
FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using
Information Gain

Rohan Deb 1 Kiran Thekumparampil 2 Kousha Kalantari 2 Gaurush Hiranandani 3 Shoham Sabach 2 4

Branislav Kveton 5

Abstract
Supervised fine-tuning (SFT) is the most common
way of adapting large language models (LLMs) to
a new domain. In this paper, we improve the effi-
ciency of SFT by selecting an informative subset
of training examples. Specifically, for a fixed bud-
get of training examples, which determines the
computational cost of fine-tuning, we select those
that maximize information gain, as measured by
the Fisher information matrix of the SFT objec-
tive. We approximate it efficiently by lineariza-
tion at the last layer of the LLM. Our approach
is computationally efficient, analyzable, and per-
forms well empirically. We demonstrate this on
several problems, with both quantitative results
and LLM-as-a-judge evaluations.

1. Introduction
Large language models (LLMs) (Bommasani et al., 2021)
have emerged as general purpose tools that can solve natural
language tasks in both zero-shot and few-shot settings (Rad-
ford et al., 2019; Brown et al., 2020). LLMs are typically
trained in three stages (Ouyang et al., 2022): pre-training
on a large corpus of diverse text, supervised fine-tuning in
the domain of interest (Wei et al., 2022), and alignment to
human preferences (Ouyang et al., 2022; Rafailov et al.,
2023). The main challenge in all stages is the sheer scale of
LLMs, which increased by four orders of magnitude in just
four years: from 117 million parameters in GPT-2 (2019) to
1.76 trillion parameters in GPT-4 (2023).

In this paper, we focus on making supervised fine-tuning
(SFT) (Wei et al., 2022) more efficient. A standard approach
in SFT is to optimize a low-rank adapter (LoRA) (Hu et al.,

1University of Illinois, Urbana-Champaign. The work
was done during an internship at Amazon 2Amazon 3Typeface
4Technion 5Adobe Research. Correspondence to: Rohan Deb
<rd22@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022). The key idea in LoRA is to add low-rank matrices
to the matrices in the transformer layers and only optimize
those during fine-tuning. The computational cost of LoRA
and the quality of its approximations increase with the rank
of the low-rank matrices. Therefore, the rank is a natural
tunable parameter. The simplicity of LoRA made it popular
in practice and thousands of different adapters have been
trained (Mangrulkar et al., 2022). We propose a comple-
mentary approach that selects a subset of most informative
training examples for fine-tuning. The computational cost of
fine-tuning is linear in the size of the chosen subset. There-
fore, as in LoRA, the number of chosen examples naturally
trades off the computational cost of fine-tuning for quality.

The idea of selecting better training examples for SFT is not
new and has been explored extensively before. Coverage-
based approaches (Phillips, 2017; Tukan et al., 2021) select
diverse examples to form coresets. Quality-based sampling
(Wenzek et al., 2019; Muenchigoff et al., 2023) weeds out
low-value or unhelpful examples. In ASK-LLM (Sachdeva
et al., 2024), a proxy LLM is prompted with potential train-
ing examples and asked if they should be used for training.
We review these approaches in detail in Appendix A. The
main difference in our work is that we choose training ex-
amples using their information value, as measured by the
Fisher information matrix of the SFT objective.

Without loss of generality, we view training examples in
fine-tuning as sentences, each being a sequence of tokens.
We want to select the most informative n sentences, which
determines the computational cost of fine-tuning. The key
insight in our work is that the SFT objective is a sum of next
token log-probabilities, each represented by a multinomial
logistic regression model (Bishop, 2006) that depends on
all previous tokens. Therefore, the problem of selecting the
most informative sentences for fine-tuning is a variant of an
optimal design (Pukelsheim, 2006; Stufken & Yang, 2012)
for multinomial logistic regression, where the information
gain of a sentence depends on all tokens in it. We derive an
efficient approximation to the Hessian of the SFT objective,
which measures how informative a set of sentences is, and
then optimize its lower bound to find the most informative
sentences.

1

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

We make the following contributions:

(1) We establish a connection between the SFT objective
of LLMs and a product of multinomial logistic regression
models in Section 2.

(2) We propose our method in Section 3. Our main contri-
bution is a computationally-efficient approximation to the
log-determinant of the Hessian of the SFT log-likelihood.
Specifically, all matrices in this approximation are d × d,
where d is the size of transformer embeddings, as opposing
to dL×dL, where L is the number of distinct tokens. Since
the log-determinant is both monotone and submodular, we
maximize it greedily (Nemhauser et al., 1978). We call our
algorithm FisherSFT because it greedily selects sentences
with jointly most informative tokens. This is in a stark con-
trast to representing sentences by embeddings (Das et al.,
2024; Mukherjee et al., 2024; Thekumparampil et al., 2024;
Liu et al., 2024; Scheid et al., 2024), which we compare to
in Section 5.

(3) We analyze FisherSFT in Section 4 and show that its
prediction error decreases at rate Õ(dL/

√
n), where n is

the number of chosen sentences. The dependence on n is
similar to other recent results (Zhu et al., 2023; Mukherjee
et al., 2024; Thekumparampil et al., 2024).

(4) We evaluate FisherSFT empirically in Section 5. Our
experiments on synthetic problems show that FisherSFT
yields a lower prediction error than the baselines. We also
fine-tune GPT-2 models and evaluate them using an LLM-
as-a-judge (Zheng et al., 2023). The judge prefers the text
generated by FisherSFT models by a large margin.

2. Problem Formulation
Supervised fine-tuning (SFT) (Mangrulkar et al., 2022; Hu
et al., 2022) is a direct application of supervised learning to
LLMs. The objective of SFT is to minimize the negative log-
likelihood of LLM responses given prompts. Specifically,
let yi be a response to prompt zi, and D = {(zi, yi)}i∈[N]

be a dataset N such prompt-response pairs. Then the SFT
objective is to minimize

− 1

N

N∑
i=1

log p(yi | zi) , (1)

where p(yi | zi) denotes the probability of yi given zi under
the LLM. In this work, we select the most informative data
points for optimizing (1) by linearizing it, and building on
existing results for active learning in linear and generalized
linear models (Pukelsheim, 2006; Stufken & Yang, 2012).

The linearization is done as follows. We call yi a sentence.
Let sentence yi consist of Mi tokens indexed by j ∈ [Mi].
Let yi,j ∈ [L] be the token at position j in sentence i. The
tokens belong to a vocabulary of size L. We represent the

sentence i by a sequence of its tokens,

yi = (yi,1, . . . , yi,Mi) .

To model the evolution of the sentence token-by-token, we
define a vector xi,j ∈ Rd that captures the relevant history
up to position j in sentence i. In large language models, xi,j

is the output of the pre-logit layer that encodes contextual
information about tokens yi,1, . . . , yi,j−1 and prompt zi.

Let Θ∗ = (θ∗ℓ)ℓ∈[L] ∈ Rd×L be a matrix of parameters in
the last logit layer of the LLM and θ∗ℓ ∈ Rd be the parameter
vector corresponding to token ℓ ∈ [L]. Then the probability
of token ℓ at position j in sentence i is

p(ℓ | xi,j ; Θ
∗) =

exp(θ∗⊤ℓ xi,j)∑L
k=1 exp(θ

∗⊤
k xi,j)

. (2)

Using this notation, the SFT objective in (1) can be equiva-
lently expressed as

L(Θ) = − 1

N

N∑
i=1

Mi∑
j=1

log p(yi,j | xi,j ; Θ) . (3)

Our objective is to select a subset of n sentences out of N
for fine-tuning. We denote it by S ⊂ [N] and assume that
|S| = n. The negative log-likelihood on S, which helps us
to choose the sentences, is defined as

LS(Θ) = − 1

n

∑
i∈S

Mi∑
j=1

log p(yi,j | xi,j ; Θ) . (4)

Let

Θ̂ = argmin
Θ

LS(Θ) (5)

be the maximum likelihood estimate (MLE) of Θ∗ under the
negative log-likelihood in (4).

3. Algorithm
The Hessian of (4), which is also known as the Fisher infor-
mation matrix (Fisher, 1922), is

∇2LS(Θ) = − 1

n

∑
i∈S

Mi∑
j=1

∇2 log p(yi,j | xi,j ; Θ) . (6)

The inverse of this matrix is the covariance matrix of the
MLE in (5). Therefore, ∇2LS(Θ

∗) can be used to quantify
the uncertainty of Θ̂ and gather training examples for im-
proving our estimate of Θ∗ (Pukelsheim, 2006; Stufken &
Yang, 2012; Lattimore & Szepesvari, 2019).

