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Abstract
In this paper, we study a natural policy gra-
dient method based on recurrent neural net-
works (RNNs) for partially-observable Markov
decision processes, whereby RNNs are used
for policy parameterization and policy evalua-
tion to address curse of dimensionality in non-
Markovian reinforcement learning. We present
finite-time and finite-width analyses for both the
critic (recurrent temporal difference learning), and
correspondingly-operated recurrent natural policy
gradient method in the near-initialization regime.
Our analysis demonstrates the efficiency of RNNs
for problems with short-term memory with ex-
plicit bounds on the required network widths and
sample complexity, and points out the challenges
in the case of long-term dependencies.

1. Introduction
Reinforcement learning for partially-observable Markov
decision processes (POMDPs) has been a particularly chal-
lenging problem due to the absence of an optimal station-
ary policy, which leads to a curse of dimensionality as the
space of non-stationary policies grows exponentially over
time (Krishnamurthy, 2016; Murphy, 2000). There has
been a growing interest in finite-memory policies to address
the curse of dimensionality in reinforcement learning for
POMDPs (Yu & Bertsekas, 2008; Yu, 2012; Kara & Yüksel,
2023; Cayci et al., 2022). Among these, recurrent neural
networks (RNNs) have been shown to achieve impressive
empirical success in solving POMDPs (Whitehead & Lin,
1995; Wierstra et al., 2010; Mnih et al., 2014). However,
theoretical understanding of RNN-based RL methods for
POMDPs is still in a nascent stage.

In this paper, we aim to remedy this by studying a model-
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free policy optimization method based on a recurrent natural
actor-critic (Rec-NAC) framework (Section 5), which

• utilizes an RNN-based policy parameterization for effi-
cient history representation in non-stationary policies,

• incorporates an RNN-based temporal difference learning
(Rec-TD) algorithm as the critic (Section 6), and

• performs policy updates by using RNN-based natural
policy gradient (Rec-NPG) as the actor (Section 7),

for large POMDPs. We establish non-asymptotic (finite-
time, finite-width) analyses of Rec-TD (in Theorem 6.3)
and Rec-NPG (Theorem 7.3 and Propositions 7.6-7.8), and
prove their near-optimality in the large-network limit for
problems that require short-term memory. We identify
pathological cases that cause exponentially growing iter-
ation complexity and network size (Remarks 6.5-7.4). Our
analysis reveals an interesting connection between (i) the
memory (i.e., long-term dependencies) in the POMDP, (ii)
continuity and smoothness of the parameters of the RNN,
and (iii) global near-optimality of the Rec-NPG in terms of
the required network size and iterations.

1.1. Previous work

Natural policy gradient method, proposed in (Kakade, 2001),
has been extensively investigated for MDPs (Agarwal et al.,
2020; Cen et al., 2020; Khodadadian et al., 2021), and analy-
ses of NPG with feedforward neural networks (FNNs) have
been established in (Wang et al., 2019; Liu et al., 2019;
Cayci et al., 2024). As these works consider MDPs, the
policies are stationary. In our case, the analysis of RNNs
and POMDPs constitute a very significant challenge.

In (Yu, 2012; Singh et al., 1994; Kara & Yüksel, 2023;
Cayci et al., 2022), finite-memory policies based on sliding-
window approximations of the history were investigated. Al-
ternatively, value- and policy-based model-free approaches
based on RNNs have been widely considered in the litera-
ture to solve POMDPs (Lin & Mitchell, 1993; Whitehead &
Lin, 1995; Wierstra et al., 2010; Mnih et al., 2014). How-
ever, these works are predominantly experimental, thus there
is no theoretical analysis of RNN-based RL methods for
POMDPs to the best of our knowledge. In this work, we
also present theoretical guarantees for RNN-based NPG for
POMDPs. For structural results on the hardness of RL for
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POMDPs, refer to (Liu et al., 2022; Singh et al., 1994).

1.2. Notation

For a vector Θ = (Θ⊤
1 , . . . ,Θ

⊤
m)⊤ ∈ Rm·(d+1), m, d ∈ Z+

with Θi = (Vi, U
⊤
i )⊤ ∈ Rd+1 for Vi ∈ R, Ui ∈ Rd

and ρ = (ρ1, ρ2) ∈ R2
≥0, we define B(m)

2,∞(Θ, ρ) :=⊗m
i=1

(
B(1)
1

(
Vi,

ρ1√
m

)
,B(d)

2

(
Ui,

ρ2√
m

))
, where

⊗
is the

Cartesian product, and B(d)
p (x, ρ0) := {z ∈ Rd : ∥z −

x∥p ≤ ρ0} for any p ≥ 1, x ∈ Rd, ρ0 ≥ 0. Mm denotes the
set of all m×m diagonal matrices. [m] := {1, 2, . . . ,m}
for any m ∈ Z+. ∆(Y) is the space of probability distribu-
tions on a set Y. Rad(α) = Unif{−α, α} for α ∈ R≥0.

2. Preliminaries on Partially-Observable
Markov Decision Processes

In this paper, we consider a discrete-time infinite-horizon
partially-observable Markov decision process (POMDP)
with the (nonlinear) dynamics

P(St+1 ∈ B|σ (Sk, Ak, k ≤ t)) =: P((St, At), B),

P(C|σ(St)) =: ϕ(St, C),

for any B ∈ B(S) and C ∈ B(Y), where St is an S-
valued state, Yt is a Y-valued observation, and At is an
A-valued control process with the stochastic kernels P :
S × A × B(S) → [0, 1] and ϕ : S × B(Y) → [0, 1]. We
consider finite but arbitrarily large A ⊂ Rd1 ,Y ⊂ Rd2 with
Y × A ⊂ B(d1+d2)

2 (0, 1) and S. In this setting, the state
process (St)t∈N is not observable by the controller. Let

Zt =

{
Y0, if t = 0,

(Zt−1, At−1, Yt), if t > 0,
(1)

be the history process, which is available to the controller at
time t ∈ N, and

Z̄t := (Zt, At) = (Y0, A0, . . . , Yt, At),

be the history-action process.

Definition 2.1 (Admissible policy). An admissible control
policy π = (πt)t∈N is a sequence of measurable mappings
πt : (Y × A)t × Y → ∆(A), and the control at time t is
chosen under πt randomly as

P(At = a|Zt = zt) = πt(a|zt),

for any zt ∈ (Y × A)t × Y. We denote the class of all
admissible policies by ΠNM.

If an action a is taken at state a, then a reward r(s, a) is
obtained. For simplicity, we assume that the reward is deter-
ministic, and max

s,a
|r(s, a)| ≤ r∞ <∞.

Definition 2.2 (Value function, Q-function, advantage func-
tion). Let π be an admissible policy, and µ ∈ ∆(Y) be an
initial observation distribution. Then, the value function
under π with discount factor γ ∈ (0, 1] is defined as

Vπ
t (zt) := Eπ

[ ∞∑
k=t

γk−tr(Sk, Ak)
∣∣∣Zt = zt

]
, (2)

for any zt ∈ (Y×A)t ×Y. Similarly, the state-action value
function (also known as Q-function) and the advantage
function under π are defined as

Qπ
t (z̄t) := Eπ

[ ∞∑
k=t

γk−tr(Sk, Ak)
∣∣∣Z̄t = z̄t

]
,

Aπ
t (zt, a) := Qπ

t (zt, a)− Vπ
t (zt),

(3)

for any z̄t ∈ (Y× A)t+1, respectively.

Given an initial observation distribution µ ∈ ∆(Y), the
optimization problem is

maximize
π∈ΠNM

∫
Y
Vπ
0 (z0)µ(dz0) =: Vπ(µ). (4)

We denote π⋆ ∈ argmax
π∈ΠNM

Vπ(µ) as an optimal policy.

Remark 2.3 (Curse of history in RL for POMDPs). Note that
the problem in equation 4 is significantly more challenging
than its subcase of (fully-observable) MDPs since there may
not exist an optimal policy which is (i) stationary, or even
Markovian, and (ii) deterministic (Krishnamurthy, 2016;
Singh et al., 1994). As such, the policy search is over non-
Markovian randomized policies of type π = (π0, π1, . . .)
where πt : (Y× A)t × Y → ∆(A) depends on the history
of observations Zt = (Y0, A0, Y1, . . . , At−1, Yt) for t ∈ N.
In this case, direct extensions of the existing reinforcement
learning methods for MDPs become intractable, even for
finite Y,A: the instantaneous memory complexity of a prob-
abilistic admissible policy π ∈ ΠNM at epoch t ∈ N is
O(|Y× A|t+1), growing exponentially over t.

Recurrent neural networks (RNNs), which involve a para-
metric recurrent structure to efficiently represent the process
history by using finite memory, are universal approximators
for sequence-to-sequence mappings (Schäfer & Zimmer-
mann, 2007; Grigoryeva & Ortega, 2018). As such, we
consider using them in an actor-critic framework for approx-
imation in (i) value space (for the critic), and (ii) policy
space (for the actor). In the following section, we formally
introduce the RNN architecture that we study in this paper.

3. Elman-Type Recurrent Neural Networks
We consider an Elman-type recurrent neural network (RNN)
of width m ∈ N with W ∈ Rm×m and U ∈ Rm×d, where
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ϱ

Xt = 

Ht-1 Ht

input

hidden state

Ft
output

Yt
At

Figure 1. An Elman-type RNN in the reinforcement learning frame-
work.

d = d1 + d2, and the rows of U are denoted as U⊤
i for

i = 1, 2, . . . ,m. Given a smooth activation function ϱ :
C 2(R,R) with ∥ϱ∥∞ ≤ ϱ0, ∥ϱ′∥∞ ≤ ϱ1, ∥ϱ′′∥∞ ≤ ϱ2, we

denote ϱ⃗ : Rm → Rm : z 7→

ϱ(z1))...
ϱ(zm)

. Let Xt =

(
Yt
At

)
,

which is an Rd-valued random variable with d = d1 + d2.
The central structure in an RNN is the sequence of hidden
states Ht ∈ Rm, which evolves according to

Ht(Z̄t;W,U) = ϱ⃗
(
WHt−1(Z̄t−1;W,U)+UXt

)
, (5)

with H0(Z̄0;W,U) = ϱ⃗(UX0) and Z̄t = (X0, . . . , Xt)
denoting the history. We denote the ith element of Ht as
H

(i)
t for i ∈ [m]. We consider a linear readout layer with

weights c ∈ Rm, which leads to the output

Ft(Z̄t;W,U, c) =
1√
m

m∑
i=1

ciH
(i)
t (Z̄t;W,U). (6)

The characteristic property of RNNs is weight-sharing:
throughout all time-steps t ∈ N, the same weights are uti-
lized, which enables the hidden state (Ht)t>0 to summarize
the entire history Z̄t compactly with a fixed memory.

We consider diagonal W and general U in the paper, which
simplifies the analysis, yet preserves the essential properties
of RNNs. This diagonal structure for W is common in the
study of deep linear networks for the aforementioned reason
(Gunasekar et al., 2018; Nacson et al., 2022; Even et al.,
2023; Woodworth et al., 2020), while our work also encom-
passes nonlinear activation functions and weight-sharing.
The operation of an Elman-type recurrent neural network is
illustrated in Figure 1. Following the neural tangent kernel
literature, we omit the straightforward task of training the
linear output layer c ∈ Rm for simplicity, and study the
training dynamics of (W,U), which is the main challenge
(Du et al., 2018; Oymak & Soltanolkotabi, 2020; Cai et al.,
2019; Wang et al., 2019). Consequently, we denote the
learnable parameters of a hidden unit i ∈ [m] compactly as

Θi =

(
Wii

Ui

)
, and denote the learnable parameters of an

RNN by Θ =
[
W11, U

⊤
1 ,W22, U

⊤
2 , . . . ,Wmm, U

⊤
m

]⊤ ∈
Rm(d+1). Given learnable parameters (W,U), we de-
note the sequence of recurrent neural network outputs as
F (·;W,U) = (Ft(·;W,U))t∈N, and use Θ and (W,U)
interchangeably throughout the paper.

