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Abstract

A comparison-based search algorithm lets a user
find a target item t in a database by answering
queries of the form, “Which of items i and j is
closer to t?” Instead of formulating an explicit
query (such as one or several keywords), the user
navigates towards the target via a sequence of such
(typically noisy) queries. We propose a scale-free
probabilistic oracle model called γ-CKL for such
similarity triplets (i, j; t), which generalizes the
CKL triplet model proposed in the literature. The
generalization affords independent control over the
discriminating power of the oracle and the dimen-
sion of the feature space containing the items. We
develop a search algorithm with provably exponen-
tial rate of convergence under the γ-CKL oracle,
thanks to a backtracking strategy that deals with
the unavoidable errors in updating the belief region
around the target. We evaluate the performance of
the algorithm both over the posited oracle and over
several real-world triplet datasets. We also report
on a comprehensive user study, where human sub-
jects navigate a database of face portraits.

1 INTRODUCTION

Searching a database in order to find a target item via some
explicit query, such as one or several keywords, is a well-
studied problem in information retrieval (IR). However, de-
pending on the data type, it can be difficult or inefficient
to formulate an explicit query. For example, the witness of
a crime working with police does not sketch the face of a
suspect; instead, she provides feedback on a sequence of
images to gradually arrive at a faithful approximation of the
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suspect’s face. This is an example of interactive comparison-
based search, where the user navigates towards the target
item sequentially [Tschopp et al., 2011, Canal et al., 2019,
Chumbalov et al., 2020]. In this approach, the user does
not formulate an explicit query; rather, she answers a set of
simple similarity queries with respect to the target: Among
two items i and j provided by the system, which is closer
to the intended target t? We refer to the outcome of such a
query as a triplet (i, j; t): among {i, j}, the user considered
i more similar to t.

The central component in such a system is a probabilistic or-
acle model that encapsulates how users answer such queries.
Most approaches, including ours, posit that items live in
some low-dimensional feature space. The embeddings of
items (x1,x2, . . . ,xn) in this feature space determine the
noisy outcomes of triplet queries. Depending on the sce-
nario, these embeddings can be derived from explicit item
features (e.g., describing the geometry of a face), or they
can be considered latent and estimated from past triplet data
[Tamuz et al., 2011, Van Der Maaten and Weinberger, 2012,
Chumbalov et al., 2020]. A search algorithm then presents
a pair of items to the user, collects feedback, and repeats
this process, until it can guess the target.

Chumbalov et al. [2020] posit a Probit oracle model that
assumes that the probability of answering i or j depends
on the distance of t from the bisecting hyperplane between
xi and xj , relative to a noise parameter σe. They develop a
search algorithm that maintains a Gaussian belief distribu-
tion over the embedding space, which captures the current
knowledge about xt. Each query maximizes the informa-
tion gain relative to this belief distribution, until the target
is guessed correctly. A drawback inherent to their oracle
model is that scaling to large n is problematic due to the
assumptions underlying the Probit oracle: once the belief
distribution starts concentrating, the information contained
in queries decreases. For example, suppose for exposition’s
sake that the algorithm has narrowed down the target to two
candidates t′ and t′′, and that the distance ∥xt′ − xt′′∥ is
small, relative to the noise parameter σe. Then any possible



query pair (i, j) generates answers relative to t′ and to t′′

that are nearly indistinguishable (i.e., they are Bernoulli
random variables whose parameters are close). This means
that the rate at which the belief distribution concentrates
around xt decreases, slowing down progress of the search.
This leads to an unfavorable scaling of expected search cost
when n grows large1.

In this paper, we argue that it is plausible to assume a more
favorable oracle model. Specifically, we posit that the prob-
ability of choosing i over j is scale-invariant or self-similar,
i.e., that it depends on the item embeddings only via the ratio
of ∥xi − xt∥ to ∥xj − xt∥. In other words, to compare two
very dissimilar items with respect to a target that is very dis-
similar from both, is no harder (nor easier) than to compare
two quite similar items to a nearby target. There is some
evidence that this model reflects some of the psychological
laws in perception [Chater and Brown, 1999, Laming, 1986],
and we provide additional experimental evidence on this
point in Section 4.

Under a perfectly scale-free oracle, the information required
to halve the volume of the belief region does not depend
on the scale of the current belief region. This suggests that
there is hope that this volume can shrink exponentially fast
with the number of queries. Indeed, a central contribution
in this paper is an algorithm that achieves exponential con-
vergence. In the noisy setting we study, this is non-trivial,
because there is always the possibility of errors in oracle
answers, such that the current belief moves too far away
from the target. We solve this with a backtracking strategy
that detects the occurrence of an error based on subsequent
queries, and expands the belief region in order to “recap-
ture” the target. We prove the exponential convergence of
the expected distance to the target via an equivalence of a
biased random walk on an infinite graph, which captures
the containment relationships among the family of belief
regions available to the algorithm.

Related work. A number of different triplet comparison
models were introduced and studied in the machine-learning
literature. Their main focus is on learning an embedding
from comparison triplet data, which then allows predictions
for unseen triplets. In Van Der Maaten and Weinberger
[2012], the authors propose the t-STE model and capture
the similarities between items via a Student-t kernel, whose
power-law tail confers robustness to outlier triplets. This
model shares the drawback of the Probit model in that a
narrow query (∥xi − xj∥ → 0) provides varnishing infor-
mation, regardless of the target location. Later, Amid and
Ukkonen [2015] generalize the idea of the t-STE model
by allowing multiple representations of the same object in
several different low-dimensional maps. The scale-invariant
CKL model, introduced in Tamuz et al. [2011], corresponds

1We note that simply reducing σe does not help, because this
would make macroscopic queries too certain.

to the special case γ = 2 of the model considered in this
paper. The Probit model is explored in Chumbalov et al.
[2020] and Canal et al. [2019], where the output probabil-
ity is a function of the distance between the target and the
hyperplane bisecting the two query points. For a thorough
discussion and comparison of (both noisy and noiseless)
comparison triplet oracles and the embedding techniques
they induce, see Vankadara et al. [2023].

A number of papers consider the problem of searching for
a target using a sequence of noiseless comparison queries.
Search via such comparison queries has been considered,
for example, in Dasgupta [2005], Nowak [2008]. Karbasi
et al. [2012] assume that all distances between pairs of items
are known. Their analysis assumes either a noiseless oracle,
or an oracle with constant error probability, independently
of the distances between query items and target. This uni-
form noise model is not a realistic assumption for most
applications, because it essentially assumes that every query
conveys the same amount of information, independently of
xi,j,t; if the true oracle is different, this assumption leads
to inefficient search algorithms. Extensions of this line of
work include oracles with ternary output including “I don’t
know” for similar query items [Kazemi et al., 2018], and
larger query sets from which the most similar item is se-
lected [Karbasi et al., 2015]. Although these approaches are
similar in spirit to the problem considered here, the resulting
search algorithms are not robust to noise, as they are unable
to correct for incorrect query outcomes as the search pro-
gresses. Finally, there exists a line of work where noiseless
triplet queries are used for efficient nearest-neighbor search
in high-dimensional spaces [Haghiri et al., 2017].

The problem of searching in a space with noisy similarity
queries is studied in Cox et al. [2000], Fang and Geman
[2005], Ferecatu and Geman [2007], Suditu and Fleuret
[2012], Garnett et al. [2012], using different comparison
models in a fully Bayesian framework. In order to find the
next query to ask, these methods usually aim to maximize
the information gain by performing an exhaustive search
over all combinations of pairs of items, which becomes pro-
hibitively expensive for large n. This unfavorable computa-
tional efficiency was addressed in Canal et al. [2019] and
Chumbalov et al. [2020], where the authors propose search
schemes with more favorable tradeoffs between query and
computational complexity by approximating the knowledge
about xt with a parametric distribution, which results in
much better scalability. Comparison queries have also been
explored in other active-learning scenarios, where, rather
than finding one target item (or target point in a feature
space), the goal is to determine a hypothesis function h that
assigns binary labels for all items in the database, assuming
the two classes are separable by an unknown hyperplane
[Kane et al., 2017, Nowak, 2009].

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe the γ-CKL model and explore the scaling



relationship between γ and the embedding dimension d with
fixed error rate. In Section 3, we give the search algorithm
for the dense case, i.e., when every point x ∈ Ω ⊂ Rd is
a potential target. We formally prove that this algorithm
shrinks the expected distance to the target exponentially fast.
In Section 4, we compare γ-CKL against commonly used
choice models on a series of comparison datasets and show
the results of a comprehensive user study that validates the
performance of the γ-CKL model. We also present synthetic
experiments that confirm the exponential convergence rate
of our new algorithm.