In this paper, we optimize ∇2LS(Θ
∗) by maximizing its

eigenvalues with respect to S , and approximate this as max-
imizing log det(∇2LS(Θ

∗)). This optimization problem is

2

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Algorithm 1 Greedy optimal design for language models.

1: Input: Embeddings {(xi,j)
Mi
j=1}Ni=1

2: Design matrix V ← σ0Id
3: Selected sentences S ← ∅
4: for t = 1, . . . , n do

5: k ← argmax
i∈[N]\S

log det

V +

Mi∑
j=1

xi,jx
⊤
i,j


6: S ← S + {k}

7: V ← V +

Mk∑
j=1

xk,jx
⊤
k,j

8: Output: S

difficult for three reasons. First, ∇2LS(Θ
∗) is a dL × dL

matrix. For practical values of d ≈ 103 and L ≈ 105, it is
computationally infeasible to optimize dL × dL matrices.
Second, ∇2LS(Θ

∗) cannot be optimized directly because
Θ∗ is not known. To address these two issues, we derive a
lower bound on log det(∇2LS(Θ)) that only involves d×d
matrices and does not depend on Θ. We present the lower
bound in the following lemma.

Lemma 3.1. Consider the loss function given in (4) and let
p(· |xi,j ; Θ) be the probability vector whose ℓ-th compo-
nent is p(ℓ|xi,j ; Θ). Then the Hessian of the loss is

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

[
diag(p(· |xi,j ; Θ))

− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤
]
⊗ xi,jx

⊤
i,j ,

where ⊗ is the tensor product and diag(v) is a matrix with
diagonal v. Moreover, if

diag(p(· |xi,j ; Θ))− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤⪰γ

holds for some γ > 0, then

log det(∇2LS(Θ)) ≥ d log det
(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)
.

Proof. The lemma is proved in Section 3.4.

Therefore, instead of maximizing log det(∇2LS(Θ)), we
can maximize log det(

∑
i∈S
∑Mi

j=1 xi,jx
⊤
i,j) and this is the

key idea in our algorithm FisherSFT. The last challenge is
that we have a combinatorial optimization problem, choose
a subset of n sentences out of N . Since log det is a mono-
tone submodular function, we solve this problem greedily
(Nemhauser et al., 1978).

Algorithm 2 FisherSFT: Fast Implementation of Algo-
rithm 1.

1: Input: Embeddings {(xi,j)
Mi
j=1}Ni=1, batch size B

2: Design matrix V ← σ0Id
3: Selected sentences S ← ∅
4: Cached information gains g ←∞N

5: for t = 1, . . . , n do
6: gmax ← 0
7: for b = 1, . . . , N/B do
8: B ← {(b− 1)B + 1, . . . , bB}
9: for all i ∈ B do

10: if gi > gmax then

11: gi ← log det

V +

Mi∑
j=1

xi,jx
⊤
i,j

−
log det(V)

12: gmax ← max ({gi}i∈B + {gmax})
13: k ← argmaxi∈[N]\S gi
14: S ← S + {k}

15: V ← V +

Mk∑
j=1

xk,jx
⊤
k,j

16: Output: S

3.1. Greedy Optimal Design

Our algorithm is presented in Algorithm 1 and we explain
it next. We call the Hessian of the SFT objective a design
matrix because we use it to design the set of chosen sen-
tences. The design matrix is initialized as V = σ0Id (line
2), where σ0 ≥ 0 is the strength of regularization. The set
of chosen sentences is initialized as S = ∅ (line 3). In step
t ∈ [n], we select a sentence from the remaining sentences
[N] \ S that maximizes log det of the design matrix of the
previously chosen sentences (line 5). This sentence has the
highest information gain. Intuitively, it contains the most
diverse embeddings xi,j since log det(V) is the logarithm
of the volume of the ellipsoid represented by V , and this is
maximized when the lengths of all its axes increase equally
(Lattimore & Szepesvari, 2019). After the sentence is cho-
sen, we add it to the current subset of sentences S (line 6)
and

∑Mk

j=1 xk,jx
⊤
k,j is added to the design matrix V (line 7).

Algorithm 1 selects one sentence per step (line 5). In each
step, we compute log det for all remaining sentences. This
is clearly not practical. In Section 3.2, we present a faster
algorithm that leverages the submodularity of log det and
parallelism to produce the same set of sentences S.

3.2. Algorithm FisherSFT

Now we present a more computationally-efficient variant of
Algorithm 1 that exploits the submodularity of log det and
parallelism (Algorithm 2). Simply put, we implement line 5

3

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

in Algorithm 1 more efficiently. This corresponds to line 13
in Algorithm 2.

The key idea is to cache information gains, where gi is the
cached information gain for sentence i ∈ [N]. The gains
are initialized as gi = ∞ (line 4), updated in line 11, and
we act greedily with respect to them in line 13. If the gains
were always updated, line 13 would be clearly identical to
line 5 in Algorithm 1 because the maximized values in line
13 are only offset by a constant log det(V).

The key insight to efficient updates is that log det is a mono-
tone submodular function. Therefore, the gains cannot in-
crease as V is updated and hence do not have to be recom-
puted when they are smaller than the highest gain gmax at
step t ∈ [n] thus far. We exploit this structure in line 10 and
update gmax in line 12. Finally, we update gi in batches of
size B (line 9) in parallel. This results in an additional O(B)
speedup. We use this implementation in our experiments
and call it FisherSFT.

3.3. Discussion

We consider two variants of FisherSFT in this work. In
Section 4, we analyze an idealized variant where the pre-
logit layer of the LLM is treated as a fixed feature vector.
After n sentences are chosen by FisherSFT, we estimate
the model parameter Θ∗ by maximizing the log-likelihood
in (5). We argue that Θ̂ approaches Θ∗ as the sample size n
increases in Section 4. We experiment with this setting in
Sections 5.1 and 5.2.

We fine-tune LLMs in Section 5.3. The main difference in
this setting is that LS(Θ) is only used to select a subset of
n sentences but we fine-tune the LLM instead of solving
(5). The structure of the LLM is taken into account using
embeddings xi,j . At a high level, FisherSFT chooses di-
verse sentences to ensure a more uniform coverage of xi,j .
This reduces the original dL× dL Fisher information ma-
trix optimization into a tractable d × d problem, enabling
efficient optimization. We discuss several notable aspects
of our approximation next.

The Fisher information matrix in FisherSFT is derived in
Lemma 3.1. The algebraic form of this matrix, the outer
product of feature vectors, would be the true Fisher infor-
mation matrix in linear models. Optimization of this matrix
leads to choosing feature vectors that uniformly cover all
directions spanned by xi,j . Therefore, FisherSFT controls
the worst-case prediction error over xi,j and hence ensures
robustness. We observe this in our experiments. This pro-
vides a different perspective than Sorscher et al. (2022) who
show that it is possible to break beyond power law scaling
by intelligently choosing easy and hard training examples.

FisherSFT is naturally biased towards selecting longer sen-
tences. This bias arises because each token in a sentence

is a training point in SFT, for the conditional probability
of token yi,j given the history embedding xi,j . Therefore,
longer sentences may have higher information gains. Nev-
ertheless, note that the sentences in FisherSFT are chosen
based on their total information gain and not just length.

The key idea in our work can be viewed as using the last-
layer embedding in LLMs as a featurizer (Xu et al., 2022).
This is known to yield robust performance in active learning
(Riquelme et al., 2018). Other popular active learning tech-
niques utilize gradients (Ash et al., 2020) or are based on
bandit exploration (Zhou et al., 2020; Zhang et al., 2021).
These methods are computationally prohibitive in modern
neural networks because of the sheer size of their parameter
spaces.

3.4. Proof of Lemma 3.1

In Proposition B.1, we show that

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(
diag(p(· |xi,j ; Θ))

− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤
)
⊗ xi,jx

⊤
i,j .

Now suppose that

diag(p(· |xi,j ; Θ))− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤ ⪰ γ

holds for some γ > 0. Then using Theorem 4.2.12 of Horn
& Johnson (1991), we get

∇2LS(Θ) ⪰ 1

n

∑
i∈S

Mi∑
j=1

γIL ⊗ xi,jx
⊤
i,j ,

where IL is an L-dimensional identity matrix. In turn,

det(∇2LS(Θ)) ≥ det
(
IL ⊗

γ

n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)
.

Now using the fact that det(A ⊗ B) = det(A)p det(B)q

for A ∈ Rp×p and B ∈ Rq×q (Bernstein, 2009, Proposition
7.1.11), we have

det(∇2LS(Θ)) ≥ det(IL)
L det

(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)d
= det

(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)d
.

Taking the logarithm of both sides completes the proof.

