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Abstract

While recurrent models have been effective in NLP tasks, their performance on context-free
languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture
important phenomena such as hierarchical structure in natural languages, this discrepancy in
performance calls for an explanation. We study the performance of recurrent models on Dyck-n
languages, a particularly important and well-studied class of CFLs. We find that while recurrent
models generalize nearly perfectly if the lengths of the training and test strings are from the
same range, they perform poorly if the test strings are longer. At the same time, we observe that
recurrent models are expressive enough to recognize Dyck words of arbitrary lengths in finite
precision if their depths are bounded. Hence, we evaluate our models on samples generated from
Dyck languages with bounded depth and find that they are indeed able to generalize to much
higher lengths. Since natural language datasets have nested dependencies of bounded depth,
this may help explain why they perform well in modeling hierarchical dependencies in natural
language data despite prior works indicating poor generalization performance on Dyck languages.
We perform probing studies to support our results and provide comparisons with Transformers.

1 Introduction

Recurrent models (RNNs and more specifically LSTMs) have been used extensively across several NLP
tasks such as machine translation (Sutskever et al., 2014), language modeling (Melis et al., 2017) and
question answering (Seo et al., 2016). Natural languages involve phenomena such as hierarchical and
long-distance dependencies. Although RNNs are known to be Turing-complete (Siegelmann and Sontag,
1992) given unbounded precision, their practical ability to model such phenomena remains unclear.

Recently, several works (Weiss et al., 2018; Sennhauser and Berwick, 2018; Skachkova et al., 2018)
have attempted to understand the capabilities of LSTMs by empirically analyzing them on different types
of formal languages. Natural languages, for the most part, can be modeled by context-free languages
(Jger and Rogers, 2012) and their hierarchical structure has been emphasized by Chomsky (2002). Thus
studying the capabilities of RNNs in recognizing context-free languages (CFLs) can shed light on how
well they can model hierarchical structures. An important family of context-free languages is the Dyck-n
language1.

Previous works (Suzgun et al., 2019a; Suzgun et al., 2019c; Yu et al., 2019) showed that LSTMs
achieve limited generalization performance on recognizing Dyck-2. This prompted the development of
memory-augmented variants (Joulin and Mikolov, 2015; Suzgun et al., 2019c) of LSTMs which generalize
well on Dyck languages but are notoriously hard to train and fail to perform well on practical NLP tasks
(Shen et al., 2019). On the other hand, despite the limited performance of LSTMs on Dyck languages,
several studies (Gulordava et al., 2018; Tran et al., 2018) have found that LSTMs perform well in modeling
hierarchical structure in natural language data. In this work, we take a step towards bridging this gap.

Our Contributions. We investigate the ability of recurrent models to learn and generalize on Dyck
languages. We first evaluate the ability of LSTMs to recognize randomly sampled Dyck-n sequences and

1Informally, the Chomsky–Schützenberger representation theorem (1959) asserts that Dyck-n languages for n ≥ 1 capture
the complexity of context-free languages in a precise sense.



find, in contrast to prior works (Suzgun et al., 2019a; Suzgun et al., 2019c), that they can generalize nearly
perfectly when the test samples are within the same lengths as seen during training. Similar to prior works,
when evaluated on randomly generated samples of higher lengths we observe limited performance. Dyck
languages and (deterministic) CFLs can be recognized by (deterministic) pushdown automata (PDA). We
construct an RNN that directly simulates a PDA given unbounded precision. A key observation is that
the higher the depth of the stack the higher is the required precision. This implies that fixed precision
RNNs are expressive enough to recognize strings of arbitrary lengths if the required depth of the stack
is bounded. Based on this observation, we test the hypothesis whether LSTMs can generalize to higher
lengths if the depth of the inputs in the training and test set is bounded by the same value. In the bounded
depth setting, LSTMs are able to generalize to much higher lengths compared to the lengths used during
training. Given that natural languages in practical settings also contain nested dependencies of bounded
depths (Gibson, 1991; McElree, 2001), this may help explain why LSTMs perform well in modeling
natural language corpora containing nested dependencies. We then assess the generalization performance
of the model across higher depths and find that although LSTMs can generalize to a certain extent, their
performance degrades gradually with increasing depths. Since Transformer (Vaswani et al., 2017) is also
a dominant model in NLP (Devlin et al., 2019), we include it in our experiments. To our knowledge,
prior works have not empirically analyzed Transformers on formal languages, particularly context-free
languages. We further conduct robustness experiments and probing studies to support our results.

