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ABSTRACT

This study addresses the challenge of enhancing the accuracy and robustness of
multilingual automatic speech recognition (ASR) models in the International Pho-
netic Alphabet (IPA) format. The primary obstacles include accounting for lin-
guistic diversity, pronunciation variability, and the scarcity of high-quality anno-
tated data for numerous languages, which impedes model generalization to unseen
languages. To tackle this issue, we propose a novel approach that integrates prior
linguistic knowledge into the training process and incorporates auxiliary informa-
tion into the model architecture with hierarchical multi-task learning approach.
The proposed method decomposes the phoneme recognition process into multi-
ple levels of abstraction, enabling the model to better generalize across diverse
phonetic systems. Furthermore, we introduce two variants of language vector
representations: one derived from acoustic signals and the other from phonetic
transcriptions. These representations serve as auxiliary information, particularly
beneficial for few-shot recognition scenarios. We evaluated the approach using
datasets that include both high-resource and low-resource languages. The pre-
trained Wav2vec 2.0 transformer model was employed as the base architecture.
As a baseline, the model was fine-tuned solely on the primary task using Con-
nectionist Temporal Classification (CTC) loss, without leveraging auxiliary in-
formation. Performance was assessed using Phoneme Error Rate (PER) in both
in-domain and out-of-domain scenarios. Experimental results demonstrate that
the proposed approach achieves a relative improvement of 7–10% in recognition
accuracy across most scenarios. Notably, we observed over 20% improvement for
out-of-domain languages when the number of languages in the training dataset
was reduced.

1 INTRODUCTION

Automatic Speech Recognition (ASR) systems capable of transcribing speech into the International
Phonetic Alphabet (IPA) are invaluable tools for various applications, including linguistic research,
language education, speech therapy (Cheng et al., 2020) and component ASR systems (Li et al.,
2019), (Povey et al., 2011). However, the development of robust and accurate multilingual IPA ASR
systems faces significant hurdles. These challenges stem from the inherent linguistic diversity across
the world’s languages, the substantial variability in pronunciation due to factors like dialect, accent,
and individual speaker characteristics (Benzeghiba et al., 2007), and the persistent scarcity of high-
quality, annotated data, particularly for low-resource languages (Besacier et al., 2014). This data
scarcity significantly hinders the ability of models to generalize effectively to unseen languages.

Current dominant approaches to multilingual ASR often rely on large and diverse datasets, coupled
with complex deep learning models, particularly those based on the transformer architecture like
Whisper Radford et al. (2023) and Wav2vec 2.0 Baevski et al. (2020). While these methods have
achieved impressive results on many tasks, they often struggle with low-resource languages, demon-
strating a tendency to overfit to the training data and failing to adequately capture the subtle nuances
of diverse phonetic systems. Furthermore, the lack of consistency in annotation practices across dif-
ferent datasets and sources introduces additional complexity and noise into the training data, making
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it difficult to train robust and generalizable models. Different annotators may transcribe the same
utterance differently, and variations in the level of phonetic detail further compound the issue.

To mitigate these challenges, this study proposes a novel approach that explicitly incorporates prior
linguistic knowledge into the training process and leverages auxiliary information within the model
architecture. Specifically, we explore the use of Hierarchical Multi-Task Learning (HMTL) (Sanh
et al., 2019) to decompose the phoneme recognition process into multiple, hierarchical levels of
abstraction. This hierarchical approach allows the model to learn shared phonetic features across
languages at higher levels, while simultaneously capturing language-specific phonetic variations at
lower levels. We hypothesize that this structured learning process will improve the model’s ability to
generalize across diverse phonetic systems. Furthermore, we investigate the use of language vector
representations, derived from both acoustic signals and phonetic transcriptions, as auxiliary infor-
mation to enhance model performance, especially in few-shot and zero-shot recognition scenarios
where labeled data for a target language is scarce or non-existent.