4. Error Bound
Our main Theorem 4.3 provides a O(1/

√
n) bound on the

maximum prediction error of the estimated parameter Θ̂

4

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

from the sentences collected by FisherSFT. The maximum
prediction error is given by

maxi∈[N]

∑Mi

j=1 ∥Θ∗⊤xi,j − Θ̂⊤xi,j∥2 .

Note that ∥ · ∥2 is the sum of prediction errors over a vocab-
ulary of size L. We make the following assumption on the
feature vectors and unknown parameter Θ∗.
Assumption 4.1. Let ∥xi,j∥ ≤ 1 for any i ∈ [N] and j ∈
[Mi]. Moreover, we assume that the true model parameter
satisfies Θ∗ ∈ B, where

B =
{
Θ = (θℓ)ℓ∈[L] : θℓ ∈ Rd, ∥θℓ∥2 ≤ 1,

d∑
k=1

θℓ,k = 0,∀ℓ ∈ [L]
}
.

For any subset S ⊆ [N], we define the regularized design
matrix for S as

Σ̄S = σ0Id +
∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j (7)

for σ0 ≥ 0. FisherSFT iteratively computes this matrix as
new sentences are added to the subset S (line 15).

Next we make a diversity assumption on our dataset.
Assumption 4.2. Let St−1 be the set of chosen sentences
up to step t in FisherSFT and It be the index of the chosen
sentence at step t. We assume that there exists a constant
κ ≥ 1 such that for any step t ∈ [n] and sentence i ∈ [N],

log det(Id +

Mi∑
j=1

Σ̄
−1/2
t−1 xi,jx

⊤
i,jΣ̄

−1/2
t−1)

≤ κ log det(Id +

MIt∑
j=1

Σ̄
−1/2
t−1 xIt,jx

⊤
It,jΣ̄

−1/2
t−1) ,

where Σ̄t−1 = Σ̄St−1
.

The assumption says that the information gain of the chosen
sentence (line 13 of FisherSFT) is an approximate upper
bound, up to a multiplicative κ ≥ 1, on the information gain
of any other sentence, including those previously chosen
that cannot be chosen again.

Now we state our main result.
Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold.
Then for any δ > 0, the maximum prediction error of Θ̂ is
bounded with probability 1− δ as

max
i∈[N]

Mi∑
j=1

∥Θ∗⊤xi,j − Θ̂⊤xi,j∥2

≤ CMe2L

√√√√σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0)

√
dκ(d+ log(L/δ))

n
,

where C > 0 is some global constant.

We sketch the proof next. Let S be the set of n sentences
generated by FisherSFT. For any positive-definite matrix
A ∈ Rd×d and vector x ∈ Rd, we define ∥x∥A =

√
x⊤Ax.

With Θ̂ = (θ̂ℓ)ℓ∈[L] and Θ∗ = (θ∗ℓ)ℓ∈[L], we can bound the
maximum prediction error as

max
i∈[N]

Mi∑
j=1

∥Θ̂⊤xi,j −Θ∗⊤xi,j∥2

≤ max
i∈[N]

Mi∑
j=1

L∑
ℓ=1

|(θ̂ℓ − θ∗ℓ)
⊤xi,j |

≤ max
i∈[N]

Mi∑
j=1

L∑
ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S∥xi,j∥Σ̄−1
S

≤
(L∑

ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)
︸ ︷︷ ︸

I

max
i∈[N]

Mi∑
j=1

∥xi,j∥Σ̄−1
S︸ ︷︷ ︸

II

. (8)

Term I represents a self-normalized error between the true
parameter Θ∗ and its MLE Θ̂. Term II measures the infor-
mation value of sentences S. We start with bounding term
II. Under Assumption 4.2, we get the following bound.

Lemma 4.4. Suppose that Assumption 4.2 holds. Let S be
the set of n sentences generated by FisherSFT and (7) be
their design matrix. Let M = maxi∈[N] Mi. Then

max
i∈[N]

Mi∑
j=1

∥xi,j∥2Σ̄−1
S
≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0)

κdM

n
.

Proof of Lemma 4.4. See Appendix C.1

Using the Cauchy-Schwarz inequality, we get a corollary

max
i∈[N]

Mi∑
j=1

∥xi,j∥Σ̄−1
S
≤M

√√√√σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0)

κd

n
.

We bound term I in (8) by relating it to the difference be-
tween the loss and its first order approximation,

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ

∗), Θ̂−Θ∗⟩
(a)

≤ −⟨∇LS(Θ
∗), Θ̂−Θ∗⟩

= −
L∑

ℓ=1

∇ℓLS(Θ
∗)⊤(θ̂ℓ − θ∗ℓ)

(b)

≤
L∑

ℓ=1

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
∥θ̂ℓ − θ∗ℓ ∥Σ̄S , (9)

5

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

where the dot product between matrices A and B is defined
as ⟨A,B⟩ =

∑
i,j Ai,jBi,j . Inequality (a) is a consequence

of LS(Θ̂) ≤ LS(Θ
∗), because Θ̂ is the minimizer in (5).

Inequality (b) follows from the Cauchy-Schwarz inequality.
Finally, we bound the left-hand side of (9) from below using
the fact that the loss is strongly convex.
Lemma 4.5. Suppose that Assumption 4.1 holds and Θ̂ is
the MLE in (5) such that Θ̂ ∈ B. Then there exists some
α < 1 such that

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ

∗), Θ̂−Θ∗⟩

≥ e−2α

L

(L∑
ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

.

Proof of Lemma 4.5. See Appendix C.2

Using Lemma 4.5 and (9), we have

e−2α

L

(L∑
ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

≤
L∑

ℓ=1

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
∥θ̂ℓ − θ∗ℓ ∥Σ̄S

≤

(
sup
ℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S

)(
L∑

ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)
,

and therefore
L∑

ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S ≤ e2αL sup
ℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S

≤ e2L sup
ℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
. (10)

The next lemma bounds supℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
.

Lemma 4.6. With probability 1− δ, the gradient of the loss
satisfies

sup
ℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
≤ C

√
d+ log(L/δ) ,

where C > 0 is some global constant.

Proof of Lemma 4.6. See Appendix C.3

Now we combine (8), the corollary of Lemma 4.4, (10), and
Lemma 4.6, and get that

max
i∈[N]

Mi∑
j=1

∥Θ∗⊤xi,j − Θ̂⊤xi,j∥2

≤ CMe2L

√√√√σ−2
0 log

(
1 +

σ2
0nM
d

)
log(1 + σ2

0)

√
dκ(d+ log(L/δ))

n

holds with probability 1− δ, where C > 0 is some constant.
This completes the proof.

5. Experiments
We empirically evaluate FisherSFT on a variety of prob-
lems. We experiment with a synthetic autoregressive predic-
tion task in Section 5.1, with pre-trained word embeddings
in Section 5.2, and with GPT-2 models in Section 5.3. Abla-
tion studies are conducted in Section 5.4. Our implementa-
tion is available at github.

5.1. Synthetic Experiments

We start with a simplified setup where each token ℓ ∈ [L]
is associated with a vector sampled from a standard normal
distribution, xℓ ∼ N (0, Id). The number of tokens is L =
20 and d = 10. All entries of Θ∗ are sampled i.i.d. from
N (0, 1). The first token in sentences is sampled uniformly
at random from [L]. The next tokens are sampled from the
softmax model in (2), where xi,j is the token embedding at
position j − 1 in sentence i.

We consider several baselines. Uniform selects sentences
uniformly at random. SentenceOD selects sentences greed-
ily by maximizing the log-determinant of a sentence-level
Fisher information matrix. We construct sentence embed-
dings by summing all token embeddings in that sentence.
Specifically, xi =

∑Mi

j=1 xi,j is the embedding of sentence
i ∈ [N]. DensitySampling (Sachdeva et al., 2024) selects
sentences based on inverse propensity scores estimated by
a kernel density estimator. ClusteredSampling (Axiotis
et al., 2024) clusters sentence embeddings using k-means
and then samples them proportionally to their distance to
the closest mean plus its loss. The baselines are described
in detail in Appendix A.

All methods choose n sentences and learn a multinomial
logistic regression model by solving (5). We evaluate the
methods by two metrics: maximum prediction error

Emax(n) = max
i∈[N]

Mi∑
j=1

∥Θ∗⊤xi,j − Θ̂⊤xi,j∥2

and mean prediction error

Emean(n) =
1

N

∑
i∈[N]

Mi∑
j=1

∥Θ∗⊤xi,j − Θ̂⊤xi,j∥2 .

The maximum error measures the performance on the most
challenging sentence, while the mean error measures the
average performance on all sentences. We bound the maxi-
mum prediction error of FisherSFT in Theorem 4.3.

