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ABSTRACT

Disentangled representation learning is an important topic in representation learn-
ing, since it not only allows the representation to be human interpretable, but it
is also robust and benefits downstream task performance. Prior methods achieved
initial successes on simplistic synthetic datasets but failed to scale to complex
real-world datasets. Most of the previous methods adopt image generative mod-
els, such as GAN and VAE, to learn the disentangled representation. But we ob-
serve they are hard to learn disentangled representation on real-world images. Re-
cently, self-supervised contrastive methods such as MoCo, SimCLR, and BYOL
have achieved impressive performances on large-scale visual recognition tasks.
In this paper, we explored the possibility of using contrastive methods to learn a
disentangled representation, a discriminative approach that is drastically different
from previous approaches. Surprisingly, we find that the contrastive method learns
a disentangled representation with only minor modifications. The contrastively
learned representation satisfies a “group disentanglement” property, which is a re-
laxed version of the original disentanglement property. This relaxation might be
useful for scaling disentanglement learning to large and complex datasets. We
further find contrastive methods achieve state-of-thet-art disentanglement perfor-
mance on several widely used benchmarks, such as dSprites and Car3D. It also
achieves significantly higher performance on the real-world dataset CelebA.

1 INTRODUCTION

Learning a disentangled representation is a long-desired goal in the deep learning community (Ben-
gio et al., 2013; Peters et al., 2017; Goodfellow et al., 2016; Bengio et al., 2007; Schmidhuber, 1992;
Lake et al., 2017; Tschannen et al., 2018). A disentangled representation matches how humans un-
derstand the world and provides many other benefits besides model interpretability (Bengio et al.,
2013; Chen et al., 2016; Kulkarni et al., 2015). And it usually needs much fewer labels to learn
challenging downstream tasks (van Steenkiste et al., 2019). It also generalizes much better even in
face of examples generated by an unseen combination of the attribute values (Achille et al., 2018).

Given its importance and potential large impacts on downstream applications, disentangled repre-
sentation learning has recently attracted great attention. Previous research has proposed a lot of
methods, either built on variational auto-encoders (Kingma & Welling, 2013), such as β-VAE (Hig-
gins et al., 2016) and FactorVAE (Kim & Mnih, 2018), or generative adversarial network (Goodfel-
low et al., 2014), such as InfoGAN (Chen et al., 2016) and InfoGAN-CR (Lin et al., 2020). Those
methods have achieved preliminary successes on synthetic datasets such as dSprites (Matthey et al.,
2017) and 3Dshapes (Burgess & Kim, 2018).

Albeit the initial successes, those synthetic datasets are limited in many aspects, for example, the
background is usually clean and composed of a single color, the number of objects is small and
the objects are mainly 2D without texture and occlusions. It is still an open question to scale those
models to real-world complex datasets. It is even non-trivial to scale basic generative models to
complex datasets to learn disentangled features, such as ImageNet (Deng et al., 2009).

In this paper, instead of studying disentanglement feature learning with a generative model, we in-
vestigate whether the discriminatively-trained contrastive models have the disentanglement property.
Contrastive learning is a class of self-supervised learning methods that pull two augmentations of
the same image close. The recent contrastive methods have achieved state-of-the-art performance on

1



Under review as a conference paper at ICLR 2022

the image pretraining tasks. Representative methods include MoCo (He et al., 2020), BYOL (Grill
et al., 2020), SimCLR (Chen et al., 2020) and SwAV (Caron et al., 2020), etc. Contrastive learn-
ing has been proven to learn good visual representations from large-scale datasets. We continue to
investigate the disentanglement property of their learned representations in this work.

To our surprise, we find that the widely used BYOL algorithm without any auxiliary loss exhibits
strong feature disentanglement property. However, the disentanglement of contrastive learning is a
weaker form of disentanglement. It follows the pattern that a representation dimension is disentan-
gled to correspond to a single factor but a single ground truth factor might appear in multiple latent
feature dimensions. We name this type of disentanglement as “group disentanglement”. Although
group disentanglement is a weaker form of disentanglement, we hypothesize that directly learning a
compact and disentangled representation might be hard, due to the lottery ticket hypothesis (Frankle
& Carbin, 2018). Pursuing group disentanglement instead of full disentanglement might be nec-
essary to achieve disentanglement on the complex real-world dataset. The reason is probably that
real-world images usually contain more details and noise, and a “factor” might be always correlated
to some other visual existence due to dataset bias. A good example is a ship that usually comes
together with a large area of blue background in existing datasets.

Further, we find that contrastively trained representation achieves the state-of-the-art FactorVAE dis-
entanglement score when evaluated on established benchmarks, such as Car3D (Reed et al., 2015),
dSprites (Matthey et al., 2017) and SmallNORB (LeCun et al., 2004). Besides the widely used syn-
thetic benchmarks, we also evaluate the contrastive method on the CelebA (Liu et al., 2018) human
faces real-world dataset. We find that it also achieves better or comparable performances than the
other methods on five commonly used disentanglement metrics.

In summary, our contributions in this paper is mainly empirical and include the follows:

1. We show that a contrastive method, in particular BYOL, learns “group-disentangled” rep-
resentations, without any extra auxiliary losses.

2. The contrastive method achieves the state-of-the-art performance on several widely used
disentanglement learning benchmarks.

3. We propose to quantitatively evaluate disentanglements on a real-world dataset, which
avoids the biases of synthetic images. Our contrastive method also achieves state-of-the-art
performance on this benchmark.

2 RELATED WORKS

Disentangled Representation Learning Disentangled representation is desired as it represents a
human interpretable pattern (Bengio et al., 2013; Chen et al., 2016; Kulkarni et al., 2015), enabling
the downstream tasks learned more easily (van Steenkiste et al., 2019) and generalizes better (Achille
et al., 2018). In this paper, we consider the fully unsupervised disentangled representation learning
setting, i.e. we assume no annotations on which factors should be learned.

We notice the recent study of disentanglement is promoted by two communities: Disentanglement
in Deep Features and Independent Component Analysis. Their research previously lie on different
assumptions, data patterns, and evaluation metrics.

One community is motivated by the newly raised deep learning for encouraging disentangled repre-
sentation over independent factors. they have shown much empirical progress on this problem and
they directly term their goal as “disentanglement”. The related study is usually based on deep gener-
ative models. For instance, VAE-based methods have achieved successes on this task (Higgins et al.,
2016; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2017). Besides, Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014; Chen et al., 2016) are also put into the discussion of en-
couraging representations’ disentanglement. More recently, people have shown that the GAN-based
approach can achieve competitive performance as the above VAE variants (Lin et al., 2020; Jeon
et al., 2018; Lee et al., 2020b). A recent work (Locatello et al., 2019) summarizes the popular meth-
ods and metrics in this community and proposes a tool for evaluation called disentanglement lib,
including popular metrics such as DCI (Eastwood & Williams, 2018), SAP (Kumar et al., 2017),
MIG (Chen et al., 2018) and so on.
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Besides this series of studies, exploring underlying factors of variation in data pattern is a long-
standing goal of the Independent Component Analysis (ICA) community (Hyvärinen & Oja, 2000).
They share many similarities, for example, generative models, e.g., VAEs, are recently popular in
both (Khemakhem et al., 2020a; Klindt et al., 2020). ICA usually has different assumptions with the
“purely unsupervised learning” (Hälvä et al., 2021). For example, the pattern of noise (Hyvarinen &
Morioka, 2016; Khemakhem et al., 2020a) or some additional auxiliary variables (Hyvarinen et al.,
2019; Khemakhem et al., 2020b) can be observed. Traditionally, ICA uses identifiability to assess
their desired representation pattern and the popular metric is Mean Correlation Coefficient (MCC).
SlowVAE (Klindt et al., 2020) recently makes a great effort to connect the two branches of study but
it still requires additional information such as temporal transition pattern. As our study is for purely
unsupervised learning and some assumptions of ICA methods can not be well matched, we mainly
follow the settings and benchmark by disentanglement libk (Locatello et al., 2019).

