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Abstract

Phenotypic-driven drug discovery is gaining popularity due001
to the advances in high-content imaging and machine learn-002
ing, particularly for predicting compound Mode of Action003
(MoA) and properties. However, reliance on biochemical004
assays for label acquisition introduces noise and sparsity,005
complicating reliability estimation in traditional discrimi-006
native models.007

In this work, we propose a High Content Screening Dif-008
fusion Classifier (HCS-DFC), reformulating prediction as009
a conditional generation task to inherently model label dis-010
tributions and co-dependencies without requiring calibra-011
tion datasets. By leveraging diffusion models’ ability to012
capture complex data distributions, HCS-DFC outperforms013
conformal prediction methods in reliability estimation and014
achieves state-of-the-art accuracy on synthetic (MNIST-015
based multi-task classification) and real-world cell painting016
datasets.017

1. Introduction018

High content imaging (HCS) is a powerful technique that019
allows to screen the huge amounts of compounds and ge-020
netic perturbations by analyzing morphological changes in021
cells [21, 25]. An example of such an approach is cell paint-022
ing protocol [7, 12, 28], which generates numerous cell im-023
ages representing cellular morphology after treatment. By024
studying changes in cell phenotype, researchers can draw025
conclusions about particular treatments, such as their toxic-026
ity or ability to induce specific cellular state changes (e.g.,027
tubulin inhibition) [1, 10, 15, 19]. These insights are crucial028
for successful drug development programs.029

With the advancement of imaging techniques and ana-030
lytical approaches, phenotypic-driven drug discovery has031
gained popularity, leading to the development of multiple032
methods for analyzing HCS data [5, 6, 9, 17, 23, 27, 28].033
One task being modeled based on these data is the predic-034
tion of mode of action (MoA) and properties for specific035

sets of compounds [6]. However, the image labels (e.g., spe- 036
cific MoA) are often derived from experiments that do not 037
consider cell morphology. To showcase that phenomenon, 038
let us assume that we want to model the response of U2OS 039
cells to compound X. When we design this experiment, we 040
do not know if this X will be reflected in U2OS morphol- 041
ogy. Moreover, we know that X has a given MoA α but may 042
also have MoA β, which has not yet been discovered. As a 043
result, we do not know if morphological change is the result 044
only of α or β or both of them. This results in noisy and 045
incomplete labels, posing challenges for machine learning 046
models [6]. 047

To address this issue, methods estimating prediction re- 048
liability, such as conformal prediction [13, 29], are widely 049
used. However, these methods have significant limitations, 050
as they require a calibration set for reliability estimation 051
while still operating on noisy and sparse labels. Properly 052
modeling the conformity score would require different cal- 053
ibration sets for each task (single MoA) or expensive and 054
time-consuming biological experiments to confirm and in- 055
put missing labels in the calibration set. 056

We propose a novel approach to this problem by exploit- 057
ing a diffusion-based classifier [11, 30] instead of an MLP- 058
based one. This approach transforms the problem formula- 059
tion from classical classification to generating a multi-task 060
label vector from noise conditioned by the cellular image 061
representation. The key difference is that diffusion models 062
can model the distribution of data, in this case, the distribu- 063
tion of labels and their co-dependencies. 064

To demonstrate the effectiveness of this approach, we 065
first define a toy task using the MNIST dataset [18], where 066
we concatenate two digits and perform multi-task classifica- 067
tion. This results in better reliability estimation than confor- 068
mal prediction in terms of accuracy versus data coverage, as 069
shown in Figure 2. We then adapt this method to the Bray et 070
al. dataset [8], which is widely used to benchmark predic- 071
tions of MoA and properties for small molecules [6], where 072
we introduce the HCS Diffusion Classifier (HCS-DFC). Ex- 073
perimental results show that the diffusion model better han- 074
dles noisy label characteristics and not only provides better 075
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metrics than conformal prediction but also achieves better076
accuracy than MLP using the same image representation077
type obtained via CellProfiler [22]. Our contributions can078
be summarized as follows:079

• We redefine the MoA and property prediction problem for080
HCS data as a conditional generation.081

• We introduce the HCS-DFC model for effective and ac-082
curate modeling of morphological responses.083

• We conduct validation on a toy dataset and the challeng-084
ing Bray et al. dataset to showcase the effectiveness of085
the HCS-DFC model.086

2. Preliminaries087

2.1. Diffusion Process088

Diffusion models have gained significant recognition due089
to their ability to generate highly detailed content like im-090
ages [26] or videos [4]. These models operate through an091
iterative noising and denoising procedure. The core mech-092
anism involves two key processes: a fixed forward process093
that systematically adds noise to data and a learned back-094
ward process that attempts to recover the original structure,095
optionally conditioning on variable c [16].096