The prediction errors of all methods are reported in Fig-
ure 1. We observe that FisherSFT performs better than all
baselines in both metrics. In fact, it is much more sample
efficient than the best baseline. As an example, the lowest
maximum prediction error of the best baseline, attained at
n = 2000, is attained by FisherSFT at n = 1000.

6

https://github.com/rohandeb24/FisherSFT

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

100 500 1000 1500 2000
Sample size n

0

2

4

6

8

10

M
ax

im
um

 p
re

di
ct

io
n

er
ro

r

Synthetic

FisherSFT
Uniform
SentenceOD
ClusteredSampling
DensitySampling

100 500 1000 1500 2000
Sample size n

2

4

6

8

10

M
ea

n
pr

ed
ic

tio
n

er
ro

r

Synthetic

FisherSFT
Uniform
SentenceOD
ClusteredSampling
DensitySampling

Figure 1. Comparison of maximum and mean prediction errors on synthetic tokens. The x axis shows the number of selected sentences for
training the model. The y axis shows the errors averaged over 20 runs.

1000 1250 1500 1750 2000
Sample size n

40

50

60

M
ax

im
um

 p
re

di
ct

io
n

er
ro

r

word2vec

FisherSFT
Uniform
SentenceOD
ClusteredSampling
DensitySampling

1000 1250 1500 1750 2000
Sample size n

12.5

15.0

17.5

20.0

M
ea

n
pr

ed
ic

tio
n

er
ro

r

word2vec

FisherSFT
Uniform
SentenceOD
ClusteredSampling
DensitySampling

Figure 2. Comparison of maximum and mean prediction errors on word2vec tokens. The x axis shows the number of selected sentences
for training the model. The y axis shows the errors averaged over 20 runs.

Uniform Sampling
First Citizen:
The gods grant that! Might but thee I shall lose that crown,
My life and services
Will thereto witness good Rome and that thou
In token of my deeds: both your grace
My life and all that is lost
My life, which never
My life and services
At any time when
I saw My life; which never
My life, which never
My life, which never
My life, which never
My life, which never
My life shall have seen; being now dishonour'd by my life,
And howled in that life, but beheld In doing the thing
I said most honourably;
Being criminal, which never
My life, which never
My life did incur the life-service,
My life which never
My life service i' the life; giving life to both parts

FisherSFT

First Citizen: The wars for this matter, and more are open'd,
More are open and more ungovern'd are the people. I mean
to drop them all in theirs and, to have them yielded. Let
them have no more sons, but when they do, They will bring
in for consul; and therefore, in time, For certain care
whether they will or no respect. You sigh when you see
them

BAGILIA: So it must fall, I know, and love you well.

CORIOLANUS: Hail, soldiers!

MENENIUS: You weary of the tribunes' suit: Why, patience!
what care they of?

COMINIUS: Are bound to you: The gods begin to mock you,
and to blame Your ignorance, which finds not till you have
The stamp of that banishment.

Figure 3. Text generated by fine-tuned GPT-2 models on sentences chosen by Uniform and FisherSFT. The latter is more coherent.

7

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

5.2. Word2vec Embeddings

This experiment is similar to Section 5.1. The difference
is that we use pre-trained word2vec embeddings (Mikolov
et al., 2013) of dimension 300. We randomly select L =
20 words from the word2vec vocabulary and project their
embeddings randomly to d = 10 dimensions. The vector
associated with token ℓ ∈ [L] is xℓ. The prediction errors
of all methods are reported in Figure 2. We observe again
that FisherSFT outperforms all baselines in both metrics.
As an example, the lowest mean prediction error of the best
baseline, attained at n = 2000, is attained by FisherSFT

at n = 1250.

5.3. Experiments with GPT-2

We experiment with GPT-2 models (Radford et al., 2019)
next. All methods select a subset of n sentences and then
fine-tune the GPT-2 model on Hugging Face (Wolf et al.,
2020). The vector xi,j is the output of the pre-logit layer
at position j in sentence i and yi,j is the token at that po-
sition. We consider two corpora: tiny Shakespeare corpus
(Karpathy, 2015) and Sherlock Holmes corpus (Doyle). We
subsample 10 000 sentences from both corpora and experi-
ment with learning from n ∈ [100, 5 000] sentences.

We choose two baselines from the previous experiments:
Uniform and DensitySampling. DensitySampling is
chosen because it tends to outperform other baselines on
language model fine-tuning tasks (Sachdeva et al., 2024).
We also experiment with AskLLM (Sachdeva et al., 2024),
where a proxy LLM is prompted with potential training
examples and asked if they should be used for training. The
baselines are described in detail in Appendix A.

Unlike in Sections 5.1 and 5.2, the true model parameter is
unknown, and hence the prediction errors cannot be com-
puted. To address this, we evaluate the fine-tuned models
based on their generated text. Specifically, we prompt them
with a few words from the original text corpus (represented
by tokens yi,1, . . . , yi,p) and the model completes the sen-
tence by generating yi,p+1, yi,p+2, . . . , yi,1024. We evaluate
the quality of the completed sentences using a larger GPT-
4o model, which serves as an LLM-as-a-judge (Zheng et al.,
2023). For the Shakespeare corpus, we use prompt

You are a judge of Shakespeare text.
<tag1>text1</tag1>
<tag2>text2</tag2>
Respond 2 if the text inside <tag2>
is more fluent Shakespeare text
than the text inside <tag1>.
Respond 1 otherwise.

For the Sherlock Holmes corpus, we replace “Shakespeare”
with “Sherlock”.

The prompt does not name the compared methods and tar-

Method Number of selected sentences
FisherSFT vs 100 200 500 1000 2000 5000

Uniform 0.80 0.56 0.60 0.59 0.64 0.74
DensitySampling 0.61 0.66 0.68 0.62 0.54 0.84
AskLLM 0.59 0.52 0.68 0.59 0.68 0.74

Table 1. Win rates of FisherSFT with respect to three baselines
on the Shakespeare corpus. A higher win rate than 0.5 means that
FisherSFT is preferred.

Method Number of selected sentences
FisherSFT vs 100 200 500 1000 2000 5000

Uniform 0.84 0.81 0.75 0.64 0.65 0.93
DensitySampling 0.68 0.75 0.69 0.74 0.65 0.88
AskLLM 0.74 0.58 0.65 0.60 0.61 0.89

Table 2. Win rates of FisherSFT with respect to three baselines
on the Sherlock Holmes corpus. A higher win rate than 0.5 means
that FisherSFT is preferred.

gets the expected benefit of our method, that it yields more
fluent, coherent, and natural text. The text generated by the
compared methods is randomized: one randomly-chosen
method replaces text1 and the other text2. We use the same
initial phrase to generate text1 and text2. The LLM judge
chooses the first position with probability 0.54, which is
sufficiently close to a completely unbiased 0.5. Examples of
text1 and text 2 are shown in Figure 3. The model trained on
uniformly selected sentences generates worse text, which is
repetitive. In contrast, the FisherSFT text is more coherent
and similar to the Shakespeare corpus.

We evaluate FisherSFT by its win rate, the fraction of time
that its responses are judged as more fluent than the baseline.
The win rate is estimated from 100 runs. A higher win rate
than 0.5 means that FisherSFT outperforms the baseline.
We report the results on Shakespeare and Sherlock Holmes
corpora in Tables 1 and 2, respectively. Note that all win
rates are higher than 0.5. Notably, all win rates except one
in Table 2 are at least 0.6. Therefore, FisherSFT performs
better than the baselines by a large margin.

5.4. Ablation Studies

Convergence rate. We validate the empirical convergence
rate of FisherSFT in Figure 4a. Specifically, we take the
synthetic problem in Section 5.1 and plot the logarithm of
the error rate as a function of the logarithm of the sample
size. We observe a slope of −0.3, which validates that the
error rate is O(np). We believe that this is sufficiently close
to the expected p = −0.5, especially since other factors
may have played a role at our small sample sizes.

Computation time. We report the computation times of
the slow and fast implementations of FisherSFT in Algo-

8

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

102 103

Sample size n

100

M
ax

im
um

 p
re

di
ct

io
n

er
ro

r

Synthetic
FisherSFT
c1
n

c2
n

200 400 600 800 1000
Sample size n

100

200

300

400

500

Co
m

pu
ta

tio
n

Ti
m

e
(m

in
ut

es
)

Shakespeare
FisherSFT (Algorithm 1)
FisherSFT (Algorithm 2)

Figure 4. a: A log-log plot of the error rate of FisherSFT as a function of the sample size n. b: Computation times of the slow and fast
implementations of FisherSFT in Algorithms 1 and 2, respectively.