Contrastive Learning Contrastive learning methods such as SimCLR (Chen et al., 2020),
MoCo (He et al., 2020) and BYOL (Grill et al., 2020) have achieved great successes to learn good
visual representation from no label. They create “views” by applying augmentations over images.
They treat two views of the same image as “positive pairs”, and views of all the other images as
negatives. This setup is also known as examplar classification (Dosovitskiy et al., 2014), or instance
discrimination (Wu et al., 2018). Representation learned by contrastive learning has shown great
transfer capabilities to downstream tasks, such as object detection and semantic segmentation.

More recently, there are a lot of works trying to understand contrastive learning either theoreti-
cally (Wang & Isola, 2020; Arora et al., 2019; Tsai et al., 2020; Tosh et al., 2021; Tian et al., 2020b;
Lee et al., 2020a) or empirically (Tian et al., 2020a; Zhao et al., 2020; Purushwalkam & Gupta,
2020). Zimmermann et al. (2021) suggests that the contrastive method can invert the data gener-
ation process. The conclusion is based on the analysis of Wang & Isola (2020) where negative
samples are necessary and expected to be infinite. Zimmermann et al. (2021) make a good bridge
between contrastive learning and independent analysis and study the model identifiability quantita-
tively in terms of MCC score. Compared with that, we focus more on more direct disentanglement
analysis. Our contribution is more empirical but suggests the good disentanglement property of
contrastive learning even without negative samples.

3 METHOD

In this paper, we explore whether contrastive methods learn a disentangled feature representation. If
yes, under what condition it learns a disentangled representation. There are quite a few contrastive
learning algorithms proposed (Grill et al., 2020; He et al., 2020; Chen et al., 2020; Caron et al.,
2020). Although they differ on some specific aspects, they all aim to pull two augmentations of one
image close. Without the uniformity property provided by negative samples (Wang & Isola, 2020),
we find BYOL (Grill et al., 2020) still achieves unexpected good disentangled feature representation.

3.1 BYOL METHOD

BYOL is an unsupervised learning method that pulls two augmentation views of the same image
close (Grill et al., 2020) to learn a high-level image representation. A significant difference of it
against other contrastive learning is the absence of negative pairs during training. As shown in
Figure 1, for each image x, we obtain two views of it: x1 and x2 by data augmentations. One
of them goes through the online network stream, and the other goes through the target network
stream. The target network’s parameter is not trained by the gradient descent algorithm but set
as the exponential moving average (ema) of the online network. Both the online and the target
stream have a representation network (encoder) and a projection network. The online network has
an extra prediction network after the projection network. The online stream’s output z1 and the
target stream’s output z2 are pulled close to each other by requiring the two vectors to have similar
directions in the latent space. More specifically, the loss function is

L = − 〈z1, z2〉
‖z1‖2 ‖z2‖2

.

In practice, the online representation network (without the projection or the prediction network)
is usually the representation model for the downstream tasks. In this work, we follow the same
convention, i.e. we study the disentanglement property of the output of the representation network.
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Figure 1: The BYOL network architecture. It has an online stream and a target stream. The online
stream has a representation-projection-prediction pipeline while the target stream lacks the predic-
tion part. The target branch is updated by exponential moving average of the online branch. The
model is trained by encouraging the output of two streams from a positive pair of views to get close.

3.2 IMPLEMENTATION DETAILS

We follow most of the implementation details in the original BYOL paper, but we find that several
details can be changed to achieve better feature disentanglement. For full implementation details
please refer to the appendix A.1.

Architecture To make a fair comparison, we follow the encoder architecture used in Factor-
VAE (Kim & Mnih, 2018) for all synthetic datasets, except that the latent code dimension is set
to be 1000, since the contrastive learning requires a large latent code dimension to work (Grill et al.,
2020). On CelebA, encoders are unified to be ResNet-50 (He et al., 2016).

Normalization By default, BYOL uses batch normalization throughout the network. However, we
find that batch norm in encoder can reduce the feature disentanglement in some cases (see Sec-
tion 5.5 for ablations). Thus we replace all batch norm with group normalization (Wu & He, 2018).
Unless otherwise stated, the group number is set to 4 in our implementation by default.

Augmentation Augmentation is a crucial component for unsupervised learning methods as it pro-
vides a feasible way to create positive pairs in contrastive learning. In this work, we follow the
default data augmentation used in BYOL, i.e., the composition of color jitter, graying, horizontal
flip, gaussian blur, and random resize crop. We recognize that the parameter of random resize crop
size is critical to learning disentangled features, which we will discuss in the ablation study.

4 MAJOR RESULTS

In this section, we summarize our major empirical findings. Section 5 will then continue to present
experimental evidence to support these claims.

4.1 THE GROUP DISENTANGLEMENT PROPERTY

We find that the contrastive feature representation exhibits some form of disentanglement property:
different ground truth factors map to different sets of latent dimensions, but multiple latent dimen-
sions are corresponding to a single ground truth factor. We name this type of disentanglement as
“group disentanglement”. See Section 5.2 for experimental evidence to support this characteristic.

Contrastive Representations

Ground Truth Factors

Figure 2: Illustration of group disentanglement. The lower vector denotes four ground truth factors
and the upper vector is the group disentangled feature vector. Each ground truth factor may corre-
spond to multiple feature dimensions, but each feature dimension only correspond to one factor.

While there is not a single widely accepted definition of the original disentanglement concept, we
describe it intuitively as (1) Disentanglement: one dimension in the representation vector only
represents one ground truth factor (2) Compactness: one ground truth factor only corresponds to
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one dimension in the representation (3) Completeness: no ground truth factor is left out in the
representation. Group disentanglement relaxes the compactness requirement, but only requires the
disentanglement and the completeness. Figure 2 shows how group disentanglement looks like.

Group disentanglement is a weaker form of disentanglement, but we hypothesis that it might be
a better proxy of disentanglement to scale to complex and realistic datasets. Directly learning the
ideal compact disentanglement representation with neural network might be very hard because of the
lottery ticket hypothesis (Frankle & Carbin, 2018). The lottery ticket hypothesis states that usually
a well-trained neural network can be pruned to a much smaller network while keeping the same
accuracy. However, it is much harder to directly train the same small network from scratch when
randomly initialized. The hypothesis encourages a large randomly initialized network from start to
contain a subset of the network that is the “winning ticket”. We suspect that a compact disentangled
representation is also hard to obtain for the same reason. Instead, group disentanglement might be a
much more realistic goal to achieve.

4.2 COMPETITIVE PERFORMANCE ACROSS BENCHMARKS AND METRICS

To quantitatively evaluate the disentanglement properties of the contrastive methods, we evaluate
with existing benchmarks (Cars3D (Reed et al., 2015), dSprites (Matthey et al., 2017), Small-
NORB (LeCun et al., 2004), Shapes3D (Burgess & Kim, 2018)) with various metrics. We find
that although contrastive learning is not designed to learn disentangled feature representation, it still
achieves better or comparable disentangled features when compared to existing specialized methods.
We even build benchmarks on the real-world CelebA dataset for the first time, and the performance
of contrastive learning is still robust to be top. See Section 5.3 for experimental support.