2 Preliminaries and Motivation

The language Dyck-n parameterized by n ≥ 1 consists of well-formed words from n types of parentheses.
Its derivation rules are: S → (iS)i, S → SS, S → ε where i ∈ {1, . . . , n}. Dyck-n is context-free
for every n, Dyck-2 being crucial among them, since all Dyck-n for n > 2 can be reduced to Dyck-2
(Suzgun et al., 2019a). For words in Dyck-n, the required depth of the stack in its underlying PDA is the
maximum number of unbalanced parentheses in a prefix. For instance, the word ( [ ( ) ] ) [ ] in Dyck-2 has
maximum depth of 3 corrsponding to the prefix ( [ (.

RNNs. RNNs are defined by the update rule ht = f(ht−1,xt), where the function f could be a
feedforward network, ht is the model’s memory vector usually referred to as the hidden state vector and
xt denotes the input vector at the t-th step. In practice, f is usually a single layer feedforward network
with tanh or ReLU activation. To mitigate the vanishing gradients problem, LSTMs (Hochreiter and
Schmidhuber, 1997), a variant of RNNs with additional gates, is most commonly used in practice. In our
experiments, we will primarily work with LSTMs.

2.1 Expressiveness Results

Proposition 2.1. Any Deterministic Pushdown Automaton can be simulated by an RNN with ReLU
activation.

We provide a proof by construction for the above result in Appendix B by using the Cantor-set like
encoding scheme as introduced in Siegelmann and Sontag (1992) to emulate stack operations. The above
result was first obtained by Korsky and Berwick (2019) somewhat indirectly using the Chomsky and
Schützenberger (1959) theorem. The above Proposition implies that RNNs can recognize any deterministic
CFL given unbounded precision. In the construction, the higher the required depth of the stack the higher
the required precision. This implies that fixed precision RNNs are expressive enough to recognize strings
of arbitrary lengths if the required depth of the stack is bounded. This can also be gleaned from the
construction of Korsky and Berwick (2019) with some additional work2.

3 Experiments

Setup. In our experiments, we consider three Languages, namely Dyck-2, Dyck-3 and Dyck-4. For each
of the three languages, we generate 3 different types of training and validation sets. In the first case,
we generate 10k strings for the training set within lengths [2, 50] and generate two validation sets each

2Since our construction, although novel, is not critical for the inferences, it has been moved to the appendix.



Language Model Vanilla (Randomly Sampled) Bounded Depth

Bin-1A Accuracy
[2, 50]↑

Bin-2A Accuracy
[52, 100]↑

Bin-1B Accuracy
[2, 50]↑

Bin-2B Accuracy
[52, 100]↑

Bin-3B Accuracy
[102, 150]↑

Dyck-2 LSTM 99.5 75.1 99.9 99.6 96.0
Transformer 95.1 21.8 99.9 92.1 36.3

Dyck-3 LSTM 97.3 54.0 99.7 96.3 89.5
Transformer 87.7 26.2 90.1 48.9 6.4

Dyck-4 LSTM 97.8 50.7 99.9 95.1 87.0
Transformer 92.7 36.6 94.4 49.3 5.6

Table 1: The performance of neural models on considered Dyck languages. The reported scores are
obtained by averaging the accuracies of 5 best performing hyperparameter configurations of each model.
All models are trained on inputs with length in [2,50] and evaluated on validation sets. Bin-2A contains
higher lengths without any restriction on depth. In Bin-1B, Bin-2B and Bin-3B, the test inputs have their
depths upper bounded by 10.

containing 1k strings within lengths [2, 50] and [52, 100] respectively without any restriction on the depth
of the Dyck words. Our second setting also resembles the previous dataset in terms of lengths of the
strings in the training and validation sets. However, in this case, we restrict all the strings to have depths
in the range [1, 10]. This is to test the generalization ability across lengths when the depth is bounded. In
the third case, we test the generalization ability across depths, when the lengths in train and validation sets
are in the same interval [2,100]. Along with LSTMs, we also report the performance of Transformers (as
used in GPT (Radford et al., 2018)) on each task since it is also a dominant model in NLP

Tasks. We train and evaluate our models on the Next Character Prediction Task (NCP) introduced
in Gers and Schmidhuber (2001) and used in Suzgun et al. (2019a) and Suzgun et al. (2019c). Similar
to an LM setup, the model is only presented with positive samples from a given language. In NCP, for
a sequence of symbols s1, s2, . . . , sn, the model is presented with the sequence s1, s2, . . . , si at the ith

step and the goal of the model is to predict the set of valid characters for the (i+ 1)th step, which can
be represented as a k-hot vector. The model assigns a probability to each character in the vocabulary
corresponding to its validity in the next step, which is achieved by applying sigmoid activation over the
unnormalized scores predicted through its output layer. Following Suzgun et al. (2019b) and Suzgun et
al. (2019a), we use mean squared error between the predicted probabilities and k-hot labels as the loss
function. During inference, we use a threshold of 0.5 to obtain the final prediction. The models prediction
is considered to be correct if and only if its output at every step is correct. The accuracy of the model
over test samples is the fraction of total samples which are predicted correctly3. Details of dataset and
parameters relevant for reproducibility can be found in section C in Appendix.