5 10 15 20 25 30 35 40
d

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 p
re

di
ct

io
n

er
ro

r

Synthetic (L = 50)
FisherSFT
Uniform
SentenceOD
DensitySampling
ClusteredSampling

20 25 30 35 40 45 50
L

0.1

0.2

0.3

0.4

0.5

0.6

M
ax

im
um

 p
re

di
ct

io
n

er
ro

r

Synthetic (d = 20)
FisherSFT
Uniform
SentenceOD
DensitySampling
ClusteredSampling

Figure 5. Error rates of FisherSFT and all baselines from Section 5.1 as functions of the embedding dimension d and vocabulary size L.

rithms 1 and 2, respectively, in Figure 4b. The experiment
is done on 5 000 sentences from the Shakespeare dataset
in Section 5.3. We plot the computation times for various
sample sizes n and observe that the fast implementation is
about 4 times faster.

Trends in d and L. We plot the error rates of FisherSFT
and all baselines from Section 5.1 as functions of the em-
bedding dimension d and vocabulary size L in Figure 5.
We observe that FisherSFT has the lowest error in all set-
tings, indicating robustness to changes in the embedding
dimension and vocabulary size.

6. Conclusions
We improve the efficiency of supervised fine-tuning by se-
lecting the most informative training examples. The exam-
ples maximize a novel approximation to the information
gain of the SFT objective. The approximation is computa-
tionally efficient and motivates our algorithm FisherSFT.
We analyze FisherSFT, and evaluate it empirically on both
synthetic problems and fine-tuning GPT-2 models. We ob-
serve that FisherSFT has a lower prediction error than the
baselines and its fine-tuned models are preferred over the
baselines in our LLM-as-a-judge evaluations.

Our work can be extended in several directions. First, we
only experiment with a small GPT-2 model. Second, our
fine-tuned models are evaluated by an LLM-as-a-judge but
not humans. Finally, note that the optimal design could be
computed using a different embedding than that from the
fine-tuned LLM. This could lead to computational savings
if the embedding had a much lower dimensionality.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, A., Tirmala, K., Simig, D., Ganguli, S., and Mor-

cos, A. S. Semdedup: Data-efficient learning at web-
scale through semantic deduplication. arXiv preprint
arXiv:2303.09540, 2023.

Ash, J., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. Deep batch active learning by diverse, un-
certain gradient lower bounds. In Proceedings of the 8th

9

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

International Conference on Learning Representations,
2020.

Axiotis, K., Cohen-Addad, V., Henzinger, M., Jerome, S.,
Mirrokni, V., Saulpic, D., Woodruff, D. P., and Wunder,
M. Data-efficient learning via clustering-based sensitivity
sampling: Foundation models and beyond. In Proceed-
ings of the 41st International Conference on Machine
Learning. PMLR, 2024.

Bernstein, D. S. Matrix Mathematics: Theory, Facts, and
Formulas with Application to Linear Systems Theory.
Princeton University Press, Princeton, NJ, 2nd edition,
2009. ISBN 978-0691118028.

Bishop, C. Pattern Recognition and Machine Learning.
Springer, New York, NY, 2006.

Bommasani, R. et al. On the opportunities and risks of
foundation models. CoRR, abs/2108.07258, 2021. URL
https://arxiv.org/abs/2108.07258.

Borsos, Z., Mutny, M., and Krause, A. Coresets via bilevel
optimization for continual learning and streaming. In
Advances in Neural Information Processing Systems, vol-
ume 33, pp. 14879–14890, 2020.

Brown, T. et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems 33,
2020.

Chen, Y., Welling, M., and Smola, A. Super-samples from
kernel herding. arXiv preprint arXiv:1203.3472, 2012.

Chitta, K., Álvarez, J. M., Haussmann, E., and Fardet, E.
Training data subset search with ensemble active learning.
IEEE Transactions on Intelligent Transportation Systems,
23(9):14741–14752, 2021.

Coleman, B. and Shrivastava, A. Sub-linear race sketches
for approximate kernel density estimation on streaming
data. In Proceedings of The Web Conference 2020, WWW
’20, pp. 1739–1749, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450370233.
doi: 10.1145/3366423.3380244. URL https://doi.
org/10.1145/3366423.3380244.

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P., Liang, P., Leskovec, J., and Zaharia, M. Selec-
tion via proxy: Efficient data selection for deep learning.
In International Conference on Learning Representations,
2020.

Das, N., Chakraborty, S., Pacchiano, A., and Chowdhury,
S. R. Active preference optimization for sample efficient
RLHF. CoRR, abs/2402.10500, 2024. URL https:
//arxiv.org/abs/2402.10500.

Doyle, A. C. Sherlock holmes collection. https://www.
kaggle.com/datasets/bharatkumar0925/
sherlock-holmes-collection.

Feldman, V. and Zhang, C. What neural networks memorize
and why: discovering the long tail via influence esti-
mation. In Advances in Neural Information Processing
Systems, volume 33, pp. 2881–2891, 2020.

Fisher, R. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society
of London: Series A, 222:309–368, 1922.

Hajek, B., Oh, S., and Xu, J. Minimax-optimal inference
from partial rankings. arXiv preprint arXiv:1406.5638,
2014. URL https://arxiv.org/abs/1406.
5638.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57
(1):97–109, 1970.

Horn, R. A. and Johnson, C. R. Topics in Matrix Analysis.
Cambridge University Press, 1991.

Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In Proceedings of the 10th
International Conference on Learning Representations,
2022.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S.
Composable core-sets for diversity and coverage maxi-
mization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems, pp. 100–108, 2014.

Karnin, Z. and Liberty, E. Discrepancy, coreset, and
sketches in machine learning. In Conference on Learning
Theory, pp. 1975–1993. PMLR, 2019.

Karpathy, A. char-rnn. https://github.com/
karpathy/char-rnn, 2015.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2019.

Lee, A., Miranda, B., and Koyejo, S. Beyond scale: The
diversity coefficient as a data quality metric demonstrates
llms are pre-trained on formally diverse data. arXiv
preprint arXiv:2306.13840, 2023.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 8424–
8445, 2022.

10

https://arxiv.org/abs/2108.07258
https://doi.org/10.1145/3366423.3380244
https://doi.org/10.1145/3366423.3380244
https://arxiv.org/abs/2402.10500
https://arxiv.org/abs/2402.10500
https://www.kaggle.com/datasets/bharatkumar0925/sherlock-holmes-collection
https://www.kaggle.com/datasets/bharatkumar0925/sherlock-holmes-collection
https://www.kaggle.com/datasets/bharatkumar0925/sherlock-holmes-collection
https://arxiv.org/abs/1406.5638
https://arxiv.org/abs/1406.5638
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Liu, P., Shi, C., and Sun, W. W. Dual active learning for
reinforcement learning from human feedback. CoRR,
abs/2410.02504, 2024. URL https://arxiv.org/
abs/2410.02504.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Meding, R., Buschtoff, L. M. S., Geirhos, R., and Wich-
mann, F. A. Trivial or impossible–dichotomous data diffi-
culty makes model differences (on imagenet and beyond).
arXiv preprint arXiv:2110.05922, 2021.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. Efficient
estimation of word representations in vector space. In
International Conference on Learning Representations,
2013. URL https://api.semanticscholar.
org/CorpusID:5959482.

Mindermann, S., Brauner, J., Razzak, M., Sharma, M.,
Kirsch, A., Xu, W., Höltgen, B., Gomez, A., Morisot,
A., Farquhar, S., et al. Prioritized training on points that
are learnable, worth learning, and not yet learnt. In In-
ternational Conference on Machine Learning, pp. 15630–
15649. PMLR, 2022.

Muenchigoff, M., Rush, A. M., Barak, B., Scao, T. L.,
Piktus, T., Tazi, N., Pyysalo, S., Wolf, T., and Raffel, C.
Scaling data-constrained language models. arXiv preprint
arXiv:2305.10623, 2023.

Mukherjee, S., Lalitha, A., Kalantari, K., Deshmukh, A.,
Liu, G., Ma, Y., and Kveton, B. Optimal design for human
preference elicitation. In Advances in Neural Information
Processing Systems 37, 2024.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions - I. Mathematical Programming, 14(1):
265–294, 1978.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., and
Lowe, R. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems 35, 2022.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
In Advances in Neural Information Processing Systems,
volume 34, pp. 2960–2971, 2021.

Phillips, J. M. Coresets and sketches. In Handbook of
discrete and computational geometry, pp. 1269–1288.
Chapman and Hall/CRC, 2017.

Pukelsheim, F. Optimal Design of Experiments, volume 50
of Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2006. ISBN
0898716047.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are un-
supervised multitask learners. OpenAI Technical
Report, 2019. https://cdn.openai.com/
better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C., Ermon,
S., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. In Advances
in Neural Information Processing Systems 36, 2023.