4.3 BATCH NORM DISCOURAGES FEATURE DISENTANGLEMENT

We find that batch norm in encoder consistently decreases the feature disentanglement level com-
pared to no normalization layer (Section 5.5). By keeping the batch norm in the projector and the
predictor, removing batch norm in the encoder will not cause model collapsing, which agrees with
the observation in previous works (Richemond et al., 2020). On the contrary, replacing batch norm
in encoder with group norm or layer norm will increase the feature disentanglement while achieving
similar accuracy in downstream factor prediction. We notice that a similar phenomenon has been
discovered before in supervised feature disentanglement. For example, Bau et al. (2017) discovered
that a network trained with batch normalization layers has less interpretable (disentangled) neurons.
We still do not fully understand this behavior, but we hypothesize that it may be caused by the shared
batch statistics that make it hard for a feature to be aligned to the ground truth factor.

5 EXPERIMENTS

In this section, we show the quantitative results to support the described observations above. We first
introduce the experiment setup. Then we provide qualitative analysis about the learned representa-
tion pattern by contrastive learning. At last, we list a series of quantitative benchmark experiments
to prove the good disentanglement property of BYOL on both synthetic and real-world datasets. Be-
sides the main experiments in this section, more ablation experiments are provided in the appendix.

In this section, we aim to empirically understand the disentanglement properties of the contrastive
method following the four questions. (1) What does the contrastive method learn in its latent repre-
sentation? Is it disentangled? Can we visualize the latent space? (2) Quantitatively, how disentan-
gled is the representation of contrastive methods? (3) How about real-world datasets? (4) What set
of hyper-parameters best promotes the learned representation to be disentangled?

5.1 EXPERIMENTS SETUP

In this section, we describe the experimental setup, including the datasets we evaluate, the metrics
for a quantitative study, and the previous disentangled feature learning algorithms for comparison.

Datasets Previous works evaluate representation disentanglement only on synthetic datasets, such
as dSprites, Cars3D, SmallNORB, and Shape3D. Besides those datasets, we also include a real-
world dataset CelebA. CelebA contains human celebrity faces images with 40 binary attributes
annotations. The attributes include fine-grained properties of the human face such as whether
wearing glasses or whether has wavy hair. Table 6 in Appendix explains the dataset details.
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Figure 3: The mutual information heatmap between factors and latent code dimensions. It explains
the pattern of “group disentanglement” that a factor shares high mutual information with multiple
dimensions of representation instead of only one dimension described by the perfectly compact
disentanglement. On the other hand, a certain representation dimension will not have high mutual
information with more than one factor.
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Figure 4: The visualization of normal-
ized co-occurrence of mutual informa-
tion on dSprites.

Metrics We follow disentanglement lib (Lo-
catello et al., 2019) to use five popular metrics for eval-
uation, i.e., BetaVAE, FactorVAE, MIG, SAP, and DCI.
We leave out the Modularity metric since Locatello et al.
(2019) suggests that it is inconsistent with other metrics.
Please refer to Appendix A.4 for details including the cal-
culation of mutual information.

Reference Methods Most of the previous state-of-art
disentangled feature representation learning methods are
either built on VAE (Kingma & Welling, 2013) or
GAN (Goodfellow et al., 2014). β-VAE (Higgins et al.,
2016) introduces a hyper-parameter to adjust the KL con-
straint in VAE. FactorVAE (Kim & Mnih, 2018) and β-
TCVAE use adversarial training to reduce the correla-
tions on different dimensions of the latent code. DIP-
VAE (Kumar et al., 2017) pull the posterior to a factorized
prior. Besides the VAE-based methods, we also investi-
gate Generative Adversarial Networks (GANs). InfoGAN (Chen et al., 2016) encourages the latent
code to have high mutual information with the generated image. IB-GAN (Jeon et al., 2018) and
InforGAN-CR (Lin et al., 2020) add more constraints on InfoGAN to further promote disentangle-
ment.

5.2 UNDERSTANDING THE LEARNT REPRESENTATION

In this part, we make the qualitative study of the disentanglement of representation learned by
BYOL. Since contrastive methods are not generative models, it is hard to directly do factor-
controlled pixel-wise reconstruction for visualization. We thus turn to measure the mutual infor-
mation between learned features and ground truth factors to study that. The model is analyzed on
dSprites dataset. dSprites has in total five factors (shape, scale, orientation, position x, and po-
sition y). But as explained in Appendix A.3, the orientation is ill-defined with ambiguity. For
example, it is impossible to distinguish if a square rotates 0 degrees or 180 degrees. Therefore, we
ignore this factor temporarily in the following discussion.

After encoding an input image to a representation vector, we compute the mutual information be-
tween each factor and each representation dimension. The mutual information between all dimen-
sions and all four left factors are included in Figure 3. It shows an evident pattern that a ground truth
factor can correspond to multiple representation dimensions but a single dimension of representation
only has the high response to one factor.

To have a more intuitive understanding of to what extent a representation dimension may respond
to more than one factor, we define metrics by the normalized co-occurrence of mutual information.
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Given the mutual information between the representation vector and the ith factor, noted as Mi,
M j

i is the mutual information by the jth dimension. Then, the normalized co-occurrence of mutual
information between the ith factor and the kth factor is

Ĉi,k =
〈Mi,Mk〉

||Mi||2 · ||Mk||2
=

∑L
l=0M

l
iM

l
k

||Mi||2 · ||Mk||2
.

where L is the representation vector length. The definition conforms to the InfoMax (Linsker, 1988)
principle of maximizing the mutual information of conceptually correlated pairs. We visualized the
normalized co-occurrence of mutual information among the four factors by the learned representa-
tion in Figure 4. It agrees with the pattern revealed in Figure 3 that representation code on a certain
dimension will not have high mutual information to more than one factor. Moreover, it shows the
independence degree of factor pairs. For example, the shape and scale of dSprites objects are not
fully disentangled because objects with the same scale value but in different shapes have different
pixel area. The co-occurrence of mutual information on them is thus slightly higher than other pairs.

a b ca b

Figure 5: Representation variation when manipulating one factor only in the dimension-reduced
version. In (a) and (b), position x and position y are manipulated respectively and only cause one
dimension severely variate. While when manipulating the ill-defined factor orientation, two dimen-
sions variate. The result shows a more compact disentanglement after reduction of dimension for
those well-defined independent factors.

The analysis above recognizes the pattern of “group disentanglement”. Then it comes a natural
question of whether we can get a more compact and interpretable representation. Here, we reduce the
representation dimension by PCA to 10. Figure 5 shows the result of latent variation when changing
only one factor at once. Given three images with only one factor’s value different, we generate the
10-dim representation vectors from them. Then, we compute the variance across the three vectors.
The Figure 5(a) and (b) show how reduced latent code changes when manipulating position x and
position y factor respectively. It shows good disentanglement that only one representation dimension
has high variation. However, in Figure 5(c) we show a failure mode of the ill-posed factor orientation
that change of factor causes both 6th and 9th dimension of reduced representation to have large
variations. From the results, we observe that manipulating one well-defined independent factor
causes evident variance on only one dimension. Compared with the original group disentanglement
pattern, the dimension-reduced version becomes more compact and interpretable.

To summarize, we have found strong empirical evidence about the “group disentanglement” property
of the representation learned by contrastive learning. Moreover, we have shown that the representa-
tion can be made more compact through proper unsupervised reduction.

