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Abstract

Pooled CRISPR-based gene knockout (KO) screening has emerged as a powerful1

method to uncover gene effects on various phenotypes [1, 2]. Recently, an optical2

pooled CRISPR screening method was developed [3] in which gene targeting3

guide-RNA (gRNA) are determined using in situ sequencing coupled with mi-4

croscopy imaging of cellular structure and spatial features [3–6]. Pooled optical5

screening is very scalable and cost-effective. It can be coupled with different6

imaging assays to perform large-scale high-content image-based CRISPR-based7

KO screens. However, development of automated and general approaches for data8

processing and analysis are required to unlock its full potential as a tool for drug9

target discovery. Here, we introduce a machine-learning enabled computational10

framework for in situ sequencing, segmentation and feature representations of cell11

morphology from pooled optical screens and apply it to human lung cancer cells12

(A549). We develop a convolutional neural network (CNN) method for gRNA13

sequence calling, and show that it increases the cell yield by 10% and enables14

automation. We suggest self-supervised single-cell embeddings as a method to15

create informative representations of cell morphology, moderately improving upon16

commonly used engineered features. We demonstrate that such embeddings, aggre-17

gated for each gene KO, are more similar for gene pairs that are known to interact18

and cluster genetic perturbations by their cellular components, biological pathways,19

and molecular functions. We also highlight ways to use the perturbation clusters to20

generate hypotheses about gene functions, which are consistent with results from21

orthogonal studies. Put together, we develop a scalable and general computational22

approach to process and analyze pooled CRISPR-based morphological screens that23

can be applied to screen for various disease relevant phenotypes.24

1 Introduction25

Pooled CRISPR KO screening technologies have been widely used for conducting large scale26

investigation of gene effects on diverse sets of phenotypes. Recently, Feldman et al. introduced a27

methodology for performing optical pooled screens in human cells [3, 7] by obtaining high-content28

image-based data with their corresponding perturbation identities from pooled CRISPR screens.29

Briefly, this approach involves transfection of a pool of cells with gRNAs to enable targeted CRISPR30

editing. Cells are then run through a phenotyping assay such as antibody staining and fixed. The31

gRNAs within the cells are then amplified using rolling circle amplification, and in situ sequencing is32

then conducted on the plates to read out the gRNA and respective CRISPR knockout within each cell.33

This approach was applied to study the NFkB pathway using p65 protein localization as a readout [3],34

and in a later work to study essential genes using intensity features derived from fluorescence markers35

[6], but not yet to a general morphology assay. Cell Painting [8] is a morphology imaging technique36

that is known to contain rich information about cell state, allowing practitioners to cluster compounds37

by their MOA. However, Cell Painting phenotypic screening is typically performed in arrayed format38

which is costly, labor intensive and is subject to batch effects [9]. Combining pooled optical screens39



Figure 1: (A) Machine learning enabled image processing workflow for in situ sequencing, cell and
nucleus segmentation and feature extraction from pooled optical screens. (B) Proposed approach
for in situ sequencing using a 3-layer fully convolutional neural network followed by coordinate
transformation for stitching of gRNA barcodes

with a general morphological profiling assay such as Cell Painting can provide an efficient and general40

assay for morphological screening in large genetic perturbation screens. Processing pooled optical41

screening data is challenging. It requires accurate gRNA sequencing, accurate segmentation of cell42

extents and correct association of guides to target-cells. In this work, we describe a computational43

framework for analyzing a screen that combines an adapted form of Cell Painting (high-content) with44

a pooled optical screen (high-throughput). In the following sections we present machine learning45

enabled methodologies for in situ sequencing and self-supervised feature extraction followed by46

the construction of a gene-gene phenotype similarity network. We demonstrate and evaluate the47

application of the above methodologies in learning gene similarity networks from a 300 gene (448

gRNAs per gene) pooled CRISPR knock-out screen dataset containing ∼ 1.5 million cells.49

2 Machine learning improves in situ sequencing50

To scale up pooled optical screening we developed a fully automated pipeline for processing (Figure51

1A). Hereinbelow are some of the method improvements that enabled this pipeline.52