Riquelme, C., Tucker, G., and Snoek, J. Deep
bayesian bandits showdown: An empirical comparison
of bayesian deep networks for thompson sampling. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=SyYe6k-CW.

Sachdeva, N., Wu, C.-J., and McAuley, J. SVP-CF: Se-
lection via proxy for collaborative filtering data. arXiv
preprint arXiv:2107.04984, 2021.

Sachdeva, N., Coleman, B., Kang, W.-C., Ni, J., Hong, L.,
Chi, E. H., Caverlee, J., and Cheng, D. Z. How to train
data-efficient llms. arXiv preprint arXiv:2402.09668,
2024.

Scheid, A., Boursier, E., Durmus, A., Jordan, M., Menard,
P., Moulines, E., and Valko, M. Optimal design for reward
modeling in RLHF. CoRR, abs/2410.17055, 2024. URL
https://arxiv.org/abs/2410.17055.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and
Morcos, A. Beyond neural scaling laws: Beating power
law scaling via data pruning. In Advances in Neural
Information Processing Systems 35, 2022.

Stufken, J. and Yang, M. Optimal designs for generalized
linear models. In Design and Analysis of Experiments,
pp. 137–164. John Wiley & Sons, 2012.

Thekumparampil, K., Hiranandani, G., Kalantari, K.,
Sabach, S., and Kveton, B. Comparing few to rank
many: Active human preference learning using random-
ized Frank-Wolfe. CoRR, abs/2412.19396, 2024. URL
https://arxiv.org/abs/2412.19396.

Tirmala, K., Simig, D., Aghajanyan, A., and Morcos,
A. S. D4: Improving lm pre-training via docu-
ment de-duplication and diversification. arXiv preprint
arXiv:2308.12284, 2023.

11

https://arxiv.org/abs/2410.02504
https://arxiv.org/abs/2410.02504
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=SyYe6k-CW
https://arxiv.org/abs/2410.17055
https://arxiv.org/abs/2412.19396

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Tukan, M., Baykal, C., Feldman, D., and Rus, D. On core-
sets for support vector machines. Theoretical Computer
Science, 890:171–191, 2021.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A., and Le, Q. Finetuned language
models are zero-shot learners. In Proceedings of the 10th
International Conference on Learning Representations,
2022.

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V.,
Guzmán, F., Joulin, A., and Grave, E. Ccnet: Extracting
high quality monolingual datasets from web crawl data.
arXiv preprint arXiv:1911.00359, 2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020. URL
https://arxiv.org/abs/1910.03771.

Xu, P., Wen, Z., Zhao, H., and Gu, Q. Neural contextual
bandits with deep representation and shallow exploration.
In International Conference on Learning Representations
(ICLR), 2022. URL https://openreview.net/
forum?id=BkbY4vHFPH. Poster.

Zhang, W., Zhou, D., Li, L., and Gu, Q. Neural thomp-
son sampling. In International Conference on Learning
Representation (ICLR), 2021.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., Zhang, H.,
Gonzalez, J., and Stoica, I. Judging LLM-as-a-judge with
MT-Bench and Chatbot Arena. In Advances in Neural
Information Processing Systems 36, 2023.

Zhou, D., Li, L., and Gu, Q. Neural contextual bandits with
ucb-based exploration. In International Conference on
Machine Learning, pp. 11492–11502. PMLR, 2020.

Zhu, B., Jiao, J., and Jordan, M. Principled reinforce-
ment learning with human feedback from pairwise or
K-wise comparisons. CoRR, abs/2301.11270, 2023. URL
https://arxiv.org/abs/2301.11270.

12

https://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=BkbY4vHFPH
https://openreview.net/forum?id=BkbY4vHFPH
https://arxiv.org/abs/2301.11270

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

A. Related Works

Algorithm 3 Inverse Propensity Sampling (IPS) via Kernel Density Estimation (KDE) (Sachdeva et al., 2021)
1: Dataset D = {x1, x2, . . . , xN} of embeddings, sample size k, kernel k with corresponding LSH familyH (Coleman &

Shrivastava, 2020), hash range B, rows R, random seed s.
2: Ensure a subset of D of size k, sampled with probability p (see line 14).
3: Initialize KDE sketch S ← 0R×B .
4: Generate R independent hash functions h1, . . . , hR fromH with range B and random seed s.
5: for n← 1 to N do
6: for r ← 1 to R do
7: Sr, hr(xn) ← Sr, hr(xn) + 1

8: Initialize a list of scores S ← [].
9: for n← 1 to N do

10: score← 0
11: for r ← 1 to R do
12: score← score+ S[r, hr(xn)]

13: Append score
R to S.

14: Output: Select k elements from D with probability p = S∑
S (sampled without replacement).

Coverage-oriented approaches center on ensuring that a training set reflects the entire input distribution as broadly as
possible. One common strategy is cluster sampling (Lee et al., 2023), which embeds data points in a metric space (often
via learned representations) and selects mutually distant examples to form “coresets” (Phillips, 2017; Tukan et al., 2021).
Related methods include prototype-based sampling for vision (Sorscher et al., 2022) and deduplication algorithms (Abbas
et al., 2023; Lee et al., 2022; Tirmala et al., 2023) that remove near-duplicates or redundancies. More sophisticated
procedures—such as submodular optimization (Chen et al., 2012; Indyk et al., 2014; Borsos et al., 2020) and discrepancy
minimization (Karnin & Liberty, 2019)—further refine coverage by balancing representation across diverse data regions.

Quality-based sampling, in contrast, prioritizes weeding out low-value or unhelpful examples. A prominent technique is
perplexity filtering (Wenzek et al., 2019; Muenchigoff et al., 2023), which prefers samples with higher likelihood under
a pretrained model, though this can inadvertently discard valuable but rare text. Other approaches compute “uncertainty
scores” via ensemble disagreement (Chitta et al., 2021; Meding et al., 2021) or examine whether examples are memorized
(Feldman & Zhang, 2020) or unlearnable (Mindermann et al., 2022). The SVP algorithm (Coleman et al., 2020; Sachdeva
et al., 2021) estimates each sample’s importance by its validation-loss variance, while EL2N scores (Paul et al., 2021) track
a model’s difficulty in learning particular data points. These methods all fit into a “score-and-sample” framework (Hastings,
1970), where the final selection depends on the magnitude of each item’s quality score.

For a more detailed description see (Sachdeva et al., 2024). Below we describe the two algorithms proposed in (Sachdeva
et al., 2024) and used as benchmarks in Section 5.

ASK-LLM: In ASK-LLM (Sachdeva et al., 2024), a proxy LLM is prompted with a potential training example and asked
whether the example should be used for training. More specifically, the proxy LLM is provided the training example
followed by the prompt ”Does the previous paragraph contain informative signal for fine-tuning a large-language model?
An informative datapoint should be well-formatted, contain some usable knowledge of the world, and strictly NOT have any
harmful, racist, sexist, etc. content. OPTIONS: yes, no”. It then takes the softmax probability of the token “yes” as the
estimated data-quality score and sorts according to score to pick Top n data points.

Density sampling: (Sachdeva et al., 2024) assumes access to embeddings from a pre-trained LLM. Given a dataset D it
uses a kernel k(x, y), to estimate the density using the following score.

score(y) =
∑
x∈D

kλ(x, y),

where λ is a smoothing parameter and controls the scale of the data points’ effects. Density Sampling then uses Inverse
propensity sampling (IPS) to select items proportional to their re-weighted and normalized inverse score. The algorithm as
provided in (Sachdeva et al., 2024) is summarized below.

13

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Clustering Based Sensitivity Sampling: (Axiotis et al., 2024) The method uses k-means clustering and sensitivity sampling
using the embedding representation of the data with respect to which the model loss is measured and ensures that the
sampled elements’ average loss corresponds to the average loss of the whole dataset. The algorithm as presented in (Axiotis
et al., 2024) is summarized below.

Algorithm 4 Clustering Based Sensitivity Sampling (D, k, ε,Λ, C) (Axiotis et al., 2024)
1: Input: a dataset D partitioned into clusters C = (C1, . . . , Ck) with centers c1, . . . , ck and a k-tuple of parameters

Λ1, . . . ,Λk.
2: for e ∈ Ci do
3: Define ℓ̂(e) := ℓ(ci) and v(e) := ∥e− ci∥z .
4: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ Ci define pe :=

ℓ̂(e)+Λiv(e)∑
i ΛiΦ(Ci,{ci})+

∑
x∈D ℓ̂(x)

and w(e) = s−1p−1
e .