5.3 COMPARISON ON EXISTING BENCHMARKS

To quantitatively evaluate the disentanglement of contrastive learning, we compare contrastive learn-
ing with the previous line of disentangled representation learning methods on commonly used bench-
marks in this section. In the previous works, a lot of datasets have been proposed to evaluate the
disentanglement learning method. Locatello et al. (2019) suggests that new method should be eval-
uated on a wide range of datasets to minimize potential dataset biases.
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In this part, we follow the evaluation protocol of Locatello et al. (2019) to gain quantitative disen-
tanglement measurement on dSprites dataset. For results on SmallNORB, Cars3D and Shapes3D,
please refer to the results in Appendix. B. The results of VAEs are reported based on the best con-
figuration from Locatello et al. (2019). We calculate the mean performance and standard deviation
from the released raw logs. The results of InfoGAN, IB-GAN and InfoGAN-CR are reported in Lin
et al. (2020) and we use them its officially released checkpoint to evaluate under our protocol. The
performance of Ada-GVAE and Ada-ML-VAE are reported in a previous paper (Locatello et al.,
2020). In the independent component analysis community, we can also find some methods to com-
pare with but usually they are designed for different benchmarks and metrics. We adopt the method
reported in ICE-BeeM (Khemakhem et al., 2020b) and migrate it to the benchmarks we evaluate on.
However, as we focus on unsupervised learning setting, no factor attribute is available for training
data, so the conditional denoising score matching (CDSM) version of ICE-BeeM can not be used
here. We turn to use its unconditional version, and we term it as EBM (energy-based model) in
following content.

Model BetaVAE FactorVAE MIG SAP DCI

VAE

β-VAE 82.3 (7.6) 65.8 (9.2) 26.3 (11.0) 5.2 (2.7) 39.3 (13.2)
β-TCVAE 86.7 (2.4) 76.6 (7.8) 23.8 (6.8) 6.9 (0.9) 36.3 (7.1)
FactorVAE 84.9 (2.8) 75.3 (7.4) 18.4 (9.0) 6.8 (0.8) 28.8 (10.6)
DIP-VAE-I 82.7 (3.3) 59.1 (4.8) 9.6 (5.1) 5.2 (2.6) 14.4 (4.6)
DIP-VAE-II 81.5 (4.9) 58.6 (7.6) 7.4 (3.4) 3.6 (2.2) 12.3 (5.2)
AnnealedVAE 86.5 (0.1) 60.1 (0.0) 35.2 (1.3) 7.6 (0.5) 37.9 (2.1)
Ada-GVAE 88.0 (2.7) 73.1 (3.9) 17.3 (4.7) 6.6 (2.0) 32.3 (4.6)
SlowVAE 87.0 (5.1) 75.2 (11.1) 28.3 (11.5) 4.4 (2.0) 47.7 (8.5)

ICA EBM 82.3 (2.0) 65.7 (12.5) 1.7 (0.5) 3.0 (1.2) 19.1 (1.8)

GAN
InfoGAN – 59.0 (7.0) – – –
IB-GAN – 80.0 (7.0) – – –
InfoGAN-CR 85.5 (1.0) 88.0 (1.0) 19.8 (3.2) 6.0 (1.0) 14.0 (5.2)

CL BYOL (Ours) 93.2 (0.4) 91.6 (0.8) 29.3 (0.4) 8.0 (0.4) 66.9 (0.2)

Table 1: Mean and standard deviation (s.d.) metric scores on dSprites dataset. The results of BYOL
are averaged over three random seeds. The results of Ada-GVAE and SlowVAE refer to the Slow-
VAE paper (Klindt et al., 2020). It shows strong and robust disentanglement property of BYOL.

All evaluation settings follow the configuration of Locatello et al. (2019). The results strongly
suggest that contrastive learning can well promote disentangled features. Moreover, it shows the
evidence that different metrics can not be precisely aligned as they use different perspectives to
measure the disentanglement degree, which itself evens lacks a unified definition. Moreover, as
the latent dimension of VAE-based methods is only 128, smaller than that of BYOL (1000-d), we
increase the representation dimension of VAEs to 1000 for a more fair comparison. The results
are in Table 11 in Appendix, showing that increasing latent dimension does not boost the VAEs’
disentanglement. Therefore, the performance gap between BYOL and VAE-based methods does not
come from the change of representation dimension.

5.4 COMPARISON ON REAL-WORLD DATASETS

Although the four datasets above can establish how well each method performs, those datasets are
all synthetic and are limited in various aspects. For example, dSprites only has one object per image
on a black background; SmallNORB contains synthetic images of 3D objects viewing from different
angles, but only contains 50 instances within 5 categories. High performance on those datasets does
not necessarily transfer to real world images, where there might be a lot more variations and unseen
objects during test time. To get a clearer sense of how each of the methods would perform on the
real world datasets, we further evaluate our method and several other methods on CelebA.

For evaluation of MIG and SAP metrics, to make a fair comparison, the representation vector of all
methods is reduced to 40 dimensions. The results are shown in Table 2. BYOL continues to show
high disentanglement compared with other methods.
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Model BetaVAE FactorVAE MIG SAP DCI

VAE

VAE 21.5 6.1 0.8 0.9 11.2
β-VAE 19.1 5.8 0.1 0.6 8.7
β-TCVAE 19.9 9.8 0.6 1.2 3.5
FactorVAE 25.3 12.0 0.4 0.6 7.1
DIP-VAE-I 21.0 9.3 0.2 0.9 13.8

GAN InfoGAN-CR 16.8 11.3 1.6 2.8 22.0

CL BYOL (Ours) 35.7 11.5 2.6 8.2 41.0

Table 2: Disentanglement evaluation on the CelebA dataset. The result shows great robustness of
BYOL’s learned representations to show disentanglement on real-world datasets. Yet, the large gap
between the score from that on synthetic datasets emphasises the difficulty of learning disentangled
factors on real-world images.

normalization w/o norm BN GN LN IN

FactorVAE score 89.6 85.0 91.6 91.4 19.1

Table 3: Results of using different normalization strategies on dSprites. For group normalization,
we set group number to 4. BYOL collapses with instance normalization (IN). For complete results,
refer to Table 13 and Table 14 in the appendix.

5.5 EFFECTS OF HYPER-PARAMS

Hyper-parameters significantly affect the performance of contrastive learning. In this section, we
systematically study the influence on disentanglement property from some recognized crucial in-
ductive bias for contrastive learning.

The batch normalization in BYOL has been considered the reason why BYOL does not collapse even
without negative pairs for long. However, a previous work (Richemond et al., 2020) finds BYOL
can avoid collapsing even without batch statistics. But the normalization strategy between layers is
still recognized as a key variant of BYOL. Thus we experiment with five normalization layers con-
figuration in the encoder network on the dSprites dataset. The results are shown in Table 3. We find
the commonly used BN decreases the disentanglement performances. No normalization already
does well regarding feature disentanglement. Group norm (Wu & He, 2018) and layer norm (Ba
et al., 2016) are the two best normalization techniques. On dSprites, instance norm (Ulyanov et al.,
2017) completely breaks the contrastive learning process. We provide more study on normaliza-
tion in Table 13 and Table 14 in Appendix where more variables, such as batch size, are taken into
consideration. From all the studies, it remains unclear why batch norm could harm the feature dis-
entanglement. However, this phenomenon was also empirically observed in the supervised learning
literature as well. For example, in the Bau et al. (2017) paper, the author shows that CNN with batch
norm layer has significantly fewer interpretable concepts than those without BN.

