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1. Introduction

Gaussian processes (GPs) are data-efficient Bayesian non-parametric models that offer cal-
ibrated uncertainty quantification and are robust to overfitting. Their drawback resides in
the computational complexity for inverting the covariance matrix, which is cubic in com-
putation and quadratic in memory. To solve this issue, Hensman et al. (2013) proposed an
“inducing point” framework scalable to large data, obtaining posterior formulas conditioned
on these artificial points. However, this also scales supralinearly with regards to inducing
point numbers. Van der Wilk (2019) have shown that the parametric mean can only have
M degrees of freedom, where M is the number of inducing points. On this note, recent
work (Cheng and Boots, 2017; Salimbeni et al., 2018) have introduced a dual representation
of Sparse GP (SGPs) in Reproducing Kernel Hilbert Space (RKHS), choosing a different
set of basis for the mean, respectively the variance component. The degrees of freedom of
the mean posterior equation can be increased at a linear cost with regards to number of
inducing points. Similar in scope, Shi et al. (2020) decompose a SGP into two orthogonal
components in prior function space and impose variational posteriors with different sets of
inducing points for each component.

In this paper we make the following contributions:

• Propose a new RKHS parametrization of SGPs that separates the basis for the para-
metric, respectively non-parametric components on a SGPs as introduced in Hensman
et al. (2017).

• Empirically show that this formulation results in a set of inducing points that has the
task of devising the decision boundaries and another set which exclusively focuses on
fitting the training data manifold.

• Show the equivalence between Bayesian Kernel Ridge Regression (BKRR) and SGPs
in posterior function space. Based on insights from BKRR we propose a parametriza-
tion of the inducing points’ variance as a function of their location.

2. Background

We defer the notation conventions and introduction to SGPs to the supplementary material,
while introducing the necessary theoretical background for our method.
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2.1. Disentangling Uncertainties in Sparse Gaussian Processes

As noted by Hensman et al. (2017), the variational GP posterior over function values can
be divided into two components:

f(·) = h(·) + g(·) (1)

h(·) = N (h|0,Knn −KnmK
−1
mmKmn) (2)

g(·) = N (g|KnmK
−1
mmm,KnmK

−1
mmSK

−1
mmKmn) (3)

The variance pertaining to g(·) will be denoted as within-data uncertainty as it is given
by the basis functions that control the shape of the mean, thereby it could be interpreted as
the variance stemming from the parametric side of the SGP. The variance of h(·) captures
the shift from within to outside the data manifold as it is given by the current number of
inducing points and will be denoted as distributional uncertainty.

2.2. Decoupled GPs

Cheng and Boots (2017) introduced the dual formulation of Sparse Gaussian Processes in
RKHS. The authors motivated the Decoupled GPs by the O(M3) complexity. They argue
that the posterior mean can be decoupled from the posterior variance, when the goal is
rather enhancing the predictive mean rather than obtaining better approximations to the
real posterior variance of the full GP.

We define an RKHS H to be a Hilbert space with the reproducing property: ∀x ∈ X,
∃φx ∈ H such that ∀f ∈ H, f(x) = φTx f. A GP(m, k) is equivalent to a Gaussian measure ν
on a Banach space B which has a RKHS H. There is a mean functional ν ∈ H and a bounded
positive semi-definite linear operator Σ : H→ H such that for any x, x∗ ∈ X, ∃φx, φx∗ ∈ H,
we can then write m(x) = φTx ν and k(x, x∗) = φTxΣφx∗

With the definition of the dual of GPs in mind, we can now proceed to characterize a
subspace parametrization as follows: µ = φZa and Σ = I + φZAφ

T
Z , where a ∈ RM and

A ∈ RM∗M .

3. Decoupled GP Components

Our motivation is to get a better approximation of the true distributional variance of a full
GP with minimum computational and memory overhead. With this in mind, our functional
basis parametrization for h(·) is:

µh = φZαK−1α m (4)

Σh = φZαK−1α SK−1α φTZα (5)

whereas for the g(·) component we impose the following parametrization:

µg = 0 (6)

Σg = I − φZK−1Z φTZ (7)
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where Z = {α, β}. The additional β inducing point locations are introduced to obtain
a better fit in terms of variance to the data manifold. This comes without the introduction
of additional variational parameters mβ, Sβ that need to be optimized.