3.1 Results

Table 1 shows the performance of LSTMs and Transformers on the considered languages. When inputs are
randomly sampled in a given range of lengths, LSTMs can generalize well on the validation set containing
inputs of the same lengths as seen during training (Bin-1A)4, for all considered Dycks. However, for
higher lengths (Bin-2A), it struggles to generalize on these languages. For the case when the depth is
bounded, LSTMs generalize very well to much higher lengths (Bin 1B, 2B, and 3B). Transformers, on the
other hand, fail to generalize to higher lengths in either case, which might be attributed to the fact that
at test time, it receives positional encodings that it was not trained on. To investigate the generalization
ability of models across increasing depths, we trained the models up to depth 15 and evaluated on 5
validation sets with an incremental increase in depth in each set (refer to Figure 1a). We found that the
models were able to generalize up to a certain extent but their performance degraded gradually as we
increase the depth. However, Transformers performed relatively better as compared to LSTMs.

3Note that, this is a relatively stringent metric as a correct prediction is obtained only when the model’s output is correct at
every step as opposed to standard classification tasks.

4This result is in disagreement with the results reported in Suzgun et al. (2019a) and Suzgun et al. (2019c). The possible
discrepancy could be due to more extensive hyperparameter tuning in our experiments. We found this holds even while tuning



(a) Generalization of LSTMs and
Transformers on higher depths. The
lengths of strings in the training set
and all validation sets were fixed to
lie between 2 to 100.

(b) Visualization of t-SNE Projections
of the hidden states obtained from a pre-
trained LSTM for different Dyck-2 sub-
strings, colored by their depths.

(c) Accuracies and recalls obtained
on extracting top-10 elements (aver-
aged over them) of the stack corre-
sponding to different Dyck-2 strings
using the hidden state vector of the
LSTM.

Figure 1

Probing. We also conducted probing experiments on LSTMs to better understand how they perform these
particular tasks. We first attempt to extract the depth of the underlying stack from the cell state of an
LSTM model trained to recognize Dyck-2. We found that a single layer feedforward network was easily
able to extract the depth with perfect (100%) accuracy and generalize to unseen data. Figure 1b shows a
visualization of t-SNE projection of the hidden state labeled by their corresponding depths. Additionally,
we also try to extract the stack elements from the hidden states of the network. For Dyck-2 samples
within lengths [2,50] and depths [1,10], along with training LSTM for the NCP task, we co-train auxiliary
classifiers to predict each element of the stack up to depth 10, i.e. the hidden state of the LSTM that is
used to predict the next set of valid characters is now also utilized in parallel to predict (by supplying 10
separate linear layers for each element) the elements of the stack. We find that not only was the model
able to predict the elements in a validation set from the same distribution, it was also able to extract the
elements for sequences of higher lengths ([52,150]) on which it was not trained on (see Figure 1c). This
further provides evidence to show that LSTMs are able to robustly generalize to inputs of higher lengths
when their depths are bounded. We also conducted a few additional robustness experiments to ensure
that the model does not overfit on training distribution. Details of probing tasks as well as additional
robustness experiments can be found in the Appendix.

4 Discussion

LSTMs and Transformers have been effective on language modeling tasks. In practice, during language
modeling on a natural language corpus, the entire input is fed sequentially to the LSTM. Hence, the
length of the input processed by the LSTM is bound to be large, requiring it to model a number of
nested dependencies. Prior works in psycholinguistics (Gibson, 1991; McElree, 2001) have pointed out
that given limited working memory of humans, natural language as used in practice should have nested
dependencies of bounded depth. Some works (Jin et al., 2018; Noji et al., 2016) have even sought to
build parsers for natural language with depth-bounded PCFGs. Our generalization results for LSTMs on
depth-bounded CFGs could help explain why they perform well on modeling hierarchical dependencies in
natural language datasets. For Transformer, although it did not generalize to higher lengths, but in practice
Transformers (as used in BERT and GPT) process inputs in a fixed-length context window. Our results
indicate that it does not have trouble in generalizing when the train and validation sets contain inputs of
the same lengths.