This research aims to enhance the accuracy and robustness of multilingual IPA ASR systems, ulti-
mately enabling them to generalize more effectively to unseen languages and to better handle the
inherent challenges posed by both linguistic diversity and the practical limitations of data scarcity.

2 RELATED WORKS

Multilingual ASR has been a subject of extensive research, with various approaches proposed to
tackle the challenges of linguistic diversity and data scarcity. Early work in this area often focused
on acoustic and language modeling techniques, such as Hidden Markov Models (HMMs) (Rabiner,
1990). However, the advent of deep learning has revolutionized the field, leading to significant
improvements in accuracy and generalization.

Deep neural networks, particularly Recurrent Neural Networks (RNNs) (Graves et al., 2013), (Miao
et al., 2015) and Convolutional Neural Networks (CNNs) (Collobert et al., 2016), have shown re-
markable success in capturing the temporal and spectral characteristics of speech signals. The
introduction of the transformer architecture (Vaswani et al., 2017), (Dong et al., 2018) has fur-
ther propelled the field forward, enabling models to effectively process long sequences and capture
long-range dependencies in speech. Models like Wav2Vec 2.0 (Baevski et al., 2020) and Whisper
(Radford et al., 2023) have demonstrated impressive performance in multilingual ASR, leveraging
self-supervised pre-training on massive amounts of unlabeled data.

In the context of IPA transcription, several studies have explored the use of grapheme-to-phoneme
conversion tools like Espeak-ng (esp, 2025) and Phonetisaurus (Novak et al., 2012) to generate
phonetic transcriptions from text data. These tools have been used to create large-scale multilingual
datasets for training IPA ASR models (Xu et al., 2021). However, the accuracy of these conversion
tools can vary across languages, and inconsistencies in annotation practices can introduce noise into
the training data.

Multi-task learning (MTL) has emerged as a powerful technique for improving model performance
by training a single model on multiple related tasks (Zhang & Yang, 2021). In the context of ASR,
MTL has been used to incorporate information from related tasks such as speech activity detection
and speaker verification (Sigtia et al., 2020). HMTL was applied to the ASR problem in Sanabria
& Metze (2018), where the trained model consistently solves the problem at the phonetic and quasi-
morphemic levels.

The use of auxiliary information, such as language embeddings, has also been explored in multi-
lingual ASR (Toshniwal et al., 2018) with training language classification models on speech data.
A similar approach, but for speech synthesis, is presented in Lux & Vu (2022). Also Lux & Vu
(2022) explores using IPA phoneme classification to improve cross-lingual generalization, based on
Mortensen et al. (2016).

3 METHODOLOGY

To address the challenges outlined, we propose two distinct approaches and their combinations, all
modifying the primary transcription model while maintaining comparability in results. The baseline
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model selected for evaluation is the pre-trained Wav2Vec 2.0 XLSR-53 Baevski et al. (2020), which
has demonstrated suitability for fine-tuning in multilingual speech recognition tasks Nowakowski
et al. (2023), Xu et al. (2021). The baseline approach, adopted from prior works Xu et al. (2021),
consists of fine-tuning Wav2Vec 2.0 XLSR-53 on a multilingual dataset transcribed using the Inter-
national Phonetic Alphabet (IPA). To ensure an objective comparison, both the proposed approaches
and the baseline are trained on identical datasets and optimized using the same strategies. The Con-
nectionist Temporal Classification (CTC) loss function Graves et al. (2006) is employed for all
models.

The CTC loss function is used to train the model on sequences where the exact alignment between
input and output sequences is unknown. The conditional probability for CTC is given by:

LCTC = − logP (y|x) = − log
∑

a∈A(x,y)

P (a|x),

where: - x is the input speech signal - y is the target sequence of phonemes (in IPA format); - a
is a possible alignment between x and y, accounting for possible repetitions and blank symbols;
- A(x,y) is the set of all possible alignments for the pair (x,y); - P (a|x) is the probability of
alignment a given the input x.