Consequently, we have the following maximization objective:

maxLθ(q(f)) = maxq(f),θ

∫
q(f)log

pθ(y|f)p(f)

q(f)
df (8)

maxEq(h),q(g)[logpθ(y|h+ g)]−KL[q(f)||p(f)] (9)

where q(f) = N(h+g|µh,Σh+Σg), respectively the Kullback-Liebler divergence has the
the following analytic form:

KL[q(f)||p(f)] = 0.5 ∗

[
Tr(SK−1α ) +mTK−1α m− log

|Kα −Kα,ZK
−1
Z KZ,α + S|

Kα

]
(10)

Through this RKHS parametrization, we have decoupled the inducing points of h(·) and
g(·). In all experiments we use the same kernel hyperparameters for both components.

4. Equivalence between Bayesian Kernel Ridge Regression and Sparse
Gaussian Processes

Kanagawa et al. (2018) provide an in-depth analysis on connections between kernel methods
and GPs. In this section, we seek to establish connections between BKRR and SGPs.

At testing time, the parameterization for Decoupled SGP Components (DSGPC) has
the following form:

Ũh = Kn,αK
−1
α m (11)

Σ̃h = Kn,αK
−1
α SK−1α Kα,n (12)

Σ̃g = Kn,n −Kn,ZK
−1
Z,ZKZ,n (13)

BKRR assumes the following model p(Y |β,X) = Xβ+ε, where β ∼ N(0, σ
2

λ ) and we de-

fine ε ∼ N(0, σ2). One can obtain an analytic expression for the posterior p(β|D) ∼ N(β̃, Σ̃)
with β̃ = (XTX+λI)−1XTY and Σ̃ = σ2(XTX+λI)−1.To obtain the predictive mean and
variance for a new point x∗ we need to integrate out p(y∗|x∗, D) =

∫
p(y∗|x∗, β)p(β|D)dβ =

N(φ(x∗)T β̃, σ2 + φ(x∗)TΣφ(x∗)). After introducing the analytic equations for p(β|D) we
obtain the final form:

m(y∗) = K(x∗)(K + λI)−1Y (14)

v(y∗) =
σ2

λ
k(x∗, x∗)− σ2

λ
K(x∗)(K + λI)−1K(x∗) (15)

One can easily notice that the above equations correspond to equations 11 and 13. A
variant of equation 12 can be obtained as follows:
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V arY (m(y∗)) = K(x∗)(K + λI)−1
[
σ2X(XTX + λI)−1XT + σ2I

]
(K + λI)−1K(x∗) (16)

(a) SGP (b) DSGPC

(c) Solve-GP (d) Full-GP

Figure 1: Predictive mean and distributional variance for m trained on ”banana” dataset.

4.1. BKRR inspired parameterization of inducing points’ variance

From equation 16 we can notice that σ2X(XTX + λI)−1XT + σ2I basically stands for S
in the conditional posterior variance (see eqn.23 in supplement). Rather than introducing
additional parameters that need to be optimized, we can instead use this formulation of
within-data manifold variance stemming from BKRR. This translates into the the following
posterior for inducing point values u:

q(u) = N(m,σ2Zα(ZTαZα + λImα)−1ZTα + σ2IMα) (17)

where λ can be interpreted as the additional jitter added for a stable Cholesky decom-
position.

5. DSGPC separate decision making from fitting the data manifold

Since the α variational parameters are essentially tasked to construct the decision bound-
aries, the α inducing point locations are optimized to be in locations closer to the decision
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boundaries. Conversely, the β inducing points locations are only tasked to ensure low distri-
butional variance within the data manifold, hence their locations will be spread out evenly
across the training set, thereby resulting in a behaviour more similar to that of a full GP
(Figure 1). The α and β inducing points’ locations of Solve-GP are concentrated around
the decision boundaries.

6. Results

We evaluate our models on a range of regression and classification benchmark tasks from
the UCI machine learning dataset repository, alongside MNIST and Fashion-MNIST. All of
the experiments were run with the same initializations and with 50 and 100 inducing points
with the goal of comparing our method to SGP (Hensman et al., 2013) and Solve-GP (Shi
et al., 2020).
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Figure 2: All subplots: 10 different runs of each model with different initialization seeds
are taken into the composition of each boxplot. Higher values indicate better
model fit.