Our experiments also demonstrate that the limiting factor in LSTMs is in generalizing to higher depths
as opposed to its memory-augmented variants. The exact mechanism with which trained LSTMs perform
the task is not entirely clear. The limited performance of LSTMs could be due to precision issues or
unstable stack encoding mechanism (Stogin et al., 2020). However, given that natural language datasets
are likely to have nested dependencies of bounded depth, this limitation may not play a significant role
and may help explain why prior works (Gulordava et al., 2018; Tran et al., 2018) have found LSTMs to
perform well in modeling hierarchical structure on natural language datasets.

within the same constraints as mentioned in their setup.
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Appendix: On the Practical Ability of Recurrent Neural Networks
to Recognize Context-Free Languages

A Preliminaries

Definition A.1 (Deterministic Pushdown Automata (Hopcroft et al., 2006)). A DPDA is a 7-tuple
〈Σ, Q,Γ, q0, Z0, δ, F 〉 with

1. A finite alphabet Σ

2. A finite set of states Q

3. A finite stack alphabet

4. An initial state q0

5. An initial stack symbol Z0

6. F ⊆ Q set of accepting states

7. A state transition function
δ : Σ×Q× Γ→ (q, γ)

The output of δ is a finite set of pairs (q, γ), where q is a new state and γ is the string of stack symbols
that replaces the top of the stack. If X is at the top of the stack, then γ = ε indicates that the stack is
popped, γ = X denotes that the stack is unchanged and if γ = Y Z, then X is replaced by Z, and Y
is pushed onto the stack.

A machine processes an input string x ∈ Σ∗ one token at a time. For each input token, the machine
looks at the current input, state and top of the stack to make a transition into a new state and update its
stack. The machine can also take empty string as input and make a transition based on the stack and its
current state. The machine halts after reading the input and a string is accepted if the state after reading
the complete input is a final state.

A.1 Cantor-set Encodings
In our construction, we will make use of Cantor-set like encodings as introduced in (Siegelmann and
Sontag, 1992). The Cantor-set like encodings in base-4 provides us a means to encode a stack of values 0s
and 1s and easily apply stack operations like push, pop and top to update them. Let υs denote the encoding
of a stack. The contents of the stack can be viewed as a rational number p

4q where 0 < p < 4q. The i-th
element from the top of the stack can be seen as the i-th element to the right of the decimal point the in a
base-4 expansion. A 0 stored in the stacked is associated with a 1 in the expansion while a 1 stored in the
stack is associated with 3. Hence, only numbers of the special form Σt

i=1
ai
4i

where ai ∈ {1, 3} will appear
in the encoding. For inputs of the form I ∈ {0, 1}, the standard stack operations can be applied by simple
affine operations. For instance, push(I) operation can be obtained by υs 7→ 1

4υs + 1
2I + 1

4 and the pop(I)
can be obtained by υs 7→ 4υs− 2I − 1. The top of the stack can be obtained by σ(4υs− 2) which will be
1 if the top of the stack is 1 else 0. The emptiness of a stack can be checked by σ(υs) which will be 1 if
the stack is nonempty or else it will be 0.



B Construction

We will make use of some intermediate notions to describe our construction. We will use these multiple
times in our construction. Particularly, Lemma B.1 will be used to combine the information of the state
vector, input and the symbol at the top of the stack. Lemma B.2 and Lemma B.3 will be used to implement
the state transition and decisions related to stack operations.

For the feed-forward networks we use the activation as in (Siegelmann and Sontag, 1992), namely the
saturated linear sigmoid activation function:

σ(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1.

(1)

Note that, we can easily work with the standard ReLU activation via σ(x) = ReLU(x)− ReLU(x− 1).
Consider two sets Φ and Ψ (such as the set of states Q and the set of inputs Σ), and consider the

one-hot representations of their elements φ ∈ Φ and ψ ∈ Ψ as φ ∈ Q|Φ| and ψ ∈ Q|Ψ| respectively. We
use (φ, ψ) ∈ Q|Φ|×|Ψ| to denote a unique one-hot encoding for each pair of φ and ψ. More specifically,
consider the enumerations πΦ : Φ → {1, 2, . . . , |Φ|} and πΨ : Ψ → {1, 2, . . . , |Ψ|}. Then given two
elements φ ∈ Φ and ψ ∈ Ψ, the vector (φ, ψ) ∈ Q|Φ|×|Ψ| will have a 1 in position (πΨ(ψ)−1)|Φ|+πΦ(φ)
and a 0 in every other position. We now prove that given a vector [φ,ψ] containing concatenation of
one-hot representations of the elements φ and ψ, there exists a single-layer feedforward network that can
produce the vector (φ, ψ).