The goal of CTC is to maximize the probability of the correct phoneme sequence y given the input
x, summing over all possible alignments.

For training and evaluation, we utilize the Common Voice dataset Ardila et al. (2019), a pub-
licly available multilingual speech corpus, which has been extensively used in related studies
Nowakowski et al. (2023), Xu et al. (2021). Since speech-based language vectorization only requires
language labels, we leverage all available language samples in the dataset. Speech transcriptions in
Common Voice are in the respective native graphemes; therefore, grapheme to phoneme (G2P) tools
are employed to convert them into IPA sequences, following the methodology of Xu et al. (2021).
Specifically, we adopt the Espeak-ng phoneme conversion tool, though alternative transcription sys-
tems can also be utilized within the proposed framework. Model weights are optimized with the
AdamW Kingma (2014). Learning rate scheduling follows a cyclic strategy Smith (2017), which
has been shown to enhance the fine-tuning of pre-trained models. Mini-batch training Wilson &
Martinez (2003) is applied throughout all experiments. The evaluation metric used for phoneme
recognition is Phoneme Error Rate (PER), computed as the Levenshtein distance between predicted
and reference phoneme sequences, excluding delimiters. Individual symbols in the phoneme rep-
resentation were considered, resulting in a smaller penalty for errors involving similar phonemes,
such as those differing only in diacritics. The PER was calculated using the following formula:

PER =
S +D + I

N
× 100%, (1)

where S is the number of substitutions, D is the number of deletions, I is the number of insertions,
and N is the total number of phonemes in the reference transcription.

3.1 HIERARCHICAL MULTI-TASK LEARNING FOR PHONEME RECOGNITION

We introduce a hierarchical multi-task learning (HMTL) pipeline that leverages the phoneme clas-
sification schema defined by IPA to group acoustically similar phonemes. These phoneme groups
serve as higher-level abstractions, forming an intermediate learning objective within the hierarchi-
cal model. Specifically, phonemes are replaced with their respective class labels according to IPA
consonant and vowel classification tables. The resulting sequence of class symbols acts as an aux-
iliary prediction target. To implement this, we introduce an additional classification head, struc-
turally identical to the primary phoneme classifier, which optimizes an auxiliary CTC loss. Multiple
phoneme groupings are explored, including classifications based on IPA table rows, columns, and
their combinations. The model is trained jointly on both tasks at each optimization step, with the
final loss function comprising the sum of both task-specific losses. The loss function for the hierar-
chical multi-task learning framework is defined as:
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LHMTL = Lphoneme
CTC + λ · Lclass

CTC, (2)

where Lphoneme
CTC is the CTC loss for the primary phoneme recognition task, as defined earlier; Lclass

CTC is
the CTC loss for the auxiliary task of predicting phoneme classes, which are simplified representa-
tions of the phoneme sequences; and λ is a weighting hyperparameter that balances the contribution
of the auxiliary task to the total loss.

The auxiliary task Lclass
CTC operates on a simplified version of the phoneme sequence, where each

phoneme is replaced by its corresponding class label (e.g., based on IPA consonant and vowel cat-
egories). This simplification reduces the complexity of the sequence, allowing the model to learn
higher-level phonetic patterns that are shared across languages. The choice of phoneme classes is
guided by the IPA classification schema, which groups phonemes based on shared articulatory or
acoustic features. The overall training scheme is depicted in Figure 1.

Figure 1: The Training scheme of the hierarchical multi-task model

The advantages of HMTL for multilingual phoneme recognition can be hypothesized as follows.
First, joint training across multiple abstraction levels may facilitate improved generalization across
diverse phonetic systems, as the intermediate phoneme-group representations potentially capture
shared phonetic patterns common to multiple languages. Second, we hypothesize that the model’s
robustness to pronunciation variability, background noise, and annotation inconsistencies could be
enhanced by abstracting phonemes into broader phonetic groups. Such generalized phoneme classes
are expected to provide more consistent and reliable training signals, particularly in cases of noisy
audio data or ambiguous and erroneous labels. Finally, it is plausible that the hierarchical structure
enables the model to leverage phonetic commonalities across languages, potentially leading to better
performance in low-resource scenarios by transferring shared acoustic representations.
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3.2 AUXILIARY LANGUAGE EMBEDDING MODELS

