Hypernetwork-based Meta-Learning
for Low-Rank Physics-Informed Neural Networks

Woojin Cho' Kookjin Lee!* Donsub Rim® Noseong Park’*
t Yonsei University
t Arizona State University
§ Washington University in St. Louis
snowmoon@yonsei.ac.kr, kookjin.lee@asu.edu,
rim@wustl.edu, noseong@yonsei.ac.kr

Abstract

In various engineering and applied science applications, repetitive numerical sim-
ulations of partial differential equations (PDEs) for varying input parameters are
often required (e.g., aircraft shape optimization over many design parameters) and
solvers are required to perform rapid execution. In this study, we suggest a path that
potentially opens up a possibility for physics-informed neural networks (PINNs),
emerging deep-learning-based solvers, to be considered as one such solver. Al-
though PINNs have pioneered a proper integration of deep-learning and scientific
computing, they require repetitive time-consuming training of neural networks,
which is not suitable for many-query scenarios. To address this issue, we propose
lightweight low-rank PINNs containing only hundreds of model parameters and
an associated hypernetwork-based meta-learning algorithm, which allow efficient
solution approximations for varying PDE input parameters. Moreover, we show
that the proposed method is effective in overcoming a challenging issue, known as
“failure modes” of PINNSs.

1 Introduction

Physics-informed neural networks (PINNSs) [1]] are a particular class of coordinate-based multi-layer
perceptrons (MLPs), also known as implicit neural representations (INRs), to numerically approx-
imate solutions of partial differential equations (PDEs). That is, PINNs are taking spatiotemporal
coordinates (z,t) as an input and predict PDE solutions evaluated at the coordinates ug (z,t) and
are trained by minimizing (implicit) PDE residual loss and data matching loss at initial and bound-
ary conditions. PINNs have been successfully applied to many different important applications
in computational science and engineering domain: computational fluid dynamics [2} [3]], cardiac
electrophysiology simulation [4], material science [5], and photonics [6], to name a few.

PINNs are, however, sharing the same weakness with coordinate-based MLPs (or INRs), which
hinders the application of PINNs/INRs to more diverse applications; for a new data instance (e.g.,
a new PDE for PINNs or a new image for INRs), training a new neural network (typically from
scratch) is required. Thus, using PINNs to solve PDEs (particularly, in parameterized PDE settings) is
usually computationally demanding, and this burden precludes the application of PINNs to important
scenarios that involve many queries in nature as these scenarios require the parameterized PDE
models to be simulated thousands of times (e.g., design optimization, uncertainty propagation), i.e.,

requiring PDE solutions w(z, t;) at many PDE parameter settings { (" }f\i‘l with very large N,,.

*Co-corresponding authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

To mitigate the above described issue, we propose i) a low-rank structured neural network architecture
for PINNs, denoted as low-rank PINNs (LR-PINNs), ii) an efficient rank-revealing training algorithm,
which adaptively adjust ranks of LR-PINNs for varying PDE inputs, and iii) a two-phase procedure
(offline training/online testing) for handling many-query scenarios. This study is inspired by the
observations from the studies of numerical PDE solvers [[7H11] stating that numerical solutions of
parametric PDEs can be often approximated in a low-rank matrix or tensor format with reduced
computational/memory requirements. In particular, the proposed approach adopts the computational
formalism used in reduced-order modeling (ROM) [12}[13]], one of the most dominant approaches in
solving parameteric PDEs, which we will further elaborate in Section

In essence, LR-PINNSs represent the weight of some internal layers as a low-rank matrix format.
Specifically, we employ a singular-value-decomposition (SVD)-like matrix decomposition, i.e., a
linear combination of rank-1 matrices: the weight of the [-th layer is W' = "7 stulv!T with the
rank 7 = min(ng, n;.1), where W! € Ru+1xm gyl ¢ R+ pl € R™, and st € R. The ranks of
the internal layers, however, typically are not known a priori. To address this issue, we devise a novel
hypernetwork-based neural network architecture, where the rank-structure depending on the PDE
parameters p is learned via training. In short, the proposed architecture consists of 1) a lightweight
hypernetwork module and ii) a low-rank solution network module; the hypernetwork takes in the
PDE parameters and produces the coefficients of the rank-1 series expansion (i.e., s(u) = f™P ().
The low-rank solution network module i) takes in the spatiotemporal coordinates (, ¢), ii) takes
the forward pass through the linear layers with the weights W'(u) = >0, st(p)ulvlT, of which
s;(p) comes from the hypernetwork, and iii) produces the prediction ug(z, t;). Then, the training
is performed via minimizing the PINN loss, i.e., a part of the PINN loss is the PDE residual loss,
IR (ue(x, t; w); 1)||2, where R(+, -;) denotes the parameterized PDE residual operator.

We show the efficacy and the efficiency of our proposed method for solving some of the most
fundamental parameterized PDEs, called convection-diffusion-reaction equations, and Helmholtz
equations. Our contributions include:

1. We employ a low-rank neural network for PINNs after identifying three research challenges
to address.

2. We develop a hypernetwork-based framework for solving parameterized PDEs, which
computes solutions in a rank-adaptive way for varying PDE parameters.