4. Infinite-Width Limit of Diagonal Recurrent
Neural Networks

In this paper, we consider a class of systems that can be
efficiently approximated and learned by the class of large
recurrent neural networks in the near-initialization regime
following (Cayci & Eryilmaz, 2024). To that end, we pro-
vide the following characterization of the infinite-width limit
of RNNs in order to give our results in later sections. Let
w0 ∼ Rad(α) and u0 ∼ N (0, Id) be independent random

variables, and θ :=

(
w0

u0

)
. Given a history-action realiza-

tion z̄ = (x0, x1, . . .) ∈ (Y× A)Z+ , define

ht(z̄t; θ0) := ϱ(w0ht−1(z̄t−1; θ0) + ⟨u0, xt⟩), t > 0,

with h−1 := 0 (thus h0(z̄0; θ0) = ϱ(⟨u0, x0⟩)), and
It(z̄t; θ0) := ϱ′(w0ht−1(z̄t−1; θ0) + ⟨u0, xt⟩). Then, the
neural tangent random feature (NTRF) mapping1 at time t
is defined as (with Īt,k(z̄t; θ0) :=

∏k
j=0 It−j(z̄t−j ; θ0)):

ψt(z̄t; θ0) :=

t∑
k=0

wk
0

(
ht−k−1(z̄t−k−1; θ0)

xt−k

)
Īt,k(z̄t; θ0),

We also define the NTRF matrix as follows:

ΨT (z̄; θ0) :=


ψ⊤
0 (z̄0; θ0)

ψ⊤
1 (z̄1; θ0)

...
ψ⊤
T−1(z̄T−1; θ0)

 , T ∈ N, (7)

with Ψ(z̄; θ0) := Ψ∞(z̄; θ0).

Definition 4.1 (Transportation mapping). Let H be the set

of mappings v : R1+d → R1+d : θ0 7→
(
vw(w0)
vu(u0)

)
with

E[|vw(w0)|2] =
1

2

(
|vw(α)|2 + |vw(−α)|2

)
<∞,

E[∥vu(u0)∥22] =
1

(2π)d/2

∫
Rd

∥vu(u)∥22e−
1
2∥u∥

2
2du <∞.

We call each v ∈ H a transportation mapping, following
(Ji & Telgarsky, 2019; Ji et al., 2019).

1The feature uses a complicated weighted-sum of all past in-
puts xk, k ≤ t, leading to a discounted memory to tackle non-
stationarity. xt−k is scaled with wk

0 ∼ Rad(α), thus it yields a
fading memory approximation of the history if α < 1.
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Definition 4.2 (Infinite-width limit). We define the infinite-
width limit of Elman-type RNNs as follows:

F :=
{
(Y× A)Z+ ∋ z̄ 7→ E [Ψ(z̄; θ0)v(θ0)] : v ∈ H

}
.

F consists of f⋆t (z̄t;v) = E[⟨v(θ0), ψt(z̄t; θ0)⟩] for any
z̄ ∈ (Y×A)Z+ . The same transportation mapping v is used
to define the mapping f⋆t at each time t, which is a character-
istic feature of weight-sharing in recurrent neural networks.
Also, the input z̄ grows over time in a concatenated nature,
which implies that f⋆ ∈ F is a representational assumption
on the dynamical structure of the problem.

For any fixed time t ∈ N, the completion of {z̄t 7→
f⋆t (z̄t;v) : v ∈ H } is exactly the reproducing kernel
Hilbert space (RKHS) Gκt

associated with the “recurrent”
neural tangent kernel (NTK) κt (Rahimi et al., 2007; Ji et al.,
2019). For any t ∈ N, the inner product of two functions in
Gκt

associated with the transportation mappings v,v′ is

⟨f⋆t (·;v), f⋆t (·;v′)⟩Hκt
= E

[
⟨v(θ0),v′(θ0)⟩

]
.

As such, the RKHS norm of any f ∈ Gκt is ∥f∥Gκt
=√

E∥v(θ0)∥22 =
√
E∥vu(u0)∥22 + E|vw(w0)|2.

Remark 4.3 (Reduction to FNNs). Consider T = 1:

F1 :=
{
z̄0 7→ E

[
ψ⊤
0 (z̄0; θ0)v(θ0)

]
: v ∈ H

}
.

In this case, we exactly recover the NTK (and the associated
RKHS) for single-layer FFNs (Jacot et al., 2018; Wang et al.,
2019; Liu et al., 2019). Furthermore, since the kernel κ0 is
universal, the associated RKHS Gκ0

is dense in the space of
continuous functions on a compact set (Ji et al., 2019).

5. Rec-NAC Algorithm for POMDPs
In this section, we present a high-level description of our
Recurrent Natural Actor-Critic (Rec-NAC) Algorithm with
two inner loops, critic (called Rec-TD) and actor (called Rec-
NPG), for policy optimization with RNNs. The details of the
inner loops of the algorithm will be given in the succeeding
sections. We use an admissible policy π = (πt)t∈N that is
parameterized by a recurrent neural network (F a

t (·; Φ))t∈N
of the form given in equation 6 with a network width m ∈
Z+. To that end, for any t ∈ N, let

πΦ
t (a|zt) :=

exp (F a
t ((zt, a); Φ))∑

a′∈A exp (F a
t ((zt, a

′); Φ))
, (8)

for any zt ∈ (Y× A)t × Y and a ∈ A with the parameter
Φ ∈ Rm(d+1).

Rec-NAC operates as follows:

• Initialization. The actor RNN F a is randomly initial-
ized with parameter Φ(0) ∼ ζinit (see Def. A.1).

• Natural policy gradient. For 0 ≤ n < N ,

• Critic. Estimate Q̂(n)
t (·) := F c

t (·; Θ̄(n)) t < T of
QπΦ(n)

t (·), t < T via Rec-TD learning in Sec. 6. F c is
initialized independently for each n as Definition A.1.

• Actor. By projected stochastic gradient descent
(SGD), obtain a solution ωn for the compatible func-
tion approximation problem

min
ω

E
T−1∑
t=0

γt|∇ lnπn
t (At|Zt)ω − ÂπΦ(n)

t (Z̄t)|2,

such that ω ∈ B2,∞(0, ρ),

where for any t ∈ N,

Â(n)
t (zt, a) := Q̂(n)

t (zt, a)− E
A′∼πΦ

t (·|zt)
Q̂(n)

t (zt, A
′).

For information regarding the algorithmic tools, i.e., random
initialization and max-norm regularization for RNNs, we
refer to Section A.

6. Critic: Recurrent Temporal Difference
Learning (Rec-TD)

In this section, we study a value prediction algorithm for
policy evaluation in POMDPs, which will serve as the critic.

Policy evaluation problem. Consider the policy evaluation
problem for POMDPs under a given non-Markovian policy
π ∈ ΠNM. Given an initial observation distribution µ ∈
∆(Y), policy evaluation aims to solve

min
Θ

Rπ
T (Θ) := Eπ

µ

T−1∑
t=0

γt
(
Ft(Z̄t; Θ)−Qπ

t (Z̄t)
)2
, (9)

such that Θ ∈ Ωρ,m := B(m)
2,∞(0, ρ),

where T ∈ N is the truncation level, and {Ft : t ∈ N}
is an Elman-type recurrent neural network given in equa-
tion 6 – we drop the superscript a for simplicity throughout
the discussion. The expectation in Rπ

T (Θ) is with respect
to the joint probability law Pπ,µ

T of the stochastic process
{(St, At, Yt) : t ∈ [0, T ]} where Z0 ∼ µ.

6.1. Recurrent TD Learning Algorithm

Given a sample trajectory z̄T ∈ (Y× A)T+1, let

δt(z̄t+1; Θ) := rt + γFt+1(z̄t+1; Θ)− Ft(z̄t; Θ), (10)

be the temporal difference, and let

∇̌RT (z̄T ; Θ) =

T∑
t=0

γtδt(z̄t+1; Θ)∇ΘFt(z̄t; Θ), (11)
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be the stochastic semi-gradient. Note that, despite the expo-
nential growth in the dimension of z̄t ∈ (Y × A)t+1 over
t ∈ N, the memory complexity for computing ∇̌RT (z̄T ; Θ)
is only O(m2 +md) thanks to the use of RNNs.

Assumption 6.1 (Sampling oracle). Given an initial state
distribution µ, we assume that the system can be indepen-
dently started from S0 ∼ µ, i.e., independent trajectories
{(St, Yt, At) : t ∈ [T ]} ∼ Pπ,µ

T can be obtained.

Under Assumption 6.1, for k ∈ N, let {(Sk
t , Y

k
t , A

k
t ) : t ∈

[T ]} ∼ Pπ,µ
T be an independent trajectory (for each k ∈ N,

i.e., a trajectory with an independent initial sample Sk
0 ∼ µ),

and {Zk
t : t ∈ [T ]} and {Z̄k

t : t ∈ [T ]} be the resulting
(truncated) history and history-action processes. Starting
from a random initialization (W(0),U(0), c), let

Θ̌(k + 1) = Θ(k) + η · ∇̌RT (Z̄
k
T ; Θ(k)), (12)

for k ∈ N. For Rec-TD, one uses Θ(k + 1) = Θ̌(k + 1).
For Rec-TD with max-norm regularization, one uses

Θ(k + 1) = ProjΩρ,m
[Θ̌(k + 1)],

for parameter ρ = (ρw, ρu) ∈ R2
>0.

Remark 6.2 (Intuition behind Rec-TD). In a stochastic opti-
mization setting, the loss-minimization for RT (Θ) would
be solved by using gradient descent, where the gradient is
Eπ
µ

∑T−1
t=0 γt

(
Ft(Z̄t; Θ)−Qπ

t (Z̄t)
)
∇Ft(Z̄t; Θ). On the

other hand, the target function Qπ
t is unknown and to be

learned. Following the bootstrapping idea for MDPs in (Sut-
ton, 1988), we exploit an extended non-Markovian Bellman
equation in Proposition B.3, and use rt + γFt+1(Z̄t+1; Θ)
as a bootstrap estimate for the unknown Qπ

t (Z̄t). Note that,
in the realizable case with Ft(·; Θ⋆) = Qπ

t (·), t ∈ Z+ for
some Θ⋆ ∈ Mm×Rm×d, we have Eπ

µ[∇̌RT (Z̄T ; Θ
⋆)] = 0,

which implies that the stochastic approximation approach
for MDPs can be used for the non-Markovian setting.

6.2. Theoretical Analysis of Rec-TD: Finite-Time
Bounds and Global Near-Optimality

In the following, we prove that Rec-TD with max-norm regu-
larization achieves global optimality in expectation. To char-
acterize the impact of long-term dependencies on the per-
formance of Rec-TD, let pt(x) =

∑t−1
k=0 |x|k, and qt(x) =∑t−1

k=0(k + 1)|x|k, x ∈ R, t ∈ N.

Theorem 6.3 (Finite-time bounds for Rec-TD). Assume
that {Qπ

t : t ∈ N} ∈ F with a transportation mapping
v = (vw, vu) ∈ H such that supu∈Rd ∥vu(u)∥2 ≤ νu and
supw∈R |vw(w)| ≤ νw. Then, for any projection radius
ρ ⪰ ν = (νw, νu) and step-size η > 0, Rec-TD with max-

norm regularization achieves the following error bound:

E
[ 1
K

K−1∑
k=0

Rπ
T (Θ(k))

]
≤ 1√

K

(
∥ν∥22

(1− γ)
+

C
(1)
T

(1− γ)3

)

+
C

(2)
T

(1− γ)2
√
m

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k︸ ︷︷ ︸

(♡)

. (13)

for any K ∈ N, where

C
(1)
T , C

(2)
T = poly

(
pT

(
ϱ1(α+

ρw√
m
)

)
, ∥ρ∥2, ∥ν∥2

)
,

are instance-dependent constants that do not depend on
K, and ωt,k :=

√
E[(Ft(Z̄t; Θ(k))−Qπ

t (Z̄
k
t ))

2] for
t, k ∈ N. For the average-iterate Rec-TD with Θ̄K :=
1
K

∑K−1
k=0 Θ(k), we have

E
[
Rπ

T

(
Θ̄K

)]
≤ 10

(1− γ)
√
K

(
∥ν∥22 +

C
(1)
T

(1− γ)2

)

+
10C

(2)
T

(1− γ)2
√
m

+
10γT

(1− γ)K

K−1∑
k=0

ω2
T,k.

The proof of Theorem 6.3 can be found in Section B.
Remark 6.4 (Truncation level T and the impact of long-term
dependencies). From Proposition 7.2, we observe that the
exact natural policy gradient update would require a large
T . In the following, we discuss the impact of T on the per-
formance of policy evaluation, depending on the inherent
memory (i.e., long-term dependencies) in the system. As
noted in (Goodfellow et al., 2016), the spectral radius of
{W(k) : k ∈ N} determines the degree of long-term de-
pendencies in the problem as it scales Ht. Consistent with
this observation, our bounds have a strong dependency on

αm := α+
ρw√
m

≥ λmax(W(k)) = ∥W(k)∥∞,∞,

for any k ∈ N.
Remark 6.5 (When is Rec-TD efficient?). Note that both
constants C(1)

T , C
(2)
T polynomially depend on pT (ϱ1αm).