Incorporating auxiliary linguistic information can improve transcription accuracy both for seen lan-
guages in the training dataset, as demonstrated in Toshniwal et al. (2018), and for unseen languages,
by transferring knowledge from related languages. To achieve this, we introduce language vec-
tor representations derived from both speech and phonetic transcriptions, utilizing metric learning
techniques.

3.2.1 SPEECH-BASED EMBEDDING MODELS

For speech-based language embeddings, we employ Wav2Vec 2.0 XLSR-53, leveraging its feature
extraction capabilities. Metric learning is implemented using the triplet loss function Hoffer & Ailon
(2015), where triplets consist of two samples from the same language and a negative sample from a
different, randomly selected language. The triplet loss is defined as:

Ltriplet = max (0, d(eanchor, epositive)− d(eanchor, enegative) + α) , (3)

where eanchor is the embedding of the anchor sample; epositive is the embedding of a positive sample,
which belongs to the same language as the anchor; enegative is the embedding of a negative sample,
which belongs to a different language; d(·, ·) is a distance function (e.g., Euclidean or cosine dis-
tance); and α is a margin parameter that ensures a minimum separation between the distances to
positive and negative samples.

The triplet loss aims to minimize the distance between the anchor and positive samples while maxi-
mizing the distance between the anchor and negative samples, thereby improving the discriminative
power of language embeddings.

While hard negative sampling strategies (e.g., selecting a related language as the negative sample)
can further improve quality of final embeddings, we do not employ them in this study. The XVector
approach Snyder et al. (2019) is used to generate a fixed-length vector representation for each speech
sequence, and language-level representations are obtained by averaging embeddings with mean-
pooling across all available samples for a given language.

3.2.2 TRANSCRIPTION BASED EMBEDDING MODELS

For transcription-based language embeddings, we utilize PhoneBERT Li et al. (2023), a BERT-based
model pre-trained using masked language modeling (MLM) Devlin (2018) on phonetic transcrip-
tions from over 100 languages. Sequence-level representations are obtained by mean-pooling the
output embeddings across all phoneme tokens in a transcription, mirroring the approach used for
speech-based embeddings. The general workflow of our language embedding approach is illustrated
in Figure 2.

Integrating auxiliary language vector representations into the transcription model has the potential
to significantly improve phoneme recognition, particularly in zero-shot scenarios. When limited
speech recordings or phonetic transcriptions from an unseen language are available, language em-
beddings can be computed and fed into the transcription model as additional context, facilitating
adaptation to new linguistic patterns and improving phoneme sequence prediction accuracy.

3.2.3 EVALUATION OF LANGUAGE EMBEDDING MODELS

To assess the quality of the proposed language vectorization models, we employ the following eval-
uation protocol:

1. Extract vector representations for test samples from either phonetic transcriptions or speech
recordings.

2. Randomly split the vectorized samples into training and test subsets according to a prede-
fined ratio.

3. Train a multi-class logistic regression classifier (Bottou, 2010) using stochastic gradient
descent on the language classification task, leveraging the vector representations as input
features.
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Figure 2: Inference and training scheme with language auxiliary information based on available
language samples

4. Evaluate the classifier on the test set and compute the classification accuracy.

This evaluation pipeline provides an effective means to quantify the informativeness of language
embeddings for distinguishing between different languages. Higher classification accuracy indi-
cates better separation of language-specific features, which, in turn, enhances the utility of these
representations in multilingual phoneme recognition tasks.

4 EXPERIMENTAL RESULTS

The training and testing datasets were structured as follows:

• Each language was limited to a total of 10 hours of speech for training and 2 hours for
testing, if the language participated in the training set. If a language was held-out, 10 hours
of speech were used for testing on that language.