We also perform an ablation study on other hyper-parameters. For example, we find the representa-
tion trained on one dataset can show transferrable disentanglement to other datasets and BN causes
model collapse with a big learning rate (Table 12). More details are provided in Appendix D.

6 CONCLUSION

In this paper, we show some empirical study on the disentanglement property by contrastive learn-
ing. We find with minor modification, the existing BYOL framework can achieve state-of-the-art
disentanglement performance on multiple benchmarks and under diverse quantitative metrics. Be-
sides, the qualitative study reveals the different “disentanglement” nature of contrastive learning
that the representation actually shows “group disentanglement”. It is thus a relaxed form of disen-
tanglement due to weaker bound of compactness. To the best of our knowledge, we are the first
to build quantitative disentanglement benchmark with contrastive learning involved and the first to
build benchmark of disentanglement measurement on real-world datasets (CelebA). Recently, the
study of contratsive learning, or generally self-supervised learning, is still motivated by empirical
observations. We wish our work can reveal some clues on this line of study.
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7 REPRODUCIBILITY

In this section, we provide the information required to reproduce our results reported in the main
text. And we commit to making the code implementation and evaluating checkpoints public.

BYOL implementation For the implementation details of BYOL, please refer to Appendix A.1.
The model architecture, training setups, and dataset preprocessing are all explained in detail.

VAE methods implementation For evaluation on synthetic datasets, i.e., dSprites, Cars3D,
SmallNORB and Shapes3D, the disentanglement score is from the original logs of
disentanglement lib Locatello et al. (2019) 1. In the released logs, each method has dif-
ferent training configurations, and our reported result is from the configuration with the highest
average performance overall provided random seeds. For evaluation on CelebA dataset, we follow
an open-sourced implementation in Pytorch 2 and align the encoder architecture of all methods to
be the same as described in Appendix A.1. Parameters are kept as the default well-tuned version in
the provided implementation.

GAN methods implementation It is hard to insert GAN methods’ performance in the benchmark
as the training is not always stable and the discriminator weights are usually not provided in many
public codebases. When evaluating on synthetic datasets, the FactorVAE scores of InforGAN, IB-
GAN, and InfoGAN-CR are provided in the paper of Lin et al. (2020). But the evaluation of other
metrics in Lin et al. (2020) uses a not aligned settings with Locatello et al. (2019), so we check its
officially release 3 to reevaluate the provided implementation and model weights under the unified
evaluation setup. We perform the same evaluation process for results on CelebA dataset.

Energy-based Model (EBM) We refer to the implementation of ICE-BeeM (Khemakhem et al.,
2020b) for this method. We use the officially released codebase for it 4. The encoder implementation
has been aligned with our default already. The only modification we make is to use the uncondi-
tional version instead of its default conditional version in loss computation. Please refer to the
runners/real data runner.py file for details. Besides, we add the dataset definition for dSprites,
SmallNORB, Cars3D, and Shapes3D to it as the implementation for our method. All hyperparame-
ters are kept the default in its released version.

Evaluation Protocol Though our study is focused on disentanglement property, the evaluation of
a representation model is two-step. In the first step, we perform factor prediction as a downstream
task based on the learned representation model. Only when the accuracy of factor prediction is
high enough to ensure the model weights “valid”, we would go to the evaluation of disentanglement
metric scores. For the implementation details of factor prediction, please refer to Appendix A.3. For
disentanglement metrics evaluation, we use the official implementation of Locatello et al. (2019),
i.e. disentanglement lib. The settings of some important parameters in Appendix A.4.

1https://github.com/google-research/disentanglement lib
2https://github.com/AntixK/PyTorch-VAE
3https://github.com/fjxmlzn/InfoGAN-CRhttps://github.com/fjxmlzn/InfoGAN-CR
4https://github.com/ilkhem/icebeem
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A APPENDIX

A.1 IMPLEMENTATION OF BYOL MODEL

Architecture We describe the implementation details of BYOL in this part. To make a fair com-
parison with previous methods, for synthetic datasets, i.e. dSprites, Cars3D, SmallNORB, and
Shapes3D, we follow the encoder architecture in Factor VAE (Kim & Mnih, 2018). The pipeline
details are shown in Table 4. After each shown convolutional layer in the figure, there is a ReLU
activation layer. By default, there is also a group normalization (group number = 4) layer. So, the
encoder is a stack of (Conv-ReLU-GN) blocks. For CelebA dataset, the encoder is the commonly
adopted ResNet-50 (He et al., 2016) backbone. By default, the final output channel number is 1000,
i.e, D = 1000. We note here that the group normalization we use as default has nothing necessarily
connected with the group disentanglement property we study.

Besides the representation network (encoder), BYOL also has a projector network and a predictor
network. Both of them consists of a pipeline “Linear −→ BN −→ ReLU −→ Linear”. The pro-
jection dimension is 256 and the hidden dimension of the projector is 4096. The predictor keeps a
256-dimensional feature vector in its pipeline.

Encoder of BYOL

input: 64× 64 images
pipeline:

4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 128-channel
1×1 conv, stride 1, D-channel

Table 4: The encoder architecture for our implemented BYOL on synthetic datasets. By default, we
set D = 1000 to be aligned with the commonly used ResNet-50 backbone network. Besides, there
is a ReLU activation layer and a possible normalization layer following each convolutional layer to
create a stack of (Conv-ReLU-Norm) blocks.

Training settings We make minor modification on the training setting of BYOL. For training
on all datasets, the images are resized to 64x64. For the data preprocessing, we copy 1-channel
images of dSprites and SmallNORB to 3-channel. During training stage, we use such a pipeline of
augmentation (in PyTorch-style):

1. RandomApply(transforms.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.3)

2. transforms.RandomHorizontalFlip()

3. RandomApply(transforms.GaussianBlur((3,3), (1.0, 2.0)), p=0.2)

4. transforms.RandomResizeCrop(size=(64, 64), scale=(0.6,1.0))

5. normalization

For dSprites and SmallNORB, image pixel value is uniformly normalized from [0,255] to [0,1.0].
For Cars3D, Shapes3D, and CelebA, we adopt the commonly used Imagenet-statistic normalization
for preprocessing the image values.

During training, we use Adam optimizer by default, whose learning rate is 3e − 4 without weight
decay. The batch size is set to be 512 without exceptional notation. For evaluation on dSprites,
Shapes3D and CelebA, we select the weights after training for 15 epochs for evaluation. We select
the weights after training for 140 epochs for evaluation on Cars3D and weights of the 200th epoch
on SmallNORB considering the small scale of these two datasets.
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As explained in some ablation experiments, the default training setting is not the one we could get
the highest disentanglement score. For example, using Group Normalization + Weight Standard-
ization achieves a higher disentanglement score than only using Group Normalization or not using
normalization. But we aim to make minor modifications to the original BYOL implementation and
follow previously commonly used setups.

To decrease the influence of randomness, we train each model configuration multiple times with
different random seeds. We report the results by the average and three random seeds. To be precise,
as our implementation is based on Pytorch, we would set initialize the libraries of numpy, torch,
torch.cuda and random with the same random seeds. We use 0, 1, 2 as the three values of random
seeds in trails.

A.2 IMPLEMENTATION OF VAE MODELS ON CELEBA

The benchmark (Locatello et al., 2019) provides VAE-based methods’ disentanglement performance
on synthetics datasets only, e.g., dSprites, Shapes3D, Cars3D, and SmallNORB. For the real-world
CelebA dataset, we need to train the models by ourselves to gain the results in Table 2. We use an
open-sourced implementation 5 for VanillaVAE, β-VAE, Factor-VAE, β-TCVAE and DIP-VAE-I.
We follow the provided well-tuned hyper-parameters provided by them. Please refer to the reposi-
tory for details.