Lemma B.1. There exists a function O(x) : Q|Φ|+|Ψ| → Q|Φ||Ψ| of the form σ(xW + b) such that,

O([φ,ψ]) = [(φ, ψ)]

Proof. Let Ai for i ∈ {1, . . . , |Φ|} denote a matrices of dimensions |Ψ| × |Φ| such that Ai has 1s in its
i-th row and 0 everywhere else. For any one-hot vector φ, note that φAi = 1 if i = πΦ(φ) or else it is 0.
Thus, consider the transformation,

t(φ,ψ) = [ φ+ψA1,φ+ψA2, . . . ,φ+ψA|Ψ|]

Note that, the vector t(φ,ψ) has a value 2 exactly at the position (πΨ(ψ)− 1)|Φ|+πΦ(φ) and it is either
0 or 1 at the rest of the positions. Hence by making use of bias vectors, it is easy to obtain [(φ, ψ)],

σ(t(φ,ψ) − 1) = [(φ, ψ)]

which is what we wanted to show.

As an example, consider two sets Φ and Ψ such that |Φ| = 3 and |Ψ| = 2. Consider two elements
φ ∈ Φ and ψ ∈ Ψ such that πΦ(φ) = 3 and πΨ(ψ) = 2. Hence, this implies the corresponding one-hot
vectors φ = [0, 0, 1] and ψ = [0, 1]. According to the construction above, the weight matrix will be,

W =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1 1 1 0 0 0
0 0 0 1 1 1

 ,
Thus by construction, the output of the feedforward network σ([φ,ψ]W − 1) = [0, 0, 0, 0, 0, 1]. A

similar technique was employed by (Prez et al., 2019) in their Turing completeness result for Transformer.
We will describe another technical lemma that we will make use of to implement our transition functions

and other such mappings. Consider two sets Φ and Ψ (such as the set of states Q and the set of inputs Σ or



set of stack symbols Γ), and consider the one-hot representations of their elements φ ∈ Φ and ψ ∈ Ψ as
φ ∈ Q|Φ| and ψ ∈ Q|Ψ| respectively. Let δ : Φ×Ψ→ Φ be any transition function that takes elements
of two sets as input and produces an element of one of the sets. Let [(φ, ψ)] ∈ Q|Φ|×|Ψ| denote a unique
one-hot encoding for each pair of φ and ψ as defined earlier. We demonstrate that given [(φ1, ψ)] as input,
there exists a single layer feedforward network that produces the vector φ2 if δ(φ1, ψ) = φ2.

Lemma B.2. There exists a function O(x) : Q|Φ||Ψ| → Q|Φ| of the form σ(xW + b) such that,

O([(φ1, ψ)]) = φ2

Proof. This can easily implemented using a linear transformation. Consider a matrix A ∈ Q|Φ||Ψ|×|Φ|.
Given two inputs φi, φk ∈ Φ and ψj ∈ Ψ such that δ(φi, ψj) = φk, the row (πΨ(ψj)− 1)|Φ|+ πΦ(φi)
of the matrix A will be the one-hot vector corresponding to φk, that is, A(πΨ(ψj)−1)|Φ|+πΦ(φi),: = φk.

Similarly, a mapping θ : Φ×Ψ→ {0, 1}n can also be implemented using linear transformation using a
transformation matrix A ∈ Q|Φ||Ψ|×n where each row of the matrix A will be the corresponding mapping
{0, 1}n for the pair of (φ, ψ) corresponding to that row.

Lemma B.3. There exists a function O(x) : Q|Φ||Ψ| → {0, 1}n of the form σ(xW + b) such that,

O([(φ, ψ)]) = [{0, 1}n]

Proof is similar to proof of Lemma B.2.

Proposition B.4. For any Deterministic Pushdown Automaton, there exists an RNN that can simulate it.

Proof. The construction is straightforward and follows by induction. We will show that at the t-th timestep,
given that the model has information about the state and a representation of the stack, the model can
compute the next state and update the stack representation based on the input. More formally, given a
sequence x1, x2, . . . , xn ∈ Σ∗, consider that the hidden state vector at the t-th timestep is ht = [qt,ωt]
where qt ∈ Q|Σ| is a one-hot encoding of the state vector and ωt ∈ Q|Γ| is a representation of the stack
based on the cantor-set like encoding. Then, given an input xt+1 ∈ Σ, we will show how the network can
compute ht+1 = [qt+1,ωt+1]. After reading the whole input, a sequence is accepted if qn is in the set of
final states F or else it is rejected.