3. We demonstrate that the proposed method resolves the “failure modes” of PINNs.

4. We also demonstrate that our method outperforms baselines in terms of accuracy and speed.

2 Naive low-rank PINNs

Let us being by formally defining LR-PINNs and attempt to answer relevant research questions.
LR-PINNS are a class of PINNSs that has hidden fully-connected layers (FC) represented as a low-rank
weight matrix. We denote this intermediate layer as LR-FC: the [-th hidden layer is defined such that

h'tl = 1r-FC'(RY) < A =UYSL(V!ThY)) + b, (1)

where Ul € R™+1%" and V! € R™*" denote full column-rank matrices (i.e., rank r < n;,m41)
containing a set of orthogonal basis vectors, and ¥!. € R"*" is a diagonal matrix, >!. = diag (slr)
with sL. € R".

Memory efficiency: LR-PINNs with a rank of » and L hidden layers require O((2n; + 1)rL)
memory as opposed to O(n? L) required by regular PINNS.

Computational efficiency: The forward/backward pass of LR-PINNs can be computed efficiently
by utilizing a factored representation of the weights. To simplify the presentation, we describe only
the forward pass computation; the forward pass is equivalent to perform three small matrix-vector
products (MVPs) in sequence as indicated by the parentheses in Eq. (I).

Challenges: Representing the weights of hidden layers itself is straightforward and indeed has
been studied actively in many different fields of deep learning, e.g., NLP [14}115]. However, those
approaches typically assume that there exist pre-trained models and approximate the model weights
by running the truncated SVD algorithm. Our approach is different from these approaches in that we

p—s £ ()

PDE parameters
‘ Parameterized PDEs diag(él(p)) diag(:el(,u,)) diag(.;L ()
8| pt JEEEY B Rt 8
(z,t)—> E_ — —— — — E — ue((z,t); 1)
(3 Ulzl(“)vlT Vl UKEI(”’)V‘T Vl ULEL(“)VLT VL 1Y)
[}
L]

REYA

LR-FC! R-FC! LrR-FCF
Figure 1: The architecture of Hyper-LR-PINN consisting of 1) the hypernetwork generating model
parameters (i.e., diagonal elements) of LR-PINN and ii) LR-PINN approximating solutions.

attempt to reveal the ranks of internal layers as the training proceeds, which brings unique challenges.
These challenges can be summarized with some research questions, which include: C1) “should we
make all parameters learnable (i.e., (U!, V!, El))?”, C2) “how can we determine the ranks of each
layer separately, and also adaptively for varying u?”, and C3) “can we utilize a low-rank structure to
avoid expensive and repetitive training of PINNs for every single new p instances?”. In the following,
we address these questions by proposing a novel neural network architecture.

3 Hyper-LR-PINNs: hypernetwork-based meta-learning low-rank PINNs

We propose a novel neural network architecture based on a hypernetwork and an associated training
algorithm, which address the predescribed challenges. To distinguish them, we hereinafter call LR-
PINN with (resp. w/o) our proposed hypernetwork as “Hyper-LR-PINN” (resp. “Naive-LR-PINN”).

Design goals: Here we attempt to resolve all challenges by setting up several design goals that are
inspired from our domain knowledge in the field (and also from some preliminary results that can be
found in Appendix [D):

1. build a single set of basis vectors U and V!, preferably as orthogonal as possible, that
perform well over a range of PDE parameters,

2. build LR-PINNs with an adaptive and layer-wise rank structure that depends on PDE
parameters (e.g., a higher rank for a higher convective PDE) and,

3. make only the diagonal elements, denoted s'. in Eq. (1), learnable to achieve high efficiency
once a proper set of basis vectors and the rank structure are identified.

Our design largely follows the principles of ROMs, where the expensive computation is offloaded
to an offline phase to build a cheap surrogate model that can perform an efficient computation in
an online phase for a test set. To make an analogy, consider parameterized dynamical systems
(which may arise in semi-discretization of time-dependent PDEs): % = f(u(t;p); 1), where
u € RV In the offline phase, the method seeks a low-dimensional linear trial basis where the reduced
representation of the solution lie on, which is achieved by performing high-fidelity simulations on a
set of PDE parameter instances {p(")}7% and constructing a trial linear subspace W := range(¥,,)
with W, = [th1,--- ,9,] € RV*P from the solution snapshots collected from the high-fidelity
simulations. In the online phase, the solutions at a set of test PDE parameter instances {p,(i) Fioes

are approximated as u(t, u) ~ Vpc(t, u) with ¢ € R?, and a low-dimensional surrogate problem is

derived as 2t — WT £ (W, c(t; p); p) = f(c(t; p);) € RP, which can be rapidly solved, while

not losing too much accuracy. See Appendix [C|for an illustrative explanation and details of ROMs.