5: Compute a sample S of s points, picked independently following the distribution pe.
6: Output: the set S with weights w.

B. Gradient and Hessian of the Loss
Proposition B.1. Consider the Loss function as defined in (4) and suppose assumption 4.1 holds. Then the gradient and
Hessian of LS are respectively given by

∇LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
p(· |xi,j ; Θ)− 1(yi,j)

))
∇2LS(Θ) =

1

n

∑
i∈S

∑
j∈[Mi]

(
diag(p(· |xi,j ; Θ))− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j

Proof. Recall that the loss function is given by

LS(Θ) = − 1

n

∑
i∈S

∑
j∈[Mi]

∑
ℓ∈[L]

logP (yi,j = ℓ|xi,j ,Θ)δ(yi,j = ℓ)

= − 1

n

∑
i∈S

∑
j∈[Mi]

∑
ℓ∈[L]

log

 exp
(
(ΘTxi,j)ℓ

)
L∑

ℓ′=1

exp
(
(ΘTxi,j)ℓ′

)
 δ(yi,j = ℓ).

Now the loss can be re-written as

LS(Θ) =
−1
n

∑
i∈S

∑
j∈[Mi]

[
θTyi,j

xi,j − log

L∑
ℓ=1

exp(θTℓ xn)

]

Now note that

∂

∂θℓ
θTyi,j

xi,j = δ(yi,j = ℓ)xi,j

and that,

∂

∂θℓ
log

L∑
ℓ′=1

exp(θTℓ′xi,j) =

∑L
ℓ′=1 exp(θ

T
ℓ′xi,j)× δ(yi,j = ℓ)xi,j∑L

k=1 exp(θ
T
k xi,j)

=

L∑
ℓ′=1

p(yi,j = ℓ′|xi,j ; Θ)δ(yi,j = ℓ)xi,j

= p(yi,j = ℓ|xi,j ; Θ)xi,j

14

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Combining both we get

∂

∂θℓ
LS(Θ) =

−1
n

∑
i∈S

∑
j∈[Mi]

(
δ(yi,j = ℓ)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,j

Therefore the gradient of the loss LS(Θ) with respect to Θ is given by

∇LS(Θ) =
−1
n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
1(yi,j)− p(yi,j = ℓ|xi,j ; Θ)

))
(11)

where 1(yi,j) ∈ RL is a one-hot vector with the yi,j-th entry as 1 and ⊗ is the Kronecker product.

Next we compute the Hessian. Note that

∂2

∂θℓθℓ′
LS(Θ) =

−1
n

∂

∂θℓ

∑
i∈S

∑
j∈[Mi]

(
δ(yi,j = ℓ)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,j

=
1

n

∑
i∈S

∑
j∈[Mi]

(
∂

∂θℓ′
p(yi,j = ℓ|xi,j ; Θ)

)
xT
i,j

=
1

n

∑
i∈S

∑
j∈[Mi]

p(yi,j = ℓ|xi,j ; Θ)
(
δ(ℓ = ℓ′)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,jx

⊤
i,j

and therefore, the Hessian of the loss is given by

∇2LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

(
diag(p(· |xi,j ; Θ))− p(· |xi,j ; Θ)p(· |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j (12)

Now note that p(· |xi,j ; Θ) ≥ e−2α where supℓ,i,j
∣∣Θ⊤

ℓ xi,j

∣∣ ≤ α.

Therefore

∇2LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

(
e−2αIL − e−4α11⊤

)
⊗ xi,jx

⊤
i,j (13)

Assume
(
e−2αIL − e−4α11⊤

)
⪰ γIL for some γ > 0. Then we have

∇2LS(Θ) ⪰ 1

n

∑
i∈S

∑
j∈[Mi]

γIL ⊗ xi,jx
⊤
i,j (14)

C. Proof of Error Bound
C.1. Proof of Lemma 4.4

Lemma 4.4. Suppose that Assumption 4.2 holds. Let S be the set of n sentences generated by FisherSFT and (7) be their
design matrix. Let M = maxi∈[N] Mi. Then

max
i∈[N]

Mi∑
j=1

∥xi,j∥2Σ̄−1
S
≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0)

κdM

n
.

Proof. We derive an upper bound on ∥xi,j∥Σ̄−1
n

, where xi,j ∈ Rd is a feature vector and Σ̄n ∈ Rd×d is a design matrix
obtained by greedy log-determinant maximization. Let D = {xi,j : i ∈ [N], j ∈ [Mi]} be a dataset of N data points such

15

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

that ∥xi,j∥2 ≤ 1. Let It ∈ [N] be the index of the t-th chosen feature vector and St = {Iℓ}tℓ=1 be the first t chosen feature
vectors. For simplicity we use Σ̄S and Σ̄n interchangeably. Let

Σ̄t = σ2
0I +

∑
i∈St

Mi∑
j=1

xi,jx
⊤
i,j

where σ0 > 0 is a constant that guarantees that Σ0 is well defined.

The t-th feature vector is chosen as

It = argmax
i∈[N]\St−1

log det

Σ̄t−1 +

Mt∑
j=1

xt,jx
⊤
t,j

 . (15)

Lemma C.1. For any i ∈ [N] and t ∈ [n],

Mi∑
j=1

x⊤
i,jΣ̄

−1
t xi,j ≤

Mi∑
j=1

x⊤
i,jΣ̄

−1
t−1xi,j .

Proof. Define the matrix
X =

[
xi,1 xi,2 · · · xi,Mt

]
,

so that each xi,j is a column of X . Then we can write

Mt∑
i=1

xi,j x
T
i,j = XXT .

Hence we want to find the inverse of
Σ̄t−1 +XXT .

Using Sherman–Morrison–Woodbury identity, which states that for an invertible matrix A and any matrices U,C, V of
compatible dimensions (with C also invertible), one has(

A+ U C V
)−1

= A−1 − A−1 U
(
C−1 + V A−1 U

)−1
V A−1.

In our case, we set
A = Σ̄t−1, U = X, C = IMt , V = XT ,

where IMt is the Mt ×Mt identity matrix. Then

A+ U C V = Σ̄t−1 +X IMt X
T = Σ̄t−1 +XXT .

By applying the identity, we get

(Σ̄t−1 +XXT)−1 = Σ̄−1
t−1 − Σ̄−1

t−1 X
(
IMt

+XT Σ̄−1
t−1 X

)−1
XT Σ̄−1

t−1.

which implies

Σ̄−1
t ⪯ Σ̄−1

t−1 .

Therefore we get v⊤Σ̄−1
t v ≤ v⊤Σ̄−1

t−1v for any vector v ∈ Rd which concludes the proof.

Lemma C.1 implies that

Mi∑
j=1

x⊤
i,jΣ̄

−1
n xi,j ≤

1

n

n∑
t=1

Mi∑
j=1

x⊤
i,jΣ̄

−1
t xi,j .

16

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

holds for any i ∈ [N]. This allows us to attribute the quality of the solution to individual greedy steps in (15).

If the scope of the maximization was i ∈ [N], the inequality
∑Mi

j=1 x
⊤
i,jΣ̄

−1
t−1xi,j ≤

∑Mt

j=1 x
⊤
It,j

Σ̄−1
t−1xIt,j would hold for

any i ∈ [N]. Since the scope is i ∈ [N] \ St−1, we make Assumption 4.2.

We also use the following logarithmic transformation.

Lemma C.2. For any i ∈ [N] and t ∈ [n],

Mi∑
j=1

x⊤
i,jΣ̄

−1
t−1xi,j ≤

σ−2
0 log(1 + x⊤

i,jΣ̄
−1
t−1xi,j)

log(1 + σ−2
0)

.

Proof. We start with an upper bound on
∑Mi

j=1 x
⊤
i,jΣ̄

−1
t−1xi,j . By Weyl’s inequalities, we have

λ1(Σ̄
−1
t−1) = λ−1

d (Σ̄t−1) ≤ λ−1
d (σ2

0Id) = σ−2
0 .

Therefore, under the assumption that ∥xi,j∥2 ≤ 1, we have
∑Mi

j=1 x
⊤
i,jΣ̄

−1
t−1xi,j ≤ σ−2

0 Mi. Now note that for any x ∈ [0, u],

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) .

Finally, we set x =
∑Mi

j=1 x
⊤
i,jΣ̄

−1
t−1xi,j and u = σ−2

0 Mi, and get our claim.

Assumption C.3. There exists a constant κ ≥ 1 such that

log det(Id +

Mi∑
j=1

Σ̄
−1/2
t−1 xi,jx

⊤
i,jΣ̄

−1/2
t−1) ≤ κ log det(Id +

MIt∑
j=1

Σ̄
−1/2
t−1 xIt,jx

⊤
It,jΣ̄

−1/2
t−1)

holds for any i ∈ St−1 and t ∈ [n].