Our construction will use a 5-layer feed forward network that takes as input the vectors ht−1 and xt at
each timestep and produces the vector ht. The vectors ht ∈ Q|Q|+|Γ| will have two subvectors of size |Q|
and |Γ| containing a one-hot representation of the state of the underlying automaton and a representation
of the stack encoded in the Cantor-set representation respectively. For each input symbol x ∈ Σ, its
corresponding input vector x ∈ Q|Σ| will be a one-hot vector. If the underlying stack takes empty string
as input at particular step, the RNN will take a special symbol as input which also have a unique one-hot
representation similar to other input symbols.

As opposed to the construction of Siegelmann and Sontag (1992), which only takes 0s and 1s as input
and use a scalar to encode a stack of 0s and 1s, we will encode one-hot representation of stack symbols in
vectors of size |Γ|. The push and pop operations will always be in the form of one-hot vectors and this
will ensure that retrieving the top element provides a one-hot encoding of the stack symbol.

Details of the construction. At each timestep, the model will receive the hidden state vector ht−1 =
[qt−1,ωt−1] and the input vector xt as input. At timestep 0, the hidden state vector will be h0 = [q0,ω0]
containing the one-hot representation of the initial state and stack encoding containing Z0. For instance
consider |Q| = 3 and |Γ| = 4. If the one-hot encoding of q0 is q0 = [1, 0, 0] and one-hot encoding of
Z0 is z0 = [1, 0, 0, 0], then ω0 = 1

40 + 1
2 [1, 0, 0, 0] + 1

4
= [3/4, 1/4, 1/4, 1/4]. That is, the vector z0 is

pushed to the empty stack using the Cantor-set encoding method described in section A.1. Hence, the
vector h0 = [1, 0, 0, 3/4, 1/4, 1/4, 1/4].

The first layer of the feedforward network σ(Whht−1 + Wxxt + b) will produce the vector h(1)
t−1 =

[(qt−1, xt), τ
top
t−1,ωt−1], where τ topt−1 ∈ Q|Γ| denotes a one-hot vector representation of the symbol at the



top of our stack representation and the subvector (qt−1, xt) ∈ Q|Q|×|Σ| is a unique one-hot vector for each
pair of state q and input x. Thus, the vector h(1)

t−1 is of dimension |Q|.|Σ|+ 2|Γ|. The vector (qt−1, xt)
can be obtained by using Lemma B.1 where Φ = Q and Ψ = Σ. The vector corresponding to the symbol
at the top of the stack can be easily obtained using the top operation (σ(4ωt−1 − 2)) defined in section
A.1.

In the second layer, we will use Lemma B.1 again to obtain a unique one-hot vector for each combination
of the state, input and stack symbol. The output of the second layer of the feedforward network will be of
the form h

(2)
t−1 = [(qt−1, xt, τ

top
t−1), τ topt−1,ωt−1], where the subvector (qt−1, xt, τ

top
t−1) is a unique one-hot

encoding for each combination of the state q ∈ Q, input x ∈ Σ and a stack symbol τ ∈ Γ. Hence, the
vector h(2)

t−1 will be of the dimension |Q|.|Σ|.|Γ|+2|Γ|. Since we already had the vector (qt−1, xt), and the
vector τ topt−1, the vector (qt−1, xt, τ

top
t−1) can be obtained using Lemma B.1 by considering Φ = Q×Σ and

Ψ = Γ. The primary idea is that the vector (qt−1, xt, τ
top
t−1) provides us with all the necessary information

required to implement the further steps and produce qt and ωt.
We can use the vector (qt−1, xt, τ

top
t−1) to directly map to qt using a simple linear transformation. To

obtain ωt, we will produce all three candidate stack representations corresponding to push, pop and
no-operation. That is, from (qt−1, xt, τ

top
t−1) we will obtain ωpusht , ωpopt and ωno−opt . Along with that,

using linear transformation we will obtain three control signals cpush, cpop and cno−op. To obtain the final
stack representation ωt, we will implement the following operation

ωt = cpush.ω
push
t + cpop.ω

pop
t + cno−op.ω

no−op
t . (2)

We will implement the above steps using an additional three layers of feedforward network and thus we
will obtain ht = [qt,ωt].

The third layer of the feedforward network will produce the vector

h
(3)
t−1 = [qt,ωt,ω

pop
t ,ωno−opt , τ pusht−1 , cpush, cpop, cno−op]

The vector qt in h(3)
t−1 can be obtained using Lemma B.2 given the vector (qt−1, xt, τ

top
t−1) in h(2)

t−1. The

vector ωpopt via the Cantor set encoding method using the transformation 4ωt − 2τ topt−1 − 1 over h(2)
t−1.

