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ABSTRACT

Many real-world physical control systems are required to satisfy constraints upon
deployment. Furthermore, real-world systems are often subject to effects such
as non-stationarity, wear-and-tear, uncalibrated sensors and so on. Such effects
effectively perturb the system dynamics and can cause a policy trained successfully
in one domain to perform poorly when deployed to a perturbed version of the
same domain. This can affect a policy’s ability to maximize future rewards as
well as the extent to which it satisfies constraints. We refer to this as constrained
model misspecification. We present an algorithm that mitigates this form of
misspecification, and showcase its performance in multiple simulated Mujoco tasks
from the Real World Reinforcement Learning (RWRL) suite.

1 INTRODUCTION

Reinforcement Learning (RL) has had a number of recent successes in various application domains
which include computer games (Silver et al., 2017; Mnih et al., 2015; Tessler et al., 2017) and
robotics (Abdolmaleki et al., 2018a). As RL and deep learning continue to scale, an increasing
number of real-world applications may become viable candidates to take advantage of this technology.
However, the application of RL to real-world systems is often associated with a number of challenges
(Dulac-Arnold et al., 2019; Dulac-Arnold et al., 2020). We will focus on the following two:

Challenge 1 - Constraint satisfaction: One such challenge is that many real-world systems have
constraints that need to be satisfied upon deployment (i.e., hard constraints); or at least the number
of constraint violations as defined by the system need to be reduced as much as possible (i.e.,
soft-constraints). This is prevalent in applications ranging from physical control systems such as
autonomous driving and robotics to user facing applications such as recommender systems.

Challenge 2 - Model Misspecification (MM): Many of these systems suffer from another challenge:
model misspecification. We refer to the situation in which an agent is trained in one environment but
deployed in a different, perturbed version of the environment as an instance of model misspecification.
This may occur in many different applications and is well-motivated in the literature (Mankowitz
et al., 2018; 2019; Derman et al., 2018; 2019; Iyengar, 2005; Tamar et al., 2014).

There has been much work on constrained optimization in the literature (Altman, 1999; Tessler et al.,
2018; Efroni et al., 2020; Achiam et al., 2017; Bohez et al., 2019). However, to our knowledge, the
effect of model misspecification on an agent’s ability to satisfy constraints at test time has not yet
been investigated.

⇤indicates equal contribution.
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Constrained Model Misspecification (CMM): We consider the scenario in which an agent is
required to satisfy constraints at test time but is deployed in an environment that is different from
its training environment (i.e., a perturbed version of the training environment). Deployment in a
perturbed version of the environment may affect the return achieved by the agent as well as its ability
to satisfy the constraints. We refer to this scenario as constrained model misspecification.

This problem is prevalent in many real-world applications where constraints need to be satisfied but
the environment is subject to state perturbations effects such as wear-and-tear, partial observability
etc., the exact nature of which may be unknown at training time. Since such perturbations can
significantly impact the agent’s ability to satisfy the required constraints it is insufficient to simply
ensure that constraints are satisfied in the unperturbed version of the environment. Instead, the
presence of unknown environment variations needs to be factored into the training process. One
area where such considerations are of particular practical relevance is sim2real transfer where the
unknown sim2real gap can make it hard to ensure that constraints will be satisfied on the real system
(Andrychowicz et al., 2018; Peng et al., 2018; Wulfmeier et al., 2017; Rastogi et al., 2018; Christiano
et al., 2016). Of course, one could address this issue by limiting the capabilities of the system being
controlled in order to ensure that constraints are never violated, for instance by limiting the amount of
current in an electric motor. Our hope is that our methods can outperform these more blunt techniques,
while still ensuring constraint satisfaction in the deployment domain.