For large scale classification datasets, such as Avila (n=20,867; d=10), MNIST(n=10,000;
d=784) and Fashion-MNIST(n=10,000; d=784), we can observe that the DSGPC is sur-
passing its counterparts in all scenarios, whereas for Letters (n=20,000; d=16), Solve-GP
provides improved performance. For large scale regression we use the ”YearPrediction-
MSD” dataset (n=515,345; d=90). DSGPC and SGP obtain relatively similar results with
Solve-GP lagging behind. Furthermore, we investigative the convergence of models to the
full GP log likelihood on the testing set based on number of inducing points (Figure 3).
For ”Protein”, DSGPC and Solve-GP achieve faster convergence rates compared to SGP.
Lastly, we were not able to successfully train Solve-GP on ”YearPredictionMSD”. DSGPC
manages to be closer to the Full GP solution on this dataset as well.
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Figure 3: Optimisation behaviour of SGP, SolveGP and DSGPC for varying number of
inducing points compared to the full GP.

7. Discussion

We have presented a dual formulation of SGPs in RKHS that is capable of separating the
task of devising decision boundaries from the task of fitting the data manifold from the
point of view of inducing point locations. This results in α inducing point locations which
are situated close to the decision boundaries, whereas the β inducing point locations are
centred in high density areas. This comes in stark contrast to the case of coupled inducing
points, where the inducing point locations are a mix of the aforementioned scenarios.

The introduction of an additional amount of inducing points does not add up to a dou-
bling of variational parameters, as the β inducing points do not warrant values in function
space. Furthermore, explicitly linking the inducing points’ variance to their location results
in a model where we only have to learn the mean variational parameters. Future work
should explore subspace basis formulations for learning the β inducing point locations to
further reduce parameter numbers. Another prospective research avenue resides in apply-
ing DSGPC in the context of hierarchical GPs with Wasserstein-2 kernels (Popescu et al.,
2020). The separation of inducing points’ tasks should in theory improve out-of-distribution
detection due to the enhanced data manifold fit in the first layer. In the supplementary
material, we have also included an initial extension of our work to DGPs and intuitively
show why the hidden layers of DGPs do not require a high number of β inducing points.
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Supplementary Materials

Sparse Gaussian Processes

We denote the output vector Y , where each entry Yi is a noisy observation of the function
F (xi) for all input points X = (xi)

n
i=1. We place a GP (m, k) prior on the stochastic

function F . We introduce inducing points Z = (zi)
m
i=1 with inducing point function values

U = (ui)
m
i=1. Under standard Gaussian identities we have

p(Y |F ) ∼ N (Y |F, β) (18)

p(F |U ;X,Z) ∼ N (F |KnmK
−1
mmU,Knn −KnmK

−1
mmKmn;X,Z) (19)

p(U ;Z) ∼ N (U |0,KE
mm) (20)

By the definition of a sparse GP, the joint density is p(Y, F, U) = p(F |U)p(U)
∏n
i=1 p(Yi|Fi).

We follow the variational inference framework introduced in Hensman et al. (2013) and max-
imize the lower bound on the marginal likelihood

L = Eq(F,U)[log
p(Y, F, U)

q(F,U)
] (21)

where the variational posterior is choosen as q(F,U) = p(F |U ;X,Z)q(U), where q(U) =
N (U |m,S). Here, m and S are free variational parameters. Due to the Gaussian nature of
both terms we can marginalize U to arrive at q(F ) =

∫
p(F |U)q(U) = N (F |Ũ , Σ̃) where

Ũ = Kn,mK
−1
mmm (22)

Σ̃ = Knn −KnmK
−1
mm[Kmm − S]K−1mmKmn (23)

Then the evidence lower bound (ELBO) can be rewritten as:

L = Eq(F ) (logp(Y |F ))− Eq(U)

(
log

q(U)

p(U)

)
(24)

Derivation of Kullback-Liebler Divergence

We remind that the Kullback-Liebler divergence between two Gaussian measures q =
N(mq,Σq) and p = N(mp,Σp) is given by:

KL(q||p) = 0.5 ∗
[
Tr[Σ−1p Σq] + (mp −mq)

TΣ−1p (mp −mq) + log
|Σp|
|Σq|

]
(25)

We now adapt this formula to suit our posterior q = N(φZαK−1α m, I − φZK−1Z φTZ +
φZαK−1α SK−1α φTZα), respectively the prior p = N(0, I).