Let ε > 0 be any given target error.

• Short-term memory. Ifαm < 1
ϱ1

, then it is easy to see
that pT (ϱ1αm) ≤ 1

1−ϱ1αm
. Thus, the extra term (♡)

in equation 13 vanishes at a geometric rate as T → ∞,
yet m (network-width) and K (iteration-complexity)
are still Õ(1/ε2). Rec-TD is very efficient in that case.

• Long-term memory. If αm > 1
ϱ1

, as T → ∞, both
m and K grow at a rate O

(
(ϱ1αm)T /ε2

)
while the

extra term (♡) in equation 13 vanishes at a geometric
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rate. As such, the required network size and iterations
grow at a geometric rate with T in systems with long-
term memory, constituting the pathological case for
Rec-TD.

The performance of Rec-TD is studied numerically in
Random-POMDP instances in Section C.

Finally, note that the additional term (♡) in Theorem 6.3
is unique to Rec-TD learning, and stems from the use of
bootstrapping in reinforcement learning.

7. Actor: Recurrent Natural Policy Gradient
(Rec-NPG) for POMDPs

The goal is to solve the following problem:

maximize
Θ∈Rm(d+1)

VπΦ

(µ) such that Φ ∈ Ωρ,m, (PO)

for a given initial distribution µ ∈ ∆(Y) and ρ ∈ R2
>0. π⋆

denotes an optimal policy.
Remark 7.1 (Why RNNs for policy parameterization?). Re-
call that an admissible policy π ∈ ΠNM is a sequence of ele-
ments πt : Yt+1×At → ∆(A) for t ≥ 0. Thus, the memory
complexity of a complete policy at time t is O(|Y×A|t+1),
which is extremely infeasible to perform policy optimiza-
tion. Restricted hypothesis classes are deployed to address
this in the POMDP setting. The key concept is the use of
internal states to summarize (Z̄t)t∈N with finite memory.
For that purpose, we use RNNs to parameterize policies
with a parameter Φ ∈ Rm(d+1) and use the hidden states
(Ht)t∈N to efficiently represent the process history. πΦ and
its gradient can be computed recursively, leading to a finite-
memory policy with memory complexity O((d+ 1)m). As
we will see in Prop. 7.6, the representation power of the
RNN in the policy parameterization (as measured by an
approximation error) to represent Q-functions will play a
vital role in achieving optimality.

7.1. Recurrent Natural Policy Gradient for POMDPs

In this section, we describe the recurrent natural policy gradi-
ent (Rec-NPG) algorithm for non-Markovian reinforcement
learning. As proved in Prop. D.2, the policy gradient under
partial observability is

∇ΦVπΦ

(µ) := EπΦ

µ

∞∑
t=0

γtQπΦ

t (Zt, At)∇Φ lnπΦ
t (At|Zt).

Fisher information matrix under a policy πΦ is defined as

Gµ(Φ) := EπΦ

µ

∞∑
t=0

γt∇ lnπΦ
t (At|Zt)∇⊤ lnπΦ

t (At|Zt),

for an initial observation distribution µ ∈ ∆(Y). Rec-NPG
updates the policy parameters by

Φ(n+ 1) = Φ(n) + η ·G+
µ (Φ(n))∇ΦVπΦ(n)

(µ), (14)

for an initial parameter Φ(0) and step-size η > 0, where
G+ denotes the Moore-Penrose inverse of a matrix G. This
update rule is in the same spirit as the NPG introduced
in (Kakade, 2001), however, due to the non-Markovian
nature of the partially-observable MDP, it has significant
complications that we will address.

In order to avoid computationally-expensive policy updates
in equation 14, we utilize the following extension of the
compatible function approximation in (Kakade, 2001) to the
case of non-Markovian policies for POMDPs.

Proposition 7.2 (Compatible function approximation for
non-Markovian policies). For any Φ ∈ Rm(d+1) and initial
observation distribution µ, let

Lµ(w; Φ) = EπΦ

µ

∞∑
t=0

γt
(
∇⊤ lnπΦ

t (At|Zt)ω−AπΦ

t (Z̄t)
)2
,

(15)
for ω ∈ Rm(d+1). Then, we have

G+
µ (Φ)∇ΦVπΦ

(µ) ∈ argmin
ω∈Rm(d+1)

Lµ(ω; Φ). (16)

Path-based compatible function approximation with
truncation. For MDPs, the compatible function approx-
imation error Lµ(w; Φ) can be expressed by using the dis-
counted state-action occupancy measure, from which one
can obtain unbiased samples (Agarwal et al., 2020; Konda
& Tsitsiklis, 2003). Thus, the infinite-horizon can be han-
dled without any loss. On the other hand, for general (non-
Markovian) problems as in equation 15, this simplification
is impossible due to the non-stationarity. As such, we use a
path-based method under truncation for a given T ∈ N with

ℓT (ω; Φ,Q) :=

T−1∑
t=0

γt(∇ lnπΦ
t (At|Zt)ω −At(Zt, At))

2,

where At(zt, at) = Qt(zt, at)−
∑

a∈A π
Φ
t (a|zt)Qt(zt, a).

Given a policy with parameter Φ(n) and the correspond-
ing output of the critic (Rec-TD with the average-iterate
Θ̄(n) := 1

Ktd

∑
k<Ktd

Θ(n)(k)):

Q̂(n)(·) := Ft(·; Θ̄(n)),

the actor aims to solve the following problem:

min
ω

E
[
ℓT

(
ω; Φ(n), Q̂(n)

) ∣∣∣Θ̄(n),Φ(n), . . . ,Φ(0)
]

such that ω ∈ B(m)
2,∞(0, ρ).

6



Recurrent Natural Policy Gradient for POMDPs

To that end, we utilize stochastic gradient descent (SGD)
to solve the above problem. Let Z̄n,k

T ∼ PπΦ(n),µ
T be an

independent random sequence for k = 0, 1, . . ., and let

ω̃n(k + 1) = ω̂n(k)− ηsgd∇ωℓT
(
ω̂n(k); Φ(n), Q̂(n)

)
,

ω̂n(k + 1) = ProjB(m)
2,∞(0,ρ)

[ω̃n(k + 1)],

with ω̂n(0) = 0. Then, a biased stochastic approximation of
the natural policy gradient G+

µ (Φ(n))∇ΦVπΦ(n)

(µ) is ob-
tained as ωn := 1

Ksgd

∑
k<Ksgd

ω̂n(k), and the policy update
is performed as

Φ(n+ 1) = Φ(n) + ηnpg · ωn.

In the following, we present a non-asymptotic analysis of
the above approach.

7.2. Theoretical Analysis of Rec-NAC for POMDPs

We establish an error bound on the best-iterate for the Rec-
NPG. The significance of the following result is two-fold: (i)
it will explicitly connect the optimality gap to the compatible
function approximation error, and (ii) it will explicitly show
the impact of truncation on the performance of path-based
policy optimization for the non-stationary case.

Theorem 7.3. Assume that Pπ⋆,µ
T ≪ PπΦ(n),µ

T , n < N ,
and let

κ := max
0≤n<N

∥∥∥∥∥ Pπ⋆,µ
T

PπΦ(n),µ

T

∥∥∥∥∥
∞

.

We have the following result under Rec-NPG after N ∈ Z+

steps with step-size ηnpg = 1/
√
N with projection radius

ρ ∈ R2
>0:

min
0≤n<N

E0[Vπ⋆

(µ)− VπΦ(n)

(µ)] ≤ ln |A|
(1− γ)

√
N

+
√
pT (γ)E0

[
1

N

N−1∑
n=0

(
κεTcfa(Φ(n), ωn)

) 1
2

]
+

2γT r∞
(1− γ)2

+ ∥ρ∥22
∑
t<T

γt
2βt + 12(Λ2

tϱ2 + χtϱ1)
√
N√

m

+ ∥ρ∥22
∑
t<T

γt
12Lt

√
Λ2
T ϱ2 + χtϱ1
m1/4

+
∥ρ∥22
2
√
N

∑
t<T

γtL2
t ,

where εTcfa(Φ, ω) := EπΦ(n)

µ

∑
t<T γ

t|∇⊤ lnπΦ
t (At|Zt)ω−

AπΦ

t (Zt, At)|2, and the sequence (Lt, βt,Λt, χt)t is de-
fined in Lemma B.1.

Remark 7.4. We have the following remarks.

• The effectiveness of Rec-NPG is proportional to the
approximation power of the RNN used for policy pa-
rameterization, as reflected in εTcfa in Theorem 7.3. We
further characterize this error term in Prop. 7.6-7.8.

• The terms Lt, βt,Λt, χt grow at a rate pt(ϱ1αm).
Thus, if αm > ϱ−1

1 , then m and N should grow at
a rate (αmϱ1)

T , implying the curse of dimensionality
(more generally, it is known as the exploding gradi-
ent problem (Goodfellow et al., 2016)). On the other
hand, if αm < ϱ−1

1 , then Lt, βt,Λt, χt are all O(1)
for all t, implying efficient learning of POMDPs. This
establishes a very interesting connection between the
memory in the system, the continuity and smoothness
of the RNN with respect to its parameters, and the
optimality gap under Rec-NPG.

• The term 2γT r∞
(1−γ)2 is due to truncating the trajectory at

T , and vanishes with large T .

Remark 7.5. The quantity κ in Proposition 7.8 is the so-
called concentrability coefficient in policy gradient methods
(Agarwal et al., 2020; Bhandari & Russo, 2019; Wang et al.,
2019), and determines the complexity of exploration. Note
that it is defined in terms of path probabilities Pπ,µ

T in the
non-stationary setting.

In the following, we decompose the compatible function
approximation error εTcfa into the approximation error for
the RNN and the statistical errors. To that end, let

εapp,n = inf
{
E

T−1∑
t=0

γt
∣∣∇⊤Ft(Z̄t; Φ(0))ω −QπΦ(n)

t (Z̄t)
∣∣2

: ω ∈ B(m)
2,∞(0, ρ)

}
,

be the approximation error where the expectation is with
respect to PπΦ(n),µ

T ,

εtd,n = E[RπΦ(n)

T (Θ̄(n))|Φ(k), k ≤ n],

be the error in the critic (see equation 9), and finally let

εsgd,n = E[ℓT (ωn; Φ(n), Q̂(n))|Θ̄(n),Φ(k), k ≤ n]

− inf
w

E[ℓT (ω; Φ(n), Q̂(n))|Θ̄(n),Φ(k), k ≤ n],

be the error in the policy update via compatible function
approximation.

Proposition 7.6 (Error decomposition for εTcfa). We have

E
[
EπΦ(n)

µ

[
ℓT (ωn; Φ(n),Q(n))

] ∣∣∣Φ(k), k ≤ n
]

≤ 8∥ρ∥22
m

T−1∑
t=0

γtβ2
t + 8εapp,n + 6εtd,n + 2εsgd,n.

for any n ∈ Z+.

From Theorem 6.3, we have, for ηtd = O(1/
√
Ktd),

εtd,n ≤ poly(pT (ϱ1αm))O

(
1√
Ktd

+
1

√
mcritic

+ γT
)
,
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and by Theorem 14.8 in (Shalev-Shwartz & Ben-David,
2014), we have, for ηtd = O(1/

√
Ktd),

εsgd,n ≤ poly(pT (ϱ1αm), ∥ρ∥2)O(1/
√
Ksgd).

As such, the statistical errors in the critic and the policy
update (i.e., εtd,n, εsgd,n) can be made arbitrarily small by
using larger Ktd,Ksgd and larger mcritic. The remaining
quantity to characterize is the approximation error, which is
of critical importance for a small optimality gap as shown in
Theorem 7.3 and Proposition 7.6. In the following, we will
provide a finer characterization of εapp,n and identify a class
of POMDPs that can be efficiently solved using Rec-NPG.

Assumption 7.7. For an index set J and ν ∈ R2
>0, we

consider a class HJ,ν of transportation mappingsv(j) ∈ H : j ∈ J,

 sup
w∈R,j∈J

|v(j)w (w)|

sup
u∈Rd,j∈J

∥v(j)u (u)∥2

 ≤
(
νw
νu

) ,

and also the corresponding infinite-width limit

FJ,ν := {z̄ 7→ E[Ψ(z̄; θ0)v(θ0)] : v ∈ Conv(HJ,ν)},

where Ψ(·; θ0) is the NTRF matrix, defined in equation 7.

