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ABSTRACT

Source code is notably different from natural language in that it is meant to be
executed. Experienced developers infer complex “invariants" about run-time state
while reading code, which helps them to constrain and predict program behavior.
Knowing these invariants can be helpful; yet developers rarely encode these ex-
plicitly, so machine-learning methods don’t have much aligned data to learn from.
We propose an approach that adapts cues within existing if-statements regarding
explicit run-time expectations to generate aligned datasets of code and implicit
invariants. We also propose a contrastive loss to inhibit generation of illogical
invariants. Our model learns to infer a wide vocabulary of invariants for arbitrary
code, which can be used to detect and repair real bugs. This is entirely com-
plementary to established approaches, which either use logical engines that scale
poorly, or run-time traces that are expensive to obtain; when present, that data can
complement our tool, as we demonstrate in conjunction with Daikon, an existing
tool. Our results show that neural models can derive useful representations of
run-time behavior directly from source code.

1 INTRODUCTION

Software maintenance requires reading a lot of code. Experienced developers are adept at this,
garnering rich semantics just from this “static” (viz, without running the code) inspection to find
complex bugs, predict a function’s outputs from its inputs, and learn new coding patterns. They
strongly rely on generic assumptions about the program’s run-time behavior; e.g., that a list index
never escapes the list bounds and strictly increases. Such “invariants” capture general, yet relevant
constraints on the program’s expected run-time behavior.

Automatically inferring invariants can help both developers and tools: first, they can be used to
detect bugs where explicit assumptions are incorrect or implicit ones ought to be explicit; second,
invariants can guide myriad other tools, such as test-case generators (Artzi et al., 2006). However,
inferring invariants is not tractable in general and sound approximations don’t scale beyond very
small programs. Instead, popular tools either use dynamic trace data from real executions (esp.
Daikon (Ernst et al., 2007)), which requires costly instrumentation, or focuses on highly constrained
cases such as loops (Sharma et al., 2013a; Padhi et al., 2016).

public void onTargetFound(…) {

...

int time = calculateTime();

if (time > 0) {

action.update(-dx, -dy,

time, interpolator);

}

}

public void onTargetFound(…) {

...

int time = calculateTime();

action.update(-dx, -dy,

time, interpolator);

}

time > 0

Figure 1: A snippet that demonstrates how explicitly guarded code is often equivalent to code with
salient implicit, invariant-like conditions. The code on the right was a real (bug) that was patched
by adding the conditional check on the left. We synthesize such samples to train our model by
selectively removing if-statements. Our model correctly predicted this repair.
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Yet this scalability obstacle may be largely artificial. Practical programs rarely take on an exponen-
tial range of values (e.g., integers tend to come in a bounded range), and developers seem able to
make such inferences without undertaking a project-scale analysis. Rather, they reliably extract them
from a local context, using their past experience and cues from the code itself. Consider the snippet
in Figure 1: the program on the right uses a time variable, returned from one method and passed
to another. Not only is ‘time’ generally non-negative, in this particular case we should not update a
position (using moments dx, dy) if no time has passed either. This inference, and many more, can
quickly be made from reading just these lines of code. Other times, such implicit inferences should
be made explicit: this snippet was later repaired by adding the guard on the left.

Based on this observed symmetry between explicitly guarded code and implicit run-time assump-
tions about code, we propose a model that learns invariants directly from static code. As developers
rarely “assert” invariants in their code, we train this model using a proxy, by automatically convert-
ing explicitly guarded code to its implicitly guarded counterpart across millions of functions. The
generated programs are constrained to be similar to real functions and used to train a large model
with a new loss function that is aware of logical constraints.

Our model, BODYGUARD predicts a rich vocabulary of conditions about arbitrary code from new
projects, and can be used to find & fix real missing-guard bugs, such as the one in Figure 1, with
over 69% (repair) precision at 10% inspection cost. It also predicts more than two-thirds of Daikon’s
invariants that could previously only be inferred with run-time data, and some entirely new ones that
can be validated automatically with trace data. Our work presents a significant next step in learned
static analysis, being the first to reliably produce natural invariants from arbitrary code alone. More
broadly, we show that learned models can implicitly represent behavioral semantics, just from code.

2 OVERVIEW

Inferring invariants for arbitrary programs is NP-hard. Sound approaches using theorem proofers are
therefore constrained to restricted settings, such as simple loops (Sharma et al., 2013a), or ones with
known inputs (Pham et al., 2017). Such approaches generally don’t scale: needing SMT solvers
limits tools to the few program points where invariants can be proven, and ground-truth inputs
typically need to be constructed by hand. An alternative is to use execution traces (Ernst et al.,
2007): when realistic workloads are available (e.g. from test suites), they generally span entire
systems. However, genuinely representative workloads are rare, so trace-based tools often generate
poor invariants (Kim & Petersen). A key concern is that none of these have a notion of relevance, or
naturalness of the actual statements (Hellendoorn et al., 2019a).

To address these gaps, we propose a learned invariant generator that predicts directly from code,
trained with realistic examples. Our central claim is that the natural distribution of programs includes
many groups of similar functions, some of which assert run-time assumptions explicitly, and with
much detail, while others vary along these dimensions. As Figure 1 highlights, it is common for
code not to state salient conditions (time > 0, on the right) that developers may naturally intuit,
while other times (e.g. in a later revision, on the left), such conditions are explicitly checked. If
this distributional assumption holds in general, then we can use explicit conditional checks that
guard blocks in functions to teach our models about the implicit invariants of unguarded blocks in
similar functions. Furthermore, we conjecture that in such comparable samples, the condition is both
salient (since it is checked explicitly) and natural (since it is written by humans). Learning from
such examples is thus a very appropriate training signal for inferring practically useful invariants.