Trace term:

Tr[Σ−1p Σq] = Tr
[
I−1

[
I− φZK−1Z φTZ + φZαK−1α SK−1α φTZα

]]
(26)

= Tr [I]− Tr
[
φZK−1Z φTZ

]
+ Tr

[
φZαK−1α SK−1α φTZα

]
(27)

= Tr [I]− Tr [I] + Tr
[
K−1α S

]
(28)
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Quadratic term:
(φZαK−1α m)T I−1(φZαK−1α m) = mTK−1α m (29)

Log Determinants term:

log |Σq| = log |I− φZK−1Z φTZ + φZαK−1α SK−1α φTZα| (30)

= log |I− φZK−1Z φTZ + φZαK−1α SK−1α φTZα|
|Kα|
|Kα|

(31)

= log
|Kα −Kα,ZK

−1
Z KZ,α +KαK−1α SK−1α Kα|
|Kα|

(32)

= log
|Kα −Kα,ZK

−1
Z KZ,α + S|

|Kα|
(33)

Derivation of posterior for BKRR

BKRR assumes the following model p(Y |β,X) = Xβ + ε, where wβ ∼ N(0, σ
2

λ ) and we
define ε ∼ N(0, σ2).

From a parameter space view, we are trying to solve the following problem:

p(β|D) =
p(D|β)p(β)

p(D)
(34)

p(β|x1,...,n, y1,...,n) =

∏n
i=1 p(yi|β,xi)

Z
(35)

p(β|x1,...,n, y1,...,n) =
1

Z

n∏
i=1

e−
1

2σ2
(yi−xiβ)2e−

λ
2σ2
|β|2 (36)

p(β|x1,...,n, y1,...,n) =
1

Z
e−

1
2σ2

[(y−Xβ)T (y−Xβ)+λβT β] (37)

p(β|x1,...,n, y1,...,n) =
1

Z
e

−1
2

[
1
σ2
yT y+ 1

σ2
βT (xT x+λI)β− 2

σ2
βTXT y

]
(38)

Finally, one can recognize the last equation as being a Gaussian with mean β̃ = (XTX+
λI)−1XTY , respectively variance Σ = σ2(XTX + λI)−1

Derivation of variance of BKRR predictive mean

V arY (m(y∗)) = V ar(K(x∗)(K + λI)−1Y ) (39)

= K(x∗)(K + λI)−1V ar(Xβ + ε)(K + λI)−1K(x∗) (40)

= K(x∗)(K + λI)−1
[
XV ar(β)XT + σ2I

]
(K + λI)−1K(x∗) (41)

= K(x∗)(K + λI)−1[σ2X(XTX + λI)−1XT + σ2I]K(x∗)(K + λI)−1 (42)

Comparison between BKRR and DSGPC

We can observe a similar behaviour both in within-data and distributional variance between
BKRR (Figure 4A) and DSGPC(Figure 4C). The kernel hyperparameters of the BKRR were
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(a) Bayesian KRR (b) DSGPC-Free S (c) DSGPC-Parameterised
S

Figure 4: ”DSGPC-Free S” represents a DSGPC with the variance of the α inducing points
kept free floating, whereas ”DSGPC-Parameterised S” represents the model in-
troduced in the main paper. Likelihood variance is not added.

not optimised. Additionally, we have included a variant of DSGPC (Figure 4B) where we
keep the S term free-floating in a similar manner to SGP (Hensman et al., 2013). There
are no visible differences in the two methods, motivating the usage of the parameterised S
based on inducing points locations to further reduce variational parameters that need to be
optimized.

Collapsed Lower bound for Decoupled Sparse Gaussian Process Components

We now derive the collapsed DSGPC lower bound by obtaining an analytic expression for
the optimal q(u)∗.