Main Contributions: In this paper, we aim to bridge the two worlds of model misspecification and
constraint satisfaction. We present an RL objective that enables us to optimize a policy that aims
to be robust to CMM. Our contributions are as follows: (1) Introducing the Robust Return Robust
Constraint (R3C) and Robust Constraint (RC) RL objectives that aim to mitigate CMM as defined
above. This includes the definition of a Robust Constrained Markov Decision Process (RC-MDP).
(2) Derive corresponding R3C and RC value functions and Bellman operators. Provide an argument
showing that these Bellman operators converge to fixed points. These are implemented in the policy
evaluation step of actor-critic R3C algorithms. (3) Implement five different R3C and RC algorithmic
variants on top of D4PG and DMPO, (two state-of-the-art continuous control RL algorithms). (4)
Empirically demonstrate the superior performance of our algorithms, compared to various baselines,
with respect to mitigating CMM. This is shown consistently across 6 different Mujoco tasks from the
Real-World RL (RWRL) suite1.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

A Robust Markov Decision Process (R-MDP) is defined as a tuple hS,A,R, �,Pi where S is a
finite set of states, A is a finite set of actions, R : S ⇥ A ! R is a bounded reward function and
� 2 [0, 1) is the discount factor; P(s, a) ✓ M(S) is an uncertainty set where M(S) is the set
of probability measures over next states s0 2 S. This is interpreted as an agent selecting a state
and action pair, and the next state s0 is determined by a conditional measure p(s0|s, a) 2 P(s, a)
(Iyengar, 2005). We want the agent to learn a policy ⇡ : S ! A, which is a mapping from states
to actions that is robust with respect to this uncertainty set. For the purpose of this paper, we
consider deterministic policies, but this can easily be extended to stochastic policies too. The robust
value function V ⇡ : S ! R for a policy ⇡ is defined as V ⇡(s) = infp2P(s,⇡(s)) V

⇡,p(s) where
V ⇡,p(s) = r(s,⇡(s)) + �p(s0|s,⇡(s))V ⇡,p(s0). A rectangularity assumption on the uncertainty set
(Iyengar, 2005) ensures that “nature” can choose a worst-case transition function independently for
every state s and action a. This means that during a trajectory, at each timestep, nature can choose
any transition model from the uncertainty set to reduce the performance of the agent. A robust policy
optimizes for the robust (worst-case) expected return objective: JR(⇡) = infp2P Ep,⇡[

P1
t=0 �

trt].

The robust value function can be expanded as V ⇡(s) = r(s,⇡(s)) + � infp2P (s,⇡(s)) Ep[V ⇡(s0)|s,⇡(s)].
As in (Tamar et al., 2014), we can define an operator �inf

P(s,a)v : R|S| ! R as
�inf
P(s,a)v = inf{p>v|p 2 P(s, a)}. We can also define an operator for some policy ⇡ as
�inf
⇡ : R|S| ! R|S| where {�inf

⇡ v}(s) = �inf
P(s,⇡(s))v. Then, we have defined the Robust Bellman

1https://github.com/google-research/realworldrl_suite
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operator as follows T⇡
RV ⇡ = r⇡ + ��inf

⇡ V ⇡. Both the robust Bellman operator T⇡
R : R|S| ! R|S|

for a fixed policy and the optimal robust Bellman operator T ⇤
Rv(s) = max⇡ T⇡

Rv(s) have previously
been shown to be contractions (Iyengar, 2005).

A Constrained Markov Decision Process (CMDP) is an extension to an MDP and consists of the
tuple hS,A, P,R,C, �i where S,A,R and � are defined as in the MDP above and C : S⇥A ! RK is
a mapping from a state s and action a to a K dimensional vector representing immediate costs relating
to K constraint. We use K=1 from here on in and therefore C : S⇥A ! R. We refer to the cost for a
specific state action tuple hs, ai at time t as ct(s, a). The solution to a CMDP is a policy ⇡ : S ! �A

that learns to maximize return and satisfy the constraints. The agent aims to learn a policy that
maximizes the expected return objective J⇡

R = E[
P1

t=0 �
trt] subject to J⇡

C = E[
P1

t=0 �
tct]  �

where � is a pre-defined constraint threshold. A number of approaches (Tessler et al., 2018; Bohez
et al., 2019) optimize the Lagrange relaxation of this objective min��0 max✓ J⇡

R � �(J⇡
C � �) by

optimizing the Lagrange multiplier � and the policy parameters ✓ using alternating optimization. We
also define the constraint value function V ⇡,p

C : S ! R for a policy ⇡ as in (Tessler et al., 2018)
where V ⇡,p

C (s) = c(s,⇡(s)) + �p(s0|s,⇡(s))V ⇡,p
C (s0).