2 MODEL

For a query Q = (xi,xj) and the corresponding oracle
answer Y , call pxi,xj ,xt

= P (Y = xi | Q = (xi,xj),xt)
the probability of the outcome Y = xi, i.e., "i is closer than
j to t". In this paper, we discuss the advantages of a scale-
free oracle model, for which pc·xi,c·xj ,c·xt = pxi,xj ,xt

∀c ∈ (0, 1). To the best of our knowledge, among the mod-
els studied in the existing machine-learning literature, only
Tamuz et al. [2011] have proposed such a scale-invariant
choice model:

pCKL
xi,xj ,xt

=
||xj − xt||2

||xi − xt||2 + ||xj − xt||2
. (1)

A shortcoming of (1) is its high sensitivity to the “curse of
dimensionality”: the probability of error grows quickly with
d. Indeed, for a fixed target point and two query points sam-
pled uniformly at random from a ball around the target, the
predicted probability of the closest point to be chosen by the
oracle (1) decays to 1/2 for d→∞. This makes comparison-
based searching difficult, because most queries would pro-
vide almost no information about the target’s location. We
propose a simple generalization of (1) that addresses this
shortcoming:

pxi,xj ,xt
=

||xj − xt||γ

||xi − xt||γ + ||xj − xt||γ
, (2)

with γ > 0. The parameter γ controls the power of the
oracle independently of the embedding dimension d. To
see this, note that when γ is fixed and d → ∞, the prob-
ability (2) for a uniformly selected pair of points xi,xj

goes to 1/2. On the other hand, when γ → ∞ and d
is fixed, this probability becomes an indicator function
pxi,xj ,xt

→ I {||xi − xt|| < ||xj − xt||}. This suggests
that as the dimension d of the space grows, the new model
should enable us to control the average outcome bias by
scaling the parameter γ accordingly. In the following theo-
rem, we show that a linear scaling relationship between γ
and d achieves this:

Theorem 2.1. Consider a d-dimensional ball B ⊂ Rd of
radius 1. Let the target point xt be the center of B. For
two points xa,xb sampled uniformly from B, let pQ be the

probability of the correct answer on a query Q = (xa,xb)
given the target xt. For any c2 ∈ [ 12 , 1] there is a constant
c1 > 0 such that if γ grows linearly with d, γ = c1d+ o(d),
then pQ → c2.

We provide some intuition on a condition for the geometric
structure of a set of queries to be rich enough to identify the
target xt ∈ Rd under the γ-CKL model. In particular, the
following proposition (proven in the appendix) establishes
an identifiability condition of the target xt for a finite set
of queries Q̂ = {Q̂1, Q̂2, . . . , Q̂L} for which the exact an-
swer probabilities are known (or alternatively, that are each
repeated infinitely many times so that the answer probabil-
ities can be exactly estimated). Each query constrains the
locus of xt to a d− 1-dimensional sphere; if these spheres
intersect in only one point, it is at xt (cf. Fig. 1).

Proposition 2.2. Assume that Ω ⊂ Rd is d-dimensional
compact set and that the target xt is sampled uniformly at
random from Ω. Consider an infinite sequence of queries
Q = {Q0, Q1, . . . } that is asked to the oracle, where
each Qi ∈ Q̂ = {Q̂1, Q̂2, . . . , Q̂L} and each Q̂i, i =
1, 2, . . . , L, is repeated infinitely many times. Also for each
Q̂i = (x̂a

i , x̂
b
i ) let ci = ∥x̂a

i − xt∥/∥x̂b
i − xt∥ and ẑi =

(cix̂
b
i−x̂a

i )/(1−ci). If Q̂ satisfies rank(Z) = d, where Z is
the d× (L− 1) matrix of vectors {(ẑi− ẑL) : Q̂i ∈ Q̂, i =
1, . . . , L − 1}, then argmaxx∈Ω E[p(x | Y1:m)] → xt as
m→∞.

A natural question to ask is: Is the scale-free model we
propose a reasonable proxy for human comparisons? In
Section 4.1, we study this question empirically by using
several real-world datasets. We learn latent embeddings by
maximizing the product of likelihoods (2) on a training set,
and evaluate the accuracy on a hold-out set. We answer the
question in the affirmative, and find that the addition of the
γ parameter enables our model to perform favorably when
compared to other commonly used choice models.

In the next section, we first focus on the search problem,
and assume that item embeddings are known.

3 ADAPTIVE SEARCH ALGORITHM

We now consider a scenario where the search space Ω is a
hypercube in Rd and where any xt ∈ Ω can be the target. In
this continuous setting, a search algorithm should be able
to "zoom in" indefinitely, thus finding ever smaller regions
containing the target.

Having access to a scale-free oracle enables us to ask queries
where the response noise is independent of the current scale
(or "zoom level"). A constant level of noise in the oracle’s
answers means that shrinking the current region incurs con-
stant expected cost in terms of the number of queries asked.
This suggests an exponential rate of convergence, as long



(a) One query (xa,xb) (b) rank(Z) = 2 (c) rank(Z) = 1

Figure 1: Illustration of the result of Proposition 2.2 in R2. (a) For each query the subset of points in Ω that maximizes
the expected log-likelihood geometrically is a sphere containing xt with center z. (b) When the set of sphere centers {zi}
corresponding to the queries Q̂ span a volume in R2, these spheres intersect at exactly one point, xt. (c) Otherwise, there
are multiple points of intersection, and xt is not identifiable.

as we can ensure that the search does not permanently veer
away from the target. For the formal analysis, we assume
that items are dense within the feature space, so that the
target and query items may be at any location. This allows
us to reason about the speed of convergence of the search
process towards the target, instead of a stopping time of that
process over a finite set of items. In real-world scenarios
with a finite number of items, we believe the theory gives us
the following insight. Starting with a large number of items,
we expect the situation to be similar to the dense case we
study theoretically, and informally we expect the algorithm
to be able to “zoom in” on the target with an exponential
rate of convergence, until it has arrived at a zoom level at
which the dataset begins to look sparse. At that point, the
theory is no longer applicable, but we expect to have filtered
the search space down to a small number of items, such that
identifying the target object among the remaining items is
much easier to do.

Our algorithm operates in stages. At each stage, the algo-
rithm investigates a region by submitting queries until a
decision to zoom in or backtrack can be made. This deci-
sion is based only on information collected in the current
stage. At the beginning of a stage, all knowledge about prior
queries and oracle replies is discarded, and the only state of
the algorithm is the current region. Due to this conditional
independence of decisions, we find that the sequence of
regions visited by our algorithm is Markovian. We frame
our search process as a random walk on a graph, where
each node corresponds to a region X ∈ Ω. Under mild as-
sumptions on the transition probabilities between regions,
an erroneous decision, i.e., zooming into a region that does
not contain the target, must eventually be undone with prob-
ability 1. A high-level overview of this idea is given in
Algorithm 1. Constructing a stochastic coupling between a
counting process and the random walk on regions enables
us to analyze the probability of consecutive errors and to ex-

Algorithm 1 Exponential search algorithm
Input: query budget M
s← 0 {stage number}
Xs ← Ω {current region}
m← 0 {number of queries asked}
repeat
D ← {} {Drop previous observations}
repeat

(x̂i, x̂j)← nextQuery(Xs,D)
ŷ ∼ Bernoulli(px̂i,x̂j ,xt

)
D ← D ∪ {(x̂i, x̂j , ŷ)}
m← m+ 1

until decisionReady(Xs,D) = true
Xs+1 ← zoom into / out of Xs based on D
s← s+ 1

until m > M

plicitly calculate recurrence times. We prove an exponential
rate of convergence in Section 3.1.

We show that with access to a γ-CKL model, the assump-
tions on transition probabilities can always be satisfied. In
Section 3.2, to ensure only a constant number of queries
is needed in each stage, we present a query scheme that
relies on the properties of a scale-free oracle. To facilitate
a formal proof, this scheme is based on hypothesis testing.
We discuss an efficient implementation based on numerical
integration in Section 3.3.

3.1 CONVERGENCE ANALYSIS

Let X be the current belief region of the search process. We
assume that X is a unit hypercube centered at the origin.
Here, we constrain our analysis to hypercubes, nevertheless,
the idea of the algorithm applies to arbitrary regions. Let S
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Figure 2: X , two children and parent region.

be a hypercube centered at the origin with edge length 3
2 .

Let TS, 14 be a set of hypercubes with edge length 1
4 that tile

S. We define the set of children D(X). D(X) is the set of
all hypercubes of edge length 1

2 that can be constructed by
joining tiles in TS, 14 . Figure 2 illustrates this construction.
We see that along each axis, there are five possible posi-
tions for a child, which give us a total of 5d children. The
hypercube of edge length 4, centered at the origin contains
all regions X ′ for which X ∈ D(X ′). It is the union of all
direct ancestors of X , for convenience we will refer to it as
the parent u(X) of X . In our algorithm, backtracking from
X leads to u(X).

If xt ∈ X then we call X green (correct), otherwise red
(incorrect). A green region must have at least one green
child. The parent of a green region must be green.

At every stage, our algorithm collects query replies, until
it makes a decision to proceed to one of the child regions
or to backtrack to the parent. Similarly to the classification
of regions, we distinguish between correct and incorrect
decisions. Proceeding to a green node is correct, whereas
backtracking from a green node is incorrect. Proceeding to
a red node is incorrect, whereas backtracking from a red
node is correct. The probability of all these events depends
on the current region X and the target xt. Table 1 shows a
comprehensive listing. We refer to the probabilities associ-
ated with a correct transition with p and incorrect transitions
with q. For a green region, there are two incorrect decisions:
backtracking and straying by proceeding to a red child. They
are named qu and qs. The correct decision is to proceed to
a green child, it is named pd. For a red region, there are
two correct decisions: backtracking and recovering by pro-
ceeding to a green child. They are named pu and pr. The
incorrect decision is to proceed to a red child, it is named
qd. For the analysis of a random walk on colored regions we
need the total probability of a correct or incorrect decision.
This is also shown in Table 1 An illustration with nested
regions and the corresponding transitions is shown in Figure

Table 1: Transition probabilities.