We assume that there exists an index set J and ν ∈ R2
>0

such that QπΦ(n) ∈ FJ,ν for all n ∈ N.

This representational assumption implies that the Q-
functions under all iterate policies πΦ(n) throughout the
Rec-NPG iterations n = 0, 1, . . . can be represented by con-
vex combinations of a fixed set of mappings in the NTK
function class F indexed by J . As we will see, the richness
of J as measured by a relevant Rademacher complexity will
play an important role in bounding the approximation error.
To that end, for z̄t = (zt, at) ∈ (Y× A)t+1, let

Gz̄t
t := {ϕ 7→ ∇⊤

ϕH
(1)
t (z̄t;ϕ)v(ϕ) : v ∈ HJ,ν},

and

Radm(Gz̄t
t ) := E

ϵ∼Radm(1)
Φ(0)∼ζinit

sup
g∈G

z̄t
t

1

m

m∑
i=1

ϵig(Φi(0)).

Note that v ∈ HJ,ν above can be replaced more with
v ∈ Conv(HJ,ν) without any loss. In that case, since
the mapping v(j) 7→ f⋆t (z̄t;v

(j)) ∈ Gz̄t
t is linear, Gz̄t

t is re-
placed with Conv(Gz̄t

t ) without changing the Rademacher
complexity (Mohri et al., 2018).

The following proposition provides a finer characterization
of the function approximation error.

Proposition 7.8. Under Assumption 7.7, if ρ ⪰ ν, then

ϵapp,n ≤ 1

1− γ

(
2 max
0≤t<T

max
z̄t∈(Y×A)t+1

Radm(Gz̄t
t )

+ LT ∥ρ∥2

√
ln (2T |Y× A|T /δ)

m

)2

,

for all n simultaneously with probability at least 1− δ over
the random initialization for any δ ∈ (0, 1).
Remark 7.9. Two interesting cases that lead to a vanish-
ing approximation error (as m → ∞), thus global near-
optimality, are as follows.

• Finite J . If |J | < ∞, then Proposition 7.8 reduces
to (Cayci et al., 2024) (with T = 1 for FNNs) with

the complexity term O

(√
ln(|J|/δ)

m

)
by the finite-

class lemma (Mohri et al., 2018). In this case, the
Q-functions throughout n = 0, 1, . . . lie in the con-
vex hull of |J | basis functions in F generated by
{v(j) ∈ H : j ∈ J}.

• Linear transportation mappings. For a fixed mapϖ :
Rd+1 → R(d+1)×(d+1), let v(b)(θ) = ⟨ϖ(θ), b⟩, b ∈
J where J ⊂ Rd+1 is a compact set. Then, the approx-
imation error vanishes at a rate O(1/

√
m).

Remark 7.10. In a static problem (e.g., the regression prob-
lem in supervised learning or the policy evaluation problem
in Section 6) with a target function f ∈ F , the approxima-
tion error is easy to characterize:

∣∣∇⊤Ft(z̄t; Φ(0))ω
⋆ − ft(z̄t)

∣∣ = O

(√
ln (1/δ)

m

)
, (17)

by Hoeffding inequality with ω⋆ :=
[

1√
m
civ(Φi(0))

]
i∈[m]

.

In the dynamical policy optimization problem, the repre-
sentational assumption QπΦ(n) ∈ F does not imply an
arbitrarily small approximation error as m→ ∞ since the
target function QπΦ(n)

also depends on Φ(0). Thus, an
approximation

∇⊤Ft(z̄t; Φ(0))ω
⋆
n =

m∑
i=1

∇⊤H
(i)
t (z̄t; Φ(0))v

Φ(n)(Φi(0))

m
,

with ω⋆
n := [ 1√

m
civ

Φ(n)(Φi(0))]i∈[m] for the trans-

portation mapping vΦ(n) ∈ H may not converge to
the target function QπΦ(n)

because of the correlated
∇⊤H

(i)
t (z̄t; Φ(0))v

Φ(n)(Φi(0)) across i ∈ [m] as argued
in (Cayci et al., 2024). To address this, we characterize
the uniform approximation error as in Proposition 7.8 for
the random features of the actor RNN in approximating all
QπΦ(n)

for all n based on Rademacher complexity.
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8. Conclusion
In this work, we have studied RNN-based policy evaluation
and policy optimization methods with finite-time analyses.
An important limitation of Rec-NPG is that it does not pro-
vide an effective solution in POMDPs that require long-term
memory as we point out in Remarks 6.5-7.4. As an exten-
sion of this work, theoretical analyses of more complicated
LSTM- (Hochreiter & Schmidhuber, 1997) and GRU-based
(Chung et al., 2014) natural policy gradient algorithms can
be considered as a future work. Alternatively, the study of
hard- and soft-attention mechanisms to address the limita-
tions of the RNNs (Murphy, 2022) in policy optimization is
also a very interesting future direction.
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A. Algorithmic Tools for Recurrent Neural Networks
A.1. Random Initialization for Recurrent Neural Networks

One key concept is random initialization, which is widely used in practice (Goodfellow et al., 2016) and yields the basis of
the kernel analysis (Jacot et al., 2018; Chizat et al., 2019). In this work, we assume that m is even, and use the following
symmetric initialization (Chizat et al., 2019).

Definition A.1 (Symmetric random initialization). Let ci ∼ Rad(1), Vi ∼ Rad(α), Ui(0) ∼ N (0, Id) independently for
all i ∈ {1, 2, . . . ,m/2} and independently from each other, and ci = −ci−m/2, Vi = Vi−m/2 and Ui(0) = Ui−m/2(0) for
i ∈ {m/2 + 1, . . . ,m}. Then, (W(0),U(0), c) is called a symmetric random initialization where W(0) = diagm(V ) and
U⊤
i (0) is the ith-row of U(0).

The symmetrization ensures that Ft(z̄t;W(0),U(0), c) = 0 for any t ≥ 0 and input z̄t.

A.2. Max-Norm Regularization for Recurrent Neural Networks

Max-norm regularization, proposed by (Srebro et al., 2004), has been shown to be very effective across a broad spectrum
of deep learning problems (Srivastava et al., 2014; Goodfellow et al., 2013). In this work, we incorporate max-norm
regularization (around the random initialization) into the recurrent natural policy gradient for sharp convergence guarantees.
To that end, given a random initialization (W(0),U(0), c) as in Definition A.1 and a vector ρ = (ρw, ρu)

⊤ ∈ R2
>0 of

projection radii, we define the compactly-supported set of weights Ωρ,m ⊂ Rm(d+1) as

Ωρ,m = B(m)
2,∞(Θ(0), ρ). (18)

Given any symmetric random initialization (W(0),U(0), c) and ρ ∈ R2
>0, the set Ωρ,m is a compact and convex subset of

Rm(d+1), and for any Θ ∈ Ωρ,m, we have

max
1≤i≤m

|Wii −Wii(0)| ≤
ρw√
m
,

max
1≤i≤m

∥Ui − Ui(0)∥ ≤ ρu√
m
.

Let

ProjΩρ,m
[Θ] =

 argmin
w∈B2

(
Wii(0),

ρw√
m

) |Wii − wi|, argmin
ui∈B2

(
Ui(0),

ρu√
m

) ∥Ui − ui∥2


i∈[m]

(19)

As such, the projection operator ProjΩρ,m
[·] onto Ωρ,m is called the max-norm projection (or regularization).

Note that we have ∥W − W(0)∥2 ≤ ρw, ∥U − U(0)∥2 ≤ ρu and ∥Θ − Θ(0)∥2 ≤ ∥ρ∥2 in the ℓ2 geometry for any
Θ ∈ Ωρ,m. Therefore, although the max-norm parameter class Ωρ,m ⊂ {Θ ∈ Rm(d+1) : ∥Θ − Θ(0)∥2 ≤ ∥ρ∥2}, the
ℓ2-projected (Cai et al., 2019; Wang et al., 2019; Liu et al., 2019) and max-norm projected (Cayci et al., 2024) optimization
algorithms recover exactly the same function class (i.e., RKHS associated with the neural tangent kernel studied in (Ji et al.,
2019; Telgarsky, 2021), see Section 4).

B. Proofs for Section 6
An important quantity in the analysis of recurrent neural networks is the following:

Γ
(i)
t (z̄t; Θ) :=WiiH

(i)
t (z̄t; Θ),

for any hidden unit i ∈ [m] and Θ ∈ Rm(d+1). The following Lipschitzness and smoothness results for Θi 7→ H
(i)
t (z̄t; Θ)

and Θi 7→ Γ
(i)
t (z̄t; Θ).

Lemma B.1 (Local continuity of hidden states; Lemma 1-2 in (Cayci & Eryilmaz, 2024)). Given ρ ∈ R2
>0 and α ≥ 0, let

αm = α+ ρw√
m

. Then, for any z̄ ∈ (Y× A)Z̄+ with supt∈N

∥∥∥∥(ytat
)∥∥∥∥

2

≤ 1, t ∈ N and i ∈ [m],

11
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• Θi 7→ H
(i)
t (z̄t; Θ) is Lt-Lipschitz continuous with Lt = (ϱ20 + 1)ϱ20 · p2t (αmϱ1),

• Θi 7→ H
(i)
t (z̄t; Θ) is βt-smooth with βt = O (d · p(αmϱ1) · q(αmϱ1)),

• Θi 7→ Γ
(i)
t (z̄t; Θ) is Λt-Lipschitz with Λt =

√
2(ϱ0 + 1 + αmLt),

• Θi 7→ Γ
(i)
t (z̄t; Θ) is χt-smooth with χt =

√
2(Lt + αmβt),

in Ωρ,m. Consequently, for any Θ ∈ Ωρ,m,

sup
z̄∈H̄∞

max
0≤t≤T

|Ft(z̄t; Θ)| ≤ LT · ∥ρ∥2, T ∈ N, (20)

sup
z̄∈H̄∞

|F Lin
t (z̄t; Θ)− Ft(z̄t; Θ)| ≤ 2√

m
(ϱ2Λ

2
t + ϱ1χt)∥Θ−Θ(0)∥22, t ∈ N, (21)

sup
z̄∈H̄∞

〈
∇Ft(z̄t; Θ)−∇Ft(z̄t; Θ(0)),Θ− Θ̄

〉
≤ 2β2

t ∥ρ∥22√
m

, (22)

with probability 1 over the symmetric random initialization (W(0),U(0), c).

Lemma B.2 (Approximation error between RNN-NTRF and RNN-NTK). Let f⋆ ∈ F with the transportation mapping
v ∈ H , and let

Θ̄i = Θi(0) +
1√
m
civ(Θi(0)), i ∈ [m]. (23)

for any symmetric random initialization (W(0),U(0), c) in Def. A.1. Let

F Lin
t (·; Θ) = ∇ΘFt(·; Θ(0)) · (Θ−Θ(0)).

If Pπ,µ
T induces a compactly-supported marginal distribution for Xt, t ∈ N such that ∥Xt∥2 ≤ 1 a.s. and {Z̄t : t ∈ N} is

independent from the random initialization (W(0),U(0), c), then we have

E
[
Eπ
µ

[(
f⋆t (Z̄t)− F Lin

t (Z̄t; Θ̄)
)2]] ≤ 2∥ν∥22(1 + ϱ20)p

2
t (αϱ1)

m
, (24)

where the outer expectation is with respect to the random initialization (W(0),U(0), c).

Proof. For any hidden unit i ∈ [m], let

ζi =

〈
v(Θi(0)),

t∑
k=0

Wii
k(0)

(
H

(i)
t−k−1(Z̄t−k−1,Θi(0))

Xt−k

) k∏
j=0

It−j(Z̄t−j ; Θi(0))

〉
.