Figure 2 illustrates our data generation: we find explicitly guarded blocks in functions that can be
removed without substantially perverting the program, and convert these checked cases to implicit
ones (Section 3.1). We garner a large aligned dataset to learn to predict the reverse of this mapping,
training a Transformer-style model for code, augmented with a loss that encourages sampling logi-
cal conditions (Section 3.2). This model, nick-named BODYGUARD, works on any (Java) function,
quickly adapting to the local vocabulary and semantics, and has a natural inclination to generate
realistic, salient invariants that are often valid (Section 4). This result fits in a long line of observa-
tions that programming is remarkably predictable, including in its syntax (Hindle et al., 2012) and
execution values (Tsimpourlas et al., 2020), likely by developers’ design, to control the complexity
of the task (Casalnuovo et al., 2019). Yet none of these relate code and its execution directly, as we
do through translating the former into general, intuitively meaningful statements about the latter.
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int ix = getIndex(arr, el);
return arr[ix];

int ix = getIndex(arr, el);
if (ix < 0 || ix >= arr.length) {
return insert(arr, ix, el);

}
else {
return arr[ix];

}

int ix = getIndex(arr, el);
return insert(arr, ix, el);
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Figure 2: An overview of our learning approach. We extract samples from if statements in Java
methods by removing the guard and assigning it (or its negation, for the else block) as the target
invariant of the previously-guarded block (if and else blocks separately, if both present) for a trans-
lator. We train using the cross-entropy of the predictions given the target, as well as the contrast of
this entropy to that of predicting the logical inversion (per sample) in a hinge loss, which encourages
BODYGUARD to distinguish between syntactically similar, but logically distinct invariants.

3 APPROACH

Training and evaluating this approach required a substantial experimental setup: we collect three
datasets for three types of evaluations and introduce an improved loss function. This section de-
scribes the data collection, evaluation, and modeling setup generally; Appendices A.1 and A.2 pro-
vide additional details on our datasets and modeling architecture, respectively. Our benchmark
datasets, code, and models are available at http://omitted.link.

3.1 DATASETS

To train BODYGUARD, we generate ca. 2.5 million aligned invariant/function samples from methods
with if-statements. We extract these from top-starred Java projects from Github, which we split at
the organization level into training (920 projects), held-out (19 projects), and test data (61 projects).
Each file was parsed to extract all its methods, from which we generate one sample for each (side-
effect free) if- (or if-else-)statement by removing said guard and storing its condition. This produces
an equivalent code fragment in which the statement’s condition is presumed to either be always
true (if its body is kept) or false (otherwise). Correspondingly, the omitted condition (or its
negation) becomes an invariant on the remaining code. The resultant sample contains the entire
method (minus conditional check) as context, with the range of tokens where the invariant condition
applies indicated.

We train our model to generate run-time conditions for any indicated segment of code in Java func-
tions. We evaluate its ability to do so in two settings: 1. identifying and repairing missing explicit
if-guards, collected from real bug reports, and 2. measuring the validity of our predicted invariants
using trace data, collected with Daikon (Ernst et al., 2007). For the first, we collect a dataset of real
missing if-condition bugs from across the history of 10K Java projects by parsing all the revisions
in these projects’ histories and selecting for changes that a) introduce a single if-statement to guard
previously un-guarded code, and b) are described as a bug-fixing change (see Appendix A.1.3 for
details). We find ca. three thousand of these. For the second evaluation, we use Daikon to collect
execution trace data from a smaller set of eight projects that we manually instrumented. We then
compare our predictions to both those generated by Daikon, to measure overlap, and to the collected
traces directly, to assess the validity of the invariants that we uniquely generate. This helps us under-
stand the inference gap between static and dynamic information; i.e., is run-time data (when present)
strictly more useful than code, or are the two information sources orthogonal?
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Transformer layer

… time = calculateTime(); action.update(-dx, -dy, time, interpolator); } time > 0

Masked Self-Attention

Feedforward NN

Biased Input Attention

× 6

Transformer layer

Masked Self-Attention

Feedforward NN

Biased Input Attention

Relational Self-Attention

Feedforward NN

Relational Self-Attention

Feedforward NN

× 6

Relations: parent, computed-from, def-use, next-use, next-token

Transformer layer

Transformer layer

Figure 3: Schematic overview of our model. Both encoder and decoder use 8 Transformer layers. In-
put is provided as BPE tokens (not shown) augmented with program-graph edge information, which
the encoder uses through relational self-attention from (Hellendoorn et al., 2020). The decoder uses
both masked self-attention and input attention biased towards the target scope (bold and underlined).

3.2 MODEL SETUP

Discovering invariants is non-trivial even for experienced developers, so we both equip our models
with substantial capacity and training time, and design to prioritize precision over recall. Figure 3
shows an overview of the architecture, inputs and outputs of our model.

