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Abstract

Theoretical works on supervised transfer learning (STL)—where the learner has
access to labeled samples from both source and target distributions—have for the
most part focused on statistical aspects of the problem, while efficient optimiza-
tion has received less attention. We consider the problem of designing an SGD
procedure for STL that alternates sampling between source and target data, while
maintaining statistical transfer guarantees without prior knowledge of the quality
of the source data. A main algorithmic difficulty is in understanding how to design
such an adaptive sub-sampling mechanism at each SGD step, to automatically gain
from the source when it is informative, or bias towards the target and avoid negative
transfer when the source is less informative.
We show that, such a mixed-sample SGD procedure is feasible for general predic-
tion tasks with convex losses, rooted in tracking an abstract sequence of constrained
convex programs that serve to maintain the desired transfer guarantees. We instan-
tiate these results in the concrete setting of linear regression with square loss, and
show that the procedure converges, with 1/

√
T rate, to a solution whose statistical

performance on the target is adaptive to the a priori unknown quality of the source.
Experiments with synthetic and real datasets support the theory.

1 Introduction

In supervised transfer learning (STL), some amount of target data is to be complemented by a usually
larger amount of related source data towards training a predictor. A characteristic problem to be
solved is whether and how much to bias towards the source or target data without prior knowledge of
the predictive quality of the source data for the target task. Many recent theoretical works on STL
have yielded important insights into general approaches that may guarantee good target performance.
Our main aim in this work is to understand the extent to which such insights may be incorporated into
actual efficient procedures, in particular, practical stochastic gradient descent (SGD) type procedures,
while maintaining good statistical guarantees for transfer.

For background, theoretical approaches for STL often take the form of penalized or constrained risk
minimization—e.g., minimizing empirical risk on source subject to low target risk, or vice versa—-or
more generally, some type of weighted risk minimization that aims to favor either source or target
data, whichever is most beneficial (which is not usually known a priori). For example, let P and Q
denote source and target distributions respectively, a typical approach, say in linear regression, would
be to consider a weighted objective of the form1 R̂P (θ) + λR̂Q(θ) and solve for choice λ∗ so that
θ∗ = θ∗(λ∗) has small target risk RQ(θ).

1Equivalently, of the form αR̂P (θ) + (1− α)R̂Q(θ) for α ∈ [0, 1], α = 1− λ/(1 + λ).
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Figure 1: Simulation Results with Gaussian data, illustrating our guarantees that E(θ̂PQ) <

min{E(θ̂P ), E(θ̂Q)}. θ̂HTL denotes the Hypothesis Transfer Learning (HTL). (Left) we fix P,Q while increas-
ing nP , or (Middle) and (Right) we fix nP , and push P far from Q as controlled by λmax

(
Σ−1

P ΣQ

)
and EQ(θ

∗
P ).

The source is least informative, i.e. source ERM θ̂P is worse than target ERM θ̂Q, when either nP is too small
(Left), or as λmax

(
Σ−1

P ΣQ

)
or EQ(θ

∗
P ) is large (Middle and Right); we see that our method θ̂PQ automatically

adapts to either situations and avoids negative transfer. HTL θ̂HTL yields results comparable to our method but it
needs expensive cross-validation process to choose a proper bias parameter.

While many positive results have been derived over the years, they typically concern the target risk of
the solution, upon a good choice of weights (i.e., λ∗), but do not address the computational aspects of
the problem. For instance, choosing λ (or any similar bias parameter) by cross-validation on the data
(target and or source data) can be expensive as it involves many optimization passes over the combined
data. Constrained risk minimization approaches, e.g., of the form min R̂P (θ) s.t. R̂Q(θ) ≲ ϵ can
similarly be expensive in maintaining the constraint (typically via expensive projection steps) through
optimization iterations. This leaves open the extent to which such solutions may be achieved
efficiently while at the same time maintaining strong statistical guarantees on target risk, adaptively
to whether source or target datasets happen to be most informative for the target task.

We initiate the study of these questions in the context prediction tasks with convex losses, and propose
a variant of SGD that alternates between sampling the source and target data at a sampling rate that
changes according to a parameter λt that automatically tracks the predictive quality of the source data.
That is, for each SGD step θt+1 = θt − η∇̃R̄(θt;λt), the stochastic gradient estimates the gradient
of an averaged empirical risk R̄(θ;λt) ≡ R̂P (θ) + λtR̂Q(θ) depending on λt. Our main insight into
the iterative choices of λt, evident in the analysis, is to let the stochastic gradient steps effectively
track a sequence of convex constrained objectives (or CP for convex program) of the form

min
θ

R̂P (θ) s.t. R̂Q(θ) ≤ R̂Q(θQ,t) + slack, (1)

where θQ,t
t→∞−−−→ θ̂Q

.
= argminθ R̂Q(θ), i.e., θQ,t estimates the Q-ERM θ̂Q in parallel. The

adaptive choice of sampling rate λt is then chosen to track the sequence of max-min solutions of the
corresponding Lagrangians Lt(λ, θ) ≈ R̄(θ, λ)− λ · (R̂Q(θQ,t) + slack).