Linear classifier for factor prediction

input: D-dim latent code
pipeline:

linear layer (1000 −→ 256)
ReLU
linear layer (256 −→ 128)
ReLU
linear layer (128 −→ 100)
ReLU
K linear layers (in parallel, 100 −→ nk, 1 ≤ k ≤ K )

Table 5: The implementation of linear classifier for factor prediction. With the D-dim latent code
from the encoder, the classifier has multiple fully connected layers to shrink the feature vector to
100-dimensional. Then, given the number of factor types K for the target dataset, as each factor has
nk(1 ≤ k ≤ K) values, we have K linear layers following the last shared layer in parallel. These
layers predict the factor value on the corresponding K factors.

A.3 IMPLEMENTATION OF FACTOR PREDICTION

As mentioned in the main paper, for each gained representation model, i.e., encoder, we will first
confirm it “valid” by training a linear classifier for factor prediction. In the stage, the encoder weights
will be frozen and only the attached classifier trained. For the task on all datasets, we use a unified
classifier as shown in Table 5. The classifier has stacked fully connected layers (linear layers) and
multiple in-parallel heads for factor prediction. On different target datasets, the number of factors
and the possible values of factors vary. For the datasets we evaluate on, the value range and the
accuracy threshold to confirm the quality of a representation acceptable are shown in Table 6. We
use a well-trained BetaVAE model weights to do the factor prediction first. Its prediction accuracy
serves as the threshold in this sanity check stage. Usually, the accuracy threshold is set to be 0.8 or
higher. But for the orientation factor on dSprites and Shapes3D, we relax the constraint to 0.5. The
reason is that the factors are ill-defined to have ambiguity. For example, when a square or ellipse
object in dSprites has an orientation of 180 degrees or 0 degrees, the image can be the same while
the factors of orientation are regarded differently. For this reason, these factors bring noise into

5https://github.com/AntixK/PyTorch-VAE/
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our study and validate the model weights. We, therefore, relax the accuracy requirement for them in
practice. Besides, SmallNORB is the most difficult dataset by our observation. The factor prediction
accuracy on it is usually much lower, especially for azimuth and elevation, both of which are even
harder to be predicted.

Dataset Factor Value Range Accuracy Threshold

dSprites

Shape 3 (square, ellipse, heart) 0.95
Scale 6 0.95

Orientation 40 0.50
Position X 32 0.80
Position Y 32 0.80

Shapes3D

Floor hue 10 0.80
Wall hue 10 0.80

Object hue 10 0.80
Scale 8 0.80
Shape 4 0.80

Orientation 15 0.50

Cars3D
Elevation 4 0.80
Azimuth 24 0.80
Object id 183 0.80

SmallNORB

Instacne category 10 0.70
Elevation 9 0.40
Azimuth 18 0.40

Lighting condition 6 0.90

CelebA 40 human face factors binary 0.80

Table 6: The factor of datasets we evaluate on. Some factors are originally continuous but discretized
into all integers. Therefore, all factor prediction is classification task. Given a representation model
trained on the training set of a dataset, the linear classifier should achieve accuracy higher than the
theshold on all factors to be recognized “valid”. Only a “valid” representation model would be put
into the next step for disentanglement score evaluation. For the details of these factor definition,
please refer to the original papers of these datasets.

A.4 EVALUATION METRICS

Five metrics are used to quantify the disentanglement of our model.

Beta Vae Metrics Introduced in Higgins et al. (2016), beta vae metrics assumes each dimension
corresponds to one category in linear classifier. Representations are obtained after generated sam-
ples with only one factor k fixed. Calculating the summation of the divergence between different
representations and putting this result into a linear classifier, we train a model that possibly outputs
the corresponding k. The accuracy of this linear model is the value of beta vae metrics.

Factor Vae Metrics Kim & Mnih (2018) argues the beta vae metrics has the tendency to fail into a
spurious disentanglement, and proposes a new metrics based on a linear classifier. Representations
are obtained after generated samples with only factor k fixed. Normalizing each dimension in rep-
resentations in terms of standard deviation. Index of dimension with lowest variances of normalized
representation and the factor index k is the input/output for the linear classifier. The accuracy of this
linear model is the value of factor vae metrics.
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Mutual Information Gap Chen et al. (2018) assumes the disentanglement model has the property
that most information of one specific factor is contained in one dimension or a group of certain
dimensions. The mutual information gap is the summation of the difference of highest and second-
highest normalized mutual information between fixed k factor and dimensions in representations as
shown below:

1

K

K∑
k=1

1

Hzk

(I(vjk , zk)−max
j 6=jk

I(vj , zk)) (1)

Where K is the overall number of ground truth factors, zk is the factors of latent variables and
jk = argmaxj I(vj , zk).

DCI disentanglement As Eastwood & Williams (2018) suggests, disentanglement is the entropy
of the relative importance, evaluated with a Lasso or a Random Forest classifier, of each dimension
for specific factors. Completeness is the entropy of the possibility that one factor is captured by a
single code variable. Informativeness, overlapping with Disentanglement, is the prediction error of
the model predicting factors.

SAP Kumar et al. (2017) proposes the Separated Attribute Predictability (SAP) score. A score
metrics is computed with classification score of predicting jth factors on ith dimension as the ijth
entry. SAP is the mean of the difference of the highest and second-highest scores for each column.

For evaluation protocol, we follow the implementation provided by Locatello et al. (2019). De-
spite exception, the evaluation batch size is 64, the prune dims.threshold is 0.06. If a classifier is
required to be trained during evaluation, num train is 10000 and num eval is 5000. For Mutual
information computation, the used discretizer function is the histogram discretizer and the number
of bins in discretization is 20. For evaluation of MIG and SAP on dSprites, SmallNORB, Cars3D,
and Shapes3D, BYOL representation vectors are reduced to 10 dimensions by PCA to be aligned
with other methods. For evaluation of MIG and SAP on CelebA, to have a fair comparison, the
representation vectors of all methods are reduced to 40 dimensions.

Model BetaVAE FactorVAE MIG SAP DCI

VAE

β-VAE 100.0 (0.0) 89.3 (1.2) 11.7 (1.1) 1.4 (0.9) 38.7 (4.6)
β-TCVAE 100.0 (0.0) 92.2 (2.7) 15.5 (2.9) 1.7 (0.3) 42.7 (3.5)
FactorVAE 100.0 (0.0) 91.7 (4.1) 10.6 (2.2) 2.0 (0.5) 29.0 (6.7)
DIP-VAE-I 100.0 (0.0) 90.5 (5.0) 5.9 (2.8) 1.9 (1.4) 22.6 (5.6)
DIP-VAE-II 100.0 (0.0) 85.0 (6.1) 5.1 (2.7) 1.3 (0.8) 20.8 (5.4)
AnnealedVAE 100.0 (0.0) 85.0 (4.3) 7.6 (1.0) 1.5 (0.5) 18.5 (4.3)
SlowVAE 100.0 (0.0) 90.4 (0.5) 15.4 (2.2) 1.6 (0.5) 48.0 (2.4)

CL BYOL (Ours) 100.0 (0.0) 95.8 (1.2) 7.6 (0.9) 1.8 (0.7) 48.5 (2.3)

Table 7: Evaluation of disentanglement on Cars3D by different metrics.The results of BYOL are
averaged over three random seeds. It shows strong and robust disentanglement property of BYOL.