2.2 CONTINUOUS CONTROL RL ALGORITHMS

We address the CMM problem by modifying two well-known continuous control algorithms by
having them optimize the RC and R3C objectives.

The first algorithm is Maximum A-Posteriori Policy Optimization (MPO). This is a continuous
control RL algorithm that performs policy iteration using an RL form of expectation maximization
(Abdolmaleki et al., 2018a;b). We use the distributional-critic version in Abdolmaleki et al. (2020),
which we refer to as DMPO.

The second algorithm is Distributed Distributional Deterministic Policy Gradient (D4PG), which
is a state-of-the-art actor-critic continuous control RL algorithm with a deterministic policy (Barth-
Maron et al., 2018). It is an incremental improvement to DDPG (Lillicrap et al., 2015) with a
distributional critic that is learned similarly to distributional MPO.

3 ROBUST CONSTRAINED (RC) OPTIMIZATION OBJECTIVE

We begin by defining a Robust Constrained MDP (RC-MDP). This combines an R-MDP and C-MDP
to yield the tuple hS,A,R,C, �,Pi where all of the variables in the tuple are defined in Section 2.
We next define two optimization objectives that optimize the RC-MDP. The first variant attempts to
learn a policy that is robust with respect to the return as well as constraint satisfaction - Robust Return
Robust Constrained (R3C) objective. The second variant is only robust with respect to constraint
satisfaction - Robust Constrained (RC) objective.

Prior to defining these objectives, we add some important definitions.
Definition 1. The robust constrained value function V ⇡

C : S ! R for a policy ⇡ is defined as

V ⇡
C (s) = supp2P(s,⇡(s)) V

⇡,p
C (s) = supp2P(s,⇡(s)) E⇡,p

P1
t=0 �

tct

�
.

This value function represents the worst-case sum of constraint penalties over the course of an episode
with respect to the uncertainty set P(s, a). We can also define an operator �sup

P(s,a)v : R|S| ! R as
�sup
P(s,a)v = sup{p>v|p 2 P(s, a)}. In addition, we can define an operator on vectors for some policy
⇡ as �sup

⇡ : R|S| ! R|S| where {�sup
⇡ v}(s) = �sup

P(s,⇡(s))v. Then, we can defined the Supremum
Bellman operator T⇡

sup : R|S| ! R|S| as follows T⇡
supV

⇡ = r⇡ + ��sup
⇡ V ⇡ . Note that this operator

is a contraction since we get the same result if we replace T⇡
inf with T⇡

sup and replace V with �V . An
alternative derivation of the sup operator contraction has also been derived in the Appendix, Section
A.3 for completeness.

3.0.1 ROBUST RETURN ROBUST CONSTRAINT (R3C) OBJECTIVE

The R3C objective is defined as:

3
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max
⇡2⇧

inf
p2P

Ep,⇡

X

t

�tr(st, at)

�
s.t. sup

p02P
Ep0,⇡

X

t

�tc(st, at)

�
 � (1)

Note, a couple of interesting properties about this objective: (1) it focuses on being robust with
respect to the return for a pre-defined set of perturbations; (2) the objective also attempts to be robust
with respect to the worst case constraint value for the perturbation set. The Lagrange relaxation form
of equation 1 is used to define an R3C value function.

Definition 2 (R3C Value Function). For a fixed �, and using the above-mentioned rectangularity
assumption (Iyengar, 2005), the R3C value function for a policy ⇡ is defined as the concatenation
of two value functions V⇡ = f(hV ⇡, V ⇡

C i) = V ⇡ � �V ⇡
C . This implies that we keep two separate

estimates of V ⇡ and V ⇡
C and combine them together to yield V⇡. The constraint threshold � term

offsets the value function, and has no effect on any policy improvement step2. As a result, the
dependency on � is dropped.