On one hand, such a mixed-sample SGD solution replaces expensive cross-validation for the choice
of bias parameter with the iterative choices of λt, and also avoids costly projections onto constraint
sets. On the statistical side, we can show that the solution θ̃P,Q of the limiting CP—i.e., replacing
θQ,t in (1) with its limit θ̂Q—achieve near optimal statistical guarantees for transfer whenever the
setting, including loss functions, admit certain uniform concentration guarantees on empirical risk
measures. Such statistical transfer guarantees are then shown to be inherited by the mixed-sample
SGD solution θ̂P,Q which converges in risk to θ̃P,Q at a typical rate of O(1/

√
t).

The main difficulty in the analysis is in showing convergence in R̂P of θ̂P,Q to θ̃P,Q, while the
statistical analysis of θ̃P,Q combines insights from recent works on STL with either constrained or
penalized objectives [1, 2, 3, 4, 5]. For intuition on technical difficulties, we note that recent classical
works on SGD for CP’s [6] rely heavily on the assumption that constraint sets are bounded, in order
to at least approximately maintain constraints at each iteration via cheaper projections onto ℓ2 balls.
We have to proceed differently as we consider general convex settings with potentially unbounded
constraint sets (e.g., linear regression with non-invertible covariance in over-parametrized regimes).
Our analysis instead relies on carefully tracking how far iterates θt may deviate from the constraint
set, given the deviation of the first iterate and the internal variance of stochastic steps. Furthermore,
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such control on the deviation of iterates is further complicated by the fact that, unlike in classical
results such as [6], we are dealing with an evolving sequence of constraint sets given in terms of θQ,t

which is being computed by a parallel SGD.

For the sake of presentation, we will focus on the concrete case of linear regression with square loss
in the main paper, while the analysis for general losses, including surrogate losses for classification,
is given in the appendix where we present the generalization guarantee for general convex losses
in terms of Rademacher complexity. In the case of linear regression covered in the main text, the
guarantees are immediately interpretable. Statistical guarantees take the form

RQ(θ̂P,Q) ≲ RQ(θ
∗
Q) + min{ϵQ, ϵ̃P },

where ϵQ, ϵ̃P are respectively, the best rate achievable by using the Q data alone, and the best transfer
rate achievable by using the P data alone. In other words, the mixed-samples SGD solution is
guaranteed to automatically bias towards whichever of the two samples is most predictive.

Many experimental results supporting these claims are presented in the main paper.

Further Background. The goal of reweighing source data relative to target data is rooted in early
works on transfer learning and domain adaptation [see, e.g., 7, 8, 9, 10]. A main idea there is to find
a weighting of the data that minimizes some notion of discrepancy between weighted source and
target data. The actual target risk of the solution remains opaque in much of this line of work, as the
theoretical analysis instead focuses on the well-posedness of the chosen notion of discrepancy and its
estimability from data.

A different line of work, mostly focused on covariate-shift settings directly weighs source target
data with estimated density ratios dQX/dPX and results in rates depending on the accuracy of such
estimates in situations where the density ratio is well-defined [see,e.g., 11, 12].

More closely related, and often considering linear regression settings, the approach of hypothesis
transfer aims to bias regression towards the solution from the source data via penalized objectives
[see,e.g., 1, 3, 2, 13]. Recent works of [4, 5] consider constrained objectives for STL, mostly
in classification settings. These various works are rather statistical in nature as they focus on
understanding generalization properties of the solutions rather than their efficient estimation.

2 Setup and Preliminaries

Data Distributions. P and Q denote source and target distributions over X ×Y , X ⊆ Rd, Y ⊆ R.

General Setting and Risks. We consider a class of functions fθ : X 7→ Y , parametrized by θ ∈
Θ ⊂ RD. For any distribution µ, e.g., P or Q, we let Rµ(θ)

.
= Eµℓ(fθ(X), Y ), for a loss function ℓ,

and we let θ∗µ denote a risk minimizer. The excess risk is then defined as Eµ(θ)
.
= Rµ(θ)−Rµ(θ

∗
µ).

The target excess risk EQ(·) is of main interest in STL.