3.2.1 ARCHITECTURE

We base our architecture on the Transformer (Vaswani et al., 2017), amplified with the relation
attention mechanism from Hellendoorn et al. (2020). While standard (lexical) language models
are quite useful for code, Allamanis et al. (2018) and others have shown that utilizing syntatic &
semantic information such as the AST, or control/data-flow relations, outperforms text-only models.
Hellendoorn et al. (2020) propose a Transformer-based architecture that handles such relations but is
faster to train and more powerful than graph neural networks (Allamanis et al., 2018). Their model
relies on an added attention bias brij , injected into the query-key comparison of the Transformer’s
conventional scaled dot-product attention: eij = (qi+b

r
ij)kj

>/
√
N . This bias is sensitive to known

relations r between tokens i and j (if any, and summed together if more than one), allowing the
model to selectively sharpen (or dampen) the significance of each relation. We adopt this model for
our work, specifically with 512-dimensional hidden states, 64-dimensional relational embeddings, 8
attention heads, and 8 layers, totaling ca. 67M parameters.

Our model uses relational information in the form of program graphs. A program graph extractor
has been released for C# code (Allamanis et al., 2018), but not yet for Java, so we created our own.
Specifically, we extract 5 commonly used edge types, all bi-directional, reflecting common lexi-
cal, syntactic, and semantic relations in programs (detailed in Appendix A.2.1). We use the same
“leaves-only” representation as Hellendoorn et al. (2020) to limit the size of our inputs by not includ-
ing non-terminal AST nodes, but instead rerouting edges that connect such nodes to representative
syntax token (e.g. from an if-statement node to its “if” token in the code). Finally, to ensure that our
decoder is aware of the specified range of code tokens where the invariant applies, we also leverage
the relational mechanism between the decoder and encoder, using a simple unary relation (i.e., that
a token is part of the invariant’s range) between the generated tokens and input tokens.

3.2.2 DECODING LOGICAL STATEMENTS

We synthesize training data using a proxy for invariants, which necessarily introduces some bias
towards characteristics of if-conditions (and the code they guard) that is incompatible with true
invariants. Most notably, in code, small syntactic differences lead to drastic changes in run-time
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(a) Accuracy on held-out data during training. (b) Precision-Recall response of the trained models to
limits on the entropy of generated invariants.

Figure 4: Model performance during and after training, focusing on the high-precision/low-recall
domain for the second (overall test accuracies: 33.8% base, 34.7% hinge-loss).

behavior. It is common for if-else statements to have quite similar bodies, for which we generate
two samples: one with the if-condition as an invariant for the if block, and one with its logical
negation for the else block. This approach tends to produce very similar code fragments with very
similar, but logically opposite (e.g. ‘!= null’ vs. ‘== null’) conditions.

We supervise our model to encourage its representations for syntactically close but semantically
opposite statements to be distinct by introducing a contrastive hinge loss term. For every training
sample, we produce the logical negation of the invariant and require the decoder to produce that
negation with a much higher entropy than the original. Concretely, given a statement inv comprised
of tokens ti and a negating function neg, we use the regular cross-entropy loss LCE :

LCE(inv) = −
|inv|∑
i=1

log prob(ti | t1 · · · ti−1, context)

to compute the entropy distance w.r.t. its negation:

∆inv = LCE(neg(inv))− LCE(inv)

Lhinge(inv) = max (0,∆inv − ε)2

in which ε is the minimum desired entropy “distance” in bits. In this work, we set ε = 2. For this
hinge-loss model, as we will call it in the rest of this paper, we train with a loss equal toLseq+Lhinge.

4 ANALYSIS

We first assess our model’s precision/recall behavior on our automatically collected corpus; then,
we apply it to a promising down-stream task: missing if-guard repair (and detection), which further
helps us assess the models’ sensitivity to salient invariants. Finally, we use trace data to get a
measure of our invariants’ validity and contrast it with an execution-based tool.

4.1 CORPUS DATA

We sample our two models’ held-out performance every 100,000 samples while training,1 leading
to the learning curves shown in Figure 4a. The base model saturates earlier than the one employing
a contrastive hinge loss, as the latter faces the more challenging task of distinguishing between very
similar statements. However, after ca. one week of training, both models converge to approximately
the same quality. It speaks to the challenge of the task that the models only reach ∼30% accuracy,
due in part to the enormously diverse vocabulary of statements that occurs across our corpus, and to
the inherent ambiguity of generating a single invariant when multiple valid options are available (as

1A full epoch is approximately 2.3M samples for the base model and twice that for the hinge-loss models

5



Under review as a conference paper at ICLR 2021

Table 1: Bug-detection and repair results on finding and predicting missing if-guards, across two settings:
given the correct location, and across all possible locations, further analyzed by aspects of the top prediction.

Top-5 Precision
Objective Accuracy Acc. @10% Recall

Location given 29.3% 41.9% 69.1%
All Locations 10.4% 18.8% 39.9%

invariant correct 15.2% 24.2% 48.1%
position correct 19.4% 43.8% 100.0%

we will study later). This task clearly stretches our current models of code to their limits, making it
a promising new task to pursue in order to improve our models.

We evaluate each model at the step with their highest held-out accuracy on the test data, where we
compare the top generated invariant (from beam search, size = 25) to the ground truth. Figure 4b
shows the precision/recall behavior of the two models in the high precision range, which is generally
much more useful to developers than high recall. We rank predictions by their entropy: an invariant
that is highly likely to be sampled from its context is likely correct. Both models respond strongly
to this entropy threshold, becoming especially far more precise when entropy values drop below
1.0 (around 40% recall), and converging to (near) perfect precision, at a commensurate expense of
recall. Both break 80% precision at nearly 20% recall, which still accounts for tens of thousands of
program points across our test projects alone. Going forward, we use the hinge loss model, which
has the better precision-recall trade-off, and prioritize precision over recall.