Taking a cue from the ROM principles, we design our model to operate on a common set of basis
vectors {U_} and {V,'}, which are obtained during the offline phase (analogous to ¥,, in ROMs) and
update only the diagonal elements {s.} during the online phase (analogous to ¢ in ROMs). Now,
we elaborate our network design and the associated two-phase algorithm. For the connection to the
ROM, which explains details on the context/query sets, can be found in Appendix [C|

3.1 Hypernetwork-based neural network architecture

The proposed framework has two computational paths: a path for the hypernetwork and a path for
LR-PINN (Figure|[I). The hypernetwork path reads the PDE parameter p and outputs the diagonal
elements {s'}L_; of LR-FCs. The LR-PINN path reads (,t) and the output of the hypernetwork,
and outputs the approximated solution ug at (, t; p), which can be written as follows:

ue ((2,1); 1) = ue((x, 1); P (1)),
where fMP°" (1) denotes the hypernetwork such that {s'(u)}~, = f™P’(u). We denote s as a
function of p to make it explicit that it is dependent on p. The internals of LR-PINN can be described
as with h? = [z, #]T

h' = o(W°h° +1°),
hl+1 — O.(Ul(zl(”)(vlThl)) + bl),l — 17 L ,L,
ue (1) p) = o (WEHREH 4 plt),

where Y () = diag(s!(i)). The hypernetwork can be described as the following initial embedding
layer, where e = u, followed by an output layer:

e™ = g(Wembmem=1 L pembm) -y — 1 M,
s'(p) = ReLU(Whpernleh o phyperly 7 —1 L,

where ReLU is employed to automatically truncate the negative values so that the adaptive rank
structure for varying PDE parameters can be revealed (i.e., the number of non-zeros (NNZs in s'(p)
varies depending on).

3.2 Two-phase training algorithm

Along with the framework, we present the proposed two-phase training algorithm. Phase 1 is for
learning the common set of basis vectors and the hypernetwork and Phase 2 is for fine-tuning the
network for a specific set of test PDE parameters. Table[I shows the sets of model parameters that
are being trained in each phase. (See Appendix [E for the formal algorithm.)

In Phase 1, we train the hypernetwork and the LR-PINN jointly on a set of collocation points
that are collected for varying PDE parameters. Through the computational procedure described in
Section the approximated solutions at the collocation points are produced ug ((z;,t;);).
Then, as in regular PINNs, the PDE residual loss and the data matching loss can be computed. The
small difference is that the PDE operator, F, for the residual loss is also parameterized such that
F(ue((x;,t;);uD); u). As we wish to obtain basis vectors that are close to orthogonal, we add
the following orthogonality constraint based on the Frobenius norm to the PINN loss [16]]:

w |UTU! = I + wa VTV = T3, 2
where w; and w, are penalty weights. (See Appendix [J])

In Phase 2, we continue training LR-PINN for approximating the solutions of a target PDE parameter
configuration. We i) fix the weights, the biases, and the set of basis vectors of LR-FC obtained
from Phase 1, ii) convert the diagonal elements to a set of learnable parameters after initializing
them with the values from the hypernetwork, and iii) detach the hypernetwork. Thus, only the
trainable parameters from this point are the set of diagonal elements, first and last linear layers. The
hypernetwork-initialized diagonal elements serve as a good starting point in (stochastic) gradient
update optimizers (i.e., require less number of epochs). Moreover, significant computational savings
can be achieved in the gradient update steps as only the diagonal elements are updated (i.e., 8;41
81 +nVsLinstead of ©; 11 + ©; + nVeL).

4 Experiments

We demonstrate that our proposed method significantly outperforms baselines on the 1-dimensional/2-
dimensional PDE benchmarks that are known to be very challenging for PINNSs to learn [[17,[18]. We
report the average accuracy and refer readers to Appendix [U for the std. dev. of accuracy after 3 runs.

>The NNZs is not equal to the rank as the learned basis is only soft-constrained to be orthogonal (Eq. @.
Nevertheless, to avoid notation overloading, we denote NNZs as the rank in the following.

Table 1: Learnable parameters in each phase

Phase 1 | LU VLB, WO WETL B0, i (LR-PINN),
{(Wemb,m’bemb,m)}%:l, {(Whyper,l’bhyper,l)}lL:1 (hypernetwork),
Phase 2 | {s'}/=,, W° W= p° " *! (LR-PINN)

o 2.00 6 2.00 o 2.00
175 175 175

1.50 1.50 1.50

4 1.25 4 1.25 4 1.25
X 100 X 100 X 1.00
7 7 7

, 075 , 075 , 075
0.50 0.50 0.50

025 025 025

8o o0z 04 06 08 1.0°0 1.0 000 06 08 1.0 200

t

80 02 04 06 08 80 02 o4
t t

(a) Exact solution (b) PINN (c) Ours

Figure 2: [Convection equation] Solution snapshots for 8 = 40

Baselines for comparison: Along with the vanilla PINN [TI], our baselines include several variants.
PINN-R [19]] denotes a model that adds skip-connections to PINN. PINN-S2S [18]] denotes a method
that uniformly segments the temporal domain and proceeds by training each segment one by one in a
temporal order. PINN-P denotes a method that directly extends PINNs to take (z, ¢,) as input and
infer ug(x, t, p), i.e., p is being treated as a coordinate in the parameter domain.