Then, it is straightforward to see that

F Lin
t (Z̄t; Θ̄) =

1

m

m∑
i=1

ζi, (25)

and E[ζi|Z̄t] = E[f⋆t (Z̄t)|Z̄t] almost surely. Note that {ζi : i ∈ [m/2]} is independent and identically distributed and
ζi = ζi+m/2 for any i ∈ [m/2]. Also, with probability 1 we have

|ζi|
(♠)

≤ ∥v(Θi(0))∥2 ·

∥∥∥∥∥∥
t∑

k=0

Wii
k(0)

(
H

(i)
t−k−1(Z̄t−k−1,Θi(0))

Xt−k

) k∏
j=0

It−j(Z̄t−j ; Θi(0))

∥∥∥∥∥∥
2

,

(♣)

≤ ∥v(Θi(0))∥2
t−1∑
k=0

αkϱk+1
1

√
1 + ϱ20,

(♢)

≤ ∥ν∥2 · ϱ1 ·
√
1 + ϱ20 · pt(αϱ1),

12
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where (♠) follows from Cauchy-Schwarz inequality, (♣) follows from the uniform bound supz∈R |ϱ(z)| ≤ ϱ1 and
almost-sure bounds ∥Xk∥2 ≤ 1 and |Wii(0)| ≤ α, and (♣) follows from v ∈ Hν . From these bounds,

Var(ζi) ≤ E[Eπ
µ[|ζi|2]] ≤ ∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1), i ∈ [m]. (26)

Therefore,

E
[
Eπ
µ

[(
f⋆t (Z̄t)− F Lin

t (Z̄t; Θ̄)
)2]]

= Eπ
µ

E
∣∣∣∣∣ 1m

m∑
i=1

(
ζi − E[ζi|Z̄t]

)∣∣∣∣∣
2
 ,

= Eπ
µ

E

∣∣∣∣∣∣ 2m

m/2∑
i=1

(
ζi − E[ζi|Z̄t]

)∣∣∣∣∣∣
2

 ,

=
4

m2
Eπ
µ

m/2∑
i=1

m/2∑
j=1

E
[(
ζi − E[ζi|Z̄t]

) (
ζj − E[ζj |Z̄t]

)]
,

=
4

m2
Eπ
µ

m/2∑
i=1

Var(ζi) ≤
2

m
∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1),

where the first identity is from Fubini’s theorem, the second identity is from the symmetricity of the random initialization,
the fourth identity is due to the independent initialization for i ≤ m/2, and the inequality is from the bound in equation 26.

Proposition B.3 (Non-stationary Bellman equation). For π ∈ ΠNM, we have

Qπ
t (z̄t) = Eπ

[
r(St, At) + γQπ

t+1(Z̄t+1)
∣∣∣Z̄t = z̄t

]
= Eπ

[
r(St, At) + γVπ

t+1(Zt+1)
∣∣∣Z̄t = z̄t

]
,

for any t ∈ Z+.

Proof of Theorem 6.3. Since {Qπ
t : t ∈ N} ∈ F , let the point of attraction Θ̄ be defined as in equation 23, and the potential

function be defined as
Ψ(Θ) = ∥Θ− Θ̄∥22. (27)

Then, from the non-expansivity of the projection operator onto the convex set Ωρ,m, we have the following inequality:

Ψ(Θ(k + 1)) ≤ Ψ(Θ(k)) + 2η

T−1∑
t=0

γtδt(Z̄
k
t+1; Θ(k))

〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉
+ 2η2∥ŘT (Z̄

k
T ; Θ(k))∥22. (28)

Let Ěk
t [·] := E[·|Θ(k), . . . ,Θ(0), Z̄k

t ]. Then, we obtain

E[Ψ(Θ(k + 1)−Ψ(Θ(k))] ≤ 2ηE
[ T−1∑

t=0

γt Ěk
t [δt(Z̄

k
t+1; Θ(k))]

〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉︸ ︷︷ ︸
(♠)t

]
+ η2E ∥∇̌RT (Z̄

k
T ; Θ(k))∥22︸ ︷︷ ︸
(♣)

. (29)

Bounding E(♠)t. By using the Bellman equation in the non-Markovian setting (cf. Proposition B.3), notice that

Ěk
t δt(Z̄

k
t+1; Θ(k)) = Ěk

t [r
k
t + γFt+1(Z̄

k
t+1; Θ(k)]− Ft(Z̄

k
t ; Θ(k)),

= γĚk
t

[
Ft+1(Z̄

k
t+1; Θ(k))−Qπ

t+1(Z̄
k
t+1)

]
+Qπ

t (Z̄t)− Ft(Z̄
k
t ; Θ(k)).

13



Recurrent Natural Policy Gradient for POMDPs

Secondly, we perform a change-of-feature as follows:〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉
=
〈
∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
+ err

(1)
t,k , (30)

where

err
(1)
t,k :=

〈
∇Ft(Z̄

k
t ; Θ(k))−∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
, and |err(1)t,k | ≤

2β2
t ∥ρ∥22√
m

≤ 2β2
T ∥ρ∥22√
m

,

by Lemma B.1. Furthermore,〈
∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
= F Lin

t (Z̄k
t ; Θ(k))− F Lin

t (Z̄k
t ; Θ̄), (31)

= Ft(Z̄
k
t ; Θ(k))−Qπ

t (Z̄
k
t ) + err

(2)
t,k + err

(3)
t,k (32)

where

err
(2)
t,k := F Lin

t (Z̄k
t ; Θ(k))− Ft(Z̄

k
t ; Θ(k)),

err
(3)
t,k := −F Lin

t (Z̄k
t ; Θ̄) +Qπ

t (Z̄
k
t ).

Thus,

(♠)t = −(Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ(k)))2 + γĚk

t

[
Ft+1(Z̄

k
t+1; Θ(k))−Qπ

t+1(Z̄
k
t+1)

]
· (Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k)))

+ Ěk
t δt(Z̄

k
t+1; Θ(k))

3∑
j=1

err
(j)
t,k.

By equation 20, we have
sup

z̄∈H̄∞

|δt(z̄t+1; Θ(k))| ≤ r∞ + 2LT ∥ρ∥2 =: δmax

Now, let ωt,k :=
(
E[(Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k)))2]

)1/2
, where the expectation is over the joint distribution of Θ(k) and Z̄k

T .
Then,

E[(♠)t] ≤ −ω2
t,k + γωt+1,kωt,k + δmax

3∑
j=1

E|err(j)t,k|.

From equation 21, we have

E|err(2)t,k | ≤
2√
m
(ϱ2Λ

2
T + ϱ1χT )∥ρ∥22.

From the approximation bound in Lemma B.2, we get

E|err(3)t,k | ≤
√

E|err(3)t,k |2 ≤ 2∥ν∥2
√
1 + ϱ20 · pT (αϱ1)√

m
.

Also, note that ωt+1,kωt,k ≤ 1
2 (ω

2
t,k + ω2

t+1,k). Putting these together, we obtain the following bound for every t ∈
{0, 1, . . . , T − 1}:

E[(♠)t] ≤ −ω2
t,k +

γ

2
(ω2

t+1,k + ω2
t,k) + δmax ·

CT√
m
,

where
CT := 2β2

T ∥ρ∥22 + 2(ϱ2Λ
2
T + ϱ1χT )∥ρ∥22 + 2∥ν∥2

√
1 + ϱ20 · pT (αϱ1).

Hence, we obtain the following upper bound:

T−1∑
t=0

γtE[(♠)t] ≤ −(1− γ/2)
∑
t<T

γtω2
t,k +

δmax · CT

(1− γ)
√
m

+
1

2

∑
t<T

γt+1ω2
t+1,k︸ ︷︷ ︸

≤ 1
2 (

∑
t<T γtω2

t,k+γTω2
T,k)

≤ −1− γ

2

∑
t<T

γtω2
t,k +

1

2
γTω2

T,k +
CT · δmax

(1− γ)
√
m
. (33)

14
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Bounding E[(♣)]. Using the triangle inequality, we obtain:

∥
∑
t<T

γtδt(Z̄
k
t+1; Θ(k))∇Ft(Z̄t; Θ(k))∥2 ≤

∑
t<T

γt|δt(Z̄k
t+1; Θ(k))| · ∥∇Ft(Z̄t; Θ(k))∥2.

Since Θ(k) ∈ Ωρ,m for every k ∈ N as a consequence of the max-norm regularization, we have

|δt(Z̄k
t+1; Θ(k))| ≤ δmax = r∞ + 2LT ∥ρ∥2,

∥∇Ft(Z̄
k
t ; Θ(k))∥22 =

1

m

m∑
i=1

∥∇Θi
H

(i)
t (Z̄k

t ; Θ(k))∥22 ≤ L2
t ≤ L2

T ,

for every t < T with probability 1 since Θi 7→ H
(i)
t (z̄t; Θi) is Lt-Lipschitz continuous by Lemma B.1. Hence, we obtain:

∥∇̌RT (Z̄
k
T ; Θ(k))∥2 ≤ δmaxLT

1− γ
. (34)

Final step. Now, taking expectation over (Z̄k
t ,Θ(k)) in equation 29, and substituting equation 33 and equation 34, we

obtain:

E[Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)

T−1∑
t=0

γtω2
t,k + ηγTω2

T,k + η
δmax · CT

(1− γ)
√
m

+ η2
δ2maxL

2
T

(1− γ)2
,

for every k ∈ N. Note that Ψ(Θ(0)) ≤ ∥ν∥22. Thus, telescoping sum over k = 0, 1, . . . ,K − 1 yields

1

K

K−1∑
k=0

RT (Θ(k)) ≤ ∥ν∥22
η(1− γ)K

+
ηδ2maxL

2
T

(1− γ)3
+

δmax · CT

(1− γ)2
√
m

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k. (35)

The final inequality in the proof stems from the linearization result Lemma B.2, and directly follows from

RT

(
1

K

∑
k<K

Θ(k)

)
≤ 4

K

∑
k<K

RT (Θ(k)) +
6√
m

(
ϱ2Λ

2
T + ϱ1χT

)
∥ρ∥22,

which directly follows from (Cayci & Eryilmaz, 2024), Corollary 1.

In the following, we study the error under mean-path Rec-TD learning algorithm.

Theorem B.4 (Finite-time bounds for mean-path Rec-TD). For K ∈ N, with the step-size choice η = (1−γ)2

64L2
T

, mean-path
Rec-TD learning achieves the following error bound:

E

[
1

K

∑
k<K

Rπ
T (Θ(k))

]
≤ 2∥ν∥22

(1− γ)ηK
+
γTωT,k

1− γ
+

CT δmax

(1− γ)2
√
m

+ η

(
(C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
,

where C ′
T and LT are terms that do not depend on K.

Theorem B.4 indicates that if a noiseless semi-gradient is used in Rec-TD, then the rate can be improved from O
(

1√
K

)
to

O
(

1
K

)
, indicating the potential limits of using variance-reduction schemes.

Proof of Theorem B.4. At any iteration k ∈ N, let

∇̄RT (Θ(k)) := Eπ
µ

[
∇̌R(Z̄k

t ; Θ(k))
]
, (36)

be the mean-path semi-gradient. First, note that

∥∇̄RT (Θ(k))∥22 ≤ 2∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22 + 2∥∇̄RT (Θ̄)∥22. (37)
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Bounding ∥∇̄RT (Θ̄)∥22. For any k ∈ N, t ≤ T , we have

E
[
δt(Z̄

k
t+1; Θ̄)|Z̄k

t ,Θ(0), c
]
= γE[Ft+1(Z̄

k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|Z̄k

t ,Θ(0), c] +Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ̄).

Since ∥∇Ft(z̄t; Θ̄)∥2 ≤ Lt, the following inequality holds:∥∥E[δt(Z̄k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄)

]∥∥
2
≤ E

∥∥E[δt(Z̄k
t+1; Θ̄)|Z̄k

t ,Θ(0), c
]
∇Ft(Z̄

k
t ; Θ̄)

∥∥
2
,

≤ LTE
∣∣E[δt(Z̄k

t+1; Θ̄)|Z̄k
t ,Θ(0), c

]∣∣ ,
≤ LT

(
γE
∣∣Ft+1(Z̄

k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)

∣∣+ E
∣∣Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ̄)

∣∣) , (38)

where we used Jensen’s inequality, the law of iterated expectations, and triangle inequality. From the above inequality, we
obtain

∥∇̄RT (Θ̄)∥2
1
≤

T−1∑
t=0

γt
∥∥E[δt(Z̄k

t+1; Θ̄)∇Ft(Z̄
k
t ; Θ̄)

]∥∥
2
,

2
≤ LT γ

∑
t<T

γtE|Ft+1(Z̄
k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|+ LT

∑
t<T

γtE|Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ̄)|,

3
≤ LT√

1− γ

γE√∑
t<T

γt|Ft+1(Z̄k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|2 + E

√∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

 ,

4
≤ LT√

1− γ

γ√E
∑
t<T

γt|Ft+1(Z̄k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|2 +

√
E
∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

 ,

5
≤

√
2(1 + γ)LT√

1− γ

∥ν∥2
√

1 + ϱ20 · pT (ϱ1α)√
m

.

where 1 follows from triangle inequality, 2 follows from equation 38, 3 follows from Cauchy-Schwarz inequality and
the monotonicity of the geometric series T 7→

∑
t<T γ

t, 4 follows from Jensen’s inequality, and finally 5 follows from
Lemma B.2. Hence, we obtain