X IS GREEN:
TRANSITION TO PROBABILITY

PARENT qu(X,xt)
GREEN CHILD pd(X,xt)
RED CHILD qs(X,xt)

CORRECT p(X,xt) = pd(X,xt)
INCORRECT q(X,xt) = qu(X,xt) + qs(X,xt)

X IS RED:
TRANSITION TO PROBABILITY

PARENT pu(X,xt)
RED CHILD qd(X,xt)
GREEN CHILD pr(X,xt)

CORRECT p(X,xt) = pu(X,xt) + pr(X,xt)
INCORRECT q(X,xt) = qd(X,xt)

3.

Lemma 3.1. The sequence of regions Xs visited in each
stage s of the search process forms a random walk.

Intuitively, we need the probability of making a correct deci-
sion to be strictly higher than the probability of an incorrect
decision. This is formalized in the following definition: Let
b > 0 be a constant, such that for any X ⊂ Ω that can be
visited by our algorithm, and any xt:

Assumption 3.2. p(X,xt)− q(X,xt) > b.

Assumption 3.3. xt ∈ X =⇒ pd(X,xt)− 2qu(X,xt)−
qs(X,xt)

b+1
2b > 0.

Assumption 3.3 is designed to facilitate the proof of Theo-
rem 3.8.

In practice, it is simple to tune the confidence with which the
search makes its decisions: Collecting more queries before
committing to a decision decreases the chance of making a
mistake. The next theorem asserts that, with access to a scale-
free oracle, it is always possible to satisfy Assumptions 3.2
and 3.3. We constructively prove Theorem 3.4 by presenting
Algorithm 2 in Section 3.2.

Theorem 3.4. For any b and any X , there is an algorithm
that needs to observe, at most, a constant and finite number
of replies from a γ-CKL oracle, until it can make a decision
with probabilities that satisfy Assumptions 3.2 and 3.3.

We keep track of the number of incorrect decisions. Let
z(xt, X) be the number of backtracking decisions that are
needed to reach a green region from X . If the search pro-
ceeds to a red child, z(xt, X) is either increased by 1, or



X1: z(xt, X1) = 0

X2: z(xt, X2) = 1

X5: z(xt, X5) = 0

X3: z(xt, X3) = 1

X4: z(xt, X4) = 1X1

X2

X3
X4

X5 xt

qs(X1,xt)

qd(X2,xt)

pr(X3,xt)
pu(X3,xt)

pd(X1,xt)

Figure 3: Regions and target (blue dot) on the left side, selected transitions on the right side.

stays unchanged (it is possible that no additional backtrack-
ing is required). Recovering, by proceeding to a green child,
means immediately setting z(xt, X) to 0.

From Assumption 3.2 we get xt ∈ X =⇒ qu(X,xt) +
qs(X,xt) <

1−b
2 and xt /∈ X =⇒ qd(X,xt) <

1−b
2 . We

construct a time-homogenous random walk that will serve
as a stochastic upper bound for z(xt, Xs). Let Zs be a ran-
dom walk on natural numbers, starting at Z0 = z(xt, X0).
At each step, Zs is incremented with probability 1−b

2 and
decremented with probability 1+b

2 . Once Zs reaches 0, there
is a self loop of probability 1+b

2 and a transition to 1 with
probability 1−b

2 .

Lemma 3.5. Given a stochastic decision criterion that sat-
isfies Assumption 3.2, Zs is a stochastic upper bound for
z(xt, Xs), we denote this by z(xt, Xs) ⪯st. Zs

Proof sketch. We construct a coupling between the random
walk X̃s and a random variable Z̃. We then use induction
to show that with probability 1 it holds that Z̃ > z(xt, X̃s).

Lemma 3.6. Given a stochastic decision criterion that sat-
isfies Assumption 3.2, for any k > 0

P[z(xt, Xs) > k] ≤
(
1− b

1 + b

)k

.

Let τX = inf{s > 0 | xt ∈ Xs, X0 = X} be the stopping
time of reaching a green region, starting from X .

Lemma 3.7. . Let X be red and u(X) be green (this occurs
after just having strayed from a green region). Given a
stochastic decision criterion that satisfies Assumption 3.2,
it holds that E[τX ] ≤ 1

b .

Proof sketch. The proof relies on Zs as a stochastic upper
bound. We first use the Ergodic Theorem to prove the exis-
tence of a unique stationary distribution. We then explicitly

calculate this stationary distribution and use it to derive re-
currence times. This enables us to prove an upper bound on
the expected stopping time.

To quantify the progress of our search, we keep track of
the depth P (X) of a region. The depth is the number of
consecutive proceed decisions needed to reach this region,
starting from Ω. The edge length of a region X at depth
P (X) is

(
1
2

)P (X)
. The k-th ancestor u(X, k) is reached by

backtracking k times from X . With the following theorem
we show the exponential rate of convergence of our algo-
rithm. At every stage s of the algorithm, u(X, k) contains
the target with high probability (which doesn’t depend on s)
and its depth increases at a linear rate.

Theorem 3.8. Given a subroutine that satisfies Assumptions
3.2 and 3.3, for any desired probability of error δ, there are
two constants k > 0 and C > 0 such that

P [xt ∈ u(Xs, k)] > 1− δ, E [P (u(Xs, k))] > Cs.

Proof sketch. We define a stopping time of arriving at a
green region after leaving a green region. Using the results of
Lemma 3.7, we prove an upper bound for the expectation of
this stopping time. Using Assumption 3.3, we show that the
expected depth of each consecutive green region increases
linearly. Together with Lemma 3.6, the statement follows.

3.2 A SCALE-FREE DECISION CRITERION

In each stage, we need a querying scheme that asks at most
a constant number of queries, until it arrives at a decision.
The probability of error needs to satisfy Assumptions 3.2
and 3.3.

Our scheme is based on a test for the hypothesis (H) "xt is
in the region X". As xt approaches the boundary of X , it
becomes increasingly hard to distinguish whether the point



is inside or outside. This leads to a region of uncertainty U
around X in which our hypothesis test is not reliable.

Let X be a hypercube of edge length 2, centered at the
origin and let U be a hypersphere with radius ru > 1, also
centered at the origin. Everything outside of U is F = Ω\U .
We will construct a query Q and calculate the corresponding
ru such that repeatedly observing the outcome of Q enables
us, with probability > 1− δ, to accept (H) if xt ∈ X , or to
reject (H) if xt ∈ F .

Lemma 3.9. We assume d > 1. Let Q = (0, (1 + d)e),
where e = (1, 0, 0, . . . ) is a unit vector along an arbitrarily
chosen axis. Let ru = 1 + d+

√
d3+d2−d
d−1 . Let X,U, F be

defined as above. Then for any delta δ > 0 observing a
constant number of query outcomes is enough to apply a one-
tailed binomial hypothesis test which will with probability
1− δ: accept (H), if xt ∈ X , or reject (H), if xt ∈ F . The
necessary number of observations does not depend on X
and xt.

We need to find out whether a child of the current belief
region contains the target. Due to the region of uncertainty,
we cannot apply the hypothesis test directly to the child
regions. Instead, we construct a finer discretization grid.

In Lemma 3.9, we assume a region of edge length 2. As our
oracle model is scale-free, we can apply the hypothesis test
to a smaller region, which results in a smaller uncertainty
region as well. For a region with edge length rc, the radius
of the uncertain region is scaled by rc/2. Let rc < 1

8ru
,

which leads to an uncertain region with radius ru rc
2 < 1

16 .

Let T (S, rc,) be a tiling of S with hypercubes of edge length
rc, we refer to the cells in this tiling by ck, k = 1..K, the
respective centers are xck . If the edge length of S is not
divisible by rc, it is always possible to pick a smaller value
for rc. Each cell ck in the tiling belongs to one of these
classes:

• (A) xt ∈ ck. When using the hypothesis test, with high
probability, our test will not reject (H). We assume that
cells include their border. If the target happens to lie
exactly on the boundary between cells, then all of them
belong to class (A).

• (B) xt /∈ ck ∧ ||xt − xck || < 1
16 . When using the

hypothesis test, the target lies in the uncertain region.
We do not make any assumption about whether (H) is
rejected or not.

• (C) xt /∈ ck ∧ ||xt − xck || ≥ 1
16 . When using the

hypothesis test, with high probability, our test will
reject hypothesis (H).

When using the hypothesis test, we know that, with high
probability, all cells in class (C) are rejected. The remaining
cells fit in a small bounding box. This is illustrated in Figure
4.

A
B

C

1
4

Figure 4: Layout of the nested grid. The target lies in cell A.

Algorithm 2 Search with hypothesis test criterion
Set up a discretization T (S, rc,).
H ← ∅

This loop replaces the nextQuery subroutine from Algo-
rithm 1
for ck in T (S, rc,) do

perform the hyp. test from Lemma 3.9 for ck
if hypothesis is not rejected then

H ← H ∪ ck

This criterion corresponds to decisionReady from Algo-
rithm 1
if ∃X̂ ∈ D(Xs) : H ⊆ X̂ then

proceed to X̂
else

backtrack to parent u(Xs)

Lemma 3.10. There is a hypercube B with an edge length
of less than 1

4 , such that all cells in the classes (A) and (B)
are fully contained in B.

We apply the hypothesis test to all cells in T (S, rc,). Let B
be the bounding box containing all cells for which (H) was
not rejected. If B does not overlap with X , we backtrack.
Otherwise, if there is a child region that fully contains B, we
proceed to it. This mechanism is formalized in Algorithm
2. The following Theorem 3.11 shows that this algorithm
enables us to make decisions that lead to an exponential rate
of convergence, i.e., they satisfy Assumptions 3.2 and 3.3.