2.1 Instantiation for Linear Settings.

As explained in the introduction, we focus on the case of linear regression with square loss in the
main text. In this case we assume Eµ[Y |X] = θ∗µ

⊤X for θ∗µ in Rd.
Assumption 1. For both distributions, we also assume that Y −E[Y |X] is σy-sub-gaussian and has
zero mean, while X is bounded, i.e., supx∈X ∥x∥ < ∞.

Relating P to Q. We use the notation Σµ
.
= EµXX⊤ and ∥v∥Σ

.
= v⊤Σv for v ∈ Rd, Σ ∈ Rd×d.

Recent results [14, 15, 16, 17, 18] have highlighted two essential quantities: (i) λmax(Σ
−1
P ΣQ),

which characterizes the change in marginals PX → QX , and (ii) EQ(θ∗P )
.
= ∥θ∗P − θ∗Q∥2ΣQ

, the
change in optimal predictors. The first quantity remains relevant even when θ∗P = θ∗Q and upper
bounds error ratios ∥θ − θ∗P ∥2ΣQ

/∥θ − θ∗P ∥2ΣP
.

Assumption 2. ΣP is full rank, while ΣQ may not be.

The above assumption on ΣP may be somewhat relaxed, but is relevant in the transfer setting since
otherwise P may yield no information on Q (in particular, λmax(Σ

−1
P ΣQ) is ill-defined).
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Empirical Quantities. Throughout we assume that the learner has access to nP labeled samples
SP ∼ PnP , and nQ labeled samples SQ ∼ QnQ . We use XP and XQ to denote the set of feature
vectors from SP and SQ respectively. We will also let XP ∈ RnP×d and XQ ∈ RnQ×d denote the
corresponding data matrices, and yP ∈ RnP and yQ ∈ RnQ denote the corresponding vectors of
labels. We use SPQ to denote the union of SP and SQ.

Next, for any measure µ, we let Σ̂µ denote the empirical counterpart of Σµ defined over Xµ. Similarly,
we let R̂µ(θ)

.
= 1

nµ

∑
(xi,yi)∈Sµ

(θ⊤xi − yi)
2. The following empirical risk minimizers (ERM’s) are

important to the analysis even though they are never directly computed:

Definition 1. We let θ̂µ ∈ argminθ∈Rd R̂µ(θ) denote the minimum norm ERM.

In particular, θ̂P and θ̂Q will serve as baselines, i.e., we aim to outperform their risks under Q.

Additional Notation. Given a symmetric matrix Σ, we use λ+
min(Σ) to denote its smallest non-zero

eigenvalue. We write a ≲ b to indicate that a ≤ C · b for some universal constant C.

3 Procedure

Key Convex Programs. As explained in the introduction, we aim to derive an efficient procedure
to approximately track the following CP’s, which, as we will later show, achieves rates of transfer
automatically adaptive to whether the source or target data is most beneficial.

min
θ∈Rd

R̂P (θ) subject to : R̂Q(θ) ≤ R̂Q(θQ,t) + 6ϵQ, (2)

for θQ,t
t→∞−−−→ θ̂Q. Intuitively, the above CP’s aim for an interpolator between θ̂P and θ̂Q that

constrains Q-excess risk to be of order no more than ϵQ = O(d/nQ). The solution of the limiting
CP will therefore be important to our analysis, and is highlighted in the following definition.

Consider the Lagrangian problem

max
λ≥0

min
θ∈Rd

R̂P (θ) + λ(R̂Q(θ)− R̂Q(θ̂Q)− 6ϵQ). (3)

The saddle-point of the Lagrangian will be of importance in our anlysis.

Definition 2. We let (λ∗, θ̃PQ) denote the solution of (3) above, whereby, by strong duality, θ̃PQ is
the solution of the limiting CP in (2).

Mixed-Samples SGD. Algorithm 1 aims to approximate (λ∗, θ̃PQ) iteratively. However, since
θ̂Q is unknown at the start of the procedure, the exact Lagrangian in (3) is undefined. Instead, the
procedure maintains estimates of θQ,t of θ̂Q in parallel, and optimizes a time-varying Lagrangian
Lt(λ, θ) = R̂P (θ) + λ(R̂Q(θ) − R̂Q(θQ,t) − 6ϵQ). Notice that the iterative updates of λt are in
terms of stochastic estimates of the constraint violations, and therefore tracks the Q-risk of iterates θt.
Iterates λt can thus be used in turn to adjust the sampling rates (see setting of ξt), i.e., to bias towards
sampling from SP or SQ.

4 Main Results: Instantiation for Linear Regression

We use the notation Mx = supx∈X ∥x∥, M̂y = max(x,y)∈SPQ
|y| and κQ

.
=

λmax(Σ̂Q)

λ+
min(Σ̂Q)

throughout
this section and subsequent sections. We start with the following definitions.