We also apply various meta-learning algorithms to Naive-LR-PINN: model-agnostic meta learning
(MAML) [20] and Reptile — recall that Naive-LR-PINN means that LR-PINN without our
proposed hypernetwork-based meta-learning and therefore, MAML and Reptile on top of Naive-LR-
PINN can be compared to Hyper-LR-PINN. In the parameterized PDE setting, we can define a task,
7, as a specific setting of the PDE parameters, (). Both MAML and Reptile seek initial weights
of a PINN, which can serve as a good starting point for gradient-based optimizers when a solution
of a new unseen PDE parameter setting is sought. See Appendix [G for details. For reproducibility,
we refer readers to Appendix [F] including hyperparameter configuration and software/hardware
environments.

Evaluation metrics: Given the i-th PDE parameter instance (¥, the ground-truth solu-
tion evaluated at the set of test collocation points can be defined collectively as u(® =
[u(zy, tr;u®), ... u(zy,ty;)T and likewise for PINNSs as ug). Then the absolute error and
the relative error can be defined as -+ [lu(? — ul ||y and u® —ul?|lo/[u® |, respectively. In
Appendix N, we measure the performance on more metric: max error and explained variance score.

4.1 Benchmark parameterized PDEs

1D PDEs: For our first benchmark parameterized PDEs, we consider the following parameterized
convection-diffusion-reaction (CDR) equation:

Up + By — gy —pu(l —u) =0, €, tel0,T],

where the equation describes how the state variable u evolves under convective (the second term),
diffusive (the third term), and reactive (the fourth term) phenomena The triplet, p = (8, v, p),
defines the characteristics of the CDR equations: how strong convective/diffusive/reactive the equation
is, respectively. A particular choice of p leads to a realization of a specific type of CDR processes.

There is a set of g which makes training PINNSs very challenging, known as “failure modes” [18]]: i)
convection equations with high convective terms (8 > 30) and ii) reaction(-diffusion) equations with
high reactive terms (p > 5). We demonstrate that our method does not require specific-PDE-dedicated
algorithms (e.g., [18])) while producing comparable/better accuracy in low rank.

*Note that we consider the Fisher’s form pu(1 — w) as the reaction term following [18].

-
=)

=
=)

—— MAML
—— Reptile
— Ours

— MAML
—— Reptile
— Ours

—— MAML
—— Reptile
— ours

4
©
4
©

o
=
o
©

Train loss

o
o

L, relative error
o o
o S

L, absolute error
=)
S

]

@

4
o

I
o

4 .4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch Epoch

(a) Train loss (b) The absolute error (¢) The relative error

Figure 3: [Convection equation] Per epoch averaged train loss and test errors for 8 € [30, 40] for
Phase 1 (meta-learning phase). We refer readers to Appendixlgfor Phase 2 loss curve.

Table 2: [Convection equation] The absolute and relative errors of the solutions of convection
equations with 8 = {30, 35,40}. We apply the curriculum learning proposed in [18]], MAML,
and Reptile to Naive-LR-PINN. Therefore, we focus on comparing various Naive-LR-PINN-based
enhancements and our Hyper-LR-PINN. See Appendix [Iifor other omitted tables.

[w/o] Pre-training

[w] Pre-training

B Rank Naive-LR-PINN C};’;rifl‘i‘lll‘é‘“ MAML Reptile Hyf’;;ifgﬁgw ?Xg;;%vlifﬁg
Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.
10 05617 05344 04117 04098 06757 06294 05893 0.5551
20 05501 05253 04023 04005 0.6836 06452 06144 05779
30 30 05327 05126 04233 04204 05781 05451 0.6048 05704 0.0360 0.0379 0.0375 0.0389
40 05257 05076 03746 03744 05848 05515 05757 0.5442
50 05327 05126 04152 04127 05898 05562 05817 0.5496
10 05663 05357 05825 05465 0.6663 0.6213 05786 0.5446
20 05675 05369 06120 05673 0.6814 06433 05971 0.5606
35 30 06081 05670 05864 05503 0.5819 05466 05866 0.5506 0.0428 0.0443 0.0448 0.0461
40 05477 05227 05954 05548 0.5809 05462 05773 0.5435
50 05449 05208 0.6010 05619 05870 05514 05731 0.5404
10 05974 05632 05978 05611 0.6789 0.6446 05992 0.5632
20 05890 05563 0.6274 05820 0.7008 0.6801 0.6189 0.5853
40 30 06142 05724 06011 05652 06072 05700 0.6126 05810 0.0603 0.0655 0.0656 0.0722
40 05560 05293 06126 05715 06149 05832 0.6004 0.5638
50 06161 05855 06130 05757 06146 05799 0.6007 0.5645
2D PDEs: As the second set of benchmarks, we consider the 2-dim parameterized Helmholtz
equation:

Ugy + Uyy + k*u — q(x,y; ai, (Lg) =0,

where ¢(z,y; a1, a2) denotes a specific parameterized forcing term and the solution u can be calcu-
lated analytically (See Appendix[T). As observed in the failure modes of convection equations (high
convective terms), certain choices of the parameters in the forcing term, i.e., a1, a2, make the training
of PINNSs challenging as the solutions become highly oscillatory.