Now we apply Assumption C.3 and Lemma C.2, use the telescoping property of the sum, and M = maxi∈[N] Mi to get

17

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

n∑
t=1

Mi∑
j=1

x⊤
i,jΣ̄

−1
t−1xi,j

(a)

≤
n∑

t=1

Mi∑
j=1

σ−2
0

log(1 + σ−2
0)

log(1 + x⊤
i,jΣ̄

−1
t−1xi,j)

(b)

≤ σ−2
0

log(1 + σ−2
0)

n∑
t=1

Mi∑
j=1

log det(Id + Σ̄
−1/2
t−1 xi,jx

⊤
i,jΣ̄

−1/2
t−1)

(c)

≤ σ−2
0 Mi

log(1 + σ−2
0)

n∑
t=1

log det(Id +
1

Mi

Mi∑
j=1

Σ̄
−1/2
t−1 xi,jx

⊤
i,jΣ̄

−1/2
t−1)

≤ σ−2
0 M

log(1 + σ−2
0)

n∑
t=1

log det(Id +

Mi∑
j=1

Σ̄
−1/2
t−1 xi,jx

⊤
i,jΣ̄

−1/2
t−1)

(d)

≤ σ−2
0 M

log(1 + σ−2
0)

n∑
t=1

κ log det(Id +

MIt∑
j=1

Σ̄
−1/2
t−1 xIt,jx

⊤
It,jΣ̄

−1/2
t−1)

(e)=
κσ−2

0 M

log(1 + σ−2
0)

n∑
t=1

log det(Σ̄t−1 +

MIt∑
j=1

xIt,jx
⊤
It,j)− log det(Σ̄t−1)

(f)
=

κσ−2
0 M

log(1 + σ−2
0)

n∑
t=1

log det(Σ̄t)− log det(Σ̄t−1)

(g)
=

κσ−2
0 M

log(1 + σ−2
0)

(log det(Σ̄n)− log det(Σ̄0))

=
κσ−2

0 M

log(1 + σ−2
0)

(log det(Σ̄n)− d log(σ2
0))

Here (a) follows by Lemma C.2, (b) follows by log(1+x⊤Ax) ≤ log det
(
I +A1/2xx⊤A1/2

)
and (c) follows by Jensen’s

inequality. Further (d) follows by Assumption 4.2, (e) follows by log det
(
I +A−1/2BA−1/2

)
= log det(A + B) −

log det(A), (f) follows by the definition of Σ̄t and finally (g) follows by telescoping.

Furthermore,

log det(Σ̄n) ≤ d log

(
1

d
tr
(
Σ̄n

))
= d log

1 +
1

d

n∑
t=1

tr

MIt∑
j=1

xIt,jx
⊤
It,j


= d log

σ2
0Id +

1

d

n∑
t=1

MIt∑
j=1

x⊤
It,jxIt,j

 ≤ d log

(
σ2
0 +

nM

d

)
.

Finally, we combine all claims and get

max
i∈[N]

Mi∑
j=1

x⊤
i,jΣ̄

−1
n xi,j ≤

κ

n

σ−2
0 M

log(1 + σ−2
0)

(d log det(
1

d
tr(

n∑
t=1

MIt∑
j=1

xi,jx
⊤
i,j))− d log(σ0)) ≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0)

κd

n
.

This concludes the proof.

18

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

C.2. Proof of Lemma 4.5

Lemma 4.5. Suppose that Assumption 4.1 holds and Θ̂ is the MLE in (5) such that Θ̂ ∈ B. Then there exists some α < 1
such that

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ

∗), Θ̂−Θ∗⟩

≥ e−2α

L

(L∑
ℓ=1

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

.

Proof. Using Taylor’s expansion

LS(Θ
∗) + ⟨∇LS(Θ∗), Θ̂−Θ∗⟩+ ⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ = LS(Θ̂)

The Hessian is given by

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(diag(pi,j)− pi,jp
⊤
i,j)⊗ (xi,jx

⊤
i,j)

where pi,j = p(· |xi,j ; Θ). Now using Claim 1 from (Hajek et al., 2014) we have

e2α(diag(pi,j)− pi,jp
⊤
i,j) ⪰

1

L
IL +

1

L2
11

⊤

where α = maxi,j |θ⊤∗,yi,j
xi,j | ≤ 1. Therefore we have

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(diag(pi,j)− pi,jp
⊤
i,j)⊗ (xi,jx

⊤
i,j)

⪰ 1

n

∑
i∈S

Mi∑
j=1

(
e−2α

L
IL×L −

e−2α

L2
11

⊤
)
⊗ (xi,jx

⊤
i,j)

Now consider ⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩. By defining ∆Θ := Θ̂−Θ∗, we can express this as follows:

⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ = 1

n

∑
i∈S

Mi∑
j=1

∑
k,k′

(√
diag(pi,j)∆Θ·,k

)⊤(√
diag(pi,j)∆Θ·,k′

)(
xi,jx

⊤
i,j

)
k,k′

− ⟨∆Θ⊤
·,kpi,j ,∆Θ⊤

·,k′pi,j⟩(xi,jx
⊤
i,j)k,k′

=
1

n

∑
i∈S

Mi∑
j=1

(
Tr
(√

diag(pi,j)∆Θ⊤(xi,jx
⊤
i,j)
√

diag(pi,j)∆Θ
)

− Tr
(
p⊤
i,j ∆Θ xi,jx

⊤
i,j ∆Θ pi,j

))

=
1

n

∑
i∈S

Mi∑
j=1

Tr
(
x⊤
i,j∆Θ

(
diag(pi,j)− pi,jp

⊤
i,j

)
∆Θ⊤xi,j

)

≥ 1

n

∑
i∈S

Mi∑
j=1

Tr
(
x⊤
i,j∆Θ

(
e−2α

L
IL×L −

e−2α

L2
11

⊤
)
∆Θ⊤xi,j

)

19

FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain

Now observe that ∆Θ1 = 0 follows from Assumption 4.1 and solution Θ̂. Therefore,

⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ ≥ e−2α

nL

∑
i∈S

Mi∑
j=1

Tr(∆Θ⊤xi,jx
⊤
i,j∆Θ)

=
e−2α

L
Tr(∆Θ⊤Σ̄S∆Θ)

=
e−2α

L
Tr
(
∆Θ⊤

√
Σ̄S
√
Σ̄S∆Θ

)
=

e−2α

L
∥Σ̄∆Θ∥2F

≥ e−2α

L2

(∑
ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

C.3. Proof of Lemma 4.6

Lemma 4.6. With probability 1− δ, the gradient of the loss satisfies

sup
ℓ∈[L]

∥∥∇ℓLS(Θ
∗)
∥∥
Σ̄−1

S
≤ C

√
d+ log(L/δ) ,

where C > 0 is some global constant.

Proof. First observe that ∥∇ℓLS(Θ)∥2
Σ̄−1

S
= n∥∇ℓLS(Θ)∥2

Σ−1
S

where ΣS = 1
n Σ̄S . Next recall that the gradient is given by

∇LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
p(· |xi,j ; Θ)− 1(yi,j)

))
.

Therefore

∇ℓLS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

xi,j

(
p(yi,j = ℓ|xi,j ; Θ)− I(yi,j = ℓ)

)
.

Define X ∈ RnMi×d as the matrix whose rows are xi,j , i ∈ S, j ∈ [Mi], and V ℓ be the nMi dimensional vector whose
entries are p(yi,j = ℓ|xi,j ; Θ)− I(yi,j = ℓ), i.e.,

V ℓ
ij =

exp(Θ⊤
ℓ xi,j)∑L

ℓ′=1 exp(Θ
⊤
ℓ′xi,j)

− I(yi,j = ℓ).

Note that E[V ℓ] = 0 and
∣∣V ℓ

ij

∣∣ ≤ 2, which implies V is 4 sub-Gaussian. Therefore∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
=

1

n2
(V ℓ)⊤XΣSX

⊤V ℓ ≤ 1

n
∥V ℓ∥22

Using Bernstein’s inequality, with probability 1− δ, for some constant C > 0∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
≤ C

(d+ log(1/δ))

n

Taking a union bound over all ℓ ∈ [L] we have with probability 1− δ, for some constant C > 0

sup
ℓ∈[L]

∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
≤ C

(d+ log(L/δ))

n

which implies we have with probability 1− δ, for some constant C > 0

sup
ℓ∈[L]

∥∥∇ℓLS(Θ)
∥∥
Σ̄−1

S
≤ C

√
(d+ log(L/δ))

20