4.2 MISSING IF DETECTION

Using the ∼3K real missing if-guard bugs collected from project histories (see Section 3.1), we first
measure our model’s accuracy and precision at predicting this guard from the localized bug in the
top row of Table 1. This most directly related to its training signal, where we provided our model
with the location of the code guarded by the targeted invariant. Our model achieves a similar overall
accuracy here (ca. 29.3%) as on our general test data.2, and precision at 10% recall is also quite
high (69.1%), allowing us to fix 215 out of 311 bugs at that level once located. That these tasks
appear to be comparably “hard” is relevant; automatically synthesized training data is often overly
easy compared to real tasks, which harms generalization (Hellendoorn et al., 2019b).

We also care about our model’s sensitivity to salience: the missing condition in these samples is
(arguably) the most important invariant in the entire method, not just the indicated code block. Our
model should be able to detect this given how it was trained. This contrasts with tools like Daikon
Ernst et al. (2007), which emit all logically valid invariants, many of which irrelevant (Hellendoorn
et al., 2019a). The next three rows of Table 1 show the results of running our invariant generator on
every contiguous segment (up to 5 blocks) of code in each buggy method, ranking the top invariants
across segments for inspection. This is substantially harder than the previous task, reducing the
overall accuracy threefold and roughly halving precision. Nevertheless, that is still much better than
might be expected if BODYGUARD had no location-sensitivity: we test over 30 blocks per method
on average. We also show that the top prediction often matches some aspect of the correct answer,
especially the position, and often predicting the correct invariant at another (nearby) block of code.

Finally, we note that the other (low entropy) invariants predicted here are often not at all “incorrect”;
from cursory inspection, many are valid, meaningful statements. We study their validity next.

4.3 VALIDITY AND OVERLAP WITH DAIKON

Learning invariants just from code stands in sharp contrast to most current approaches in this field,
prominently including Daikon (Ernst et al., 2007), which learns invariants from execution trace data
instead. Collecting trace data requires instrumenting projects and access to diverse, representative
workloads. This makes it much harder to apply to arbitrary code than our approach but has the
benefit of offering stronger guarantees of correctness. Comparing our model with Daikon in projects
where this information is available thus allows for two useful evaluations. First, we can lower-bound

2The base model (trained without hinge loss) reached 26.8% accuracy.
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(a) Overlap between our invariants and Daikon’s,
on pre- and post-conditions.

(b) Overall validity in relation to varying entropy
thresholds; pre- and post-conditions.

Figure 5: Results of the overlap and validity analysis of our invariants based on Daikon-extracted
trace data. Note the log-scaling on the x-axis.

our tool’s true-positive rate by determining how often it replicates Daikon’s own invariants, which
we tentatively deem “safe” because they hold on all observed traces and have passed a significance
test.3 Second, we can use this trace data directly to determine the validity of (a subset of, see
Appendix A.3.2) our invariants that do not overlap with Daikon’s.

Figure 5a shows the first result: the frequency with which our invariants overlap with Daikon’s,
again plotted against recall, where the points correspond to entropy threshold ranging from 1e-4 to
10. Evidently, pre-conditions are easier to predict for our model, likely because it has no real notion
of post-conditions (see Appendix A.3.2). Even so, our tool can retrieve more than two-thirds of
Daikon’s invariants at a respectable 10% recall from static code alone, which is quite promising.

We generate 10 invariants per program point using beam search, so even at a low entropy threshold
we produce many pre- and post-condition that Daikon does not (those either out of its vocabulary,
or with too few observations). It is reasonable to expect many of these to be valid given previous
results. Since Daikon does not provide a means of validating a plain-text invariant, we wrote a
simple logical engine that parses Daikon’s trace data files and compares a number of categories of
our invariants against the recorded values, such as array length, string equivalence, instanceof
checks, etc. Using this approach, we are able to validate ca. 40% (12K) of our emitted invariants,
resulting in the validities summarized in Figure 5b. In short, our invariants at full recall are valid
ca. 60% of the time, and this validity ratio greatly increases as we sharpen the entropy threshold, to
over 80%, at recall values under 10%.

Many of these validated invariants were not produced by Daikon, implying that static and dynamic
data are orthogonal for this task. We collected the 708 pre-conditions that BODYGUARD generates
at an entropy of ≤0.1; of these, 540 could be checked automatically with trace data, yielding 449
valid and 91 invalid cases. We manually inspected the 168 remaining cases and found that most
(122) were valid, but Daikon’s tracer simply did not record the information needed to predict these.4
Overall, this suggests that more than 80% of our invariants at this recall level (3.5%) are correct, and
more than two-thirds of the invalid remainder could be ruled out using trace data, if available, leaving
a false positive rate of just 6.5% (46/708) when execution data is available (while also adding about
200 valid invariants to Daikon’s own predictions). This supports our belief that our tool is largely
orthogonal to, and usefully synergistic with, dynamic, trace-based invariant generators.

3Though in practice it generates a fair number of spurious statements still.
4Some of these were correct statements but not proper pre-conditions, e.g. invariants about a variable

declared at the first line of the function. This is an artifact of our training setup, which has no explicit notion of
method-level pre-conditions. We marked these as invalid for this analysis.
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5 RELATED WORK

Automatically inferring invariants is usually approached either in constrained settings where some
“checker” (e.g. an SMT solver) or ground-truth is available, or under the assumption that we have
access to execution traces from realistic workloads. Among the first, Sharma et al. (2013b) find
algebraic (polynomial) invariants by solving a system of linear equations with an SMT solver and
using counterexamples to create new test inputs. Sharma et al. (2013a) use PAC-learning to learn
integer loop invariants on programs with a single loop, trained by contrasting passing and failing
test cases. Padhi et al. (2016) learn pre-conditions and loop invariants as boolean combinations of
arithmetic conditions (“features"), which they synthesize by generating and testing all features up to
a size cutoff. This approach is agnostic to the program structure, as is Pham et al. (2017), who use a
fixed set of feature templates over state vectors to learn linear inequalities that classify passing and
failing state vectors, requiring both post-conditions and passing and failing tests to be in place. In
contrast, our work makes no assumptions about the code other than the availability of a parser. In
settings where an SMT solver (or test cases) is available, it could be used to filter invalid invariants
generated by BODYGUARD.