4.2 Experimental results

4.2.1 Performance on the failure mode of the CDR equation

Solution accuracy: As studied in prior work, vanilla PINNS fail to approximate solutions exhibiting
either highly oscillatory (due to high convection) or sharp transient (due to high reaction) behaviors.
Here, we present the results of convection equations and leave the results on reaction(-diffusion)
equations in Appendix @ For convection equation failures typically occur with high g, e.g.,
B > 30. Table reports the results of all considered models trained on 3 € [30, 40] and essentially
shows that Hyper-LR-PINN (Figure[2(c)) is the only low-rank method that can resolve the failure-
mode and there are only marginal decreases in accuracy compared to Hyper-LR-PINN in full rank.
For reaction(-diffusion) equations, we observe similar results, Hyper-LR-PINN outperforms the

*Initial condition: 1 + sin(x) and boundary condition: periodic
5Following [[18]], we consider only the coefficients in the natural numbers (e.g., 5 € N) and [30,40] indicates
the set {30, 31,...,40}.

Table 3: Comparisons of model size
Model Naive-LR-PINN Ours PINN
Rank 10 20 30 40 50 Adaptive -
Parameters 381 411 441 471 501 ~351 10,401

29 34
V2 19
% % 32 17 10
c C30 g 8
(0]
=28 2 32 « 11 6
=] 9
5 g2 7 ,
o 522 5 2
<27 <20 H

30 32 34 36 38 40 1 4 7 10 13 16 19 18 15 22 29 36 43 50 ©

B B s%(u)
(a) B € [30,40] (b) 8 € [1,20] (c) B € [1,20]

Figure 4: Adaptive rank on convection equation (the left and the middle panels). The magnitude of
the learned diagonal elements s? of the second hidden layer for varying 3 € [1,20] (the right panel).

best baseline by more than an order of magnitude (See Appendix [N). Moreover, we report that
Hyper-LR-PINN outperforms in most cases to the baselines that operate in “full-rank”: meta-learning
methods (MAML, Reptile), PINN-S2S, and PINN-P (Appendix [M).

Loss curves: Figure|3 depicts two curves of train loss and test errors as the meta-learning algo-
rithms proceed (MAML, Reptile, and ours). As opposed to the optimization-based meta-learning
algorithms, which tend to learn meta-initial weights that perform well “on average” over randomly
sampled training tasks, our hypernetwork-based method minimizes the loss for each individual task
simultaneously. Loss curves for Phase 2 are reported in Appendix [O, which essentially show that the
baseline meta-learners do not provide good initializations.

Rank structure: Table[3|compares the number of trainable model parameters for Naive-LR-PINN,
PINN, and our method. In our model, each hidden layer has a different rank structure, leading to
351 trainable parameters, which is about (x30) smaller than that of the vanilla PINN, Cf. merely
decreasing the model size of PINNS leads to poor performance (Appendix [S). Figure da) shows how
the model adaptively learns the rank structure for varying values of 5. We observe that, with the
low-rank format, Hyper-LR-PINN provides more than (x4) speed up in training time compared to
the vanilla PINN. More comparisons on this aspect will be presented in the general CDR settings.

Ablation on fixed or learnable basis vectors: We compare the performance of the cases, where
the basis vectors {U_, V,!} are trainable. We observe that the fixed basis vectors lead to an order of
magnitude more accurate predictions as well as faster convergence (See Appendix [Q/for plots).

Ablation on orthogonality constraint: We compare the performances of the cases, where the
proposed model is trained without the orthogonality constraint, Eq. (2). Experimental results show
that the orthogonality constraint is essential in achieve good performance (See Appendix [J).

Many-query settings (inter/extra-polation in the PDE parameter domain): Next, we test our
algorithm on the many-query scenario, where we train the proposed framework with the 11 training
PDE parameters 3 € [30,40] (Phase 1), freeze the hypernetwork and the learned basis, and retrain
only the diagonal elements for 150 unseen test PDE parameters (Phase 2). Figure[5 depicts the
absolute and relative errors of the solutions, which are as accurate as the ones on the training
PDE parameters, in particular, for 8 < 30 (i.e., extrapolation). Although the model produces an
increasing error for 8 > 40, the relative error is still around ~10%, which cannot be achievable
by vanilla PINNs. The right chart of Figure[S shows the number of trainable model parameters,
which is determined by the rank (i.e., the output of the hypernetwork). As PINNs fail to produce any
reasonable approximation in this 3 regime, we make comparisons in the general CDR settings below.