Theorem 3.11. Algorithm 2 can achieve any desired prob-
ability of error δ̂, while requiring only a finite number of
queries. In particular, choosing δ̂ small enough ensures that
the scheme is compatible with Assumptions 3.2 and 3.3.



3.3 IMPLEMENTATION

In practice, it is not efficient to conduct a series of indepen-
dent hypothesis tests. A real-world implementation should,
instead, rely on numerical integration. Within each stage,
the algorithm collects oracle replies and updates an approx-
imation of the posterior distribution of the target location,
until a decision can be made. The nextQuery subroutine in
Algorithm 1 then corresponds to a random sample based
on the current belief region. As more and more evidence
from queries is collected, the posterior distribution will ei-
ther concentrate in a child region, or show that the target
is likely not in the current belief region. We can define a
confidence threshold α: The algorithm proceeds if there is
a subregion X̂ with

∫
X̂
p(xt|Q, y) > α and backtracks if∫

X
p(xt|Q, y) < 1− α, this prescribes a criterion for deci-

sionReady in Algorithm 1. Please refer to the supplementary
material for an implementation in Python and to Section 4.3
for a benchmark of our algorithm based on synthetic data.

4 EMPIRICAL EVALUATION

4.1 OFFLINE COMPARISONS DATASETS

In order to validate how well our proposed model fits the
real world data, we compare it with the oracle choice models
from the literature, namely t-STE, CKL, and Probit in an
experiment on three real-world triplet comparisons datasets:
Musical Artists Ellis et al. [2002] containing 9’107 triplets
of n = 400 musicians, Food Wilber et al. [2014] containing
190’376 triplets of n = 100 food images, and Movie Ac-
tors Chumbalov et al. [2020] containing 50’026 triplets of
n = 552 actors. For each dataset, we learned an embedding
for every model using a different number of dimensions d
and performed a 10-fold cross-validation to compute the
resulting accuracy on a holdout set. The hyperparameters
for each model were optimized and the best performing
configurations for each d are reported. Overall, across the
three datasets γ-CKL correctly predicts between 84% and
86% of triplets, see Fig. 5. For Musical Artists γ-CKL is on
par with t-STE and outperforms Probit and CKL. For Food,
γ-CKL are on par with t-STE and Probit and significantly
outperforms CKL.. For Movie Actors dataset, γ-CKL out-
performs its competitors. We can see that the γ-CKL model
immediately benefits from having a general γ parameter
already in small dimensions compared to the original CKL.
We can conclude that the new proposed oracle model very
well reflects the real user behaviour on the comparison-like
tasks. We also note that increasing d benefits the quality of
the learned embedding for γ-CKL, and as d increases, the
best performing values of γ tend to also increase, which is
aligned with the findings of Theorem 2.1 (see Appendix).

4.2 INTERACTIVE USER-STUDY

We are interested in the performance of a scale-free oracle
model for the purpose of interactive search. The current
state of the art is GAUSSSEARCH, as benchmarked in a user
study by Chumbalov et al. [2020]. To compare γ-CKL to
the Probit model underpinning GAUSSSEARCH, we imple-
ment an algorithm γ-CKLSEARCH similar in the spirit to
GAUSSSEARCH, based on the likelihood predicted by γ-
CKL (see Appendix). We then compare the two algorithms
in a user study designed to mimic the setting of Chum-
balov et al. [2020]. We not only find that GAUSSSEARCH
performs slightly better than in the original study (thus vali-
dating the state-of-the-art), but also observe a significantly
better search performance with γ-CKL.

Our set of items contains n = 513 pictures of famous movie
actors2. At each step of a search, the user is presented with
four pictures of faces of yet unseen actors and is asked to
choose the one that resembles her target the most. The search
is complete once the user finds her target, i.e., when the pic-
ture of the target’s face appears in one of the four displayed
pictures. An embedding of actors’ faces has been learned
individually for each algorithm, from triplets collected prior
to the experiment.

Our study is designed with controlled randomization. Each
user sees a target at most once. Each target is searched for
twice, once with algorithm γ-CKLSEARCH and once with
GAUSSSEARCH. This corresponds to an across-subject de-
sign and reduces item-related bias. To reduce user-related
bias, we also use a within-subject design, where each user
performs the same amount of searches with each of the
two algorithms. The order in which searches are seen is
random. Users are not aware of the algorithm they are test-
ing. In total, we recruited 24 participants. We collected 207
search trajectories, 104 with GAUSSSEARCH and 103 with
algorithm γ-CKLSEARCH. Our new method outperforms
GAUSSSEARCH: with γ-CKLSEARCH a user needs on av-
erage 18.83±1.257 queries to find the target, whereas with
GAUSSSEARCH he needs on average 22.08± 1.658 queries.
γ-CKLSEARCH algorithm tends to ask queries that are cog-
nitively easier for humans to answer: on average participants
were spending 11.62 seconds to decide on a query during
a search with γ-CKLSEARCH versus 13.19 seconds for a
query from GAUSSSEARCH.

4.3 SYNTHETIC DATA

We created an open-sourced version of our algorithm, based
on PyTorch Paszke et al. [2019] and provide it in the sup-
plementary material. A synthetic evaluation of our search
algorithm is shown in Figure 6. To illustrate the robustness
of our algorithm, we show a variety of constellations of

2A demo version of this experiment is available under https:
//who-is-th.at

https://who-is-th.at
https://who-is-th.at


Figure 5: Quality of the embedding produced using different comparison models. Accuracy is reported on a 10-fold holdout
triplet set. Our γ-CKL models either beat or are on par with competing oracle models.

Figure 6: Exponential convergence across a range of dimen-
sions and values for γ.

γ and d; for each, we use 50 individual runs to compute
confidence intervals. Our implementation is Algorithm 1
based on the heuristic from Section 3.3. The volume of a
belief area scales with O(d), to be able to compare the con-
vergence rate across different values for d, we present the
distance to the target, to the power of d. The implementa-
tion as well as additional visualizations are included in the
supplementary material.

5 CONCLUSION

We have introduced γ-CKL, a scale-free oracle model with
a parameter γ to control the power of the oracle. γ-CKL
yields embeddings that are competitive with commonly used
choice models. It scales favourably to high embedding di-
mensions, a key improvement over CKL.

In the context of interactive search, γ-CKL outperforms a
state-of-the-art implementation based on the Probit model.
Our user study reproduces the existing results in a blind

randomized trial and establishes statistically significant im-
provements for γ-CKL over Probit. Interestingly, we ob-
served not only a reduction in the number of search steps
on average, but also a reduction in the average time our sub-
jects took to answer queries. This suggests a lower cognitive
overhead, and provides further evidence that γ-CKL is well
suited to model choices made by a human oracle.

At the same time, γ-CKL is only one representative of a
large family of scale-free oracle models. Any model that
bases its decision only on the ratio of distances between the
query points and the target shows scale-free properties. We
hope that our results motivate future researchers to study
this type of oracle model.

In particular, a scale-free model enables a new class of ef-
ficient search schemes. Framing the search process as a
random walk enables us to construct a scheme with prov-
ably exponential convergence. We believe that the algorithm
discussed in Section 3 would be particularly suitable for
searching for procedurally generated content. In such a set-
ting, viable parametrizations are often continuous. In our
work, we have focused on a rigorous proof of the exponen-
tial convergence rate. Future researchers can build on our
insights by improving the query efficiency of the algorithm.
Introducing active learning to the stages of the exponential
algorithm, for example by optimizing expected information
gain, is a promising extension.
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A TRIPLET OUTCOME PREDICTION EXPERIMENT DETAILS

Below we present details on the experiments from Section 4.1.

The hyperparameters for each model were optimized and the best performing configurations for each d are reported. We
used the following grid of hyperparameters: lr ∈ [1e − 2, 1e − 3, 1e − 4, 1e − 5], batchsize ∈ [128, 256, 512, |T |], L2

regularizer λ ∈ [0, 0.4, 1], σε ∈ [0.4, 0.3, 0.2, 0.1, 0.01], γ ∈ [2, 3, 5, 10, 15, 20, 25]. No regularization was used for CKL
and γ-CKL because these models are scale-free.

The best hyperparemeter configuration for each dataset are given below:

• Musical Artists
– t-STE (accuracy 86%, nll 0.333): D = 50, lr = 1e− 4, λ = 0, batchsize = |T |
– CKL (accuracy 83.9%, nll 0.395): D = 80, lr = 1e− 5, batchsize = 256

– Probit (accuracy 85.6%, nll 0.352): D = 90, lr = 1e− 2, λ = 0.4, σε = 0.1, batchsize = 512

– γ-CKL (accuracy 86.5%, nll 0.329): D = 80, lr = 1e− 3, γ = 5, batchsize = |T |
• Food

– t-STE (accuracy 84.9%, nll 0.327): D = 80, lr = 1e− 2, λ = 0, batchsize = |T |
– CKL (accuracy 82.8%, nll 0.389): D = 80, lr = 1e− 3, batchsize = |T |
– Probit (accuracy 85%, nll 0.327): D = 90, lr = 1e− 2, λ = 1.0, σε = 0.01, batchsize = |T |
– γ-CKL (accuracy 85.%, nll 0.327): D = 90, lr = 1e− 4, γ = 25, batchsize = |T |

• Movie Actors
– t-STE (accuracy 84.6%, nll 0.4): D = 50, lr = 1e− 2, λ = 0, batchsize = 512

– CKL (accuracy 79.1%, nll 0.452): D = 15, lr = 1e− 2, batchsize = 512

– Probit (accuracy 85%, nll 0.327): D = 90, lr = 1e− 4, λ = 0,, σε = 0.2, batchsize = |T |
– γ-CKL (accuracy 86.3%, nll 0.314): D = 90, lr = 1e− 3, γ = 20, batchsize = |T |

B γ-CKLSEARCH FOR MODERATE n

In the case when there is only a finite number n of points, we can keep the full posterior distribution P = [p1, p2, . . . , pn]
over all n objects and propose a more efficient algorithm that the ones introduced in the previous subsection for continuous Ω.