During the in situ sequencing step, each plate is processed to amplify the gRNA sequence present53

in each cell. These gRNAs are sequenced by synthesis (SBS) by labeling each nucleotide with a54

unique fluorophore, stripping, then relabeling with the next nucleotide in the sequence in a cyclic55

manner. This leads to a dataset in which the full plate is imaged several times, with stationary dots56

showing variable fluorescent signatures that need to be converted to sequencing base calls. A major57

step in optical screens is in situ sequencing of the gRNA. Feldman et. al [3], presents a computational58

methodology for in situ gRNA sequencing that requires manual alignment of field-of-view images59

during acquisition followed by local image registration and blob detection that requires manual fine60

tuning of parameters. Here, we propose an improved methodology for base-calling by training a61

3-layer fully convolutional neural network that takes as input a sequencing-by-synthesis fluorescence62

base call image with channels corresponding to fluorescent nucleotide signals (A, C, T, G) and63

produces a probability mask corresponding to each channel (Figure 1B). We then use the probability64

mask to identify base locations and the corresponding base call. The base calls are stitched based on65

spatial correspondence across all the SBS acquisition cycles to generate a gRNA barcode readout66

corresponding to each spatial location in the image (the first k (k=10) bases of the gRNA is67

referred to as a barcode in subsequent sections). Our method does not require manual alignment of68

field-of-view images at acquisition time, does not require manual parameter tuning, and increases the69

percentage of cells recovered with valid gRNA barcode from 68.6% to 78.79% in our test dataset70

(Table 1).71
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Table 1: The number of cells with a valid barcode recovered using different in situ sequencing
methodologies

Method/Metric Number of cells
with a valid barcode

% of cells recovered
with a valid barcode

SBS cycle aligned blob detector
(Feldman et. al, [3])

1288234 68.60%

Blob detector + coordinate space
alignment (this work)

1251669 66.65%

FCN spot detector + coordinate space
alignment (this work)

1479631 78.79%

The gRNA barcode locations computed from the above step are projected onto the Cell Painting72

fluorescence images using a coordinate transformation matrix constructed by image registration73

between the acquisitions. The Cell Painting images are then preprocessed to correct for illumination74

and intensity artifacts and single cell and nuclei contexts are segmented using CellPose [10]. Finally,75

a single cell dataset is generated by cropping tiles centered on each nucleus and masked by its76

corresponding cell mask. Each tile is associated with a gRNA identity based on the mapped barcode77

locations.78

3 Self-supervised models generate biologically informative embeddings79

High-content image-based screens using Cell Painting have been shown to be useful in learning80

representations and morphological profiling of perturbation effects in cells [9, 11]. Funk et. al [6]81

demonstrated that simple fluorescence intensity and cell shape features derived from pooled optical82

screens can be useful in defining the functional landscape of human essential genes. While explicit83

features such as intensity and shape features can be useful, they need to be manually engineered and do84

not capture all the kinds of variation that can occur in a perturbation dataset. Self-supervised learning85

methods [12, 13] have been shown to improve the quality of learned representations compared to86

supervised learning methods. Recently, SimCLR [12] and DINO-ViT [13] have achieved state-of-the-87

art performance in learning representations from natural images. Here, we utilize these frameworks to88

learn single-cell phenotype representations that can be used to create gene-gene phenotype similarity89

networks. The process is as follows: 1) we extract single-cell representations 2) represent each genetic90

perturbation by the median over all cells of that gene perturbation. 3) reduce the dimensionality91

of these to the top 200 principal components. 4) form a correlation matrix 5) threshold to keep92

significant correlations 6) cluster with a community detection method (Leiden).93

To assess the performance of the methodology in learning biologically meaningful feature represen-94

tations, we obtained evaluation metrics based on the overlap of our learned gene-gene phenotype95

network with publicly available gene-network and ontology (STRING DB and Gene Ontology)96

databases. For STRING DB [14] evaluation, we used the protein-protein interaction network (com-97

bined_score > 900 as positive interaction, combined_score = 0 as no evidence of interaction) dataset98

as the ground truth dataset. For gene ontology evaluation, we constructed a ground truth network99

by adding an edge between a pair of genes if they belong to a common gene ontology (GO) set in100

each of the datasets (Cellular Component, Biological Process and Molecular Function) as obtained101

from MSigDB [15] (gene sets containing > 25 genes (out of the 300 genes in the screen) were102

not considered for evaluation). For each of the above ground truth datasets, we computed the area103

under the receiver operating characteristic curve (AUC) of the overlap between the latent space104

correlation matrix and the ground truth gene network. We trained and evaluated self-supervised105

models using the evaluation metric on the 300-gene perturbation dataset: 1. SimCLR model trained106