0.16
S 014 phasel I x Phasel 294« phasel
fus O o0.14 h
So012 Phase2 t Phase2 @293 Phase2
©0.10 Vo0.12 N
. 0 292
5 g 0.10 <
— 0.08 e
2 x Boos : 3=
£ 0.06 (9]
© B < 0.06 e = L0
qlo-04 VIV x So.0s VNIV 280
275 30.0 325 350 375 400 425 275 30.0 325 350 375 400 425 275 30.0 325 350 375 40.0 425
(a) The absolute error (b) The relative error (c) Model size

Figure 5: Multi-query scenario: the absolute/relative errors of the predicted solutions at unseen test
parameters (left and middle), and the number of trainable model parameters (right).

Table 4: The relative errors of the solutions of parameterized PDEs with 3, v, p € [1, 5]. The initial
condition of each equation is Gaussian distribution N (, (7/2)?).

No pre-training Meta-learning
PDE type
PINN PINN-P PINN-S2S MAML Reptile Ours
Convection 0.0327 0.0217 0.2160 0.1036 0.0347 0.0085
Reaction 0.3907 0.2024 0.5907 0.0057 0.0064 0.0045

Conv-Diff-Reac 0.2210 0.2308 0.5983 0.0144 0.0701 0.0329

4.2.2 Performance on the general case of the CDR equation

Solution accuracy: Next, we present the performance of the proposed method on solving the
benchmark PDEs (not only in the failure mode but) in all available settings for /3, v, p. Due to space
reasons, we present only a subset of our results and leave the detailed results in Appendix M|} Table
shows that the proposed Hyper-LR-PINN mostly outperforms the baselines that operate in full rank.

Some observations on learned low-rank structures: Again, the proposed method learns rank
structures that are adaptive to the PDE parameter (Figure [#(b)). The learned rank structures vary
more dynamically (r from 20 to 34) as the PDE parameter range [1,20] is larger compared to [30,40].

Figure c) visualizes the magnitude of the learned diagonal elements s? in the second hidden layer.
The horizontal axis indicates the index of the element in s2, which is sorted in descending order for
analysis, and the vertical axis indicates the 8 value. The depicted result agrees with our intuitions in
many aspects: i) the values decay fast (indicating there exist low-rank structures), ii) the value of each
element s? either increases or decreases gradually as we vary (3, and iii) for higher 3, higher frequency
basis vectors are required to capture more oscillatory behavior exhibited in the solutions, which leads
to higher ranks. We report the information for other layers and other problems in Appendix [L.

Computational cost: Here, we compare the computational cost of - PINN ﬁ
Hyper-LR-PINN and PINN in a many-query scenario. We train Hyper- 8¢ * ™™™
LR-PINN for 5 € [1,20] with interval 1 (Phase 1) and perform Phase 2 l
on 8 € [1,20] with interval 0.5 (including unseen test PDE parameters). 6000 m
We record the number of epochs required for PINN and Hyper-LR-PINN “\‘ i
to reach an L2 absolute error of less than 0.05. Figure [6 reports the A
number of required epochs for each /3, showing that the number of epochs ., \\/
required for Hyper-LR-PINN slowly increases while that for PINNs A
increases rapidly; for most cases, Hyper-LR-PINN reaches the target (i.e.,
0.05) in only one epoch. We also emphasize that Hyper-LR-PINN in 05 ™ T

Phase 2 requires much less FLOPS in each epoch (See Section[3.2).

Figure 6: Computational
4.2.3 Performance on the 2D Helmholtz equation cost in epochs

Now we report experimental results on 2D Helmholtz equations for varying a; and as. Under the
same condition in Table[2, we train Hyper-LR-PINN for a € [2, 3] with interval 0.1 (@ = a1 = a2),
and compare the performance with PINN. Surprisingly, Hyper-LR-PINN approximates the solution

1.0 1.00 1.0 1.00
0.75 0.75 0.75
0.50 0.5 0.50 0.5 0.50
0.25 0.25 0.25
> B 0.00 > 0.0 0.00 > 0.0 0.00

-0.25 —-0.25 -0.25

-0.5 —0.50 -0.5 -0.50 -0.5 —0.50
' ~0.75 -0.75 ~0.75
-1.00

1075 . X) 1.0 -0 =05 00 05 1.0 % 1906 -05 00 05 10 -
X X X
(a) PINN (Abs.err.=0.7403) (b) Ours (Abs.err.=0.0285) (c) Exact solution

Figure 7: [2D-Helmholtz equation] Solution snapshots for a = 2.5

with high precision in only 10 epochs in Phase 2, while PINN struggles to find accurate solutions
over 2,000 epochs (Figure[7). We show more visualizations and detailed results in Appendix [T.

5 Related Work

Meta-learning of PINNs and INRs: HyperPINNs share some commonalities with our pro-
posed method in that they generate model parameters of PINNs via hypernetwork [23]]. However,
hyperPINNSs can only generate full-rank weights and do not have capabilities to handle parameter-
ized PDEs. Another relevant work is optimization-based meta-learning algorithms; representatively
MAML [20] and Reptile [21]]. In the area of INRs, meta-learning methods via MAML and Reptile
for obtaining initial weights for INRs have been studied in [24]]. In [25] 26]], meta-learning methods,
which are based on MAML, have been further extended to obtain sparse representation of INRs.