Among machine learning based approaches, Si et al. (2018) use policy-learning to teach a GNN
to generate loop invariants in cooperation with an SMT solver (Z3), which provides intermediate
rewards (through counterexamples) to finesse the sparsity of the eventual reward (the final validity
of the invariant). A second reward is added to reject “meaningless" and “trivial" predicates such e
== e or e < e. Besides not requiring an SMT solver, our approach learns notions like “relevant” and
“natural” directly from real code. Relatedly, Brockschmidt et al. (2017) also use GNNs to induce
invariants over data structures, using a similar approach of generating invariants (in separation logic)
supervised by data produced from test runs. The production is based on hand-engineered features
over the data-structure graphs. Both these approaches may be symbiotic with ours where tests or
logical constraints are known, although they consider different classes of invariants.

Daikon (Ernst et al., 2007) belongs to the second class of invariant predictors, leveraging execution
traces from realistic inputs to infer a large vocabulary of method pre- and post-conditions. This gen-
eral applicability has led to its frequent as a basis for other tools, often to generate an initial corpus
of invariants for tasks such as automated patching (Perkins et al., 2009) and test generation (Artzi
et al., 2006; Pacheco & Ernst, 2005). However, truly representative inputs are rare, and using in-
complete data risks generating many irrelevant or invalid invariants. Polikarpova et al. (2009) found
that the size of the test suite affects the validity of generated invariants on Eiffel programs. Kim &
Petersen anecdotally note various issues with Daikon’s invariants on large, C++ systems, such as a
high degree of false positives and few insightful invariants. Hellendoorn et al. (2019a) similarly ob-
serve (on hand-annotated C# functions) few relevant and valid invariants based on executions from
unit test. Our approach learns directly from natural conditions to generate relevant and generalizable
conditions, and when trace data is present, it can be used to filter out invalid invariants.

6 CONCLUSION

We conjectured that typically used invariants are in a sense natural, like many other aspects of pro-
grams (Hindle et al., 2012; Barr et al., 2013; Tsimpourlas et al., 2020), and therefore predictable,
intentionally written in standardized ways for ease of reading and writing Casalnuovo et al. (2019).
Our results support this claim: both explicit (if-statements) and implicit (invariants) conditions per-
taining to code can be predicted precisely, and with high validity from code reading alone, facilitated
by our proposed data generation approach and loss function. As a result, we can generate many in-
variants that were previously only accessible through trace data (and more), which greatly increases
the reach and applicability of invariant inference.

This finding has broad implications: our tool can provide valuable semantic insights both to devel-
opers, e.g. to aide debugging efforts or facilitate code understanding, and to other tools, many of
which struggle to navigate an exponentially large search space of programs. Our tool can help bias
this search space using highly likely assertions, which could greatly improve the range and quality
of solutions found by downstream applications. In summary, our novel approach learns to reason
about program state by synthesizing training data from if-conditions; this empowers BODYGUARD
to reliably generate useful invariants entirely from static code.
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A APPENDIX

A.1 DATA COLLECTION DETAILS

We base our evaluation on a Java dataset consisting of the top 10,000 most-starred Java projects on
Github, collected March 30th, 2020 using the Github v3 API. Since generating our training data
samples is quite expensive, we used just the top 1,000 (most starred) of these projects to automati-
cally generate training and evaluation samples for the results described in Section 4.1. This dataset
was split between training, held-out and evaluation sets at the organization level to ensure minimal
duplication, as projects within the same organization often share many coding patterns (Allamanis,
2019). We allocated 95% of organizations (920 projects) to training data, 2% to held-out data (19
projects), and 3% to test data (61 projects), to assess the final trained models.
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A.1.1 INVARIANT GENERATION

We parse each file using Eclipse’s JDT parser and extract all (non-nested) methods from the result-
ing parse tree. Within each method, we detect all if-statements, removing all those whose condi-
tions contain side-effects (such as assignments, increment/decrement operators, and non-whitelisted
methods, see Appendix A.1.2), and those whose body contains a control-flow altering statement
(e.g. return, throw) unless it is the sole statement.5 For the remainder, we generate samples based
on the following types of if-statements:

Simple if-statements: these include samples like Figure 1, in which a single if-statement guards
a simple body with no control-flow altering code.

If-else statements: for these we generate two samples: one in which we remove the else block
entirely and generate an if-invariant as above, and one in which we negate the condition and generate
an invariant for just the else block. Note that else if statements in Java are treated as nested
statements and thus handled the same way.

Control-flow altering if-statements: any if-statement whose body prevents the execution of sub-
sequent code, by containing just a return, break, continue, or throw (Exception) statement, is
treated as declaring an invariant (namely, the negation of the if-condition) for the ensuing code.