The next step is to define the R3C Bellman operator. This is presented in Definition 3.

Definition 3 (R3C Bellman operator). The R3C Bellman operator is defined as two separate Bellman
operators T⇡

R3C = hT⇡
inf , T

⇡
supi where T⇡

inf is the robust Bellman operator (Iyengar, 2005) and
T⇡
sup : R|S| ! R|S| is defined as the sup Bellman operator. Based on this definition, applying the

R3C Bellman operator to V⇡ involves applying each of the Bellman operators to their respective
value functions. That is, T⇡

R3CV = T⇡
infV � �T⇡

supVC .

It has been previously shown that T⇡
inf is a contraction with respect to the max norm (Tamar et al.,

2014) and therefore converges to a fixed point. We also provided an argument whereby T⇡
sup is a

contraction operator in the previous section as well as in Appendix, A.3. These Bellman operators
individually ensure that the robust value function V (s) and the constraint value function VC(s)
converge to fixed points. Therefore, T ⇡

R3CV also converges to a fixed point by construction.

As a result of the above argument, we know that we can apply the R3C Bellman operator in value
iteration or policy iteration algorithms in the policy evaluation step. This is achieved in practice
by simultaneously learning both the robust value function V ⇡(s) and the constraint value function
V ⇡
C (s) and combining these estimates to yield V⇡(s).

It is useful to note that this structure allows for a flexible framework which can define an objective
using different combinations of sup and inf terms, yielding combined Bellman operators that are
contraction mappings. It is also possible to take the mean with respect to the uncertainty set yielding
a soft-robust update (Derman et al., 2018; Mankowitz et al., 2019). We do not derive all of the
possible combinations of objectives in this paper, but note that the framework provides the flexibility
to incorporate each of these objectives. We next define the RC objective.

3.0.2 ROBUST CONSTRAINED (RC) OBJECTIVE

The RC objective focuses on being robust with respect to constraint satisfaction and is defined as:

max
⇡2⇧

E⇡,p

X

t

�tr(st, at)

�
s.t. sup

p02P
Ep0,⇡

X
�tc(st, at)

�
< � (2)

This objective differs from R3C in that it only focuses on being robust with respect to constraint
satisfaction. This is especially useful in domains where perturbations are expected to have a signif-
icantly larger effect on constraint satisfaction performance compared to return performance. The
corresponding value function is defined as in Definition 2, except by replacing the robust value
function in the concatenation with the expected value function V ⇡,p. The Bellman operator is also
similar to Definition 3, where the expected return Bellman operator T⇡ replaces T⇡

inf .

2The � term is only used in the Lagrange update in Lemma 1.
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3.1 LAGRANGE UPDATE

For both objectives, we need to learn a policy that maximizes the return while satisfying the constraint.
This involves performing alternating optimization on the Lagrange relaxation of the objective. The
optimization procedure alternates between updating the actor/critic parameters and the Lagrange
multiplier. For both objectives we have the same gradient update for the Lagrange multiplier:
Lemma 1 (Lagrange derivative). The gradient of the Lagrange multiplier � is
@
@�f = �

✓
supp2P Ep,⇡

P
t �

tc(st, at)

�
� �

◆
, where f is the R3C or RC objective loss.

This is an intuitive update in that the Lagrange multiplier is updated using the worst-case constraint
violation estimate. If the worst-case estimate is larger than �, then the Lagrange multiplier is increased
to add more weight to constraint satisfaction and vice versa.