Eq(h)Eq(h)log(y|h+ g, σ2)−KL[q(h)|p(h)]−KL[q(g)|p(g)] (43)

By expanding the first term we obtain:

Eq(h)log(y|h+ g, σ2) = −1

2
log 2π − 1

2
log σ2 − 1

2σ2
(y − h− g)T (y − h− g) (44)

= c− 1

2σ2
[
yT y + hTh+ gT g − 2yTh (45)

= log N(y|h, σ2)− 1

2σ2
Tr(Σg) (46)

We now plug equation 46 into equation 43 to obtain the collapsed bound

log N(y|h, σ2)− 1

2σ2
Tr(Σg)−KL[q(h)|p(h)]−KL[q(g)|p(g)] (47)

≤ log

∫
N(y|h, σ2)p(h)dh− 1

2σ2
Tr(Σg)−KL[q(g)|p(g)] (48)

= log N(y|0, Qff + σ2)− 1

2σ2
Tr(Knn −Qff )− 1

2σ2
Tr(Σg) (49)
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The optimal q(u)∗ can be represented as N(y|h, σ2)p(h). By change of variable, respec-
tively h = KfzK

−1
zz u we get the equivalent:

q(u)∗ = N(y|KfzK
−1
zz u, σ

2)p(u) (50)

One can notice that they have the same form as the ones in Titsias (2009).

σ−2Kzz[Kzz + σ−2KznKnz]
−1Kzny (51)

Kzz[Kzz + σ−2KznKnz]
−1Kzz (52)

We can notice that the optimal varaitional mean and variance are with respect to Z =
{α, β}.

Decoupling extended to hierarchical architectures

Motivation: In the case of DGPs, separating the inducing point locations for g(·) and h()̇
is motivated by the fact that most sampled realisations of intermediate layers are centred
around 0. Hence, for inliers it suffices a small amount of inducing points to capture the data
manifold at these intermediate layers (Figure 5). In contrast, there is a need of significantly
more inducing point locations for the parametric part (h(·)) so as to devise complex patterns.

We commence by laying the foundations of DGPs, subsequently introduce the new
RKHS parametrization for intermediate layers followed by a derivation of the ELBO for
this model which we entitle Decoupled Deep Gaussian Processes Components (DDGPC).

A Deep Gaussian Process (Damianou and Lawrence, 2013) is defined as a stack of
shallow GPs acting as the prior:

p(y) = p(Y |FL)︸ ︷︷ ︸
likelihood

L∏
l=1

p(Fl|Fl−1, Ul;Zl−1)p(Ul)︸ ︷︷ ︸
prior

(53)

where for brevity of notation we denote Z0 = X. The sparse GPs between hidden layers are
treated as being noiseless. As the prior is analytically intractable to integrate, Salimbeni
and Deisenroth (2017) have suggested to sample from each hidden layer of the DGP in order
to obtain unbiased stochastic gradients.

We introduce a factorized posterior between layers and dimensions of the following form:

q(FL, {Ul}Ll=1) = p(FL|UL;ZL−1)
L∏
l=1

q(Ul) (54)

where q(Ul) is taken to be a multivariate Gaussian with mean ml and variance Sl =
σ2Zl(Z

T
l Zl + λIm)−1ZTl + σ2IM , where λ can be interpreted as the jitter noise added for

stable Cholesky decomposition.
Considering that most sampled points in the hidden layers of a DGP are closely centred

around 0, we propose an alternative basis parameterization for the hidden layers of a DGP.
The parametrization for the l-th layer hl(·) is:
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Figure 5: Decoupled DGP Components with 25 α inducing points, respectively 5 β in-
ducing points for hidden layers; Decomposition of uncertainty into within-data
(parametric) and distributional (non-parametric). Violin plots represent the vari-
ational distributions of the inducing points, with the x-axis denoting the location,
and the y-axis the mean value of the inducing point. The x axis is taken to be the
space of the previous layer. Red and blue scatter dots are sampled data points
from the training, respectively testing set at each layer. Remark Red and blue
dots are identified as within the data manifold in the hidden layers (distributional
variance almost equal to 0) even with just 5 β inducing points, when we use 25
α inducing points.