• Only recordings without negative ratings and with at least one positive rating were used.
• Common Voice version 16.0 was utilized.

Experiments were conducted using subsets with varying numbers of languages: 5, 9, 13, and 27.
Their composition is detailed in Table 1.

Table 1: List of languages used in various experiments

Number of experiment languages Language codes
5 af, ca, es, de, fr
9 af, as, ca, de, es, et, fa, hi, fr

13 af, as, ca, de, es, et, fa, hi, hu, hy-AM, id, ja, fr
27 af, as, ca, de, es, et, fa, hi, hu, hy-AM, id, ja, lt,

mk, ne-NP, or, pt, ro, ru, sk, sr, sv-SE, ta, tr, ur, vi, fr

The transcription-based language embedding model was trained on a subset of two million examples
from Deri & Knight (2016). For readability of the result tables of intermediate experiments, obtained
values are presented for the case where the held-out language was French (fr). Results for other splits
are shown in final results - table 5.

4.1 HIERARCHICAL MULTI-TASK MODEL

A series of experiments was conducted on various datasets. Furthermore, on the largest dataset with
12 training languages, a selection of auxiliary head positions and IPA phoneme classifications was
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performed. The results of these selection experiments are presented in Table 2. The evaluation
results indicate the best PER (Phone Error Rate) scores achieved during training, as well as the
metrics recorded throughout the training process. Training was halted using either classic early
stopping (ES) (Prechelt, 2002) on in-domain held-out data or cross-validation (CV) (Kohavi, 1995)
with training languages partitioned into folds.

Table 2: PER metrics on test set for 12 training languages, depending on HMTL configuration

PER out of domain PER in domain
Layer of additional heads

/ IPA consonants
/ IPA vowels ES CV ES CV

Baseline 0.358 0.348 0.113 0.117
16 / Columns / Columns 0.331 0.271 0.107 0.115
20 / Columns / Columns 0.323 0.264 0.103 0.109
24 / Columns / Columns 0.345 0.294 0.111 0.116
16 / Rows / Rows 0.339 0.279 0.111 0.115
20 / Rows / Rows 0.334 0.270 0.108 0.112
24 / Rows / Rows 0.341 0.292 0.109 0.116
20 / Columns / Rows 0.329 0.267 0.105 0.110
20 / Rows / Columns 0.337 0.282 0.110 0.115

The obtained results show that the best location for the additional transcription head is one of the
final layers of the model, different from the output layer. The fact that the best location for the
additional transcription head on the 20th layer of the main model, compared to the location with
the final classification head, also indicates that the improvement in results compared to the simple
solution is not only due to a change in the loss function, but also due to model’s need to learn to
solve the task hierarchically, starting from a simpler subtask.

After fixing the configuration for representing the IPA-based auxiliary data and fixing the model
architecture, a series of experiments was conducted to determine the approach’s dependence on the
number of languages represented in the training sample. The results are presented in Table 3.

Table 3: PER metrics on test set for 4, 8, and 12 training languages

PER out of domain PER in domain
Approach ES CV ES CV
4 Training Languages
Baseline 0.447 0.421 0.151 0.153
HMTL 0.396 0.365 0.142 0.147

8 Training Languages
Baseline 0.386 0.374 0.132 0.138
HMTL 0.316 0.287 0.111 0.121

12 Training Languages
Baseline 0.358 0.348 0.113 0.117
HMTL 0.323 0.264 0.103 0.109

On all samples, the model showed a good improvement in quality on both the external and internal
tests, at the level of 10-20% PER reduction after establishing training, and more than 30% when
comparing the best metrics during training on the external PER.