Definition 3 (Key Lipschitz Parameters). Let ρ .
= ∥θ0 − θ̃PQ∥. We then define

Ĝθ = sup
{
∥∇ℓ(θ;x, y)∥ : ∥θ − θ̃PQ∥2 ≤ 2ρ2, (x, y) ∈ SPQ

}
,

Ĝλ = sup


|ℓ(θ;x, y)− ℓ(θ′;x, y)− 6ϵQ| :

∥θ − θ̃PQ∥2 ≤ 2ρ2, (x, y) ∈ SPQ, ∥θ′∥
2 ≤

(
1 + log(T + 2κQ)

λ+
min(Σ̂Q)

MxM̂y

)2

 .
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Algorithm 1: Mixed-Sample SGD
Input: θ0 = θQ,0 = 0, λ0 = 0, stepsize {αt}T−1

t=0 and η, γ, ϵQ.
for t = 0, . . . , T − 1 do

Draw ξt ∼ Bernoulli( 1
1+λt

)

if ξt = 1 then
Sample (xt, yt) uniformly from SP

θt+1 = θt − η(1 + λt)∇ℓ(θt;xt, yt)
end
else

Sample (xt, yt) uniformly from SQ

θt+1 = θt − η(1 + λt)∇ℓ(θt;xt, yt)
end
Sample (xt, yt) uniformly from SQ

λt+1 = [(1− γη)λt + η(ℓ(θt;xt, yt)− ℓ(θQ,t;xt, yt)− 6ϵQ)]+
θQ,t+1 = θQ,t − αt∇ℓ(θQ,t;xt, yt)

end
θ̂PQ = ℓ2 projection of 1

T

∑T−1
t=0 θt onto the constraint set

{
θ : R̂Q(θ)− R̂Q(θQ,T ) ≤ 6ϵQ − ϵ0

}
.

Output: θ̂PQ

Our main results for Algorithm 1 are provided below.
Theorem 1. Suppose parameters in Algorithm 1 are set as η =

cη√
T

, γ = cγ · η, and αt =
1

λ+
min(Σ̂Q)

· 1
t+2κQ

, ϵ0 =
CPQ

T+2κQ
for some cη , cγ and CPQ. Then, with probability 1−5τ over SP , SQ

and the randomness in the procedure, the following holds for cη sufficiently small as a function
of (Ĝθ, Ĝλ, λ

∗, ρ), cγ ≥ Ĝ2
θ and CPQ as a functionof (M̂x, M̂y, log T, λ

+
min(Σ̂Q)). The returned

solution satisfies

EQ(θ̂PQ) ≲ min
{
ϵQ, λmax

(
Σ−1

P ΣQ

)
· ϵP + EQ(θ∗P )

}
,

for ϵP = c0
σ2
y(d+log(1/τ))

nP
, ϵQ = c0

σ2
y(d+log(1/τ))

nQ
for some unversal constant c0 > 0, provided a

number of iterations

T ≳

(
Ĝθ + Ĝλ

√
log

1

τ

)2

·

 Ĝ2
θ

cη
+ ĜθĜλ

√
log 1

τ

λ+
min(Σ̂Q)ϵQϵP

+
λ∗Ĝλ

√
log 1

τ + ρ2

cη

ϵP

2

.

The theorem is derived from both Theorem 2 of Section 5.1 (on optimization rates) and Theorem 3 of
Section 5.2 on statistical rates. The exact requirements on cη are given in Theorem 2.

For completeness, in Section 4.1 we provide sample-dependent upper-bounds on intervening quanti-
ties, namely ρ, λ∗, Ĝθ, Ĝλ, in terms of less opaque quantities.

Adaptivity. As so far discussed, the bounds of Theorem 1 guarantee that the procedure achieves a
target risk always adaptive to whether the source or target is most beneficial: notice that if we were to
use either the target sample alone or the source sample alone, we would be respectively achieving
rates of the form E(θ̂Q) ≲ ϵQ, and E(θ̂P ) ≲ λmax

(
Σ−1

P ΣQ

)
· ϵP + EQ(θ∗P ). In other words, the

returned solution θ̂PQ achieves a rate that interpolates between the two. This is illustrated by the
simulations results of Figure 1 (the exact setting is described in detail in Section 6.1).

