0001 Holue > Hgreen
dominance 0.0108 Kblue > fbred 0.0667 Mblue > Mgreen
Min Pitch 0.0333 olue > Flred 0.0001 Holue > Hgreen
Jitter 0.0347 Hored > Hblue 0.0667 Hegreen > Ublue
Max Intensity 0.1260 Ired > Mblue 0.0023 Mgreen > Mblue
Mean Intensity 0.1599 Ired > Mblue 0.5329 Mblue > [hgreen
HNR 0.2217 Hblue > [red 0.2055 Ublue > [green
speaking_rate 0.2723 Ublue > fhred 0.9991 Mareen > Mblue
Shimmer 0.4122 Lred > Mblue 0.1541 Mblue > Hgreen
Max Pitch 0.6845 Lred > Mblue 0.2647 Mblue > Mgreen
Min Intensity 0.7999 Mblue > fhred 0.1571 HUblue > [green

Table 7: T-test results comparing audio features between red vs. blue and green vs. blue examples. Statistically
significant p-values are bolded.

AU p (Red vs Blue) Direction p (Green vs Blue) Direction

AU04: Brow Lowerer 0.0106 red > blue 0.3682 green > blue
AU12: Lip Corner Puller 0.0174 blue > red 0.8977 green > blue
AUOS5: Upper Lid Raiser 0.1837 blue > red <0.0001 blue > green
AU17: Chin Raiser 0.2256 red > blue 0.9802 blue > green
AU10: Upper Lip Raiser 0.2275 blue > red 0.6700 green > blue
AUA45: Blink 0.3200 blue > red 0.7462 green > blue
AUOQ7: Lid Tightener 0.3252 blue > red 0.9318 blue > green
AU14: Dimpler 0.4593 red > blue 0.0652 green > blue
AU20: Lip Stretcher 0.5701 blue > red 0.7907 blue > green
AU09: Nose Wrinkler 0.6211 blue > red 0.7639 green > blue
AU25: Lips Part 0.6227 blue > red 0.7492 blue > green
AUO1: Inner Brow Raiser 0.6529 blue > red 0.4674 green > blue
AU23: Lip Tightener 0.6630 red > blue 0.3474 green > blue
AU28: Lip Suck 0.6735 red > blue 0.9846 green > blue
AU26: Jaw Drop 0.6851 red > blue 0.4596 blue > green
AUOQ6: Cheek Raiser 0.7097 blue > red 0.3201 green > blue
AUI15: Lip Corner Depressor 0.9528 red > blue 0.4834 green > blue
AUO2: Outer Brow Raiser 0.9647 blue > red 0.6677 green > blue

Table 8: T-test results comparing AU activation rates between red vs. blue and green vs. blue. Bolded p-values are
statistically significant.



Audio Feature Distributions by Confidence Quadrant

Min Pitch Max Pitch Mean Pitch Min Intensity
0.05
0.003
0.015 0.04
= 2 0.002 20.03
£0.010 = £
5 ] g
g & & 0.02
0.005 0.001
0.01
0.000 0.000 0.00
100 200 300 400 0 200 400 600 800 0 100 200 300 400 500 20 40 60 80
Min Pitch Max Pitch Mean Pitch Min Intensity
Max Intensity Mean Intensity Jitter Shimmer
0.15 p
W0 color 125
3 blue
20.10 30 =3 red > 10.0
= = =3 green 2 s
2 2 c
g g0 &
0.05 5.0
o 25
0.00 . 0 —_ 0.0
70 75 80 85 90 95 72 73 74 5 76 0.000 0.025 0.050 0.075 0.100 0.125 0.1 0.2 0.3
Max Intensity Mean Intensity Jitter Shimmer
HNR arousal valence dominance
2.0
0.125
0.100 15
= Z
a 0.075 210
G G
0 0.050 a
0.5
0.025
0.000 0.0 0 X
-0.25 0.00 0.25 0.50 0.75 1..00 125 -02 00 02 04 06 08 10 00 02 04 06 08 10
arousal valence dominance
speaking_rate
03 color
3 blue
=3 red
=
= 02 =3 green
2
©
o
0.1
0.0 S
0 20 40

speaking_rate

Figure 5: Distribution of audio features for red, green and blue examples across the confidence quadrants. Red
examples are those correctly classified by the unimodal audio model but misclassified by the multimodal model;
green examples represent the reverse. Blue examples represent those correctly classified by both the unimodal audio
model and the multimodal model. Significant differences appear in pitch and intensity-based features.

AU Activation Rates by Confidence Quadrant
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Figure 6: AU activation rates for red, green, and blue examples. Red bars indicate examples where the unimodal
visual model predicted correctly but the multimodal model did not (Red: Unimodal > 0.5, Multimodal < 0.5).
Green bars show the reverse. Blue bars indicate examples where both the unimodal and multimodal models correctly
predicted the label.
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