4 ROBUST CONSTRAINED POLICY EVALUATION

We now describe how the R3C Bellman operator can be used to perform policy evaluation. This policy
evaluation step can be incorporated into any actor-critic algorithm. Instead of optimizing the regular
distributional loss (e.g. the C51 loss in Bellemare et al. (2017)), as regular D4PG and DMPO do, we

optimize the worst-case distributional loss, which is the distance: d
✓
rt + �V⇡k

✓̂
(st+1),V

⇡k
✓ (st)

◆
,

where V⇡k
✓ (st) = infp2P(st,⇡(st))


V ⇡k
✓ (st+1 ⇠ p(·|st,⇡(st)))

�
�� supp02P(st,⇡(st))


V ⇡k
C,✓(st+1 ⇠

p0(·|st,⇡(st)))
�

; P(st,⇡(st)) is an uncertainty set for the current state st and action at; ⇡k is the

current network’s policy, and ✓̂ denotes the target network parameters. The Bellman operators
derived in the previous sections are repeatedly applied in this policy evaluation step depending on the
optimization objective (e.g., R3C or RC). This would be utilized in the critic updates of D4PG and
DMPO. Note that the action value function definition, Q⇡k

✓ (st, at), trivially follows.

5 EXPERIMENTS

We perform all experiments using domains from the Real-World Reinforcement Learn-
ing (RWRL) suite3, namely cartpole:{balance, swingup}, walker:{stand, walk,
run}, and quadruped:{walk, run}. We define a task in our experiments as a 6-tuple
T = hdomain, domain variant, constraint, safety coeff, threshold, perturbationi
whose elements refer to the domain name, the variant for that domain (i.e. RWRL task), the constraint
being considered, the safety coefficient value, the constraint threshold and the type of robustness
perturbation being applied to the dynamics respectively. An example task would therefore be:
T = hcartpole, swingup, balance velocity, 0.3, 0.115, pole lengthi. In total, we have 6
different tasks on which we test our benchmark agents. The full list of tasks can be found in the
Appendix, Table 7. The available constraints per domain can be found in the Appendix B.1.

The baselines used in our paper can be seen in Table 1. C-ALG refers to the reward constrained,
non-robust algorithms of the variants that we have adapted based on (Tessler et al., 2018; Anonymous,
2020); RC-ALG refers to the robust constraint algorithms corresponding to the Bellman operator
T⇡
RC ; R3C-ALG refers to the robust return robust constrained algorithms corresponding to the

Bellman operator T⇡
R3C ; SR3C-ALG refers to the soft robust (with respect to return) robust constraint

algorithms and R-ALG refers to the robust return algorithms based on Mankowitz et al. (2019).

5.1 EXPERIMENTAL SETUP

For each task, the action and observation dimensions are shown in the Appendix, Table 6. The length
of an episode is 1000 steps and the upper bound on reward is 1000 (Tassa et al., 2018). All the

3https://github.com/google-research/realworldrl_suite
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Baseline Algorithm Variants Baseline Description

C-ALG C-D4PG, C-DMPO Constraint aware, non-robust.
RC-ALG RC-D4PG, RC-DMPO Robust constraint.
R3C-ALG R3C-D4PG, R3C-DMPO Robust return robust constraint.
R-ALG R-D4PG, R-DMPO Robust return.
SR3C-ALG SR3C-D4PG Soft robust return, robust constraint.

Table 1: The baseline algorithms used in this work.

network architectures are the same per algorithm and approximately the same across algorithms in
terms of the layers and the number of parameters. A full list of all the network architecture details
can be found in the Appendix, Table 4. All runs are averaged across 5 seeds.

Metrics: We use three metrics to track overall performance, namely: return R, overshoot  �,C and
penalized return Rpenalized. The return is the sum of rewards the agent receives over the course of
an episode. The constraint overshoot  �,C = max(0, J⇡

C � �) is defined as the clipped difference
between the average costs over the course of an episode J⇡

C and the constraint threshold �. The
penalized return is defined as Rpenalized = R � �̄ �,C where �̄ = 1000 is an evaluation weight and
equally trades off return with constraint overshoot  �,C .

Constraint Experiment Setup: The safety coefficient is a flag in the RWRL suite (Dulac-Arnold
et al., 2020) that determines how easy/difficult it is in the environment to violate constraints. The
safety coefficient values range from 0.0 (easy to violate constraints) to 1.0 (hard to violate constraints).
As such we selected for each task (1) a safety coefficient of 0.3; (2) a particular constraint supported
by the RWRL suite and (3) a corresponding constraint threshold �, which ensures that the agent can
find feasible solutions (i.e., satisfy constraints) and solve the task.