Low-rank formats in neural networks: In natural language processing, the models being em-
ployed (e.g., Bert) typically have hundreds of millions of model parameters and, thus, making the
computation efficient during the inference is one of the imminent issues. As a remedy, approximating
layers in low-rank via truncated SVD has been studied [13]. Modeling layers in low-rank in
general has been studied for MLPs and convolutional neural network architectures [31]]. In
the context of PINNs or INRs, there is no low-rank format has been investigated. The work that is the
closest to our work is SVD-PINNS [32]], which represents the hidden layers in the factored form as in
Eq. (1), but always in full-rank.

PINNs and their variants: There have been numerous sequels improving PINNs [1]] in many
different aspects. One of the main issues is the multi-term objectives; in [19], a special gradient-
based optimizer that balances multiple objective terms has been proposed, and in [33]], a network
architecture that enforce boundary conditions by design has been studied. Another main issue is
that training PINNs often fails on certain classes of PDEs (e.g., fail to capture sharp transition in
solutions over the spatial/temporal domains). This is due to the spectral bias and, as a remedy, in
[18]], training approaches that gradually increase the level of difficulties in training PINNs have been
proposed. In [33], a Lagrangian-type reformulation of PINNGs is proposed for convection-dominated
PDEs. There are also other types of improvements including Bayesian-version of PINNs and
PINNSs that enforce conservation laws [37]]. All these methods, however, require training from scratch
when the solution of a new PDE is sought.

6 Conclusion

In this paper, we propose a low-rank formatted physics-informed neural networks (PINNs) and a
hypernetwork-based meta-learning algorithm to solve parameterized partial differential equations
(PDEs). Our two-phase method learns a common set of basis vectors and adaptive rank structure for
varying PDE parameters in Phase 1 and approximate the solutions for unseen PDE parameters by
updating only the coefficients of the learned basis vectors in Phase 2. From the extensive numerical
experiments, we have demonstrated that the proposed method outperforms baselines in terms of
accuracy and computational/memory efficiency and does not suffer from the failure modes for various
parameterized PDEs.

Limitations: Our Hyper-LR-PINN primarily concentrates on the cases where the PDE parameters
are the coefficients of PDE terms. As a future study, we plan to extend our framework to more general
settings, where the PDE parameters define initial/boundary conditions, or the shape of domains. See
Appendix [A for more details.

Broader impacts: Hyper-LR-PINN can solve many equations even for PINN’s failure modes with
high precision. However, despite its small errors, one should exercise caution when applying it to
real-world critical applications.

Acknowledgments

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Arti-
ficial Intelligence Graduate School Program ay Yonsei University, 10%), and (No0.2022-0-00857,
Development of Al/databased financial/economic digital twin platform, 90%).

References

[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

[2] Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks
for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789,
2020.

[3] XTA Yang, Suhaib Zafar, J-X Wang, and Heng Xiao. Predictive large-eddy-simulation wall
modeling via physics-informed neural networks. Physical Review Fluids, 4(3):034602, 2019.

[4] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl.
Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics, 8:42,
2020.

[5] Enrui Zhang, Ming Dao, George Em Karniadakis, and Subra Suresh. Analyses of internal
structures and defects in materials using physics-informed neural networks. Science advances,
8(7):eabk0644, 2022.

[6] Wei Ma, Zhaocheng Liu, Zhaxylyk A Kudyshev, Alexandra Boltasseva, Wenshan Cai, and
Yongmin Liu. Deep learning for the design of photonic structures. Nature Photonics, 15(2):77-
90, 2021.

[7] Daniel Kressner and Christine Tobler. Low-rank tensor Krylov subspace methods for
parametrized linear systems. SIAM Journal on Matrix Analysis and Applications, 32(4):1288—
1316, 2011.

[8] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53-78, 2013.

[9] Kookjin Lee and Howard C Elman. A preconditioned low-rank projection method with a
rank-reduction scheme for stochastic partial differential equations. SIAM Journal on Scientific
Computing, 39(5):S828-S850, 2017.

[10] Markus Bachmayr, Albert Cohen, and Wolfgang Dahmen. Parametric PDEs: Sparse or low-rank
approximations? IMA Journal of Numerical Analysis, 38(4):1661-1708, 2018.

[11] Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear mani-
folds using deep convolutional autoencoders. Journal of Computational Physics, 404:108973,
2020.

[12] Philip Holmes, John L Lumley, Gahl Berkooz, and Clarence W Rowley. Turbulence, coherent
structures, dynamical systems and symmetry. Cambridge university press, 2012.

10

[13] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model
reduction methods for parametric dynamical systems. SIAM review, 57(4):483-531, 2015.

[14] Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-
rank compression for large NLP models. Advances in neural information processing systems,
34:29321-29334, 2021.

[15] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[16] Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and Yiran Chen.
Learning low-rank deep neural networks via singular vector orthogonality regularization and
singular value sparsification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 678-679, 2020.

[17] Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using
a soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

[18] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548-26560, 2021.