*Authors contributed equally and are listed in alphabetical order.
†Work done while at EPFL.
‡Authors contributed equally and are listed in alphabetical order.
§Work done while at EPFL.



Algorithm 3 γ-CKLSEARCH

1: m← 0
2: U ← ∅
3: Initialize the prior P0 with p0k ← 1

n , ∀k = 1, 2, . . . , n
4: repeat
5: Compute the sample mean µ̄m and the sample covariance Σ̄m from the current belief Pm

6: Find the largest eigenvalue of Σ̄m and its eigenvector, λmax and vmax respectively
7: z̃1 ← µ̄m + r ·

√
λmaxvmax

8: z̃2 ← µ̄m − r ·
√
λmaxvmax

9: Find two objects i ̸= j, s.t.

i = argmin
i∈[n],i̸∈U

pmi ||xi − z̃1||2,

j = argmin
j∈[n],j ̸∈U

pmj ||xj − z̃2||2

10: U ← U ∪ {i, j}
11: Obtain the response ŷ from the user
12: Update belief Pm+1 ← UPDATE(Pm, ŷ) using Bayes rule
13: m← m+ 1
14: until t ∈ {i, j}

Since xt is not known by the system during the search, we take a Bayesian approach to model the probability of the objects
in [n] = {1, 2, . . . , n} to be the target, and at each step m of the search maintain a full belief Pm = [pm1 , pm2 , . . . , pmn ] over
all n objects. We start with a uniform prior P0 = [ 1n ,

1
n , . . . ,

1
n ].

Choosing the next query to ask the user. Similarly to GAUSSSEARCH, at each step we would like to ask a query (i, j)
that would maximize the expected information gain given the current posterior belief Pm at step m of the search:

(i, j) := max
i ̸=j

(
H(Pm)− EY |xi,xj

[H(Pm | Y )]
)
, (3)

where Y ∼ P (Y |xi,xj) is the marginalized belief over the answers to the query (i, j), i.e.

P (Y = i | xi,xj) =

n∑
k=1

pxi,xj ,xk
pmk .

Performing an exhaustive search over all O(n2) possible pairs (i, j) in order to find the optimal query in terms of (3) would
be prohibitively slow, so we propose an alternative heuristic that has good performance in practice.

We first detect the direction along which the variance of the belief is maximized, for that a sample mean and a covariance
matrix (µ̄m, Σ̄m) are computed from the current belief Pm. Next we build a proto-query as a pair of two points (z̃1, z̃2) in
Rd that lie in the direction of the maximum variance of Σ̄m on opposite sides of the sample mean µ̄m. In order to have a
desired explore-exploit trade-off of a query, we control the distance from z̃j to µ̄m by a multiplication parameter r ∈ R+.
Finally, we find two distinct objects (i, j) from [n] which have the closest representations to (z̃1, z̃2) in a Pm-weighted
Euclidean distance, which favors the near and more probable points. This pair (i, j) becomes the next query to the oracle.

Posterior UPDATE. After we obtain the response from the user, ŷ ∈ {i, j}, the posterior probabilities are updated using
Bayes rule pm+1

k = pmk P (Y = ŷ | xi,xj)/C, k = 1, 2, . . . , n, where C =
∑n

k=1 p
m
k P (Y = ŷ | xi,xj ,xk) is the

normalizing costant.

The search finishes when the user indicates one of the query objects as his target, otherwise both query objects are considered
to be non-target and further do not appear in the search. We keep track of the objects that we have displayed to the user
already using the set of "used" objects U . The complete search algorithm is outlined in Algorithm 3.

The complexity of each step of the Algorithm 3 is O(nd+ d2), since computing the sample covariance is O(nd) and finding
the principle eigenvector can be approximated with the power method in O(d2). Since in practice the number of features d
remains constant, the complexity is linear in the number of objects n.



Additional comments on the face search experiment. In total, we recruited 24 human participants. We presented 10
different target actors to each participant and asked to search for them. We performed an A/B testing by privily using
γ-CKLSEARCH in the backend of the search interface for one half of the searches and GAUSSSEARCH for the other half.
The target actors were chosen uniformly at random from a filtered set of 387 actors that had at least 100 associated triplets in
T . The A/B testing assignments were designed such that almost all of the chosen targets were paired exactly once with
γ-CKLSEARCH and exactly once with GAUSSSEARCH. Overall the participants did 207 searches with 129 unique targets,
104 searches using GaussSearch and 103 searches using γ-CKLSEARCH. 19 participants completed all 10 searches, 1
participant completed 7 seaches, 1 participant completed 5 searches, 1 participant completed 3 searches, and 2 participants
completed only 1 search. Based on the initial trial runs we ended up with the following choice of hyperparameters: D = 5,
γ = 3, r = 2 and σε = 0.1.

To ensure fair payment, we estimated the duration of our study in trial runs. Participants were paid the equivalent of 20 USD
per hour. We do not collect any sensitive data, in particular we do not collect any data that makes a participant personally
identifiable. The study design has been reviewed and approved by our IRB.

Instructions given to participants The text below is a copy of the instructions given to our participants.

"Want to do a paid search? Here is the way!"

With <name withheld for double-blind review>, you can find that actor or actress interactively! We will show you four faces,
and all you have to do is to click on the one who looks most like the person you have in mind. Just repeat this process a few
times, until your target appears among the four faces. Click Found to take you to their details.

• Create an account

• Come back here

• Start to make searches!

Are you registered? If yes, start to make searches! Confidentiality:

In accordance with GDPR and European laws on privacy, our website uses cookies. However, only necessary cookies are
used (to identify you and let you perform your search). If you chose to refuse the use of cookies, you won’t be able to
use our website. We will not share personally identifiable information with anyone. However, we may use anonymized
and aggregated information collected from this experiment for research purposes, and potentially release such information
publicly in the spirit of Open Science and reproducibility.

C THEOREM 2.1

(a) d̂ = 10 γ̂ = 5 (b) d̂ = 20 γ̂ = 4

Figure 7: Linear relationship between γ and d for finite values of d.

Experiments on the relationship between γ and d. In our experiment first we fix the reference values of d̂ and γ̂ for which
compute the average probability of the correct answer pQ(γ̂, d̂). Then we iterate over the values of d > d̂ and for each we



find the corresponding γ that minimizes |pQ(γ̂, d̂)− pQ(γ, d)| via a gridsearch. The best values of γ are reported in Fig. 7.
In all trials we kept N = 1000 and |T | = 10′000. We observe a linear relationship between γ and d even for finite values of
d, which matches the limit result of Theorem 2.1.

Proof of Theorem 2.1. Consider two points xa,xb ∈ Rd sampled uniformly from a unit ball B that form a query to the
oracle Q = (xa,xb). After asking Q we observe the answer Y ∈ {xa,xb} under the γ-CKL model for some fixed γ ≥ 2.
Then the probability that the answer Y is correct, pQ, is

pQ =

∫ 1

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

Sd(r1)Sd(r2)
1

Vd

1

Vd
dr1dr2

+

∫ 1

r1=0

∫ r1

r2=0

rγ1
rγ1 + rγ2

Sd(r1)Sd(r2)
1

Vd

1

Vd
dr1dr2

=

∫ 1

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2 (4)

+

∫ 1

r1=0

∫ r1

r2=0

rγ1
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2, (5)

where

Sd(r) =
2π

d
2

Γ(d2 )
rd−1, Vd =

π
d
2

Γ(d2 + 1)

are the respective surface and volume of the unit ball B.

Consider (4), ∫ 1

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2.

If we increase d, the distance from the center of the ball to a random inside point will be close to 1. We use Taylor
approximation of the probability model at (1, 1) ∈ R2:

rγ2
rγ1 + rγ2

=
1

2
− (r1 − 1)

γ

4
+ (r2 − 1)

γ

4
+R(r1, r2)

= P (r1, r2) +R(r1, r2).

Let’s fix some 0 < ε < 1. Then

(4) =

∫ 1

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2

=

∫ 1

r1=ε

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2

+

∫ ε

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2

=

∫ 1

r1=ε

∫ 1

r2=r1

P (r1, r2)r
d−1
1 rd−1

2 d2dr1dr2

+

∫ 1

r1=ε

∫ 1

r2=r1

R(r1, r2)r
d−1
1 rd−1

2 d2dr1dr2

+

∫ ε

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2.



First note that the last summand is o(1) when d→∞:

∫ ε

r1=0

∫ 1

r2=r1

rγ2
rγ1 + rγ2

rd−1
1 rd−1

2 d2dr1dr2

≤
∫ ε

r1=0

∫ 1

r2=r1

rd−1
1 rd−1

2 d2dr1dr2

≤ 1

2
εd(2− εd) = o(1).