∥∇̄RT (Θ̄)∥22 ≤ 8L2
T ∥ν∥22(1 + ϱ20)p

2
T (ϱ1α)

(1− γ)m
. (39)

Bounding ∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22. First, note that

∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥2 = ∥E
[∑
t<T

γt
(
δt(Z̄

k
t+1; Θ(k))∇Ft(Z̄

k
t ; Θ(k))− δt(Z̄

k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄)

) ∣∣∣]∥2
We make the following decomposition for each t < T :

δt(Z̄
k
t+1; Θ(k))∇Ft(Z̄

k
t ; Θ(k))− δt(Z̄

k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄) = δt(Z̄

k
t+1; Θ(k))

(
∇Ft(Z̄

k
t ; Θ(k))−∇Ft(Z̄

k
t ; Θ̄)

)
+∇Ft(Z̄

k
t ; Θ(k))

(
δt(Z̄

k
t+1; Θ̄)− δt(Z̄

k
t+1; Θ(k))

)
(40)

By Lemma B.1, we have |δt(Z̄k
t+1; Θ)| ≤ δmax and ∥∇Ft(Z̄

k
t ; Θ)∥1 ≤ Lt ≤ LT almost surely for any Θ ∈ Ωρ,m, which

holds for Θ(k) (due to the max-norm projection) and Θ̄. As such, by triangle inequality,

∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥2 ≤
∑
t<T

γt
(
δmax

β2
tE∥Θ(k)− Θ̄∥22

m
+ LtE|δt(Z̄k

t+1; Θ̄)− δt(Z̄
k
t+1; Θ(k))|

)
,

≤ δmaxβ
2
T (∥ρ∥22 + ∥ν∥22)
m(1− γ)︸ ︷︷ ︸

=:
C

(4)
T
m

+LTE

[
T−1∑
t=0

γt|δt(Z̄k
t+1; Θ̄)− δt(Z̄

k
t+1; Θ(k))|

]
(41)
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Note that∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| =

∑
t<T

γt
(
|Ft+1(Z̄

k
t+1; Θ̄)− Ft+1(Z̄

k
t+1; Θ(k))|+ |Ft(Z̄

k
t ; Θ̄)− Ft(Z̄

k
t ; Θ(k))|

)
,

≤ 2
∑
t<T

γt
∣∣∣Ft(Z̄

k
t ; Θ̄)− Ft(Z̄

k
t ; Θ(k))

∣∣∣+ γTLT ∥Θ(k)− Θ̄∥2, (42)

where the second line follows from the Lipschitz continuity of Θ 7→ Ft(·; Θ). Then, adding and subtracting Qπ
t to each

term, we obtain∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| ≤ 2

∑
t<T

γt
(
|Ft(Z̄

k
t ; Θ̄)−Qπ

t (Z̄
k
t )|+ |Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k))|

)
+ γTLT ∥Θ(k)− Θ̄∥2. (43)

Taking expectation, we obtain

E
∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| ≤ 2√

1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ(k))−Qπ

t (Z̄
k
t )|2

]

+
2√
1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

]
+ γTLT ∥Θ(k)− Θ̄∥2.

By Lemma B.2 and equation 21, we have

E|Ft(Z̄
k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2 ≤ 4

m
∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1) +
4

m
(ϱ2Λ

2
T + ϱ1χT )

2∥ρ∥42,

for any t < T . Thus,

E
∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| ≤ 2√

1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ(k))−Qπ

t (Z̄
k
t )|2

]

+
1√
m

4√
(1− γ)3

(
∥ν∥2ϱ1(1 + ϱ0)pT (αϱ1) + (ϱ2Λ

2
T + ϱ1χT )∥ρ∥22)

)
︸ ︷︷ ︸

=:C
(3)
T

+γTLT ∥Θ(k)− Θ̄∥2︸ ︷︷ ︸
≤∥ρ∥2+∥ν∥2

.

This results in the following bound:

E
∑
t<T

[
γt|δt(Z̄k

t+1; Θ(k))− δt(Z̄
k
t+1; Θ̄)|

]
≤ 2√

1− γ

√
RT (Θ(k)) +

C
(3)
T√
m

+ γTLT (∥ρ∥2 + ∥ν∥2). (44)

Substituting the local smoothness result in equation 44 into equation 41, we obtain

∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥2 ≤ LT

(
2√
1− γ

√
RT (Θ(k)) +

C
(3)
T√
m

+ γTLT (∥ρ∥2 + ∥ν∥2)

)
+
C

(4)
T

m
.

Thus, we obtain

∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22 ≤ 16L2
T

1− γ
RT (Θ(k)) +

4(C
(3)
T )2L2

T + 4(C
(4)
T )2

m
+ 8γ2TL4

T (∥ρ∥22 + ∥ν∥22). (45)

Using equation 39 and equation 45 together, we obtain

∥∇̄RT (Θ(k))∥22 ≤ 2∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22 + 2∥∇̄RT (Θ̄)∥22,

≤ 32L2
TRT (Θ(k))

1− γ
+

(C ′
T )

2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22). (46)
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In the final step, we use equation 29, equation 33 and equation 46 together:

E [Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)ERT (Θ(k)) + ηγTωT,k + η
CT δmax

(1− γ)
√
m

+ η2
(
32L2

TERT (Θ(k))

1− γ
+

(C ′
T )

2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
, (47)

where the expectation is over the random initialization. Choosing η = (1−γ)2

64L2
T

, we obtain

E[Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)

2
ERT (Θ(k)) + ηγTωT,k + η

CT δmax

(1− γ)
√
m

+ η2
(
(C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
. (48)

Telescoping sum over k = 0, 1, . . . ,K − 1, and re-arranging terms, we obtain:

E

[
1

K

∑
k<K

RT (Θ(k))

]
≤ 2∥ν∥22

(1− γ)ηK
+
γTωT,k

1− γ
+

CT δmax

(1− γ)2
√
m

+ η

(
(C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
. (49)

C. Numerical Experiments for Rec-TD
In the following, we will demonstrate the numerical performance of Rec-TD for a given non-Markovian policy πgreedy.

POMDP setting. We consider a randomly-generated finite POMDP instance with |S| = |Y| = 8, |A| = 4, r(s, a) ∼
Unif[0, 1] for all (s, a) ∈ S × A. For a fixed ambient dimension d = 8, we use a random feature mapping (y, a) 7→
φ(y, a) ∼ N (0, Id), ∀(y, a) ∼ Y× A.

Greedy policy. Let
j⋆(t) ∈ arg max

0≤j<t
rj ,

be the instance before t at which the maximum reward was obtained, and let

πgreedy
t (a|Zt) =

{
1
|A| , w.p. min{ 2+t

10 , pexp},
1a=Aj⋆(t)

, w.p. 1−min{ 2+t
10 , pexp},

(50)

be the greedy policy with a user-specified exploration probability pexp ∈ (0, 1). The long-term dependencies in this greedy
policy is obviously controlled by pexp: a small exploration probability will make the policy (thus, the corresponding
Q-functions) more history-dependent. Since the exact computation of (Qπ

t )t∈N is highly intractable for POMDPs, we use
(empirical) mean-square temporal difference (MSTD) 2 as a surrogate loss.

Example 1 (Short-term memory). We first consider the performance of Rec-TD with learning rate η = 0.05, discount
factor γ = 0.7 and RNNs with various choices of network width m. For pexp = 0.8, the performance of Rec-TD is
demonstrated in Figure 2. Consistent with the theoretical results in Theorem 6.3, Rec-TD (1) achieves smaller error with
larger network width m, (2) requires smaller deviation from the random initialization Θ(0), which is known as the lazy
training phenomenon. Since ∥W(k)∥2,∞ ≤ 1 due to large enough pexp that avoids long-term dependencies, the problem
exhibits a weak memory behavior. This is observed in Figures 2d-2f without a visible increase in the MSTD performance
despite a significant 3-fold increase in T , consistent with the theoretical findings in Theorem 6.3.

Example 2 (Long-term memory). In the second example, we consider the same POMDP with a discount factor γ = 0.9.
The exploration probability is reduced to pexp = 0.3, which leads to longer dependency on the history. This impact can be
observed in Figure 3b-3d, which implies a larger spectral radius compared to Example 1 (in comparison with Figures 2c-2f).
As a consequence of the long-term dependencies, increasing T from 8 to 32 leads to a dramatic increase in the MSTD unlike
the weak-memory system in Example 1. The impact of a larger network size (i.e., m) is very significant in this example:
choosing m = 512 leads to a dramatic improvement in the performance.

2the empirical mean of independently sampled
{

1
k

∑
s<k R̂

TD
T (Θ(s)) : k ∈ N

}
where R̂TD

T (Θ(k)) =
∑T−1

t=0 γtδ2t (Z̄
k
t ; Θ(k)).
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(a) Mean-squared TD, T = 8 (b) 1
m
∥U(k)−U(0)∥2,1, T = 8. (c) 1

m
∥W(k)−W(0)∥2,1, T = 8.

(d) Mean-squared TD, T = 32 (e) 1
m
∥U(k)−U(0)∥2,1, T = 32. (f) 1

m
∥W(k)−W(0)∥2,1, T = 32.

Figure 2. Mean-square TD and parameter movement under Rec-TD for the case pmin = 0.8 and γ = 0.7. The mean curve and confidence
intervals (90%) in Figures 2a and 2d stem from 5 trials. The 90% confidence intervals in Figures 2b-2c and 2e-2f correspond to deviations
(i.e., ∥Ui(k)− Ui(0)∥2 and |Wii(k)−Wii(0)|) across different units i ∈ [m] in a single trial.

D. Policy Gradients under Partial Observability
In this section, we will provide basic results for policy gradients under POMDPs, which is critical to develop the natural
policy gradient method for POMDPs.

Proposition D.1. Let π′ ∈ ΠNM be an admissible policy, and let Z̄T ∼ Pπ′,µ
T . Then, for any t < T , conditional distribution

of St given Z̄t is independent of π′. Furthermore, for any π ∈ ΠNM, the conditional distribution of r(St, At)+γVπ
t+1(Zt+1)

given Z̄t is independent of π′.

Proof of Prop. D.1. Let the belief at time t ∈ N be defined as

bt(s) := P(St = s|Z̄t). (51)

For any non-stationary admissible policy π, the belief function is policy-independent. To see this, note that

P(St = st, Z̄t = z̄t) =
∑

(s0,...,st−1)∈St
P(S0 = s0|Y0 = y)π0(a0|z0)

t−1∏
k=0

P(sk+1|sk, ak)ϕ(yk+1|sk+1)πk+1(ak+1|zk+1),

=

(
t∏

k=0

πk(ak|zk)

) ∑
(s0,...,st−1)∈St

P(S0 = s0|Y0 = y)

t−1∏
k=0

P(sk+1|sk, ak)ϕ(yk+1|sk+1),

since
∏t

k=0 πk(ak|zk) does not depend on the summands (s0, . . . , st−1) – note that we use the notation P(sk+1|sk, ak) :=
P(sk, ak, {Sk+1 = sk+1}) and ϕ(yk|sk) := ϕ(sk, {Yk = yk}). Thus,

bt(st) =

∑
(s0,...,st−1)∈St P(S0 = s0|Y0 = y)

∏t−1
k=0 P(sk+1|sk, ak)ϕ(yk+1|sk+1)∑

(s′0,...,s
′
t−1,s

′
t)∈St+1 P(S0 = s′0|Y0 = y)

∏t−1
k=0 P(s′k+1|s′k, ak)ϕ(yk+1|s′k+1)

,
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(a) Mean-squared TD, T = 8 (b) 1
m
∥W(k)−W(0)∥2,1, T = 8.

(c) Mean-squared TD, T = 32 (d) 1
m
∥W(k)−W(0)∥2,1, T = 32.

Figure 3. Mean-square TD and parameter deviation under Rec-TD for the case pmin = 0.3 and γ = 0.9. The mean curve and confidence
intervals (90%) in Figures 3a and 3c stem from 5 trials. The 90% confidence intervals in Figures 3b and 3d correspond to deviations (i.e.,
|Wii(k)−Wii(0)|) across different units i ∈ [m] in a single trial.

independent of π. As such, we have

Eπ′
[rt + γVπ(Zt+1)|Z̄t] =

∑
s∈S

bt(s)Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t, St = s],

=
∑

st,st+1∈S

∑
y∈Y

bt(st)
(
r(st, At) + γP(st+1|st, At)ϕ(y|st+1)Vπ

t+1(Zt, yt+1)
)
,

= E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t],

in other words, the conditional distribution of r(St, At) + γVπ
t+1(Zt+1) given {Z̄t = z̄t} is independent of π′. We also

know from Prop. B.3 that

Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t] = E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t] = Qπ

t (z̄t).