2.2. Diffusion Classifier097

Diffusion classifier [20] is a novel approach for using pre-098
trained diffusion models to perform classification tasks099
without requiring additional training. The method can100
transform any generative diffusion model into a discrimina-101
tive classifier by exploiting its conditional density estima-102
tion capabilities. Given an input image x and a condition-103
ing c, the diffusion model can be used to select the class104
that best fits the image.105

The diffusion classifier works by using Bayes theorem106
on the model predictions and the prior p(c) over labels ci:107

pθ(ci | x) =
p(ci) pθ(x | ci)∑
j p(cj) pθ(x | cj)

(1)108

Assuming uniform prior over ci = 1
n (where n corresponds109

to the number of labels), the classification task reduces110
to finding the conditioning ci that maximizes pθ(x|ci).111
For diffusion models, computing pθ(x | c) directly is in-112
tractable, therefore diffusion classifier utilizes the Evidence113
Lower BOund (ELBO) approximation:114

ELBO ≈ −Et,ϵ∥ϵ− ϵθ(xt, ci)∥2 (2)115

to obtain posterior distribution over {ci}ni=1:116

pθ(ci | x) ≈
exp{−Et,ϵ∥ϵ− ϵθ(xt, ci)∥2}∑
j exp{−Et,ϵ∥ϵ− ϵθ(xt, cj)∥2}

(3)117

which can be estimated by sampling (ti, ϵi) pairs, where 118
ti ∼ [1, 1000] and ϵ ∼ N (0, I) and than computing: 119

1

N

N∑
i=1

∥∥∥ϵi − ϵθ(
√
ᾱtix+

√
1− ᾱtiϵi, cj)

∥∥∥2 (4) 120

2.3. Conformal Prediction 121

Conformal prediction is a model agnostic method of gener- 122
ating prediction sets for any desired level of confidence [3]. 123
Conformal prediction works by first sampling a small sub- 124
set (x1, y1), ..., (xm, tm) of the training set known as the 125
calibration set. By using a small subset of the training set, 126
an equal distribution of classes can be ensured. Using a 127
calibration set and a fitted model f̂ , a conformal score si 128
can be obtained. From this distribution we can compute 129
1− α quantile q̂, with α being the maximum permissible 130
error rate. The ceiling function of such quantile is thus a 131
threshold of minimum probability value for a prediction to 132
be accepted as confident. When a prediction set C(xtest) is 133
formed using this threshold, it satisfies the following guar- 134
antee: 135

1− α ≤ P (ytest ∈ C(xtest)) ≤ 1− α+
1

m+ 1
(5) 136

where n is size of xtest. A prediction set C(xtest) can then 137
be formed by including all classes whose softmax outputs 138
exceed 1−q̂. The true classes will be included in the predic- 139
tion set with probability at least 1− α, regardless of model 140
accuracy or data distribution. 141

3. Methods 142

In this section, we first describe HCS-DFC, our approach to 143
reliability estimation with diffusion-based methods. Then, 144
we discuss the implementation of conformal prediction in 145
the multi-task prediction setting as a comparable baseline. 146

3.1. High Content Screening Diffusion Classifier 147

We propose High Content Screening Diffusion Classifier 148
(HCS-DFC) as an adaptation of the Diffusion Classifier 149
[20] for Mechanism of Action (MoA) prediction from High- 150
Content Screening (HCS) images. We utilize image condi- 151
tioning obtained using Cell Profiler features, which are used 152
to condition the model at every timestep ti ∼ [1, 1000]. 153
Through this process, we aim to generate accurate repre- 154
sentations of MoAs observed in the input data. 155

Approach. We base our methodology on the Diffusion 156
Classifier principles [20], introducing several architec- 157
tural modifications to enhance computational efficiency and 158
adapt the model to the MoA prediction task. Specifi- 159
cally, we replace the pretrained diffusion transformer ar- 160
chitecture with a simpler autoencoder, which we train from 161
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Figure 1. To predict MoA activities for a given cell image, we first use Cell Profiler to obtain a representation vector, which then serves
as class conditioning for the diffusion model. We condition the diffusion model to generate MoA probabilities for a given image from n
(number of classes) shaped noise vector. We train our model using masked BCE loss, calculating the loss only for known targets.

scratch. The optimal network depth was determined empir-162
ically through extensive experimentation. This architectural163
simplification yields satisfactory results for the given tasks164
while significantly reducing computational requirements.165