Now the integral with the P (r1, r2) term can be computed as follows:

∫ 1

r1=ε

∫ 1

r2=r1

P (r1, r2)r
d−1
1 rd−1

2 d2dr1dr2 =

=

∫ 1

r1=0

∫ 1

r2=r1

1

2
rd−1
1 rd−1

2 d2dr1dr2 +
1

4
εd − 1

2
ε2d

+

∫ 1

r1=0

∫ 1

r2=r1

(r1 − 1)
γ

4
rd−1
1 rd−1

2 d2dr1dr2

+
γdεd

4

(
ε2 − 2

2d
+ ε

(
1

d+ 1
− εd

2d+ 1

))
+

∫ 1

r1=0

∫ 1

r2=r1

(r2 − 1)
γ

4
rd−1
1 rd−1

2 d2dr1dr2

+
γεd(d(2d(ε− 1)− 3)− 1)εd + 2(2d+ 1)

8(d+ 1)(2d+ 1)

=
1

4
+

γ

4

d2(3d+ 1)

2d2(d+ 1)(2d+ 1)
− γ

4

d2

4d3 + 2d2
+ o(1)

=
1

4
+

γ

4

d

(d+ 1)(2d+ 1)
+ o(1).

Finally, consider the remaining integral,

∫ 1

r1=ε

∫ 1

r2=r1

R(r1, r2)r
d−1
1 rd−1

2 d2dr1dr2.

Using Taylor’s theorem for multivariate functions, we can get an upper bound for its absolute value:∣∣∣∣∫ 1

r1=ε

∫ 1

r2=r1

R(r1, r2)r
d−1
1 rd−1

2 d2dr1dr2

∣∣∣∣
≤ M(γ)

2

∫
X

(
(r1 − 1)2 + (r2− 1)2

)
rd−1
1 rd−1

2 d2dr1dr2

+
M(γ)

2

∫
X
2(r1 − 1)(r2 − 1)rd−1

1 rd−1
2 d2dr1dr2

where

M(γ) = max
α=|2|,(r1,r2)∈X

∣∣∣∣Dα

[
rγ2

rγ1 + rγ2

]∣∣∣∣ ,
X = {(r1, r2) | r1 ∈ [ε, 1], r2 ∈ [r1, 1]},



and ∣∣∣∣D(2,0)

[
rγ2

rγ1 + rγ2

]∣∣∣∣ =
∣∣∣∣∣γrγ−2

2 rγ1 ((γ − 1)rγ1 − (γ + 1)rγ2 )

(rγ1 + rγ2 )
3

∣∣∣∣∣ ,
∣∣∣∣D(1,1)

[
rγ2

rγ1 + rγ2

]∣∣∣∣ = γ2rγ−1
2 rγ−1

1 (rγ2 − rγ1 )

(rγ1 + rγ2 )
3

,

∣∣∣∣D(0,2)

[
rγ2

rγ1 + rγ2

]∣∣∣∣ =
∣∣∣∣∣γrγ2 rγ−2

1 ((γ + 1)rγ1 )− (γ − 1)rγ2
(rγ1 + rγ2 )

3

∣∣∣∣∣ .
For a big enough d, if γ grows with d, the maximum of M(γ) is achieved when r1 = r2 with M(γ) ≤ γ

4 ε
−2. We will show

this for
∣∣∣D(2,0)

[
rγ2

rγ1+rγ2

]∣∣∣, the other two cases can be proved similarly. Indeed,

∣∣∣∣D(2,0)

[
rγ2

rγ1 + rγ2

]∣∣∣∣ =
∣∣∣∣∣γrγ−2

2 rγ1 ((γ − 1)rγ1 − (γ + 1)rγ2 )

(rγ1 + rγ2 )
3

∣∣∣∣∣
= γ

rγ−2
2 rγ1 ((γ + 1)rγ2 − (γ − 1)rγ1 )

(rγ1 + rγ2 )
3

= γ

(
r2
r1

)γ

((γ + 1)
(

r2
r1

)γ

− (γ − 1))

r22(1 +
(

r2
r1

)γ

)3
,

which is equal to γ
4 ε

−2 when r1 = r2 and goes to 0 with d→∞ when r1 < r2.

Finally ∫
X

(
(r1 − 1)2 + 2(r1 − 1)(r2 − 1) + (r2− 1)2

)
rd−1
1 rd−1

2 d2dr1dr2

= ε2dP1 + εdP2 +
3d+ 4

(d+ 1)2(d+ 2)
,

where

P1 = −
d
(
d2 + (d+ 1)2ε2 − 2(d+ 2)2ε+ 6d+ 13

)
+ 8

(d+ 1)2(d+ 2)

and

P2 =
(2(d+ 2)d+ 1)dε2 − 4d(d+ 2)(d+ 1)ε+ 2(d+ 2)(d+ 1)2

(d+ 1)2(d+ 2)

are two polynomial fractions.

Putting everything together we can upper bound the remainder by∣∣∣∣∫ 1

r1=ε

∫ 1

r2=r1

R(r1, r2)r
d−1
1 rd−1

2 d2dr1dr2

∣∣∣∣
≤ γε−2

8

(
ε2dP1 + εdP2 +

3d+ 4

(d+ 1)2(d+ 2)

)
.

Also, due to symmetry, (4) = (5), and thus

pQ =
1

2
+

γ

2

d

(d+ 1)(2d+ 1)
+ R̂+ o(1)



Figure 8: Running average of the best performing values of γ in γ-CKL embedding as we increase the embedding
dimensionality d.

where

|R̂| ≤ γε−2

4

(
ε2dP1 + εdP2 +

3d+ 4

(d+ 1)2(d+ 2)

)
.

We see that if
γ

d
= c1 + o(1)

and d→∞, then
pQ = c2 + o(1),

where c1 > 0, c2 > 0 are constants.

D γ-d RELATION IN THE EMBEDDING EXPERIMENTS

For γ-CKL as d increases, the best performing values of γ tend to also increase, which is aligned with the findings of
Theorem 2.1, see Fig. 8. For each dataset and each value of d we report the running average of the mean of the top 10 best
performing values of γ for that d. We see that the running average value of γ is uniformly lower for for the Musical Artists
dataset than for the other two datasets. We suspect this is because the dataset itself contains relatively small average number
of triplets per object. That is why the γ-CKL embedding does not profit from increasing the values of γ, which could lead
the model to be more confident when predicting outcome probabilities.

E PROOF OF PROPOSITION 2.2

Proof. First we will show that for a query Qi = (xa
i ,x

b
i ) the set of points Si ⊂ Ω for which the expected log-likelihood

of the answer Y is maximized forms a d-dimensional sphere. For ease of reading, we drop the index i and simply write
Q = (xa,xb).

The oracle will answer Y = xa with probability p(xa,xb;xt) = ∥xb−xt∥γ

∥xa−xt∥γ+∥xb−xt∥γ . Then all points x ∈ Ω s.t.
pxa,xb,x = pxa,xb,xt

will have the largest expected log-likelihood values. Now denoting

c :=
∥xa − xt∥2

∥xb − xt∥2
=

(
1

p
− 1

) 2
γ

,

and observing

p =
∥xb − xt∥γ

∥xa − xt∥γ + ∥xb − vxt∥γ
=

1
∥xa−xt∥γ

∥xb−xt∥γ + 1
,



we can define the set SQ by
d∑

j=1

(xj − (xa)j)
2 − c

D∑
i=j

(xj − (xb)j)
2 = 0,

which is equivalent to
d∑

i=j

(xj − zj)
2 = r.

for

zj =
c(xb)j − (xa)j

1− c
,

r =

d∑
j=1

(c(xb)j − (xa)j)
2

(1− c)2
−

(xa)
2
j − c(xb)

2
j

(1− c)
.

Hence, for a fixed query, the points that have the same likelihood as xt (and which will have the maximal expected
log-likelihood) form a sphere in Rd. For two distinct query points Q1 and Q2, the set of points with maximal expected
log-likelihood for Q1 and Q2 will lie in the intersection of S1 and S2, i.e., at least in a (d− 1)-dimensional sphere S1 ∩ S2.
Consider the third query point Q3. The intersection S1 ∩ S2 ∩ S3 is at least a (d− 2)-dimensional sphere if z3 does not
lie on the line intersecting z1 and z2, otherwise the points in S1 ∩ S2 are equidistant from z3, and since xt ∈ S1 ∩ S2,
S1 ∩ S2 = S1 ∩ S2 ∩ S3, and no additional dimensionality reduction of the spheres intersection is achieved (see Fig 1 for
illustration). Similarly, for d+ 1 queries Q1,Q2,. . . ,Qd+1, the sufficient condition for

S1 ∩ S2 ∩ · · · ∩ Sd+1 = xt

is

rank(z̃1 − z̃d+1, z̃2 − z̃d+1, . . . , z̃d − z̃d+1) = d. (6)

The intersection of the d+ 1 corresponding spheres will result in exactly one point, xt. Thus the expected log-likelihood
after d + 1 such queries will be maximized only at xt. Now by chosing a uniform prior over Ω, in expectation over the
outcomes of any set of queries Q̃ that satisfies (6) the posterior will be maximized only at xt and then the claim follows
immediately.