In all cases, the surrounding context is the entire method, and the range of tokens to which the
condition applies (namely, those that used to be guarded) is stored with the sample. We generate
samples for all these conditions, producing a new sample for every if-statement. This ensures that
each sample minimally alters the original code, which reduces the risk that we produce unnatural
code (which would harm the generalization of our model). As such, a method can produce many
samples, so functions with many conditions will be represented proportionally more often. We do
not consider that problematic, as 1. long functions tend to have correspondingly more invariants,
so the increased emphasis should be beneficial to our model, and 2. we anyways cap our training
samples to only modestly large functions (up to 500 sub-tokens, which typically translates to the
order of 20 lines), due to memory constraints.

A.1.2 PRODUCING NATURAL FUNCTIONS

Not all if-guards can be removed without changing the semantics of the code; conditions can have
side-effects. This includes assignments (e.g. if ((x = y) != null)), certain operators (viz. ++
and --) and method calls with side-effects. To ensure that the converted code is semantically co-
herent, and because invariants should not have side effects anyways, we omit all such cases. Many
method calls do not have side effects, so to avoid limiting our dataset too much, we heuristically se-
lect a large, but relatively “safe” set of these based on common coding patterns. This includes com-
mon “getter” methods, java.lang.Math calls, object equality tests, collection inspection methods,
such as inclusion checks (e.g. ‘contains’, ‘has’) and size-related methods, and a few miscellaneous
others that were common in our training data (e.g. parseInt, name). The regexes used to detect
these various types of methods are listed in Table 2.

Removing if-statements does not always yield meaningful code, consider:
int foo(int x, int y) {

if (x > y) {
return x;

}
return y;

}

5When an if-statement body terminates the current branch of execution only after first executing some
other code, generating equivalent unguarded code is complicated: inlining the guarded code (minus the final
statement) would often produce very unnatural code, as it tends to involve some form of error-recovery, such
as logging or resetting a value. Omitting the entire block instead, as we do for simple control-flow altering
statements may be more appropriate; future work can explore this, and various other, corner cases to generate
more samples.
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Table 2: Categories of, and Regexes used to detect, whitelisted method calls, which are generally
assumed not to alter program state and thus allowed in invariants.

Category Regexes (space separated)
Object comparisons equals([A-Z].*)? deepEquals match(es)?

compare([A-Z].*)? hashCode
Collection methods length size capacity depth keySet indexOf

“Getter” methods (get|contains|has|is|exists|should|can|was)([A-Z].*)?
.+Exists

String methods (starts|ends)With contentEquals toString substring
toCharArray valueOf charAt to(Upper|Lower)Case

Numerical properties (boolean|int|float|double|long|byte|short)Value
parse(Boolean|Int|Float|Double|Long|Byte|Short)

Mathematical calls log([0-9]+)? abs sqrt pow max min sin cos tan round
ceil floor

Misc. others peek group (.+N|n)ame child.*

If we remove the conditional check, the resulting method is left with just two consecutive return
statements, which is invalid in Java. This particular case would trigger a compiler error, but not
all inappropriate removals do: if the if-body had instead assigned y = x + 1;, removing it would
result in y always being assigned x + 1 before returning, making the parameter useless. Not using
a parameter is not erroneous by definition, since the method foo may be inherited (or overriden in a
subclass) and other instantiations do make use of it, so Eclipse’s parser just emits a warning. Since
both these cases result in code that is both unrepresentative of typical Java, and would yield highly
predictable invariants, we additionally reparse each resulting function after removal of the targeted
if-statement and discard any changes that trigger compilation warnings and errors.

Specifically, Eclipse JDT requires full type resolution to guarantee correct program analysis and
stops checking for violations if it finds compile-time errors from missing types. When processing as
many projects as we do (many of which cannot be built automatically), we cannot soundly resolve
all dependencies for each project. As a close approximation, we instead parse each function in its
entire project context to allow as much heuristic type resolution as possible. Then, we look for
any increase in warnings and errors between the method before and after removing an if-statement.
This reduces the number of collected samples and increases the time to generate the dataset (to ca.
200 CPU hours for 1K projects), but also increases its validity by eliminating many inappropriate
fragments.

Finally, we limit our functions to those having 500 (sub-)tokens or less to facilitate a reasonable
modeling throughput. This does not reduce the dataset by much; most functions tend to fit this limit.
In total, we collect ca. 2.34M training samples, 12.1K held-out samples and 101K test samples, with
approximately 200 sub-tokens per function on average.

A.1.3 COLLECTING “MISSING IF” BUGS

We collect our dataset of missing if-condition bugs from across the history of all the aforementioned
10K projects in our dataset. For each project, we parsed every commit to the main branch, using
git’s “diff” function to identify cases in which the sole addition was to wrap one or more existing
statements in an if-statement. This yielded 32,471 samples from across 8,174,552 commits. Al-
though all of these may constitute interesting samples, we prioritize bug-detection for now as the
most direct application of our model. To ensure that our collected samples are likely bug-related, we
focus only on the ca. 3.7K cases in which the entire commit introduced just a single if-statement in
a single Java file and the corresponding commit message contained any of the common bug-related
terms such as “fix”, “bug”, and “fault” (Ray et al., 2016). We additionally filtered out any commits
to projects that were included in our training dataset to avoid the risk of overlap (which need not be
present as many commits reflect now out-dated code), yielding 3,146 samples in total.
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Table 3: Statistics of Daikon’s invariants collected on Dacapo projects.