The next result generalizes the policy gradient theorem to POMDPs. We note that there is an extension of REINFORCE-type
policy gradient for POMDPs in (Wierstra et al., 2010). The following result is a different and improved version as it 1
provides a variance-reduced unbiased estimate of the policy gradient for POMDPs, and more importantly 2 yields the
compatible function approximation (Prop. 7.2) that yields natural policy gradient (NPG) for POMDPs.
Proposition D.2 (Policy gradient – POMDPs). For any Φ ∈ Rm(d+1), we have

∇ΦVπΦ

(µ) = EπΦ

µ

[ ∞∑
t=0

γt · QπΦ

t (Zt, At) · ∇Φ lnπΦ
t (At|Zt)

]
, (52)
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for any µ ∈ ∆(Y).

Proof of Prop. D.2. For any t ∈ N, we have

VπΦ

t (zt) =
∑
at

πΦ
t (at|zt)QπΦ

t (zt, at), (53)

by Prop. B.3. Thus, we obtain

∇VπΦ

t (zt) =
∑
at

πΦ
t (at|zt)∇ lnπΦ

t (at|zt)QπΦ

t (zt, at) +
∑
at

πΦ
t (at|zt)∇QπΦ

t (zt, at),

= EπΦ

[∇ lnπΦ
t (At|Zt)QπΦ

t (Zt, At) +∇QπΦ

t (Zt, At)|Zt = zt]. (54)

Now, note that

QπΦ

t (zt, at) = E[r(St, At) + γVπΦ

t+1(Zt+1)|Z̄t = (zt, at)],

=
∑
st

bt(st)

r(st, at) + γ
∑
st+1

P(st+1|st, at)
∑
yt+1

ϕ(yt+1|st+1)VπΦ

t+1(zt+1)

 ,

where zt+1 = (zt, at, yt+1). As a consequence of Prop. D.1, we have ∇Φ

∑
st
bt(st)r(st, at) = 0, and also

∇ΦQπΦ

t (zt, at) = γ
∑
st

bt(st)
∑
st+1

P(st+1|st, at)
∑
yt+1

ϕ(yt+1|st+1)∇ΦVπΦ

t+1(zt+1),

= γE[∇ lnπΦ
t+1(At+1|Zt+1)QπΦ

t+1(Zt+1, At+1) +∇ΦQπΦ

t+1(Zt+1, At+1)|Z̄t = (zt, at)],

= γEπΦ
[ ∞∑
k=t+1

γk−t−1∇Φ lnπΦ
k (Ak|Zk)QπΦ

k (Zk, Ak)
∣∣∣Z̄t = (zt, at)

]
.

Using the above recursive formula for ∇ΦQπΦ

t along with the law of iterated expectations in equation 54, we obtain

∇ΦVπΦ

t (zt) = EπΦ
[ ∞∑
k=t

γk−t∇Φ lnπΦ
k (Ak|Zk)QπΦ

k (Zk, Ak)
∣∣∣Zt = zt

]
. (55)

Since we have Vπ := Vπ
0 , and also ∇ΦVπΦ

(µ) = ∇Φ

∑
z0
µ(z0)VπΦ

(z0) =
∑

z0
µ(z0)∇ΦVπΦ

(z0) by the linearity of
gradient, we conclude the proof.

Note on the baseline. Similar to the case of fully-observable MDPs, adding a baseline qπ
Φ

t (zt) to the Q-
function does not change the policy gradients since

∑
a πt(a|zt)∇ lnπΦ

t (a|zt)qπ
Φ

t (zt) = qπ
Φ

t (zt)
∑

a ∇πΦ
t (a|zt) =

qπ
Φ

t (zt)∇
∑

a π
Φ
t (a|zt) = 0. Thus, we also have

∇ΦVπΦ

(µ) = EπΦ

µ

[ ∞∑
t=0

γtAπΦ

t (Zt, At)∇Φ lnπΦ
t (At|Zt)

]
, (56)

which uses qπ
Φ

t = VπΦ

t as the baseline, akin to the fully-observable case.

The following result extends the compatible function approximation theorem in (Kakade, 2001) to POMDPs.

Proof of Prop. 7.2. The proof is identical to (Kakade, 2001). By first-order condition for optimality, we have

2EπΦ

µ

∞∑
t=0

γt∇ lnπΦ
t (At|Zt)

(
∇⊤ lnπΦ

t (At|Zt)ω
⋆ −AπΦ

t (Z̄t)
)
= 2

(
Gµ(Φ)ω

⋆ −∇ΦVπΦ

(µ)
)
= 0,

which concludes the proof.
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E. Theoretical Analysis of Rec-NPG
First, we prove structural results for RNNs in the kernel regime, which will be key in the analysis later.

E.1. Log-Linearization of SOFTMAX Policies Parameterized by RNNs

The key idea behind the neural tangent kernel (NTK) analysis is linearization around the random initialization. To that end,
let

F Lin
t (z̄t; Θ) := ⟨∇Ft(z̄t; Θ(0)),Θ−Θ(0)⟩, (57)

for any Θ ∈ Rm(d+1). We define the log-linearized policy as follows:

π̃Φ
t (a|zt) :=

exp(F Lin
t (zt, a; Φ))∑

a′∈A exp(F Lin
t (zt, a′; Φ))

, t ∈ N. (58)

The first result bounds the Kullback-Leibler divergence between πΦ
t and its log-linearized version π̃Φ

t . In the case of FNNs
with ReLU activation functions, a similar result was presented in (Cayci et al., 2024). The following result extends this idea
to (i) RNNs, and (ii) smooth activation functions.

Proposition E.1 (Log-linearization error). For any t ∈ N and (zt, a) ∈ (Y× A)t+1, we have

sup
(zt,a)∈(Y×A)t+1

∣∣∣∣ln π̃Φ
t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ 6√
m

(
Λ2
tϱ2 + χtϱ1

)
∥Φ− Φ(0)∥22, (59)

for any t ∈ N. Consequently, we have πt(·|zt) ≪ π̃t(·|zt) and π̃t(·|zt) ≪ πt(·|zt), and

max
{
DKL(π

Φ
t (·|zt)∥π̃Φ

t (·|zt)),DKL(π̃
Φ
t (·|zt)∥πΦ

t (·|zt))
}
≤ 6√

m

(
Λ2
tϱ2 + χtϱ1

)
∥Φ− Φ(0)∥22, (60)

for all zt ∈ (Y× A)t+1 and t ∈ N.

Proof. Fix (zt, a) ∈ (Y× A)t+1. By the log-sum inequality (Cover & Thomas, 2006), we have

ln

∑
a exp(F

Lin
t (zt, a; Φ))∑

a exp(Ft(zt, a; Φ))
≤
∑
a∈A

π̃Φ
t (a|zt)

(
F Lin
t (zt, a; Φ)− Ft(zt, a; Φ)

)
.

Using the same argument, we obtain∣∣∣∣ln∑a exp(F
Lin
t (zt, a; Φ))∑

a exp(Ft(zt, a; Φ))

∣∣∣∣ ≤∑
a∈A

(
π̃Φ
t (a|zt) + πΦ

t (a|zt)
)
·
∣∣F Lin

t (zt, a; Φ)− Ft(zt, a; Φ)
∣∣ . (61)

Thus, we have ∣∣∣∣ln π̃Φ
t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ (1 + π̃Φ
t (a|zt) + πΦ

t (a|zt))
∣∣F Lin

t (zt, a; Φ)− Ft(zt, a; Φ)
∣∣ .

By using Lemma B.1, we have supz̄t∈(Y×A)t+1

∣∣F Lin
t (z̄′t; Φ)− Ft(z̄

′
t; Φ)

∣∣ ≤ 2√
m
(Λ2

tϱ2 + χtϱ1)∥Φ−Φ(0)∥22. By using the
last two inequalities together, and noting that 1 + π̃Φ

t (a|zt) + πΦ
t (a|zt) ≤ 3, we conclude that∣∣∣∣ln π̃Φ

t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ 6√
m
(Λ2

tϱ2 + χtϱ1)∥Φ− Φ(0)∥22.

Since the righthand-side of the above inequality is independent of (zt, a), we deduce that the result holds for all (zt, a), thus
concluding the proof.

The following result will be important in establishing the Lyapunov drift analysis of Rec-NPG.
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Proposition E.2 (Smoothness of ln π̃Φ
t (a|zt)). For any t ∈ N, we have

sup
(zt,a)∈(Y×A)t+1

∥∇ ln π̃Φ
t (a|zt)−∇ ln π̃Φ′

t (a|zt)∥2 ≤ L2
t∥Φ− Φ′∥2,

for any Φ,Φ′ ∈ Rm(d+1).

Proof. Consider a general log-linear parameterization

pθ(x) ∝ exp(ϕ⊤x θ), x ∈ X.

Then, if supx∈X ∥ϕx∥2 ≤ B < ∞, then θ 7→ ln pθ(x) has B2-Lipschitz continuous gradients for each x ∈ X (Agarwal
et al., 2020). The remaining part is to prove a uniform upper bound for ∥∇ΦFt(z̄t; Φ(0))∥2. To that end, notice that

∇Φi
Ft(z̄t; Φ(0)) =

1√
m
ci∇H(i)

t (z̄t; Φ(0)), z̄t ∈ (Y× A)t+1, i ∈ [m].

From the local Lipschitz continuity result in Lemma B.1, we have supz̄t:maxj≤t ∥(yj ,aj)∥2≤1 ∥∇Φi
H

(i)
t (z̄t; Φ(0))∥2 ≤ Lt

for any i ∈ [m]. Thus, for any z̄t, we have

∥∇ΦFt(z̄t; Φ(0))∥22 =
1

m

m∑
i=1

∥∇Φi
H

(i)
t (z̄t; Φ(0))∥22 ≤ L2

t . (62)

E.2. Theoretical Analysis of Rec-NPG

For any π ∈ ΠNM, we define the potential function as

L (π) := Eπ⋆

µ

[
T−1∑
t=0

γtDKL (π
⋆
t (·|Zt)∥πt(·|Zt))

]
. (63)

Then, we have the following drift inequality.

Proposition E.3 (Drift inequality). For any n ∈ N, the drift can be bounded as follows:

L (πΦ(n+1))− L (πΦ(n)) ≤ −ηnpg(Vπ⋆

(µ)− VπΦ(n)

(µ))−ηnpgEπ⋆

µ

[
T−1∑
t=0

γt
(
∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
)]

︸ ︷︷ ︸
1

+ ηnpgEπ⋆

µ

∞∑
t=T

γtAπΦ(n)

t (Z̄t)︸ ︷︷ ︸
2

−ηnpgEπ⋆

µ

T−1∑
t=0

γt
(
∇ ln π̃

Φ(n)
t (At|Zt)−∇ lnπ

Φ(n)
t (At|Zt)

)⊤
ωn︸ ︷︷ ︸

3

+
1

2
η2npg∥ρ∥22

T−1∑
t=0

γtL2
t +

12∥ρ∥22√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1).

Proof. First, note that the drift can be expressed as

L (πΦ(n+1))− L (πΦ(n)) = Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt) ln

π
Φ(n)
t (At|Zt)

π
Φ(n+1)
t (At|Zt)

.

Then, with a log-linear transformation,

L (πΦ(n+1))−L (πΦ(n)) = Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt)

(
ln

π̃
Φ(n)
t (At|Zt)

π̃
Φ(n+1)
t (At|Zt)

+ ln
π
Φ(n)
t (At|Zt)

π̃
Φ(n)
t (At|Zt)

+ ln
π̃
Φ(n+1)
t (At|Zt)

π
Φ(n+1)
t (At|Zt)

)
.
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By using the log-linearization bound in Prop. E.1 twice in the above inequality, we obtain

L (πΦ(n+1))− L (πΦ(n)) ≤ Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt) ln

π̃
Φ(n)
t (At|Zt)

π̃
Φ(n+1)
t (At|Zt)

+
12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22. (64)

By the smoothness result in Prop. E.2, we have

| ln π̃Φ(n+1)
t (at|zt)− ln π̃

Φ(n)
t (at|zt)−∇ ln π̃

Φ(n)
t (at|zt)(Φ(n+ 1)− Φ(n))| ≤ 1

2
L4
t∥Φ(n+ 1)− Φ(n)∥22.

Thus, we obtain

−η2npgL4
t∥ρ∥22 ≤ −η2npgL4

t∥ωn∥22 ≤ − ln
π̃
Φ(n)
t (at|zt)

π̃
Φ(n+1)
t (at|zt)

− ηnpg∇⊤ ln π̃
Φ(n)
t (at|zt)ωn,

because of the max-norm gradient clipping that yields ∥ωn∥2 ≤ ∥ρ∥2 and Φ(n+1) = Φ(n)+ ηnpgωn for any n ∈ N. Using
this in equation 64, we get

L (πΦ(n+1))−L (πΦ(n)) ≤ −ηnpgEπ⋆

µ

T−1∑
t=0

γt∇⊤ ln π̃
Φ(n)
t (at|zt)ωn +

12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22 +

1

2
η2npgL

4
t∥ρ∥22.