F FULL PROOFS FOR EXPONENTIAL CONVERGENCE

Proof for Lemma 3.1. Let D be the decision made by the algorithm. This is a random variable which can take values in
(B,P1, P2, ..., P5d), for backtracking or proceeding to one of the children of X . When arriving at a region X , the algorithm
discards information about previous query outcomes. Then it asks a series of queries, prescribed by our Inner Loop algorithm.
Once the query outcomes have been observed, the decision is deterministic. Therefore, to describe the distribution of D it is
sufficient to describe the distribution of queries and query outcomes. The queries that we ask depend only on the current
region. The outcomes are conditionally independent, given a target location. Therefore, the distribution of D only depends
on the current region and the latent xt. This means that the decision to proceed or backtrack is Markovian. The sequence of
regions Xs is a random walk.

Proof for Lemma 3.5. We show an equivalent statement: There exists a coupling X̃s and Z̃s, such that ∀s ≥ 0 :
P[z(xt, X̃s) ≤ Z̃s] = 1 and the distributions are identical, FXs

= FX̃s
, FZs

= FZ̃s
This is done via induction.

Induction start:
For s = 0 we are looking at a constant, which is the same in both cases: Z0 = z(xt, X0). Immediately P[z(xt, X0) =
Z̃0] = 1

Induction step:
We are given a random variable X̃s which has the same distribution as Xs and we know that P[z(xt, X̃s) ≤ Z̃s] = 1. We
will now construct two random variables X̃s+1 and Z̃s+1 for which it holds that P[z(xt, X̃s+1) ≤ Z̃s+1] = 1.

Let u ∼ U [0, 1] be a sample from the uniform distribution on (0, 1). We use this to couple the two random walks. Depending
on u and the current state of the random walk is X̃s, the following transition is taken:



• X̃s is green. This means z(xt, X̃s) = 0

– if u ≤ pd(X̃s,xt), then proceed to a green child. This means z(xt, X̃s+1) = 0

– if pd(X̃s,xt) < u ≤ pd(X̃s,xt) + qu(X̃s,xt), then backtrack to the parent region. This means z(xt, X̃s+1) = 0

– else pd(X̃s,xt) + qu(X̃s,xt) < u ≤ 1, stray to a red child region. Now we have z(xt, X̃s+1) = 1

• X̃s is red. This means z(xt, X̃s) > 0

– if u ≤ pu(X̃s,xt), then backtrack to the parent region. This means z(xt, X̃s+1)− z(xt, X̃s) = −1
– if pu(X̃s,xt) ≤ u < prX̃s,xt)+ pu(X̃s,xt),then recover by proceeding to a green child region. This means that

z(xt, X̃s+1) = 0. Recovering is only possible if one of the child regions contains the target. We know that the
parent of a region is a superset of all the child regions u(X) ⊃

⋃
Xc∈D(X) Xc. Therefore, whenever a recovery

transition is possible, backtracking must likewise lead to a green region. This shows that recovery is only possible
when z(xt, X̃s) = 1. Therefore we have shown that z(xt, X̃s+1)− z(xt, X̃s) = −1

– else prX̃s,xt)+pu(X̃s,xt) ≤ u ≤ 1, then proceed to a red child. This means z(xt, X̃s+1)−z(xt, X̃s) ∈ {0, 1}

We now construct a coupled variable D̃ such that Z̃s+1 = Z̃s + D̃. Since Z̃ is a random walk on natural numbers, with a
self-loop at 0, we need to distinguish between two scenarios:

• Z̃s > 0

– if u ≤ 1+b
2 , then D̃ = −1

– else, D̃ = 1

• Z̃s = 0

– if u ≤ 1+b
2 , then D̃ = 0

– else, D̃ = 1

We will now show that the construction of D̃ ensures that P[z(xt, X̃s+1) ≤ D̃ + Z̃s] = 1

Case 1, Z̃s = 0:

The induction assumptions imply z(xt, X̃s) = 0, which in turn implies that X̃s is a green region. In this case we know that
D̃ ∈ {0, 1} and z(xt, X̃s+1) ∈ {0, 1}.

It holds that z(xt, X̃s+1) = 1 iff pd(X̃s,xt) + qu(X̃s,xt) = 1− qs(X̃s,xt) < u. It holds that D̃ = 1 iff 1+b
2 < u. From

assumption 3.2 we know that for all possible regions X and targets xt, 1 − qs(X,xt) > 1+b
2 . Therefore D̃ = 0 =⇒

z(xt, X̃s+1) = 0. Therefore P[z(xt, X̃s+1) ≤ D̃ + Z̃s | Z̃s = 0] = 1

Case 2, Z̃s > 0, z(xt, X̃s) = 0:

Again, X̃s is a green region. So we know that z(xt, X̃s+1) ∈ {0, 1}, and z(xt, X̃s+1) = 1 iff pd(X̃s,xt) + qu(X̃s,xt) =
1− qs(X̃s,xt) < u.

Since Z̃s > 0 and z(xt, X̃s) = 0 we know D̃ ≥ 0 =⇒ z(xt, X̃s+1) ≤ Z̃s + D̃. We only need to analyse the
case of D̃ = −1. We know that D̃ = −1 =⇒ u < 1+b

2 . Using assumption 3.2, z(xt, X̃s+1) = 1 =⇒ u >

1− ps(X̃s,xt) > 1− 1−b
2 = 1+b

2 . This is a contradiction. We now know that D̃ = −1 =⇒ z(xt, X̃s+1) = 0. Therefore
P[z(xt, X̃s+1) ≤ D̃ + Z̃s | Z̃s > 0, z(xt, X̃s) = 0] = 1

Case 3, Z̃s > 0, z(xt, X̃s) > 0:

D̃ = −1 implies u < 1+b
2 . From Assumption 3.2 we know that ∀X,xt :

1+b
2 ≤ pu(Xs,xt) + prXs,xt). Therefore the

event D̃ = −1 implies z(xt, X̃s+1)− z(xt, X̃s) = −1. Therefore P[z(xt, X̃s+1) ≤ D̃+ Z̃s | Z̃s > 0, z(xt, X̃s) > 0] = 1

We have shown that P[z(xt, X̃s+1) ≤ D̃ + Z̃s] = 1

Proof for Lemma 3.6. Under the assumption 3.2 we have shown z(xt, Xs) ⪯st. Zs. The definition of stochastic ordering
P[z(xt, Xs) ≥ k] ≤ P[Zs ≥ k] is equivalent to P[z(xt, Xs) ≤ k] ≥ P[Zs ≤ k].

We will now show the claim of the lemma for Zs, the same statement for z(xt, Xs) follows immediately. Our proof is
an induction for P[Zs > k] ≤ ( 1−b

1+b )
k. The property holds trivially for s = 0, k ≥ 0 and k = 0, s ≥ 0. Assume that the



property holds for a given s and for all k. For any k ≥ 1, we have

P[Zs+1 > k] =
1 + b

2
P[Zs > k + 1] +

1− b

2
P[Zs > k − 1]

≤ 1 + b

2
(
1− b

1 + b
)k+1 +

1− b

2
(
1− b

1 + b
)k−1 = (

1− b

1 + b
)k

Proof for Lemma 3.7. Let τZ=N = inf{s > 0 | Zs, Z0 = N} be the stopping time of Zs reaching 0, starting from N . We
have shown that the random walk Z can be used as a stochastic upper bound. Therefore we know E[τX ] ≤ E[τZ=1].

We will now calculate the stopping time of Z.

We ascertain that this random walk is ergodic Levin and Peres [2017]. Since b > 0 the random walk is positive recurrent.
The self-loop at Z = 0 makes it aperiodic. It is irreducible.

Therefore it has a unique stationary distribution π. We now calculate π. The conditions on the distribution are:

(1), π0 =
1 + b

2
π0 +

1 + b

2
π1

(2), π1 =
1− b

2
π0 +

1 + b

2
π2

(3), πn =
1− b

2
πn−1 +

1 + b

2
πn+1, n > 1

∞∑
i=0

πi = 1

We show πn = ( 1−b
1+b )

nπ0, n > 0 by induction:

(1) ⇐⇒ π1 =
1− b

1 + b
π0

(1)&(2) ⇐⇒ π1 =
1− b

2
π0 +

1 + b

2
π2

⇐⇒ 2

1 + b
π1 −

1− b

1 + b
π0 = π2 ⇐⇒ π2 = (

1− b

1 + b
)2π0

(3) ⇐⇒ πn−1 =
1− b

2
πn−2 +

1 + b

2
πn

⇐⇒ (
1− b

1 + b
)n−1π0 −

1− b

2
(
1− b

1 + b
)n−2π0 =

1 + b

2
πn

⇐⇒ (
1− b

1 + b
− 1− b

2
)(
1− b

1 + b
)n−2π0 =

1 + b

2
πn

⇐⇒ (
1− b

1 + b

2

1 + b
− 1− b

2

2

1 + b
)(
1− b

1 + b
)n−2π0 = πn

⇐⇒ (
2− 2b− 1 + b2

(1 + b)2
)(
1− b

1 + b
)n−2π0 = πn

⇐⇒ (
1− b

1 + b
)nπ0 = πn

From the infinite sum we get
∑∞

i=0 πi = π0
1

1− 1−b
1+b

= π0
b+1
2b . Therefore: π0 = 2b

b+1 .