Project Methods Invariants
Batik 6,797 64,298

Eclipse 2,375 41,257
H2 2,169 28,965

lusearch 1,594 81,291
luindex 1,004 9,822

PMD 5,026 274,638
Tomcat 3,983 63,146

Total 22,948 563,417

A.1.4 RUNNING DAIKON

Comparing our tool to Daikon (Ernst et al., 2007) required some adaptations. Daikon requires
projects that are fully built, instrumentable, and have representative workloads. Unit tests are often
insufficient because they test for both appropriate and inappropriate values (e.g. those triggering an
exception), which is counter to our purpose.6 Scaling Daikon to our aforementioned dataset is not
feasible; indeed, to the best of our knowledge there is no large public dataset of Daikon invariants
on real programs. Instead, we created a modestly large dataset of our own.

To do so, we leveraged the Dacapo benchmark (Blackburn et al., 2006). Originally created to bench-
mark program optimizations (e.g. through better compilers), each project in this benchmark comes
with a set of representative workloads designed to execute many of its paths. This is ideal for our
case. Practically, although the benchmark comes with a single runner for each project, Daikon
could not instrument through the reflective calls that this framework uses. Instead, we manually
instrumented and ran 8 projects (details in Table 3) in this suite directly, which, in nearly all cases,
involved writing our own “runner” to mimic Dacapo’s instrumentation while calling the requisite
project-code directly. We then applied Daikon as usual, running the code under instrumentation first
and then producing invariants from the resulting traces. Table 3 summarizes the resulting invariant
counts.

We limited the volume of the collected trace data by exponentially decreasing the number of traces
for each program point once it was seen sufficiently often (10 times) and excluding many values
from tracing, such as those that are not visible from the program point of interest and any nested
values with more than three levels. Even then, Daikon required upwards of 30GB of RAM and
nearly an hour of processing for the larger projects – much more than our models.

A.2 MODELING DETAILS

A.2.1 PROGRAM GRAPH EXTRACTION FOR JAVA

We used Eclipse’s JDT parser with approximate name-binding resolution to extract five edge types
across 3 broad categories of information that are accessible in source code:

• Lexical: every token is connected to its neighbors through next-token edges (and their reverse).
This adds additional sensitivity to lexically local information beyond the positional encoding used
in the standard Transformer.

• Syntactic: we extract all AST parent-child relations, which provide insight into the hierarchical
structure of source code.

• Data-flow: we include three types of data-flow edges: next-use edges, which connect lexically
sequential uses of the same variable; computed-from edges, which connect any variable usage to
the last value it was assigned, and def-use edges, which connect every variable usage to its (single)
original declaration point.

In addition, every edge type has a symmetric, mirrored version (e.g. prev-token), yielding a total of
10 distinct edge kinds used by our model.

6In addition, Daikon cannot instrument JUnit-tested code since it uses reflection, which effectively makes
Java tests off-limit.
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A.2.2 TRAINING DETAILS

Consistent with recent observations regarding effective modeling of source code vocabulary (Hellen-
doorn & Devanbu, 2017; Karampatsis et al., 2020), we use Byte-Pair Encoding to create a sub-token
vocabulary based on the tokens in our training data. Our vocabulary, estimated from the training
data, spans 10,000 sub-tokens; both the input function and the predicted invariant are sub-tokenized
using this (reversible) dictionary. Transformer models generally scale in memory needs with the
square of the size of their inputs. To ensure that our minibatches are sufficiently large to keep the
gradients stable, we restrict our inputs to functions with up to 500 (BPE) tokens and our invariants
to 50 tokens (although invariants that long are very rare). With these cut-offs, we train batches of up
to 12,500 tokens in parallel across two NVidia RTX Titan GPU’s with 24GB of VRAM each. By
packing similarly sized functions per batch, we minimize the overhead from padding and are able to
fit ca. 70 functions per batch on average.

A.3 EVALUATION DETAILS

A.3.1 IF-CONDITION LOCALIZATION & REPAIR METRICS

Since some methods have far more program blocks than others, simply ranking all invariants across
method boundaries by entropy would lead to bigger methods being highly disproportionally rep-
resented. Rather, we try to balance method and invariant level inspection cost by simulating the
inspection of 10% of invariants in our dataset from a subset of methods. We do so by first ranking
methods by the entropy of their top invariant, from low to high, and then inspecting all invariants
from these methods in order until we have inspected 10% of all location/invariant pairs in this dataset
(which number 73,738). The 10% inspection (recall) level in Table 1 correspond to a threshold of
just 0.0233 bits, under which the average method has 55.3 blocks – substantially more than the av-
erage method overall. Separating out the functions with 32 or fewer program points (the mean), the
overall accuracy increases to 16.3% and the 10% recall precision increases to 50.0% – the joint task
is naturally easier on shorter methods.

A.3.2 GENERATING PRE- AND POST-CONDITIONS WITH BODYGUARD

The comparison with Daikon invariants comes with an important caveat: Daikon only generates
method pre- and post-conditions. This means that we cannot perfectly classify the validity of all our
invariants. Nevertheless, our experiments on missing conditions show that our models are precise
at inferring even very specific missing conditions, which strongly suggests (as our manual analysis
has too) that many of its other suggestions are valid as well.

Secondly, our tool produces invariants for any syntactic block of code throughout the method and
does not have a general mechanism to indicate that pre- or post-conditions are required. To imitate
these for our tool, the closest approximation is to mark the entire method body as needing an in-
variant when a pre-condition is required and the final (return) statement otherwise. To avoid the
complexity of having to match multiple return points, or none at all for void methods, we restrict
the latter case to methods with a single return statement only. Note that the latter is an imper-
fect approximation: our tool only learns to predict guards that precede a statement. A guard that it
predicts for a return statement may not be an appropriate substitution for true post-conditions but
rather a reason to return at that particular point.