4.1 Sample-dependent Choices of Parameters η and γ.

In this section we provide sample-dependent upper-bounds on ρ, Ĝθ, Ĝλ and λ∗ which drive the
choice of η and γ in Theorem 1.
Lemma 1 (ρ). Assume Σ̂P is invertible. The following upper bound holds:

ρ2 = ∥θ0 − θ̃PQ∥2 ≤

(
ÊP (θ̂Q)

λmin(Σ̂P )
+

MxM̂y

λmin(Σ̂P )

)2

(4)
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Algorithm 2: Warm-up

Input: θQ,0 = 0, stepsize {αt}N−1
t=0

for t = 0, . . . , N − 1 do
Sample (xt, yt) uniformly from SQ

θQ,t+1 = θQ,t − αt∇ℓ(θQ,t;xt, yt)
end
Output: θQ,N

Furthermore, let θQ,N denote the output of the warmup procedure Algorithm 2 with stepsize αt =
1

λ+
min(Σ̂Q)

· 1
t+2κQ

. Then we can further bound (4) by the following quantity

1

2

∥∇R̂P (θQ,N )∥2 +
(

λmax(Σ̂P )

λ+
min(Σ̂Q)

)2
∥∇R̂Q(θQ,N )∥2

λ2
min(Σ̂P )


2

+ 2
M2

xM̂
2
y

λ2
min(Σ̂P )

. (5)

Remark 1. Lemma 1 provides a computable upper bound of ρ, which requires a few steps of SGD to
estimate θ̂Q. As the number of steps N increases, the ∥∇R̂Q(θQ,N )∥2 term in (5) tends to 0, and the
whole bound becomes a tighter approximation of (4).

Lemma 2 (Ĝθ). The following statement holds for Ĝθ: Ĝθ ≤ 3M2
xρ+MxM̂y.

Lemma 3 (Ĝλ). The following statement holds for Ĝλ:

Ĝλ ≤ 18

(
M2

xρ
2 + M̂y +

M4
xM̂

2
y (1 + log(T + 2κQ))

2

(λ+
min(Σ̂Q))2

)
+ 6ϵQ. (6)

Lemma 4 (λ∗). Let λ∗ be defined in Definition 2. The following statement holds for λ∗:

λ∗ ≤ λmax(Σ̂P )

λ+
min(Σ̂Q)

+
∥∇R̂P (θ̂Q)∥

2
√
λ+
min(Σ̂Q)ϵQ

.

Remark 2. In Lemma 4, the second term depends on the norm of ∇R̂P (θ̂Q) divided by √
ϵQ. If θ̂P

is close to θ̂Q, then the second term becomes small. As in Lemma 1, one can also use Algorithm 2 to
find an approximation of θ̂Q, which yields a computable upper bound of λ∗

5 Analysis Overview

In this section, we will provide more detailed convergence bound and generalization bound, as
well as an overview of the analysis of our algorithm. Theorem 2 provides the convergence result
of Algorithm 1, with more detailed parameter setup than Theorem 1. Theorem 3 provides the
generalization guarantee of our algorithm.

5.1 Convergence Analysis

The following Theorem provides the convergence rate of Algorithm 1.

Theorem 2. Let ρ = ∥θ0 − θ̃PQ∥, τ ≤ 0.1, and σPQ, cη be some positive real numbers such that

σ2
PQ ≤ 256

(
1 + (λ∗)2 + ρ2

)
Ĝ2

θ, cη ≤ min

{
ρ

2
√
2Ĝλ

,
ρ

16
√
6σPQ

√
log 2/τ

,
ρ

CPQ

}
,

where CPQ = (1 + 2κQ)M
2
xM̂

2
y +

6σ2
Q log(2/τ)

λ+
min(Σ̂Q)

, and σ2
Q =

(
log(T+2κQ)

λ+
min(Σ̂Q)

MxM̂y

)2
. Suppose the

parameters in Algorithm 1 are set as η =
cη√
T

, γ =
Ĝ2

θcη√
T

, αt =
1

λ+
min(Σ̂Q)

· 1
t+2κQ

and ϵ0 =
CPQ

T+2κQ
.

Assume T ≥ max{ 3CPQ log T
ϵQ

, (
CPQ·(log(T+2κQ))2

Ĝλ

√
λ+
min(Σ̂Q)ϵQ log 1/τ

)2}, ϵQ · λ+
min(Σ̂Q) ≤ 1 and Mx ≥ 1. With
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probability at least 1 − τ over the randomness of Algorithm 1, the empirical risk of the returned
solution satisfies:

R̂P (θ̂PQ)− R̂P (θ̃PQ) ≲

(
Ĝθ + Ĝλ

√
log

1

τ

)
·

 Ĝ2
θ

cη
+ ĜθĜλ

√
log 1

τ

λ+
min(Σ̂Q)ϵQ

√
T

+
λ∗Ĝλ

√
log 1

τ + ρ2

cη√
T

 .