Then, the possibility of using two additional classification heads, implementing various IPA classi-
fication representations, was tested. A configuration with the heads located on the same layer was
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considered, since in the IPA itself these classification levels are not hierarchical, but form a table.
The optimal configuration obtained earlier was used as the first auxiliary head (the head is located
on the 20th layer of the model, and columns of the IPA are used for both consonants and vowels), the
auxiliary head used the same location and the opposite set of classifications accordingly. Unfortu-
nately, the second additional transcription head noticeably worsened the results, which is most likely
due to the model’s need to solve an almost final task on the preliminary layers, since after predicting
both the column and the row, in most cases only one or two phonemes remain to be selected.

4.2 MODELS WITH AUXILIARY LANGUAGE INFORMATION

4.2.1 SPEECH-BASED EMBEDDING MODEL

As part of the study on the possibility of introducing auxiliary information about the language of
the recognized speech, a speech signal vectorization model was trained based on the Wav2vec 2.0
XLSR-53 model Baevski et al. (2020) with 300 million parameters. The difference from main
transcription model include existence of the head feature for extraction based on XVector Snyder
et al. (2019), implementing obtaining a single vector of dimension of 512 features for the entire
speech signal, in contrast to the phoneme prediction head. The model was trained using triplet loss
metric-learning, triplets were formed based on the transcription’s language. Training was carried
out using a stopping criterion based on metrics on a held-out sample represented by examples in 4
languages, and examples belonging to 20 other languages were used for training. The model showed
good trainability and reached convergence by the 3rd epoch, reaching a metric of 0.88.

For a clear visualization of the results, the UMAP method McInnes et al. (2018) was used to reduce
the dimensionality of the obtained vector representations to 2D, making the data convenient to vi-
sualize on a plane. Fig. 3 shows these representations of speech signals from languages in the test
sample projected into two-dimensional space.

Figure 3: Visualization of the two-dimensional UMAP projection of test data embeddings

As can be seen from the visual representation of the data, even in a space of dimension two, uk
and zh-CN are clearly well separated, while tt and uz have significant overlap, corresponding to the
actual relationship between the Tatar (tt) and Uzbek (uz) languages, both languages belong to the
Turkic group of languages.

4.2.2 TRANSCRIPTION-BASED EMBEDDING MODEL

As part of the study on the possibility of introducing auxiliary information about the language of
the recognized speech, a embedding model was trained based on the text representation of IPA
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transcriptions, obtained using the Espeak-ng phonetization algorithm applied to texts in more than
100 languages and a total number of transcriptions exceeding one million. Data from the work by
Deri & Knight (2016) was used for low-resource languages. Training control and metric tracking
were carried out similarly to the speech-based model, in this case 15 languages were set aside for
testing. The basis for training is a BERT-type model trained using by masked language modeling
(MLM) Devlin (2018) on phonetic transcriptions as part of research Li et al. (2023). BERT is
used to obtain a single vectoral display The transcription’s method simply averages all the token
embeddings in the sequence obtained from BERT. Similar to speech-based approach, training was
carried out using the Triplet Loss, triplets were formed based on the transcription’s language. The
model reached convergence after two epochs of training, reaching an average accuracy level of 0.917
on the held-out languages.

4.2.3 ASR MODEL WITH ADDITIONAL LANGUAGE SPEECH-BASED EMBEDDINGS

To verify the hypothesis put forward, a series of experiments were conducted by varying the number
of languages participating in the experiment, as well as their distribution between the training and
test samples. When conducting experiments, the test sample was represented by two parts: 20% of
the data set aside for languages present in training, as well as data from two held-out languages not
represented in the training sample. As the vector transmitted further, we tried using both the vector
from the audio recording itself and the averaged vector from all available speech examples in the
recognizable language. The second option showed noticeably better results and only this method
will be considered further. An additional experiment was also conducted to check the significance
of the transmitted information about languages, to exclude the increase in metrics solely due to the
transmission of language labels. The additional experiment consisted of training the model in a
similar way, but with the auxiliary embeddings replaced with one-hot vectors, reflecting belonging
to one of the languages. When testing on a new language, all positions were replaced with 0s. The
results of the experiment are also presented in Table 4.