A.3.3 MEASURING OVERLAP WITH DAIKON’S INVARIANTS

We quantify the overlap between our predicted invariants and Daikon’s using normalized Cumulative
Gain. This metric captures the quality of a ranker in terms of how often it returns relevant elements;
it is traditionally used in information retrieval, for example to evaluate a web searcher. Although
discounted cumulative gain is more commonly used, we refrain from penalizing based on “rank”
of predictions, because there is no reason to assume that Daikon’s invariants are more salient or
relevant than others that we predict. That is, all that matters is that Daikon’s invariants are among
our (top 10) predictions.
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A.4 FURTHER RESULTS

A.4.1 CHARACTERISTICS OF MANUALLY INSPECTED INVARIANTS

A large portion of the manually verified invariants in Section 4.3 corresponded to fairly trivial state-
ments, such as instanceof assertions for a value being cast to the corresponding type. In some
cases, our invariants were more general or accurate than Daikon’s; e.g. when BODYGUARD asserts
that an object is not null whereas Daikon asserts that a member of that object is not null. At other
times, we inferred invariants that Daikon missed entirely, likely due to limitations in its internal rules
and heuristics. For instance, as a pre-condition of:

static ReliableFile getReliableFile(File file) throws IOException {
if (file.isDirectory()) {

throw new FileNotFoundException("");
}
return new ReliableFile(file);

}

BODYGUARD correctly inferred that !file.isDirectory(), while Daikon only offered
file != null.

In another case, our tool produced a more specific invariant for this PMD snippet:

public int getPriority() {
return priority;

}

Here, Daikon asserts that priority level is exactly either 2 or 3, because those are the only ob-
served values in the (evidently unrepresentative) traces off this method. This indicates how Daikon’s
invariants can be inaccurate even with available workloads. BODYGUARD more broadly anticipates
that priority >= 0, which matches the method’s actual specification as encoded in its Javadoc
documentation (which our tool does not use).

A.4.2 FURTHER EXAMPLES

In the below example,7 a badge variable, initialized to null, is first assigned a value based on
program state, and then added to two collections (local and, conditionally, global). This second
segment, after the switch statement, should have been guarded by a check that badge != null,
since not every case assigns it a value. Across all 53 permutations of code blocks (and countless
options per block) in this method, BODYGUARD predicts this condition at the correct location at
rank 3. Its first prediction was the nonsensical statement !global as a guard for the entire method
body. Possibly, no good prediction was possible for that range, so this option had low entropy by
sheer contrast with other possibilities. The second ranked prediction was badge == null for every
line after the declaration of badge. While this is tautologically valid as a pre-condition for those
lines, it highlights the importance of specificity in range – it is only truly invariant for some of these
lines, specifically, the start of each case and the break statement of the latter two, a range that is
not currently supported by our approach.

public static void validateTutorial() {
Badge badge = null;
switch (Dungeon.hero.heroClass) {

case WARRIOR:
badge = Badge.TUTORIAL_WARRIOR;
break;

case MAGE:
badge = Badge.TUTORIAL_MAGE;
break;

case ROGUE:
break;

case HUNTRESS:
break;

7Repaired in https://github.com/00-Evan/shattered-pixel-dungeon/commit/
475d78cd0599a1d39c4708a91fbb30c95b3f3418
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}
local.add(badge);
if (!global.contains(badge)) {

global.add(badge);
saveNeeded = true;

}
}

The following snippet8 returns a default image, generating it on the first call. Even though the doc-
umentation of createBitMap(int, int, Bitmap.Config)9 does not specify it, this method
can return null in rare circumstances, such as when a phone runs out of memory and recovers by
aborting this call.10 BODYGUARD correctly infers empty != null as the top invariant, having
seen similar calls in other Android projects in its training data. Specifically, it predicts this invariant
both for the just the line containing empty.eraseColor (rank 1), and for the block including that
and the next line (rank 2). The latter is the more correct segment.

private static Bitmap getDefaultThumbnail() {
if (defaultImage == null) {

Bitmap empty = Bitmap.createBitmap(160, 200,
Bitmap.Config.ARGB_8888);

empty.eraseColor(Color.WHITE);
defaultImage = paint(empty);

}
return defaultImage;

}

A.5 LIMITATIONS

We evaluated our predictions broadly to assess both their salience and validity. Even so, it is hard
to automatically assess all of our invariants, especially those inserted in the middle of methods
and those whose vocabulary is outside of what Daikon finds. However, the results on the task of
predicting missing if-statements, (which avoids these evaluation problems) are quite encouraging;
we believe that this bodes well for the more general settings. Future work may better assess validity
of our entire vocabulary of invariants, perhaps by injecting asserts corresponding to our predictions
into the source code and executing the tests.

Our second main criterion is salience: our predictions should be particularly relevant to the refer-
enced code, in contrast to prior work. We chose to assess this by using real missing if guards, which
would appear to be a good example of particularly salient implicit conditions (as developers chose
to make them explicit). We did not quantitatively study other types of salience, such as which con-
ditions are most informative or intuitively obvious to real developers. This, too, may be a fruitful
area for future work; human subject studies involving invariants have produced worthwhile insights
into developer behavior in the past (Staats et al., 2012).

8Repaired in https://github.com/SufficientlySecure/document-viewer/commit/
680650556340aa15502e1ec375e4255c1c16fb5b

9https://developer.android.com/reference/android/graphics/Bitmap#
createBitmap(int,int,android.graphics.Bitmap.Config)

10As suggested at https://stackoverflow.com/a/14778533.
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