Moreover, the total computational complexity of the algorithm is O(dT ) + time for projection.

Proof Sketch: We define θ̄T
.
= 1

T

∑T−1
t=0 θt and g(θ)

.
= R̂Q(θ) − R̂Q(θ̂Q) − 6ϵQ. First, we

inductively show that, if choose a properly small η, we can control all the iterates (θt, λt) as well as the
final solution θ̂PQ to be stay around θ̃PQ and λ∗. Hence, we can apply the Ĝθ Lipschitzness on those
iterates and decompose the risk as: R̂P (θ̂PQ)− R̂P (θ̃PQ) ≤ Ĝθ∥θ̄T − θ̂PQ∥+ R̂P (θ̄T )− R̂P (θ̃PQ).
To further bound ∥θ̄T−θ̂PQ∥ and R̂P (θ̄T )−R̂P (θ̃PQ), we analyze the convergence of the Lagrangian
function and obtain that

R̂P (θ̄T )− R̂P (θ̃PQ) +
(g(θ̄T ))

2

2(γ + 1
ηT )

≤ c1√
T

+
c2 log T

T
+ c3 · |g(θ̄T )| (7)

for some real numbers c1, c2, c3 depending on T, cη, Ĝθ, Ĝλ, ρ, λ
∗, ϵQ and λ+

min(Σ̂Q). Next, we will
derive the lower and upper bound of g(θ̄T ) in terms of ∥θ̄T − θ̂PQ∥:

(g(θ̄T ))
2 ≥ 3

2
λ+
min(Σ̂Q)ϵQ∥θ̄T − θ̂PQ∥2 −∆2, g(θ̄T ) ≤ Ĝθ∥θ̄T − θ̂PQ∥,

for ∆ .
= ϵ0 − (R̂Q(θQ,T )− R̂Q(θ̂Q)) which captures the error from projecting θ̄T onto the inexact

constraint set R̂Q(θ) − R̂Q(θQ,T ) − 6ϵQ + ϵ0 ≤ 0. Plugging the above bounds together with
R̂P (θ̄T )− R̂P (θ̃PQ) ≥ −Ĝθ∥θ̄T − θ̃PQ∥ back to (7) one can solve an upper bound of ∥θ̄T − θ̂PQ∥.
Notice that (7) immediately gives an upper bound of R̂P (θ̄T )− R̂P (θ̃PQ) which concludes the proof.

5.2 Generalization Analysis

The following result establishes the generalization guarantee of our algorithm.

Theorem 3. Suppose θ̂PQ satisfies R̂P (θ̂PQ) − R̂P (θ̃PQ) ≤ ϵP . Then with probability at least
1− 4τ over SP and SQ, the excess risk of θ̂PQ on Q satisfies:

EQ(θ̂PQ) ≤ 26min
{
ϵQ, λmax

(
Σ−1

P ΣQ

)
ϵP + EQ(θ∗P )

}
.

To prove Theorem 3, we first introduce some technical lemmas. The following lemma gives two
information: (i) any θ in the constraint set of (2) will have a small Q risk, and (ii) any θ that has a
small Q risk is covered by our constraint set with high probability.

Lemma 5. With probability at least 1−2τ , the following holds: for any θ ∈ {θ : ∥θ−θ̂Q∥2Σ̂Q
≤ 6ϵQ},

we have EQ(θ) ≤ 26ϵQ. For any θ such that EQ(θ) ≤ ϵQ, it is in {θ : ∥θ − θ̂Q∥2Σ̂Q
≤ 6ϵQ}.

The next lemma shows that, if θ∗P is in the constraint set of (2), any θ in the constraint set with a
small empirical risk on P , then it should also have a small population risk on P .

Lemma 6. If θ∗P ∈ {θ : ∥θ − θ̂Q∥2Σ̂Q
≤ 6ϵQ}, then for any θ ∈ {θ : ∥θ − θ̂Q∥2Σ̂Q

≤ 6ϵQ}, with

probability at least 1− 2τ we have EP (θ) ≤ 4(R̂P (θ)− R̂P (θ̃PQ)) + 16ϵP .

The next Lemma considers the situation where θ∗P is not in the constraint set of (2). Due to the
inclusive property of our constraint set (Lemma 5), we can claim that any θ in the constraint set has a
smaller Q excess risk than θ∗P up tp some multiplicative universal constant.