Table 4: Quality Estimates on External and Internal Test for 4, 8, and 12 Training Languages

PER out of domain PER in domain
Approach ES CV ES CV
4 Training Languages
Baseline 0.447 0.421 0.153 0.151
Self additional embeddings 0.431 0.418 0.142 0.147
Averaged additional embeddings 0.421 0.405 0.147 0.148

8 Training Languages
Baseline 0.386 0.374 0.132 0.138
Self additional embeddings 0.361 0.361 0.125 0.127
Averaged additional embeddings 0.357 0.348 0.127 0.128

12 Training Languages
Baseline 0.358 0.348 0.113 0.117
Self additional embeddings 0.325 0.315 0.102 0.107
Averaged additional embeddings 0.321 0.301 0.104 0.106
One-hot language embeddings 0.361 0.351 0.112 0.115

The results indicate a logical conclusion: more complete information in the case of individual em-
beddings allows the model to build more complex dependencies based on the data being studied,
which in turn reduces the generalizing ability to new languages, compared to using only averaged
information about languages.

Transmission of only one-hot vectors, indicating to the model the language being recognized, did
indeed somewhat improve the result compared to the simple solution on the internal test, but the
increase is significantly less than from using specialized trained embeddings, while on the external
test a deterioration in results was expected. The results obtained show the achievement of the method
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for improving target metrics, and also show the significance of using the proposed trained language
representations.

Another important observation from the results obtained is the increased efficiency of approaches
from data scaling. The larger the sample of training languages, the greater the increase compared to
the simple solution was from using the approach, related to the ability to better generalize the use of
auxiliary information during transcription.

4.2.4 ASR MODEL WITH ADDITIONAL LANGUAGE TRANSCRIPTION-BASED EMBEDDINGS

The conditions for conducting experiments to test the hypothesis were similar to the method using
speech signals. Similar patterns were obtained as in the previous section, and therefore we present
only data from an experiment with 12 training languages - Table 5.

The results shows the performance increase on target metric from using approach on both internal
and external test. It show results is better than solution based one One-hot vectors.

4.3 COMBINING APPROACHES AND FINAL RESULTS

The next stage of the study was to test the compatibility of the previously proposed approaches with
each other. The obtained results for a dataset of 12 trained languages are presented below in tables
15 and 16. For comparison, the table also presents the simple solution result and the best metric
previously obtained by the hierarchical model.

Table 5: Best PER on held-out languages: French – fr, German – de, Catalan – ca, Japanese – ja.

Approach PER in-
domain PER fr PER de PER ca PER ja

12 Training Languages
Baseline 0.113 0.348 0.314 0.361 0.423
HMTL 0.103 0.264 0.253 0.323 0.392

Speech embeddings 0.106 0.301 0.281 0.333 0.391
Transcription embeddings 0.103 0.321 0.279 0.337 0.385

Speech embeddings +
transcription embeddings 0.098 0.311 0.275 0.324 0.373

Transcription embeddings +
HMTL 0.092 0.261 0.271 0.339 0.378

Speech embeddings + HMTL 0.091 0.252 0.276 0.341 0.372
Combination of all methods 0.091 0.249 0.245 0.325 0.361

26 Training Languages
Baseline 0.93 0.265 0.249 0.311 0.323
HMTL 0.089 0.249 0.238 0.301 0.315

Combination of all methods 0.088 0.251 0.234 0.292 0.281

The focus of this study is on the out-of-domain scenario, providing a detailed comparison for four
different held-out languages, as shown in Table 5. The results indicate that all proposed approaches
significantly outperform the baseline. For the in-domain PER, the metric increase ranges from 9
to 15%, while for the out of domain, we get an increase from 8 to 30%. In general, the models
has different ratio in domain /out of domain metrics, need approach selection based based on objec-
tive, improve quality already language presented by training or make model more resistant to new
language.

Combining approaches to target goal increase metrics, combined approaches result get over baseline,
even from result approach separated, 30% result out of domain data baseline model with approach,
with data training and 7-10% best of baseline solution approaches by separated.