(65)
An important technical result that will be useful in our analysis is the pathwise performance difference lemma, which was
originally developed in (Kakade & Langford, 2002) for fully-observable MDPs.

Lemma E.4 (Pathwise Performance Difference Lemma). Let Φ,Φ′ ∈ Rm(d+1) be two parameters. Then, we have

VπΦ′

(µ)− VπΦ

(µ) = EπΦ′

µ

∞∑
t=0

γtAπΦ

t (Zt, At).

The proof of Lemma E.4 is an extension of (Agarwal et al., 2020) to non-stationary policies, and can be found at the end of
this subsection.

Using Lemma E.4 in equation 65, we obtain

L (πΦ(n+1))− L (πΦ(n)) ≤ −ηnpg(Vπ⋆

(µ)− VπΦ(n)

(µ))− ηnpgEπ⋆

µ

T−1∑
t=0

γt
(
∇⊤ ln π̃

Φ(n)
t (at|zt)ωn −AπΦ(n)

t (Z̄t)
)

+ ηnpgEπ⋆

µ

∞∑
t=T

AπΦ(n)

t (Z̄t) +
12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22 +

1

2
η2npgL

4
t∥ρ∥22. (66)

Finally, we replace the term ∇ ln π̃
Φ(n)
t (at|zt) with ∇ lnπ

Φ(n)
t (at|zt) by including the corresponding error term, and

conclude the proof by considering the telescoping sum, and noting that L (πΦ(0)) = log |A| since Ft(·; Φ(0)) = 0 by
symmetric initialization.

Proof of Theorem 7.3. We prove Theorem 7.3 by bounding the numbered terms in Prop. E.3.

Bounding 1 in Prop. E.3. Recall that pT (γ) =
∑

t<T γ
t. Then, by using Jensen’s inequality,

Eπ⋆

µ

T−1∑
t=0

γt
(
∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
)
≤

√√√√pT (γ)Eπ⋆

µ

T−1∑
t=0

γt
∣∣∣∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
∣∣∣2,

=:
√
pT (γ)

√
κεTcfa(Φ(n), ωn),
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where κ yields a change-of-measure argment from Pπ⋆,µ
T to PπΦ(n),µ

T .

Bounding 2 in Prop. E.3. sups,a |r(s, a)| ≤ r∞, therefore |Aπ
t (z̄t)| ≤ 2r∞

1−γ for any t ∈ N, z̄t ∈ (Y × A)t+1, and π ∈
ΠNM.

Bounding 3 in Prop. E.3. For any t ∈ N, Cauchy-Schwarz inequality implies(
∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)

)⊤
ωn ≤ ∥∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2∥ρ∥2.

Recall that

∇ ln π̃Φ
t (at|zt) = ∇Ft(zt, at; Φ(0))−

∑
a′

π̃Φ
t (a

′|zt)∇Ft(zt, a
′; Φ(0)),

∇ lnπΦ
t (at|zt) = ∇Ft(zt, at; Φ)−

∑
a′

πΦ
t (a

′|zt)∇Ft(zt, a
′; Φ).

First, from local βt-Lipschitzness of Φi 7→ ∇H(i)
t (z̄t; Φi) for Φ ∈ Ωρ,m by Lemma B.1, we have

∥∇Φi
Ft(z̄t; Φ(n))−∇Φi

Ft(z̄t; Φ(0))∥2 =
1√
m
∥∇Φi

H
(i)
t (z̄t; Φi(n))−∇Φi

H
(i)
t (z̄t; Φi(0))∥2,

≤ βt∥ρ∥2
m

,

for any n ∈ N since maxi ∥Φi(n)− Φi(0)∥2 ≤ ∥ρ∥2√
m

by max-norm projection. Thus,

∥∇ΦFt(z̄t; Φ(n))−∇ΦFt(z̄t; Φ(0))∥2 ≤ βt∥ρ∥2√
m

, t ∈ N. (67)

Thus,

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ βt∥ρ∥2√

m
+
∑
a

|πΦ(n)
t (a|zt)− π̃

Φ(n)
t (a|zt)|∥∇Ft(z̄t; Φ(0))∥2

+
∑
a

π
Φ(n)
t (a|zt)∥∇Ft(zt, a; Φ(n))−∇Ft(zt, a; Φ(0))∥2.

From equation 62, we have

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+ 2LtDTV

(
π
Φ(n)
t (·|zt)∥π̃Φ(n)

t (·|zt)
)
,

where DTV denotes the total-variation distance between two probability measures. By Pinsker’s inequality (Cover & Thomas,
2006), we obtain

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+
√
2Lt

√
DKL

(
π
Φ(n)
t (·|zt)∥π̃Φ(n)

t (·|zt)
)
. (68)

By the log-linearization result in Prop. E.1, we have

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+
√
12Lt∥ρ∥2

√
Λ2
tϱ2 + χtϱ1√

m
. (69)

Thus, we have (
∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)

)⊤
ωn ≤ ∥ρ∥22

(
2βt√
m

+
√
12Lt

√
Λtϱ2 + χtϱ1
m1/4

)
.
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Proof of Lemma E.4. For any y0 ∈ Y, we have:

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γtrt

∣∣∣Z0 = y0

]
− Vπ(y0),

= Eπ′

µ

[ ∞∑
t=0

γt
(
rt + Vπ

t (Zt)− Vπ
t (Zt)

)∣∣∣Z0 = y0

]
− Vπ(y0),

= Eπ′

µ

[ ∞∑
t=0

γt(rt + γVπ
t+1(Zt+1)− Vπ

t (Zt)
∣∣∣Z0 = y0

]
,

where rt = r(St, At) and the last identity holds since

∞∑
t=0

γtVπ
t (zt) = Vπ

0 (z0) + γ

∞∑
t=0

γtVπ
t+1(zt+1).

Then, letting rt = r(st, at) and by using law of iterated expectations,

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γt
(
Eπ′

[rt + γVπ
t+1(Zt+1)|Z̄t, St]− Vπ

t (Zt)
)∣∣∣Z0 = y0

]
, (70)

which holds because
Eπ′

[rt + γVπ(Zt+1)|Z̄t] = Eπ′
[rt + γVπ(Zt+1)|Z̄t, Z0].

The conditional expectation of rt + γVπ
t+1 given {Z̄t = z̄t} is independent of π′:

Eπ′
[rt + γVπ(Zt+1)|Z̄t] =

∑
s∈S

bt(s)Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t, St = s],

=
∑

st,st+1∈S

∑
y∈Y

bt(st)
(
r(st, At) + γP(st+1|st, At)ϕ(y|st+1)Vπ

t+1(Zt, yt+1)
)
,

= E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t],

based on Prop. D.1. We also know from Prop. B.3 that

Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t] = E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t] = Qπ

t (z̄t).

Using the above identity in equation 70, we obtain

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γt
(
Qπ

t (Z̄t)− Vπ(Zt)
)∣∣∣Z0 = y0

]
, (71)

which concludes the proof.

Proof of Prop. 7.6. For any ω, we have

ℓT (ω; Φ(n),QπΦ(n)

) ≤ 2ℓT (ω; Φ(n), Q̂(n)) + 2

∞∑
t=0

γt(AπΦ(n)

t (Zt, At)− Â(n)
t (Zt, At))

2. (72)

Let Gn := σ(Φ(k), k ≤ n) and Hn := σ(Θ̄(n),Φ(k), k ≤ n). Then, since

εsgd,n = E[ℓT (ωn; Φ(n), Q̂(n))|Hn]− inf
ω∈B(m)

2,∞(0,ρ)

E[ℓT (ω; Φ(n), Q̂(n))|Hn],

we obtain
E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤ 2E
[
inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn]
∣∣∣Gn

]
+ 2(εtd,n + εsgd,n), (73)
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which uses the fact that V ar(X|Gn) ≤ E[|X|2|Gn] for any square-integrable X . We also have

inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn] ≤ 2 inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn] + 2

∞∑
t=0

γt(AπΦ(n)

t (Zt, At)− Â(n)
t (Zt, At))

2, (74)

which further implies that

E[inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn]|Gn] ≤ 2E[inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn]|Gn] + 2εtd,n.

Thus,
E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤ 4E
[
inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn]
∣∣∣Gn

]
+ 6εtd,n + 2εsgd,n. (75)

For any ω ∈ B(m)
2,∞(0, ρ),

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn] ≤ E[
∑
t<T

γt(∇⊤
ΦFt(Z̄t; Φ(n))ω −QπΦ(n)

t (Z̄t))
2|Hn],

≤ 2E[
∑
t<T

γt(∇⊤
ΦFt(Z̄t; Φ(0))ω −QπΦ(n)

t (Z̄t))
2 + (∇Ft(Z̄t; Φ(n))−∇Ft(Z̄t; Φ(0))

⊤ω)2|Hn],

which implies that

inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn] ≤ 2εapp,n + 2∥ρ∥22E[
∑
t<T

γt∥∇Ft(Z̄t; Φ(n))−∇Ft(Z̄t; Φ(0)∥22|Hn],

≤ 2εapp,n +
2∥ρ∥42
m

∑
t<T

γtβ2
t ,

using equation 67. Hence,

E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤
8∥ρ∥42
m

∑
t<T

γtβ2
t + 8εapp,n + 6εtd,n + 2εsgd,n,

concluding the proof.

Proof of Prop. 7.8. Under Assumption 7.7, consider f (j)t (z̄t) := E[ψ⊤
t (z̄t;ϕ0)v

(j)(ϕ0)] for v(j) ∈ HJ ,ν . Let

ω
(j)
i :=

1√
m
civ

(j)(Φi(0)), i = 1, 2, . . . ,m, (76)

for any j ∈ J . Since ∥ω(j)∥2 ≤ ∥ν∥2 and ρ ⪰ ν, we have

inf
ω∈B(m)

2,∞(0,ρ)

∣∣∣∇⊤Ft(z̄t; Φ(0))ω − f
(j)
t (z̄t)

∣∣∣ ≤ ∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ . (77)

Thus, we aim to find a uniform upper bound for the second term over j ∈ J . For each z̄t, we have

∇⊤Ft(z̄t; Φ(0))ω
(j) =

1

m

m∑
i=1

∇⊤
Φi
H

(i)
t (z̄t; Φi(0))v

(j)(Φi(0)),

thus E[∇⊤Ft(z̄t; Φ(0))ω
(j)] = f

(j)
t (z̄t). Furthermore, from Lemma B.1, since Φ(0) ∈ Ωρ,m obviously, we have

max
1≤i≤m

∥∇⊤
Φi
H

(i)
t (z̄t; Φi(0))v

(j)(Φi(0))∥2 ≤ Lt∥ν∥2 ≤ Lt∥ρ∥2, a.s..

Thus, by McDiarmid’s inequality (Mohri et al., 2018), we have with probability at least 1− δ,

sup
j∈J

∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ ≤ 2Radm(Gz̄t
t ) + Lt∥ρ∥2

√
log(2/δ)

m
, (78)
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for each t < T and z̄t. By union bound,

sup
j∈J

max
z̄t

∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ ≤ 2max
z̄t

Radm(Gz̄t
t ) + Lt∥ρ∥2

√
log(2T |Y× A|t+1/δ)

m
, (79)

≤ 2 max
0≤t<T

max
z̄t

Radm(Gz̄t
t ) + LT ∥ρ∥2

√
log(2T |Y× A|T /δ)

m
, (80)

simultaneously for all t < T with probability ≥ 1− δ. Therefore,

inf
ω

EπΦ(n)

µ

∑
t<T

γt|∇⊤Ft(Z̄t; Φ(0))ω − f
(j)
t |2 ≤ EπΦ(n)

µ

∑
t<T

γt sup
j∈J

|∇⊤Ft(Z̄t; Φ(0))ω
(j) − f

(j)
t |2,

≤ 1

1− γ

(
2 max
0≤t<T

max
z̄t

Radm(Gz̄t
t ) + LT ∥ρ∥2

√
log(2T |Y× A|T /δ)

m

)2

.
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