[19] Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park. Dpm: A novel
training method for physics-informed neural networks in extrapolation. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 8146-8154, 2021.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126—1135.
PMLR, 2017.

[21] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[22] Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. HyperPINN: Learning parameterized
differential equations with physics-informed hypernetworks. In The Symbiosis of Deep Learning
and Differential Equations, 2021.

[23] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[24] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan, Jonathan T
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural repre-
sentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2846-2855, 2021.

[25] Jaeho Lee, Jihoon Tack, Namhoon Lee, and Jinwoo Shin. Meta-learning sparse implicit neural
representations. Advances in Neural Information Processing Systems, 34:11769-11780, 2021.

[26] Jonathan Richard Schwarz and Yee Whye Teh. Meta-learning sparse compression networks.
arXiv preprint arXiv:2205.08957, 2022.

[27] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran.
Low-rank matrix factorization for deep neural network training with high-dimensional output

targets. In 2013 IEEE international conference on acoustics, speech and signal processing,
pages 6655-6659. IEEE, 2013.

[28] Yu Zhang, Ekapol Chuangsuwanich, and James Glass. Extracting deep neural network bottle-
neck features using low-rank matrix factorization. In 2014 IEEE international conference on
acoustics, speech and signal processing, pages 185-189. IEEE, 2014.

[29] Yong Zhao, Jinyu Li, and Yifan Gong. Low-rank plus diagonal adaptation for deep neural
networks. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 5005-5009. IEEE, 2016.

11

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Mikhail Khodak, Neil A Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regular-
ization of factorized neural layers. In International Conference on Learning Representations,

2020.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural
networks with low rank expansions. In Proceedings of the British Machine Vision Conference.
BMYVA Press, 2014.

Yihang Gao, Ka Chun Cheung, and Michael K Ng. SVD-PINNSs: Transfer learning of physics-
informed neural networks via singular value decomposition. arXiv preprint arXiv:2211.08760,
2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055-A3081, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301-5310. PMLR, 2019.

Rambod Mojgani, Maciej Balajewicz, and Pedram Hassanzadeh. Kolmogorov n—width and
Lagrangian physics-informed neural networks: A causality-conforming manifold for convection-
dominated pdes. Computer Methods in Applied Mechanics and Engineering, 404:115810, 2023.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neu-
ral networks for forward and inverse PDE problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 665-674, 2013.

Alireza Doostan and Gianluca Iaccarino. A least-squares approximation of partial differ-
ential equations with high-dimensional random inputs. Journal of computational physics,
228(12):4332-4345, 2009.

Sergey V Dolgov and Dmitry V Savostyanov. Alternating minimal energy methods for linear
systems in higher dimensions. SIAM Journal on Scientific Computing, 36(5):A2248—-A2271,
2014.

Kookjin Lee, Howard C Elman, Catherine E Powell, and Dongeun Lee. Enhanced alternat-
ing energy minimization methods for stochastic galerkin matrix equations. BIT Numerical
Mathematics, 62(3):965-994, 2022.

K. Dingle, C. Q. Camargo, and A. A. Louis. Input-output maps are strongly biased towards
simple outputs. Nature communications, 2018.

Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the
early-time learning dynamics of neural networks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, 2020.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. arXiv, 2021.

Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview of reservoir
computing: theory, applications and implementations. In Proceedings of the 15th european
symposium on artificial neural networks. p. 471-482 2007, pages 471-482, 2007.

12

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026-1034, 2015.

[48] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

13

	Introduction
	Naïve low-rank PINNs
	Hyper-LR-PINNs: hypernetwork-based meta-learning low-rank PINNs
	Hypernetwork-based neural network architecture
	Two-phase training algorithm

	Experiments
	Benchmark parameterized PDEs
	Experimental results
	Performance on the failure mode of the CDR equation
	Performance on the general case of the CDR equation
	Performance on the 2D Helmholtz equation

	Related Work
	Conclusion
	Limitations
	Remark on our low-rank approximation in general deep learning
	Reduced-Order Modeling (ROM)
	Preliminary experiments
	Approximating trained PINNs' weights with low-rank matrices
	A study on the effect of rank and orthogonality of basis sets for varying PDE parameters

	Proposed two-phase training algorithm
	Reproducibility
	Meta-learning baselines: MAML and Reptile
	Comparisons of baselines and our method
	Train and test datasets generation
	Ablation Study
	Adaptive rank: learned rank structure of hidden layers
	Visualization of learned diagonal elements for varying PDE parameters
	More experimental results on general cases
	Experimental results on failure modes
	Convection equation
	Reaction equation
	Reaction-diffusion equation

	Loss curves of meta-learning methods in Phase 2
	Adaptive rank: outside of the range in training phase 1
	Comparison of learnable basis and fixed basis on Hyper-LR-PINN
	Visualization of the results in phase 1 and phase 2
	Other experiments
	Model size study for PINNs
	Performance comparisons on full-rank and adaptive-rank in Hyper-LR-PINNs
	Performance comparisons against Hyper-PINNs
	Performance on extrapolation in the PDE parameter domain

	2D-Helmholtz equation
	Standard deviation