As demonstrated by the conducted experiments, expanding the training dataset by increasing the
number of languages included improves the performance of all methods. At the same time, the
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approaches proposed in this work still yield a significant improvement over the baseline solution,
achieving a relative PER improvement of 7 to 8%.

4.4 LANGUAGE REPRESENTATION SUBSTITUTION

To better understand the impact of language vector representations on the performance of the com-
bined approach, we conducted an additional experiment. Specifically, we replaced the language
embedding of a held-out language with embedding from other languages during testing. For this
experiment, German (de) was selected as the held-out language, and its vector was substituted with
embeddings from English (en), Swedish (sv-SE), Russian (ru), and Japanese (ja). In particular, all
languages, except English, were included in the training dataset. The results of this experiment are
presented in Table 6.

Table 6: PER Metrics on German (de) with substituted language embeddings

Language of embedding PER de
Baseline 0.249
German (de) 0.234
English (en) 0.243
Swedish (sv-SE) 0.225
Russian (ru) 0.295
Japanese (ja) 0.301

The results demonstrate that using embedding from closely related languages within the Germanic
language family—such as Swedish and English—yielded competitive performance. Notably, the
use of Swedish embedding achieved the best results, likely because the model was already familiar
with this embedding during training and could process it more effectively. Conversely, substituting
embeddings from languages belonging to different language families, such as Russian and Japanese,
led to a significant degradation in transcription accuracy, resulting in performance worse than the
baseline.

From a practical perspective, this experiment highlights the potential utility of leveraging vector rep-
resentations from linguistically similar languages, particularly those sharing phonetic or genealog-
ical characteristics. This approach is especially valuable when high-quality data for generating
language-specific embedding is unavailable. For instance, in scenarios where a target language lacks
sufficient speech or transcription data, embeddings from a closely related language could serve as a
viable substitute, enabling the model to maintain reasonable performance.

5 CONCLUSION

This work investigated approaches to enhance the generalization capabilities of multilingual Au-
tomatic Speech Recognition (ASR) systems in the International Phonetic Alphabet (IPA) format.
The proposed methods demonstrated significant improvements in recognition accuracy for both
in-domain and out-of-domain languages. The results align with established linguistic knowledge
regarding language relatedness, validating the effectiveness of the proposed approaches. The ex-
periments yielded meaningful results, showing a relative improvement of 7–10% in recognition
accuracy across most scenarios, with over 20% improvement observed for out-of-domain languages
when the number of training languages was reduced. The final contribution of this work includes
training all components on a broader dataset and making the model publicly available. Future re-
search directions include a more detailed exploration of the relationships between languages in the
learned vector spaces and their impact on transcription accuracy, as well as comparisons with lin-
guistic theories. Additionally, the creation of a unified vector space that integrates both acoustic and
phonetic modalities, reflecting the transformation principles from speech to transcription for specific
languages, presents an intriguing avenue for further investigation.
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A EXPERIMENTAL SETUP

This appendix details the computational resources and training specifics relevant to the experiments
conducted in this study. All experiments were performed utilizing NVIDIA Tesla A100 80GB and
NVIDIA RTX 3090Ti 24 GB GPUs. With respect to the datasets and model architectures employed
in this work, the training time for a single epoch was approximately one hour per one A100 GPU
for a set of 12 languages and proportionally to the number of languages for the remaining exper-
iments. Furthermore, the incorporation of auxiliary loss functions introduced a moderate compu-
tational overhead, resulting in an approximate increase in training time of within 20%. In most
experiments with comparing HMTL and baseline, the optimal number of epochs when using cross-
validation for out-of-domain scenario ranged from 1 to 2 epochs, while for the baseline, it was
similar but slightly higher, at 2–3 epochs. However, no practically significant or predictable results
were obtained, making it difficult to discuss the results in terms of convergence acceleration. This
issue will be explored in greater detail in future work.
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