using a resnet-50 backbone, 2. DINO model trained with vision transformer backbone (vit-small,107

patch_size=16) (DINO-ViT), 3. DINO-ViT with positive pairs sampled from samples having the108

same gene perturbation, 4. DINO-ViT with positive pairs sampled from samples having the same109

gRNA barcode, 5. DINO-ViT model trained on ImageNet pretrained weights and fine-tuned with110

positive pairs sampled from samples having the same gRNA barcode. We also compare the above111

models against an ImageNet pretrained DINO-ViT model and explicitly engineered cell intensity and112

morphology features as baselines. The results show that pre trained or fine tuned DINO-ViT features113

outperform the commonly used engineered features (Figure 2, Table A1).114
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Figure 2: Comparison of feature embedding
methodologies based on their ability to repre-
sent known gene-gene relationships as mea-
sured by area under the receiver operating char-
acteristic curve (AUC)

Figure 3: Community detection on pretrained DINO-ViT gene embedding correlation graph clusters
genes by biological process/pathways

The DINO-ViT representation of the information-rich Cell Painting assay allows reconstruction of115

gene networks, and identification of new pathway components in a hypothesis-free way. Specifically,116

we were able to reconstruct the genetic modifiers of PI3K/Akt activation, protein glycosylation, fatty117

acid biosynthesis, sterol regulatory pathway, mitochondrial-inner membrane genes and more (Figure118

3). Interestingly, the network was capable of clustering key components of the lipogenesis pathways.119

Namely, the core fatty acid synthesis enzymes (ACLY: ATP Citrate Lyase, ACACA: Acetyl-CoA120

Carboxylase Alpha, and FASN: Fatty Acid Synthase), upstream AKT signaling regulators (PIK3R3:121

PI3K Regulatory Subunit 3, PIK3R4: PI3K Regulatory Subunit 4), and downstream palmitate and122

mevalonate pathway regulators (SCD: Stearoyl-CoA Desaturase, SREBF1: Sterol Regulatory Element123

Binding Transcription Factor 1) all contribute to lipogenesis [16]; our screening and ML approach124

was capable of grouping these regulators in an unsupervised manner using a generic morphological125

readout. While typical CRISPR screens would be capable of finding genes that increase or decrease126

lipogenesis, this model appears to have achieved a higher level of granularity by producing these127

sub-clusters. Another striking observation is the clustering of CDK5 with genes from the mTOR128

pathway (RHEB, mTOR and PDPK1; Figure 3, bottom left). CDK5 was recently identified to129

phosphorylate S6 [17], our result supports its role as an mTOR pathway regulator. In contrast to that130

NRAS, which is closely related to the KRAS, has a distinct morphological phenotype, different from131

the KRAS cluster (KRAS, BRAF and EGFR; Figure 3, top right). This observation may reflect the132

different function of these Ras isoforms [18].133

In summary, streamlined data processing pipelines and in situ sequencing methods via automation134

allow for increased scale, gRNA coverage, and improved gene network reconstructions. This135

technique opens the possibility of whole-genome screening for numerous imaging-based phenotypes136

in a variety of cellular models.137
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A Appendix186

Table A1: Comparison of feature embedding methods based on their ability to represent known
gene-gene relationships as measured by area under the receiver operating characteristic curve of
the feature correlation matrix overlap with gene relationships obtained from the respective database
(STRING-DB, GO-BP = Gene Ontology Biological Process, GO-CC = Gene Ontology Cellular
Components, GO-MF = Gene Ontology Molecular Function)

Embeddings/ Evaluation Metric STRING-
DB
overlap
(AUC)

GO-BP
overlap
(AUC)

GO-CC
overlap
(AUC)

GO-MF
overlap
(AUC)

Engineered Explicit Features 0.5643 0.5446 0.5882 0.6082

SIMCLR 0.5615 0.5531 0.6063 0.5812

DINO-ViT 0.5712 0.5512 0.5956 0.6137

DINO-ViT
(+ve pair sampled by gene)

0.5815 0.5675 0.6050 0.5822

DINO=ViT
(+ve pair sampled by gRNA)

0.5668 0.5754 0.5888 0.6062

DINO-ViT
(fine-tuned on pretrained weights)
(+ve pair sampled by gRNA)

0.5877 0.5617 0.5884 0.5710

DINO-ViT
(pretrained)

0.5842 0.5553 0.6073 0.6182

Random 0.5084 0.4920 0.5465 0.5010
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