Lemma 7. If θ∗P /∈ {θ : ∥θ − θ̂Q∥2Σ̂Q
≤ 6ϵQ}, then for any θ ∈ {θ : ∥θ − θ̂Q∥2Σ̂Q

≤ 6ϵQ}, with

probability at least 1− 2τ we have EQ(θ) ≤ 26EQ(θ∗P ).
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Proof of Theorem 3. First, if θ∗P ∈ {θ : ∥θ − θ̂Q∥2Σ̂Q
≤ 6ϵQ}, then since R̂P (θ̂PQ)− R̂P (θ̃PQ) ≤

ϵP , from Lemma 6 we know with probability at least 1−2τ , EP (θ̂PQ) ≤ 4ϵP +16ϵP = 20ϵP . Hence
EQ(θ̂PQ) = ∥θ̂PQ−θ∗Q∥2ΣQ

≤ λmax

(
Σ−1

P ΣQ

)
·20ϵP +EQ(θ∗P ). If θ∗P /∈ {θ : ∥θ− θ̂Q∥2Σ̂Q

≤ 6ϵQ},

from Lemma 7 we know EQ(θ̂PQ) ≤ 26EQ(θ∗P ). Hence we know with probability at least 1− 2τ ,

EQ(θ̂PQ) ≤ 26
(
λmax

(
Σ−1

P ΣQ

)
· ϵP + EQ(θ∗P )

)
.

On the other hand, since θ̂PQ ∈ {θ : ∥θ − θ̂Q∥2Σ̂Q
≤ 6ϵQ}, from Lemma 5 we know EQ(θ̂PQ) ≤

26ϵQ. Putting piece together we have with probability at least 1− 4τ , it holds that

EQ(θ̂PQ) ≤ 26min
{
ϵQ, λmax

(
Σ−1

P ΣQ

)
· ϵP + EQ(θ∗P )

}
.

Proof of Theorem 1. In Theorem 2, choosing T such that R̂P (θ̂PQ) − R̂P (θ̃PQ) ≤ ϵP , together
with Theorem 3 will conclude the proof.

6 Experiments

In this section, we present the experimental results of our algorithm and the baseline algorithms
on both synthetic and real-world datasets. We implement our algorithm using Python on an Intel
i7-8700 CPU. We use the CVXPY [19] package to implement the projection step in Algorithm 1.
The baseline algorithms we consider are source ERM, target ERM, projected SGD (PSGD) (widely
used for solving constrained problems) and Hypothesis Transfer Learning (HTL). For HTL, we use
5-fold cross-validation on the target training data to select the best bias parameter. For PSGD, we
also employ CVXPY to implement the projection steps. Throughout the figures in this section, we
use θ̂PSGD and θ̂HTL to denote the model obtained by PSGD and HTL respectively. Due to page
limit, we only present part of the results and defer additional ones to the appendix.

6.1 Regression Task on the Synthetic Dataset.

We start with the results on the synthetic dataset. Throughout this subsection, we set the model
dimension d to be 50. The distribution P and Q are set to be d-dimensional multivariate Gaussian
with certain mean and covariance. The label is generated as y = θ∗µ

⊤x+ ε for µ ∈ {P,Q}, where
ε ∼ N (0, 1). We choose η = 10−4, and iteration number T = 2000 · nP for both our method and
HTL. We use closed form OLS solution to compute source and target ERM model. The results are
demonstrated in Figure 1 and 2. In Figure 1 (Left), we fix nQ = 100 and vary nP from 100 to 1500.
When nP is small, target ERM learning can work better, while as we increase nP , the source data
becomes more useful. Our method can adapt to these two regimes automatically. It can also be
seen that the ERM procedure has large uncertainty (variance) when the training data is insufficient,

Figure 2: Linear regression results on the synthetic dataset with low-rank ΣQ or low-rank ΣQ. (Left) When
ΣQ is not full rank, the constraint set is then unbounded but our method still works well. (Right) When ΣP is
not full rank, we set w∗

Q far away from P ’s range. In this case HTL still biases the model towards min-norm ŵP

and leads to a bad performance. However, our method is not influenced because it directly learns from P ’s data.
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Figure 3: Linear regression results on the School dataset. (Left) Excess risk on Q. (Right) Runtime comparison.
Mixed-Samples SGD θ̂PQ achieves Q-risk nearly the same of that of the ideal projection method θ̂PSGD, while
achieving significantly faster runtime.

while our method is significantly more stable. In Figure 1 (Middle) and (Right), we fix nQ = 100,
nP = 500, and gradually increase λmax(Σ

−1
P ΣQ) and EQ(θ∗P ), which measures the hardness of

transfer. As the hardness increases, source ERM model performs poorly, while our method can
always yield a model that is comparable to the better one between θ̂P and θ̂Q. In Figure 2 (Left), we
set ΣQ to be low rank and the target sample size to be extremely small (nQ = 50). In this case, the
constraint set is unbounded but our method still works well. The rate of our method is still adaptive,
while due to the limited target data, HTL struggles to find a suitable regularization parameter through
cross-validation, and hence loses the adaptivity. In Figure 2 (Right), We set ΣP to be low rank. We
choose nQ = 10 and set w∗