B MORE BENCHMARK RESULTS

We report the benchmark results on dSprites in the main text (Table 1). We continue to report the full
benchmark results on other datasets in the Locatello et al. (2019) evaluation protocol, i.e., Cars3D,
SmallNORB, and Shapes3D.

As the large-scale benchmark of Locatello et al. (2019) provides the original logs on Cars3D, and
SmallNORB datasets, we simply report the best configuration VAE-based methods trained by them.
The original logs on Shapes3D are not available, so we train and evaluate on Shapes3D by ourselves
and the output results are well aligned with the reported result in Locatello et al. (2019). The results
of other methods come from the same resources as those on the dSprites benchmark. As we find
the energy-based model (EMB) implemented from ICE-BeeM (Khemakhem et al., 2020b) fails to
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learn valid representation on Cars3D with its default configuration and hyperparameter settings, we
do not report it here. By default, we report mean scores averaged on three random seeds for our
method. But on Shapes3D, as the mean scores for some methods are not available, we report the
median performance instead as the default in Locatello et al. (2019). The evaluation protocol is the
same as that for dSprites as described in Appexdix A.4.

The full results are shown in Table 7, Table 8 and Table 9 respectively. On SmallNORB and Cars3D
datasets, our method still achieves the state-of-the-art performance in terms of BetaVAE score, Fac-
torVAE score, and DCI. But its MIG and SAP results are outperformed by other methods. This is
because the BYOL approach learns a group-disentangled representation. Therefore, there are mul-
tiple dimensions in the representation denoting the same ground truth factor. MIG and SAP score
computes the mutual information difference between the most related and second related dimension
to each ground truth factor. Thus a group disentangled feature can have a low MIG and SAP score,
even after the dimension reduction. On the other hand, on Shapes3D, our method fails to make
the state-of-the-art performance on all metrics and the gap between its performance and others on
MIG is even larger. Given the good performance of other methods on Shapes3D, we need more
knowledge about our method’s relative failure on this benchmark.

Model BetaVAE FactorVAE MIG SAP DCI

VAE

β-VAE 84.1 (2.7) 60.1 (2.4) 25.0 (1.1) 11.4 (1.1) 32.6 (0.6)
β-TCVAE 84.5 (2.7) 60.3 (2.3) 25.4 (0.9) 11.7 (1.1) 35.2 (0.7)
FactorVAE 80.8 (3.8) 62.5 (3.6) 23.9 (2.0) 10.2 (0.9) 33.4 (1.1)
DIP-VAE-I 84.2 (3.2) 69.8 (4.6) 24.3 (2.7) 10.2 (1.4) 30.0 (2.1)
DIP-VAE-II 85.2 (1.3) 58.4 (2.1) 25.5 (1.5) 14.4 (0.4) 32.3 (0.7)
AnnealedVAE 60.8 (6.2) 50.0 (9.9) 9.1 (2.2) 6.8 (0.8) 15.7 (6.4)
SlowVAE 78.2 (3.8) 47.0 (2.9) 23.8 (1.8) 7.8 (1.1) 28.7 (0.7)

ICA EBM 79.0 (4.4) 57.9 (3.5) 1.7 (0.5) 1.9 (0.1) 13.9 (2.2)

CL BYOL (Ours) 97.0 (0.8) 81.0 (0.5) 3.3 (0.9) 2.2 (0.3) 51.0 (1.0)

Table 8: Evaluation of disentanglement on SmallNORB by different metrics. The results of BYOL
are averaged over three random seeds. It shows strong and robust disentanglement property of
BYOL.

To conclude, on the benchmarks and under the evaluation protocol provided by Locatello et al.
(2019), our implemented contrastive learning shows SoTA-level performance in most cases. Its
downsides on MIG and SAP metrics are probably related to its relaxed version of disentanglement
property. The standard benchmark results help to provide a more accurate sense of the disentangling
representation ability of contrastive learning.

C MORE QUALITATIVE STUDY

Limited by the main text length limitation, we make a more qualitative study about the disentan-
glement property shown by the contrastive learning here. In Figure 4, we show the co-occurrence
of mutual information of factors on dSprites by our model. We perform some qualitative studies
on SmallNORB, Cars3D, and Shapes3D as well. The visualization results are shown in Figure 6,
Figure 8 and Figure 10. We can have some observation from them.

SmallNORB For the results on SmallNORB in Figure 6, though most non-diagonal entries
have very low co-occurrence of mutual information, two pairs of factors show slightly higher co-
occurrence. They are “azimuth-elevation” and “object/instance category-lighting”. After investi-
gating the dataset, we find the two pairs of factors are not fully independent. Figure 7 show some
samples with corresponding factors manipulated. We could see that the elevation and azimuth are
not fully independent. And the relation between the instance/object category and the lighting factor
is even more obvious because the lighting condition is sensible by the shadow on and under the
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Model BetaVAE FactorVAE MIG SAP DCI

VAE

β-VAE 98.6 83.9 22.0 6.2 58.8
β-TCVAE 99.8 86.8 27.1 7.9 70.9
FactorVAE 94.2 82.5 27.0 6.1 67.2
DIP-VAE-I 95.6 79.7 15.2 4.0 55.9
DIP-VAE-II 97.8 88.4 18.1 6.3 41.9
AnneledVAE 86.1 80.9 35.9 6.2 47.4
Ada-ML-VAE 100.0 100.0 50.9 12.7 94.0
Ada-GVAE 100.0 100.0 56.2 15.3 94.6
SlowVAE 100.0 (0.1) 97.3 (4.0) 64.4 (8.4) 5.8 (0.9) 82.6 (4.4)

ICA EBM 75.9 (11.2) 53.2 (8.7) 5.2 (2.2) 2.8 (1.1) 21.8 (11.0)

CL BYOL (Ours) 91.5 (3.9) 82.5 (2.4) 5.2 (1.7) 2.8 (0.3) 53.1 (1.5)

Table 9: Evaluation of disentanglement on Shapes3D by different metrics. The results of BYOL are
averaged over three random seeds. It shows strong and robust disentanglement property of BYOL.
Because the original experiment logs on Shapes3D by disentanglement lib is not released, we can
not get the average performance of baseline models. Instead we report median disentanglement
scores in this table by referring to results reported in Locatello et al. (2020) but the std error is
not available. The median performance of SlowVAE is reported in its original paper (Klindt et al.,
2020).

SmallNORB

0 - azimuth
1 - object category
2 - elevation
3 - lighting

Figure 6: The visualization of co-occurrence of mutual information of the factors of SmallNORB.

Figure 7: Samples from SmallNORB dataset. The variance is controlled by the factor indicated on
axis. The image is from Jakab et al. (2018).
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Cars3D

0 - elevation 
1 - azimuth 
2 - object type

Figure 8: The visualization of co-occurrence of mutual information of the factors of Cars3D.

instance, whose distribution and shape is highly determined by the instance category. This reveals
a common observation that, in real-world data (SmallNORB is not real-world yet but it is compli-
cated than 2D synthetic images), the factors are usually hard to define to be fully independent or
disentangled.

Cars3D For the results from Cars3D shown in Figure 8, only one pair of factors show some co-
occurrence, i.e. “elevation-object type”. To study how this happen, we randomly sampled some
data from Cars3D by different object types and elevations as shown in Figure 9. It shows that with
the same value of elevation, samples of different object types help different visual elevation. So
these two factors are not well disentangled. This might explain the slightly higher co-occurrence of
mutual information between this pair of factors.