µhl = φαlK
−1
αl
ml (55)

Σhl = φαlK
−1
αl
SlK−1αl φ

T
αl

(56)

whereas for the g(·) GP component we impose the following parametrization:

µgl = 0 (57)

Σgl = I − φβlK
−1
βl
φTβl (58)

We can immediately notice that at testing time the computation cost of Σgl is greatly
reduce from O(Mαl +Mβl)

3 to O((Mβl)
3. In our experiments we only consider Mαl >> Mβl

The KL divergence for the l-th layer is given by:

KL[q(fl)||p(fl)] = 0.5 ∗

[
Tr(SlK

−1
αl

) +mT
l K
−1
αl
ml − log

|Kαl −Kαl,βlK
−1
βl
Kβl,αl + Sl|

Kαl

]
(59)

For the first GP layer in the hierarchy we keep the parametrization introduced in section
3 so as to capture the full extent of the data manifold.

Lastly, the ELBO is the following:

maxE[q(hl),q(gl)]l=1,..,L
[logpθ(y|hL + gL)]−

L∑
l=1

KL[q(fl)||p(fl)] (60)
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We provide some exploratory results on UCI regression tasks (Figure 6). We can notice
a relative under performance of DDGPC and DGP-SolveGP in relation to DGPs. Experi-
ments were performed under a similar training routine, limited to 50,000 iterations to gain
an intuition of their convergence under a strict training regime. Future work should expand
on these initial results to accommodate for adaptive training regimes until convergence.

(a) Num. ind. pts. 50 (b) Num. ind. pts. 100

Figure 6: All subplots: 10 different runs of each model with different initialization seeds
are taken into the composition of each boxplot. Higher values indicate better
model fit.

Additional details for UCI experiments

For all datasets we randomly selected 20% as the testing set, with the remainder being used
for training. All implementations use the RBF kernel with automatic relevance determina-
tion. For the shallow GP experiments in the main paper we use 50 and 100 inducing points
for each model. For the DGP experiments, in terms of model architecture, we use 2 hidden
units for each hidden level, with 50, respectively 100 inducing points. For DDGPC we use
10 β inducing points for the hidden layers. All models are optimized for 50,000 iterations
with a mini-batch of size 32 and the learning rate is set to 0.001. Results are provided for
2, 3 and 4 layers.

Kernel All Euclidean space kernels used the standard ARD RBF, using a lengthscale
parameter per input dimension, initialized to 1.351. We initialize the variance of the kernel
with the same value.

Likelihood For regression tasks the likelihood variance was initialized to 1.0
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Model Name
Variational
Parameters

Inducing Points Function Space
Orthogonality

Task
Orthogonality

SGP (Hensman
et al., 2013)

M + M(M+1)
2 M 7 7

SOLVE-GP (Shi
et al., 2020)

Mα + Mβ +
Mα(Mα+1)

2 +
Mβ(Mβ+1)

2

Mα +Mβ X 7

DSGPC (current
work)

Mα Mα +Mβ XPrior; 7Poste-
rior

X

Table 1: Task Orthogonality denotes the separation of fitting the data manifold from de-
vising the decision boundaries. We assume a Cholesky decomposition parameter-
ization of the variance.

Inducing points We initialize the inducing point locations to the k-means of the training
data for the first layer, whereas for hidden layers the locations are uniformly sampled in the
interval [-1.0,1.0].

Variational parameters We initialize the mean to a zero column vector, whereas the
variance is given by the lower triangular Cholesky decomposition which is initialized by the
identity matrix for the last layer. For intermediate layers, the Cholesky decomposition is
initialized by the identity matrix multiplied by 0.0001.

Optimization on UCI datasets All parameters were optimized using the Adam op-
timizer with a learning rate of 0.001. We used a batch size of 32 and trained for 50,000
iterations.

Additional tables and figures

In this subsection we provide a table showcasing the differences between the models consid-
ered in this paper, respectively additional figures on toy regression and classification task
to highlight differences in function space and inducing points’ locations.
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(a) SGP (b) DSGPC (c) SOLVE-GP

Figure 7: Predictive mean and distributional variance for Coupled and Decoupled SGPs
trained on ”snelson” dataset. Likelihood variance is not added.

(a) SGP (b) DSGPC (c) SOLVE-GP

Figure 8: Predictive mean and distributional variance for models trained on toy regression
task. Likelihood variance is not added.
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(a) SGP (b) DSGPC

(c) SOLVE-GP (d) Full-GP

Figure 9: Predictive mean and distributional variance for models trained on toy classifica-
tion task.
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