Robustness Experimental Setup: The robust/soft-robust agents (R3C and RC variants) are trained
using a pre-defined uncertainty set consisting of 3 task perturbations (this is based on the results from
Mankowitz et al. (2019)). Each perturbation is a different instantiation of the Mujoco environment.
The agent is then evaluated on a set of 9 hold-out task perturbations (10 for quadruped). For example,
if the task is T = hcartpole,swingup,balance velocity,0.3,0.115,pole lengthi, then the
agent will have three pre-defined pole length perturbations for training, and evaluate on nine unseen pole lengths,
while trying to satisfy the balance velocity constraint.

Training Procedure: All agents are always acting on the unperturbed environment. This corresponds to the
default environment in the dm control suite (Tassa et al., 2018) and is referred to in the experiments as the nominal
environment. When the agent acts, it generates next state realizations for the nominal environment as well as each
of the perturbed environments in the training uncertainty set to generate the tuple hs, a, r, [s0, s01, s02 · · · s0N ]i
where N is the number of environments in the training uncertainty set and s0i is the next state realization
corresponding to the ith perturbed training environment. Since the robustness update is incorporated into the
policy evaluation stage of each algorithm, the critic loss which corresponds to the TD error in each case is
modified as follows: when computing the target, the learner samples a tuple hs, a, r, [s0, s01, s02 · · · s0N ]i from
the experience replay. The target action value function for each next state transition [s0, s01, s

0
2 · · · s0N ] is then

computed by taking the inf (robust), average (soft-robust) or the nominal value (non-robust). In each case
separate action-value functions are trained for the return Q(s, a) and the constraint QC(s, a). These value
function estimates then individually return the mean, inf, sup value, depending on the technique, and are
combined to yield the target to compute Q(s, a).

The chosen values of the uncertainty set and evaluation set for each domain can be found in Appendix,
Table 8. Note that it is common practice to manually select the pre-defined uncertainty set and the unseen test
environments. Practitioners often have significant domain knowledge and can utilize this when choosing the
uncertainty set (Derman et al., 2019; 2018; Di Castro et al., 2012; Mankowitz et al., 2018; Tamar et al., 2014).

5.2 MAIN RESULTS

In the first sub-section we analyze the sensitivity of a fixed constrained policy (trained using C-D4PG) operating
in perturbed versions of a given environment. This will help test the hypothesis that perturbing the environment
does indeed have an effect on constraint satisfaction as well as on return. In the next sub-section we analyze the
performance of the R3C and RC variants with respect to the baseline algorithms.
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Base Algorithm R Rpenalized max(0, J⇡
C � �)

D4PG C-D4PG 673.21 ± 93.04 491.450 0.18 ± 0.053
R-D4PG 707.79 ± 65.00 542.022 0.17 ± 0.046
R3C-D4PG 734.45 ± 77.93 635.246 0.10 ± 0.049
RC-D4PG 684.30 ± 83.69 578.598 0.11 ± 0.050
SR3C-D4PG 723.11 ± 84.41 601.016 0.12 ± 0.038

DMPO C-MPO 598.75 ± 72.67 411.376 0.19 ± 0.049
R-MPO 686.13 ± 86.53 499.581 0.19 ± 0.036
R3C-MPO 752.47 ± 57.10 652.969 0.10 ± 0.040
RC-MPO 673.98 ± 80.91 555.809 0.12 ± 0.036

Table 2: Performance metrics averaged over all holdout sets for all tasks.