We can use the unique stationary distribution of Z to compute expected return times. As defined above, let τZ=N = inf{s >
0 | Zs = 0, Z0 = N}. We know that for a unique stationary distribution, the expected inter-arrival time for state 0 is
E[τZ=0] =

1
π0

= b+1
2b . We are interested in E[τZ=1]. Starting from Z = 0 the walk must either follow the self loop or go to



Z = 1. This leads to the following equation:

1 + b

2
+

1− b

2
(E[τZ=1] + 1) =

1

π0
=

b+ 1

2b

=⇒ 1− b

2
E[τZ=1] =

b+ 1

2b
− 1− b

2

+
1 + b

2
=

b+ 1

2b

=⇒ E[τZ=1] = (
1

b
)

Proof for Theorem 3.8. The first part of the claim follows immediately from Lemma 3.6. At any time s, the probability of
needing more than k backtracks until we reach a green region from Xs is less than ( 1−b

1+b )
k. We solve δ = ( 1−b

1+b )
k for k.

Then we know that with probability of at least 1− δ, the target must be in the k-th ancestor of Xs. This is the region that we
propose as the result of our search process.

We now need to show that the expected depth of this region increases at a constant rate. Since k is a constant that only
depends on the desired rate of error δ and does not change over time, it suffices to show that the expected depth of Xs

increases at a constant rate.

We make use of the Markovian property of Xs. Without loss of generality, we assume that we are currently at time s = 0.
Additionally we assume that the current region X0 is green. When the execution of the algorithm begins, this is true since
xt ∈ Ω.

We now define a stopping time s′ = inf{s > 0 | xt ∈ Xs, X0}, as the next time at which our algorithm visits a green region.
We will show that this stopping time is finite and that this next green node is, in expectation, at a higher depth. The analysis
then becomes recursive. Specifically, we will show:

• There is a constant Cd > 0, such that E[D(Xs′)−D(X0)] > Cd

• There is a constant Cs <∞, such that E[s′] < Cs

Starting from the green region X0, the following transitions are possible:

• With probability pd(X0,xt), the search proceeds to a green child. In this case we stop immediately, s′ = 1 and
D(X1)−D(X0) = 1.

• With probability qu(X0,xt), the search backtracks. Since the parent of a green region must be green as well, we also
stop immediately, s′ = 1. Since backtracking looses two levels of depth, we have D(X1)−D(X0) = −2.

• With probability qs(X0,xt), the search strays.

The last case requires further analysis. Following Lemma 3.7, we know that the expected stopping time after straying
is upper bounded by E[τZ=1] =

1
b . Every backtracking decision must always undo at least one proceed decision. This

means that, in the worst case scenario, exactly half the steps until s′ are proceed and half are backtrack decisions. A pair of
proceed and backtrack decisions first gains one level of depth and then looses two. Therefore, conditioned on the assumption
that we have left X0 by straying, the expected new depth is bounded by E[D(Xs′) − D(X0)|we strayed from X0] <
−1 1

2 (1 + E[τZ=1]) = − 1
2 (1 +

1
b ) = −

b+1
2b .

In expectation, the number of timesteps that passes between consecutive green regions is E[s′] ≤ qu+pd+qs(1+E[τZ=1]) =
qu + pd + qs

b+1
b . This means at time s we have, in expectation, visited s

qu+pd+qs
b+1
b

green nodes.

The expected depth of each consecutive green node is pd−2qu−qs b+1
2b levels higher than its predecessor. Due to Assumption

3.3 we know that this is strictly positive.

In expectation, the last green node that we have visited is at a depth of s
qu+pd+qs

b+1
b

(
pd − 2qu − qs

b+1
2b

)
. We also know an

upper bound on the expected number of steps between green nodes: For any given state Xs of the search algorithm, we
know that in expectation, we have taken at most E[s′] ≤ qu + pd + qs

b+1
b steps since the last green region. We are interested

in a bound of the depth of the current region. In the worst case scenario, all of these steps were backtracks. This leads to
E[D(Xs)] ≥ s

qu+pd+qs
b+1
b

(
pd − 2qu − qs

b+1
2b

)
− 2(qu + pd + qs

b+1
b ) (which is a linear function of s).



Proof for Lemma 3.9. Let xq = (1 + d)e. We denote the probability of the query point inside of X being preferred as
P[⃗0 ≻ xq|xt] = P[X ≻ F |xt]

We will now show that there are two probabilities pX > pF > 0 such that:

• xt ∈ X =⇒ P[X ≻ F |xt] ≥ pX

• xt ∈ F =⇒ P[X ≻ F |xt] ≤ pF

This immediately allows the use of a binomial test. Any level of accuracy is possible, we simply need to repeat the query
often enough.

The target location inside X for which P[X ≻ F |xt] is smallest is xc = argminxt∈X P[X ≻ F |xt] = 1. We call this point
xc since it lies in a corner of the hypercube. A formal proof that the minimum is found at xc is derived with sympy Meurer
et al. [2017] and included in the supplementary code. For any parametrization of γ − CKL (or another scale-free oracle
model) we can now explicitly calculate the lower bound: pX = P[X ≻ F |xt = 1].

We define the following distances:

dc = ||⃗0− xc|| =
√
d

dqc = ||xq − xc|| =
√
d2 + d− 1

dq = ||⃗0− xq|| = d+ 1

The ratio of distances between xc and the two query points is ||⃗0−xc||
||xq−xc|| =

dc

dqc
. We know that any point x′ that induces

the same outcome probability must have the same ratio of distances: P[⃗0 ≻ xq|xt = x′] = P[⃗0 ≻ xq|xt = xc] ⇐⇒
||⃗0−x′||
||xq−x′|| =

dc

dqc
.

Out of these points, the one with the least distance to 0⃗ lies on the line segment between 0⃗ and xq . The point with the largest
distance to 0⃗ lies on the ray from xq to 0⃗, at 0⃗− ed+

√
d3+d2−d
d−1 . This can be found by solving the condition of equal ratio

for the x coordinate. A full derivation in sympy can be found in the supplementary material. We know that all points x′

with a ratio that is strictly larger than dc

dqc
must induce a smaller probability P[⃗0 ≻ xq|xt = x′] < pX . The point farthest

away from 0⃗ which still has this ratio lies at 0⃗− er̂, with r̂ = d+
√
d3+d2−d
d−1 . This allows us to specify an uncertainty region.

Let ru = r̂ + 1. The probability pF can now be explicitly computed (for any parametrization of γ-CKL or other scale-free
oracle models) as pF = P[⃗0 ≻ xq|T = 0⃗− e(r̂ + 1)] < pX

Proof for Lemma 3.10. Let B′ be a hypercube, centered at xt and with edge length 2 1
16 = 1

8 . If a cell ck is in class (A) or
(B) then its center xck must lie in the hypercube B. We now extend the edge length of this hypercube to fully contain any
cell whose center lies in the hypercube. Let B be a hypercube, centered at xt and with edge length 2 1

16 + rc. It follows
immediately that

⋃
ck has class (B) or (A) ck ⊆ B. We have chosen rc <

1
8ru

< 1
8 . Therefore it follows that the edge length of B

is 2 1
16 + rc <

1
8 + 1

8 = 1
4 .

Proof for Theorem 3.11. The tiling T (S, rc) contains K cells, this is also the number of hypothesis tests that we conduct.
Conditional on xt, the oracle replies are independent, and therefore the test outcomes are independent. We assume that the
probability of error for any one of the tests is δ. The probability of no error occuring across all tests is therefore (1− δ)K .
We need δ̂ = 1− (1− δ)K . Lemma 3.9 ensures that we can adjust the hypothesis test for any desired probability of error. It
is therefore always possible to choose a number of query observations (depending on the dimensionality and the parameters
of the choice model) that leads to the desired δ̂.

In the following we assume that all hypothesis tests have provided correct information. This means, that (H) has not been
rejected for the cells in class (A) and it has been rejected for the cells in class (C). We create a bounding box B around
all cells for which hypothesis (H) has not been rejected. From Lemma 3.10 we know that this bounding box has an edge
length of at most 1

4 . We now look at all possible locations for xt and verify that the decision criterion must lead to a correct
decision.

Case 1, xt /∈ (S ∪X):



The bounding box can’t overlap with X . Therefore we backtrack. This is the correct decision.

Case 2, xt ∈ X:

There is a cell in class (A), which overlaps with X . For this cell, the hypothesis (H) has not been rejected. This means that
the bounding box must overlap with X . Also, we know that the bounding box has an edge length of less than 1

4 . This means
that it can overlap with at most 2 of the tiles in T (S, 1/4). This means that there is a child region in D(X) which fully
contains the bounding box. Our decision criterion proceeds to this child. And we know that the bounding box must contain
the target (since we’re assuming that all hypothesis tests have returned correctly). This ensures that we are proceeding to a
green region.

Case 3, xt ∈ S:

The target is not in the current region, i.e. X is a red region. If the bounding box happens to not overlap with X , we
backtrack, which is considered a correct decision. If the bounding box happens to overlap with X , then we know that there
must be a child which fully contains the bounding box. Our decision criterion proceeds to this child region. We also know
that the bounding box contains the target. So we are proceeding to a green region. This is a recovery transition, and it is also
considered a correct decision.

We have shown that, under the assumption that all hypothesis tests have provided correct information, the decision criterion
leads to a correct transition. Our assumption on the hypothesis tests holds with probability 1− δ̂.

If some hypothesis tests are erroneous, then we can see inconsistent behaviour. For example, it is possible that the bounding
box is too large, and overlaps with multiple child regions, or overlaps with both X and Ω \ S. We assume that in this case,
we backtrack. This can be the wrong decision, but it will happen with at most probability δ̂.
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