The vector ωno−opt can be obtained using the Identity Transformation. The vector τ pusht−1 can be obtained
using Lemma B.2. If for a given transition the stack operation is not a push operation then τ pusht−1 = 0.
The vector cpush = 1 if the current stack operation is Push and it is 0 otherwise. Similarly, the vectors
cpop and cno−op are 1 if the current operation is Pop or No-operation respectively and are 0 otherwise.
The vectors cpush, cpop, and cno−op can be obtained using Lemma B.3. During any timestep, only one of
them is 1 vector and rest of them are zero vectors. The vectors cops can be seen as control signals. That is,
the candidate stack representation will be used if its corresponding control signal is 1 or else the candidate
stack representation will be transformed to zero vector.

In the fourth layer, the feedforward network will produce the following vector,

h
(4)
t−1 = [qt,ω

pop
t .cpop,ω

no−op
t .cno−op,ω

push
t .cpush]

For any operation denoted by op ∈ {push, pop, no− op}, the vector

ωopt .cop =

{
ωopt if cop = 1,
0 if cop = 0.

(3)

Since we are using first order RNNs and hence multiplicative operations are not directly possible. To
implement the operation in equation 3 via linear transformations with saturation linear sigmoid activation,
first note that 0 ≤ ωt ≤ 1 and thus σ(ωt−1) = 0. Using that we can implement the operation in equation
3 by,

σ(ωopt + cop − 1) =

{
ωopt if cop = 1,
0 if cop = 0.

(4)



Training Data Test Data

Dataset Size Length
Range

Depth
Range

Size per
Bin

Bin-2
Length
Range

Bin-2
Depth
Range

Length
Incre-
ments

Depth
Incre-
ments

Number
of Bins

Unbounded
Length and

Depth

10000 [2, 50] Unrestricted 1000 [52, 100] Unrestricted 50 NA 2

Bounded
Depth

10000 [2, 50] [1, 10] 1000 [52, 100] [1, 10] 50 0 3

Bounded
Length

10000 [2, 100] [1, 15] 1000 [2, 100] [16, 16] 0 1 6

Table 1: Statistics of different datasets used in the experiments. Note that the distribution of the first bin
is always defined by the training set, hence for test set we report the statistics from the second bin. The
depth and length bounds for the other bins can be obtained by considering the lower bound of a bin i as
one plus the upper bound of the previous bin i− 1 and obtaining the upper bounds by adding the Length
and Depth Increments to the previous bin’s upper bounds.

In the fourth layer of the feedforward network we obtain the candidate stack representation for Push
operation via linear operations as described in section A.1 along with adding cpush and adding −1 via
bias vectors. For the candidate stack representations of Pop and No-op operations, we simply add their
control vectors and subtract by 1 via bias vectors. In the vector h(4)

t−1, only one of the stack representation
will have nonzero values and the other representations will be zero vectors depending on the control
signals cpush, cpop, and cno−op.

The fifth layer will simply sum the three candidate stack vectors along with their control signals to
obtain,

h
(5)
t−1 = [qt,ω

pop
t .cpop + ωno−opt .cno−op + ωpusht .cpush]

which is equal to,
[qt,ωt] = ht

which is what we wanted to show.

The above construction is a direct simulation of Deterministic Pushdown Automaton via RNNs in
real-time. The construction of Siegelmann and Sontag (1992) first takes all the inputs and then takes
further processing time. However, in practice, RNNs process the inputs and produce outputs in real-time.

Note that, the dependence on precision is primarily determined by the depth of the stack. That is, as the
number of elements in the stack keep increasing, the stack representation gets exponentially smaller due to
the Cantor-set encoding scheme. If for a set of input strings, the depths are bounded, then for some finite
precision, an RNN based on the above construction will be able to recognize strings of arbitrary lengths.

C Experimental Details

We run our experiments on three Context Free Languages namely Dyck-2, Dyck-3 and Dyck-4 for
LSTM and Transformer based models. Three separate datasets were generated for each language, to
run the ablations, details of which are given in Table 1. For each of these experiments we do extensive
hyperparameter tuning before reporting the final results. Table 2 provides different hyperparameters
considered in our experiments and their bounds. All in all, this resulted in about 56 different settings for
each dataset for RNNs and about 144 settings for Transformers. While reporting the final scores we take
an average of the accuracies corresponding the top-5 hyperparameter settings.