5.2.1 FIXED POLICY SENSITIVITY

In order to validate the hypothesis that perturbing the environment affects constraint satisfaction and return, we
trained a C-D4PG agent to satisfy constraints across 10 different tasks. In each case, C-D4PG learns to solve the
task and satisfy the constraints in expectation. We then perturbed each of the tasks with a supported perturbation
and evaluated whether the constraint overshoot increases and the return decreases for the C-D4PG agent. Some
example graphs are shown in Figure 1 for the cartpole (left), quadruped (middle) and walker (right)
domains. The upper row of graphs contain the return performance (blue curve), the penalized return performance
(orange curve) as a function of increased perturbations (x-axis). The vertical red dotted line indicates the nominal
model on which the C-D4PG agent was trained. The lower row of graphs contain the constraint overshoot
(green curve) as a function of varying perturbations. As seen in the figures, as perturbations increase across
each dimension, both the return and penalized return degrades (top row) while the constraint overshoot (bottom
row) increases. This provides useful evidence for our hypothesis that constraint satisfaction does indeed suffer
as a result of perturbing the environment dynamics. This was consistent among many more settings. The full
performance plots can be found in the Appendix, Figures 3, 4 and 5 for cartpole, quadruped and walker
respectively.

Figure 1: The effect on constraint satisfaction and return as perturbations are added to cartpole,
quadruped and walker for a fixed C-D4PG policy.

5.2.2 ROBUST CONSTRAINED RESULTS

We now compare C-ALG, RC-ALG, R3C-ALG, R-ALG and SR3C-ALG4 across 6 tasks. The average perfor-
mance across holdout sets and tasks is shown in Table 2. As seen in the table, the R3C-ALG variant outperforms
all of the baselines in terms of return and constraint overshoot and therefore obtains the highest penalized return
performance. Interestingly, the soft-robust variant yields competitive performance.

We further analyze the results for three tasks using ALG=D4PG on the (left
column) and ALG=DMPO (right column) in Figure 2. The three tasks are
Tcartpole,slider damping = hcartpole,swingup,balance velocity,0.3,0.115,slider dampingi
(top row), Tcartpole,pole mass = hcartpole,swingup,balance velocity,0.3,0.115,pole massi
(middle row) and Twalker = hwalker,walk,joint velocity,0.3,0.1,torso lengthi (bottom
row). Graphs of the additional tasks can be found in the Appendix, Figures 6 and 7. Each graph contains, on the
y-axis, the return R (marked by the transparent colors) and the penalized return Rpenalized (marked by the dark

4We only ran the SR3C-D4PG variant to gain intuition as to soft-robust performance.
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colors superimposed on top of R). The x-axis consists of three holdout set environments in increasing order of
difficulty from Holdout 0 to Holdout 8. Holdout N corresponds to perturbation element N for the corresponding
task in the Appendix, Table 8. As can be seen for Tcartpole,slider damping and Tcartpole,pole mass (Figure 2
(top and middle rows respectively)), R3C-D4PG outperforms the baselines, especially as the perturbations
get larger. This can be seen by observing that as the perturbations increase, the penalized return for these
techniques is significantly higher than that of the baselines. This implies that the amount of constraint violations
is significantly lower for these algorithms resulting in robust constraint satisfaction. Twalker (bottom row) has
similar performance improved performance over the baseline algorithms.
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Figure 2: The holdout set performance of the baseline algorithms on D4PG variants (left) and DMPO
variants (right) for Cartpole with pole mass perturbations (top row) and walker with thigh length
perturbations (bottom row).

6 CONCLUSION

This papers simultaneously addresses constraint satisfaction and robustness to state perturbations, two important
challenges of real-world reinforcement learning. We present two RL objectives, R3C and RC, that yield
robustness to constraints under the presence of state perturbations. We define R3C and RC Bellman operators to
ensure that value-based RL algorithms will converge to a fixed point when optimizing these objectives. We then
show that when incorporating this into the policy evaluation step of two well-known state-of-the-art continuous
control RL algorithms the agent outperforms the baselines on 6 Mujoco tasks. In related work, Everett et al.
(2020) considers the problem of being verifiably robust to an adversary that can perturb the state s0 2 S to
degrade performance as measured by a Q-function. Dathathri et al. (2020) consider the problem of learning
agents (in deterministic environments with known dynamics) that satisfy constraints under perturbations to states
s0 2 S. In contrast, equation 1 considers the general problem of learning agents that optimize for the return
while satisfying constraints for a given RC-MDP.
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