Classification Framework. In contrast to the classifier166
proposed by [20], we modify the classification objective.167
Instead of x being an image and c a class description, we168
feed the model with an nclasses-dimensional vector sampled169
from a random distribution and use an image representa-170
tion extracted via CellProfiler [22] as conditioning c, as il-171
lustrated in Figure 1. This approach allows us to generate172
predictions relying solely on features extracted from mor-173
phological image analysis.174

3.2. Multi Label Classification with Conformal Pre-175
diction176

We benchmark our method against conformal prediction,177
which is a commonly used technique for uncertainty esti-178
mation in the drug discovery process [2]. We first process179
image representation using an MLP classifier and then ap-180
ply conformal prediction to the results.181

While conformal prediction was primarily to work with182
single-label classification [3], it can also be adapted to work183
in the multi-label setting [24, 31]. To accurately gauge the184
model’s confidence, we calculate separate distributions of185
conformal scores s for each class during the calibration step.186
We then calculate 1− α quantile for each of those distribu-187
tions, thus creating an individual threshold (t1, ..., tn) for188
each class. For i = 1, ..., n, we classify predictions yi > ti189
as positive, yi < 1− ti as negative, and other as uncertain.190

4. MNIST-based Toy Dataset 191

4.1. Experiment design 192

We evaluate two models built from an equal number of 193
equally sized layers, one utilizing diffusion and the other 194
being regular MLP combined with conformal prediction. 195
We train the models using a custom dataset, created by 196
stitching together random digits coming from MNIST 197
dataset [18], ensuring even distribution of all possible digit 198
combinations. Each example is labeled by two classes cor- 199
responding to the digits present in the image. In this sce- 200
nario, instead of CellProfiler, we extract image represen- 201
tation using CNN pretrained on the same dataset and then 202
classify them using both models. To better replicate the 203
HCS setting, Gaussian noise is added to each example dur- 204
ing inference. 205

4.2. Results 206

We evaluate both models, aiming to compare the models’ 207
performance for a given confidence level as well as the num- 208
ber of labels that were rejected in order to obtain a confident 209
prediction set. As illustrated in Figure 2, our HCS-DFC 210
model achieves higher accuracy with greater data coverage 211
compared to conformal prediction. 212

5. Mechanism of Action Prediction 213

5.1. Experiment design 214

To evaluate models for the HCS, we use publicly available 215
features derived from Bray et al. dataset [8] using CellPro- 216
filer. We follow the steps proposed by [6] by first pooling 217
MoA labels taken from the ChEMBL database and then se- 218
lecting those with at least 25 active and 25 inactive labels in 219
the dataset. Following [6], we also train both models using 220
masked BCE loss, calculating the loss only for known tar- 221
gets. We use the weighted loss for the conformal model to 222
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(a)

(b)

Figure 2. Percent of rejected labels depending on error rate (a)
and accuracy depending on rejected labels (b) for MNIST-based
toy dataset. Our HCS-DFC model achieves higher accuracy with
greater data coverage compared to conformal prediction.

ensure a fair comparison.223

5.2. Results224

As demonstrated in Figure 3, our HCS-DFC model ex-225
hibits superior overall performance compared to the con-226
formal baseline. Notably, the diffusion-based approach227
achieves substantially greater coverage relative to the con-228
formal model, suggesting that HCS-DFC represents a viable229
approach for reliability estimation in drug discovery appli-230
cations.231

6. Conclusions232

In this work, we reformulate the problem of Mechanism of233
Action (MoA) prediction as a conditional generation pro-234
cess using our novel HCS-DFC model. We demonstrate the235
effectiveness of this approach on a synthetic dataset and a236
MoA prediction with the Bray et al. dataset. Our model237
achieves superior accuracy and coverage compared to the238
baseline method based on conformal prediction while main-239
taining the same desired reliability score.240

Future research will focus on extensively evaluating241
the usefulness of this approach across various phenotypic-242
driven drug discovery tasks, such as phenotypic virtual243
screening [27]. Additionally, we aim to benchmark our244

(a)

(b)

Figure 3. Percent of rejected labels depending on error rate (a) and
accuracy depending on rejected labels (b) for MoA prediction. The
diffusion-based approach achieves substantially greater coverage
relative to the conformal-based approach.

model in other drug discovery-related tasks in which labels 245
can be characterized as sparse and noisy. Finally, we plan 246
to explore the integration of a conditioned diffusion-based 247
classifier with deep image representation models, such as 248
SubCell [14], to enhance performance further. 249
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