All of our models were trained using RMSProp Optimizer with a smoothing constant α of 0.99. For
each language and it’s correspodning datasets, we use a batch size of 32 and train for 100 epochs. In case



Hyperparameter Bounds

Hidden Size [4, 256]
Heads [1, 4]

Number of Layers [1, 2]
Learning Rate [1e-2, 1e-3]

Position Encoding [True, False]

Table 2: Different hyperparameters and the minimum and maximum values considered for each of them.
Note that certain parameters like Heads and Position Encodings are only relevant for Transformer based
models and not for LSTMs. Note that, for Dyck-2 we also found them to generalize to Bin-1A with
bounds mentioned in Suzgun et al. (2019) (such as with hidden size 8).

an accuracy of 0.99 is acheived for all of the bins before completing 100 epochs we stop the training
process at that point. We run all of our experiments on 4 Nvidia Tesla P100 GPUs each containing 16GB
memory.

Probing Details For designing a probe for extracting the depth of the underlying stack of Dyck-2
substrings from the cell states of pretrained LSTMs, we used a single hidden layer Feed-Forward network.
The hidden size of the network was kept 32 and it was trained using Adam Optimizer (Kingma and Ba,
2014) with a batch size of 200. The accuracy on the validation set was computed by only considering the
predictions to be correct for a sequence if it predicted the correct depth at every step of that sequence.
In the second set of experiments that aimed to predict the elements of the stack, we trained the LSTM
model on the NCP task along with an auxillary loss for predicting the top-10 elements of the stack. For
the computation of the auxillary loss, we added 10 parallel linear layers on the top of the LSTM’s output
with i-th linear layer tasked to predict if the i-th element of the stack was i) a round opening bracket or ii)
a square opening bracket or iii) If no element was present at that position. For each of these 10 linear
layers we compute Cross Entropy Loss which are then averaged to obtain the auxillary loss. The final loss
is computed as:

L = LNCP + λLaux (5)

where LNCP is the loss obtained from the next character prediction task and Laux is the auxillary loss
just described and we use λ = 1

20 in our experiments. The stack extraction auxillary task is evaluated
by computing Accuracy and Recall metrics for each stack element. The accuracy for the i-th element is
computed by considering if the model can predict the i-th element correctly at each step of a sequence.
Since there will be a fewer cases for smaller lengths containing elements at higher depths, we also report
Recall for each i-th stack element, where we only consider if the model can correctly predict the sequences
containing at least one occurrence of depth i.

D Robustness Experiments

To ensure that our results didn’t overfit on the training distribution we did some robustness experiments to
check efficacy of the considered neural models. As a reminder, the PCFG for Dyck-n languages is given
by the following derivation rules:

S → (iS)i, with probability p (6)

S → SS, with probabililty q (7)

S → ε, with probbaility 1− (p+ q) (8)

(9)

For the experiments described in the main paper we used p = 0.5 and q = 0.25. To check the
generalization ability of our models we checked whether a model trained with the strings generated using
these values can generalize on Dyck words obtained from a different distribution. Table 3 shows the
accuracies obtained by LSTMs and Transformers on data generated from different distributions. It can be



Language Model Validation Set 1
p = 0.5, q =

0.25

Validation Set 2
p = 0.4, q =

0.35

Validation Set 3
p = 0.6, q =

0.15

Dyck-2 LSTM 99.5 99.6 99.1
Transformer 95.1 94.7 94.4

Dyck-3 LSTM 97.3 98.8 96.5
Transformer 87.7 87.8 87.3

Dyck-4 LSTM 97.8 96.7 94.9
Transformer 92.7 89.8 90.9

Table 3: The performance of neural models on considered Dyck languages for data generated from three
different distributions. Validation Set 1 was constructed from the same distribution used to generate the
training data, while the other two were generated from different distributions. All the validation sets had
strings with the lengths in the interval [2, 50] and there was no restriction kept on the depth of these
strings.

observed from the results that the performance of the models for all languages remain more or less the
same across different distributions.

A model trained on the Next Character Prediction task can also be used to generate strings of the
language it was trained on by starting from an empty string and then exhaustively iterating over all possible
valid characters predicted by the model. We used this idea to check if a pretrained LSTM model can
indeed generate all possible Dyck-2 strings upto a certain length (since the number of possible strings will
grow exponentially with increasing lengths). For a maximum length of 10, there exists a total of 1619
valid Dyck-2 strings. When we used a pretrained model to exhaustively generate the valid strings, we
observed that it produced exactly those 1619 strings, no more and no less.

E Additional Results

The depth generalization results for the neural models on Dyck-3 and Dyck-4, are given in Figure 1.
Similar to Dyck-2, here also we see a gradual drop in performance as we move to the higher depths but
Transformers perform relatively better than LSTMs.

(a) (b)

Figure 1: Generalization of LSTMs and Transformers on higher depths for (a) Dyck-3 and (b) Dyck-4.
The lengths of strings in the training set and all validation sets were fixed to lie between 2 to 100.
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