Shapes3D The results on Shapes3D are shown in Figure 10. The result shows relatively bad
disentanglement. To be precise, some factor pairs show low mutual information co-occurrence as
expected, such as the color factors of floor, wall, and object and the pair of “object color - azimuth”
. But the MI co-occurrence of “wall color - object size” and “object color - object size;” are higher
than we expected as we did not recognize their high dependence. This result might relate to our
model’s relatively poor performance on Shapes3D as well.

We hope the additional results shown above are helpful to provide more sense of the dataset con-
figuration and what we should expect from a well-disentangled representation model. The full
benchmark results show that contrastive learning can achieve SoTA-level performance on standard
datasets under some metrics while the performance is not that good for SAP/MIG in some cases.
A study of this observation is important as it shows the disagreement of existing disentanglement
metrics. Besides, as the latent dimension of our implemented BYOL model is relatively high and the
group disentanglement property relaxes the requirement of compactness in disentanglement, mak-
ing dimension-wise disentanglement not distinguishable as expected in compact disentanglement.
Because SAP and MIG are measured by comparing dimension-wise mutual information differences,
the property of group disentanglement is the main potential reason for the observed disagreement of
disentanglement metrics from the reported benchmarking results.

D MORE ABLATION EXPERIMENTS

Limited by the main content page length, we put some additional ablation study here to help better
understand the influence of important inductive bias when studying representation disentanglement.

In the original implementation of contrastive learning, the min-ratio of Random-Resize-Crop is
usually very small, e.g, 0.08 for BYOL or 0.2 for MoCo/SimCLR. However, we find this hyper-
parameter is critical. We thus perform a study with different minimum ratios of random-resize-crop.
The results are shown in Table 10. From the table, we find the disentanglement score first increases
when increasing the min-ratio of random-resize-crop but then drops. The default min-ratio is set to
be 0.6 in our implementation.
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object type

elevation

Figure 9: Some samples from the Cars3D dataset. The factor of azimuth is the same for all samples.
The factors of samples vary along the axis of object type and the axis of elevation. We could find
these two factors are actually not fully independent.

Shapes3D

0 - floor color
1 - wall color
2 - object color
3 - object size
4 - object type
5 - azimuth

Figure 10: The visualization of co-occurrence of mutual information of the factors of Shapes3D.

min-scale BetaVAE FactorVAE

0.1 93.4 86.6
0.2 95.4 87.0
0.3 94.4 84.8
0.4 96.0 86.8
0.5 94.8 88.3
0.6 93.8 88.0
0.7 93.5 89.0
0.8 91.6 81.4
0.9 87.7 77.8

Table 10: The influence of minimum scale of random resize-crop augmentation on the disentangle-
ment of BYOL learned features. Here, the batch size is set to be 64.
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method BetaVAE FactorVAE MIG SAP

VAE 79.6 50.0 4.3 0.3
β-VAE 20.3 24.5 7.4 0.2
β-TCVAE 62.1 54.7 1.1 0.3

Factor-VAE 63.2 54.0 0.2 0.8
DIP-VAE-I 82.0 67.3 0.7 0.2

Table 11: Disentanglement performance of VAE-based methods on dSprites, with an increased di-
mension of latent code to 1000-dimensional.

Learning rate is also another important hyper-parameter, we use Adam optimizer with learning rate
to be 3e − 4 as default. But we are still interested in the influence of learning rate to the disentan-
glement property of learned representation. At the same time, batch normalization in the encoder
network is another critical component. In this part, we aim to study the transferability of learned
representation, so we train BYOL under with different learning rates and batch normalization on
three datasets respectively. But the evaluation is always performed on the test set of dSprites. The
results are included in Table 12. It shows, no norm not just shows a higher disentanglement score
than BN but is also more robust with the variance of learning rate. When the learning rate is high,
e.g., 3e-3 or 3e-2, the model with BN has collapsed already while the model without norm can still
output a reasonably high disentanglement score. On the other hand, on the transferability from one
dataset to another, the disentanglement score also shows high agreement.

dSprites 3dShapes CelebA

learning rate w/ BN w/o BN w/ BN w/o BN w/ BN w/o BN

3e-5 75.6 83.0 60.5 77.0 59.6 78.3
6e-4 83.2 92.0 64.3 72.4 67.3 81.1
1e-3 80.9 91.8 65.2 72.3 63.7 81.0
3e-3 42.3 91.4 23.1 71.0 65.1 80.5
3e-2 19.1 85.9 17.0 70.6 25.9 80.3

Table 12: We study the impact of learning rates over trained model’s disentanglement. As all models
are all tested on dSprites benchmark, BYOL shows its good generalization ability when trained on
one dataset but transferring to other datasets.

As the supplement of study on the normalization strategy, we provide a more detailed study in
Table 13 where five normalization strategies are evaluated with different batch sizes, which was
found crucial in choosing normalization strategy in visual tasks. The result of the table still suggests
that Batch Normalization weakens BYOL’s disentanglement property and no normalization, group
normalization, and layer normalization show good disentanglement with different batch sizes for
training. When using instance normalization in the representation network, BYOL goes to collapse
on dSprites.

Richemond et al. (2020) shows that it is possible to achieve similar results when replacing BN with
group norm and weight standardization (Qiao et al., 2019). We continue to show the influence of
involving Group Normalization (GN) and weight standardization (WS) in Table 14. Here, we keep
setting the group number to 4 and batch size to 512. And we use the two weight decay values in the
original BYOL and Richemond et al. (2020) respectively (3e-8 and 1.5e-6). The results show that
compared with solely using GN, adding additional Weight Standardization can not just help learn
features of higher quality but also be more disentangled.
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batch size w/o norm BN GN LN IN

64 88.5 80.0 90.4 89.2 19.1
128 89.6 83.3 91.6 91.0 19.1
256 92.0 85.6 93.2 93.8 19.1
512 89.6 85.0 91.6 91.4 19.1

1024 86.1 83.1 88.0 85.9 19.1
2048 84.5 79.8 82.5 82.8 19.1
4096 82.4 75.8 82.2 81.9 19.1

Table 13: Results of using different normalization strategy with different batch size during training
on dSprites. We evaluate the FactorVAE score to indicate the disentanglement property of model
weights from dSprites. For group normalization, we set group number to 4. BYOL collapses with
instance normalization (IN) only and the evaluated disentanglement score from it also collapses to a
constant here.

normalization BetaVAE FactorVAE MIG SAP

w/o norm 92.9 89.6 16.4 5.6
GN 93.2 91.6 29.4 8.0
GN + WS 96.6 91.6 31.5 7.4
GN + WS (wd = 3e-8) 96.7 93.5 31.3 7.6
GN + WS (wd = 1.5e-6) 96.2 19.1 32.2 7.5

Table 14: The results to study the influence of Group Normalization (GN) and Weight Standardiza-
tion (WS) on the representation disentanglement. The results prove the effectiveness of both GN
and WS to help promote representation disentanglement.

24


	Introduction
	Related Works
	Method
	BYOL Method
	Implementation Details

	Major Results
	The Group Disentanglement Property
	Competitive Performance Across Benchmarks and Metrics
	Batch Norm Discourages Feature Disentanglement

	Experiments
	Experiments Setup
	Understanding the Learnt Representation
	Comparison on Existing Benchmarks
	Comparison on Real-World Datasets
	Effects of Hyper-Params

	Conclusion
	Reproducibility
	Appendix
	Implementation of BYOL model
	Implementation of VAE models on CelebA
	Implementation of Factor Prediction
	Evaluation Metrics

	More benchmark results
	More Qualitative Study
	More Ablation Experiments