Q far away from P ’s range. We use SGD to compute Q ERM model since
matrix inversion is unstable in this case. HTL still computes the min-norm interpolator ŵP as the
reference model which has a large Q risk. Due to the limited Q’s data, HTL often fails on finding
proper bias parameter and still tries to bias the model towards ŵP which leads to a bad performance.
Even though in some cases it finds the correct bias parameter (close to zero), that means HTL fully
abandons ŵP and cannot gain from P ’s data. However, our method is not influenced because it does
not rely on the reference model to transfer knowledge, but directly learns on P ’s data.

6.2 Regression Task on the School Dataset.

To demonstrate the performance of our method on real-world data, we conduct the experiments on
the School Dataset [20]. The dataset contains student information from 139 schools. The input
x is a 27-dimensional vector containing student information and the label y is the student’s exam
score. Following [21], we use the data points from the first 100 schools as the source domain and
the rest as the target. We set η = 10−4. We fix nQ = 100 and vary nP from 100 to 1500. Figure 3
shows the MSE and runtime comparison with source ERM, target ERM, PSGD and HTL. We can
see from Figure 3 (Left) that our method consistently outperforms source ERM, target ERM, and
comparable to HTL and PSGD, and automatically adapts to the better rate between source and target
ERM learning. PSGD yields performance comparable to ours since it solves the same objective we
proposed in (2), but it requires significantly longer time, as shown in Figure 3 (Right).

6.3 Regression Task on the Berkeley Yearbook Dataset.

We conduct experiments on the Berkeley Yearbook Dataset [22]. The dataset contains the gray-scale
portraits taken in different years. The input x is the 512-dimensional vector feature extracted by
ResNet18, and y is the year the photo is taken (ranging from 1905 to 2013). We construct source
and target tasks by varying the proportion of male and female photos. In the source dataset, 50%
of the samples are drawn from male photos and 50% from female photos. For the target training
and testing dataset, the ratio is adjusted to 75% male and 25% female. We choose η = 10−4 for all
algorithms, and iteration number T = 2000 · nP for both our method and HTL, and T = 500 · nP

for PSGD since we found it can converge in fewer epochs. We use closed form OLS solution to
compute source and target ERM model. We fix nQ = 100 and vary nP from 500 to 1300. Due to
the difficulty of the task and the limited target data, the target ERM model suffers from very large
errors and is therefore omitted from Figure 4. We report the MSE comparison with source ERM and
HTL, as well as a runtime comparison with HTL. We can see from the left sub-figure that our method
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Figure 4: Linear regression on the Yearbook dataset. Input features of dimension 512 are extracted by ResNet18.
(Left) Q excess risk. (Right) Runtime comparison. In the (Left) we omit the performance of target ERM since
the target ERM fails on outputting a generalizable solution and results in the error over 4000 due to that the task
is very difficult and target sample size is only 100. HTL (θ̂HTL) has difficulty to adapt to the situation where
source data are more helpful than target and results in large target error, while our algorithm (θ̂PQ) gains from
source data and significantly outperforms the competitors.

can consistently outperform source ERM, target ERM and HTL, and can automatically adapt to the
better rate of source and target ERM learning. The right sub-figure shows that our algorithm achieves
superior runtime performance compared to HTL when nP < 1300, while when nP reaches 1300,
HTL becomes the faster one. This difference arises from the inherent nature of the two algorithms:
our method primarily optimizes over the source data, so the total number of iterations increases with
nP grows, In contrast, HTL focuses on optimizing over the target data, using the source data only to
compute a reference model. As a result, its runtime remains relatively stable as nP increases.

6.4 Binary Classification Task on the CIFAR-10 Dog vs Cat Dataset.

Figure 5: Binary classification results on the CIFAR
Dog vs Cat dataset. We use linear classifier with logistic
loss. Input features of dimension 512 are extracted by
ResNet18. We fix nQ = 50 and increase nP . It verifies
that our algorithm can work on the general loss.

At last, to demonstrate that our algorithm can
work for general convex losses, we conduct the
binary classification experiment on the CIFAR-
10 Dog vs Cat dataset [23], using linear classifier
and logistic loss. We construct source and target
tasks by varying the proportion of dog and cat
images. In the source dataset, the ratio is 50%
dog and 50% cat. For the target training and
testing dataset, the ratio is adjusted to 80% dog
and 20% cat. We use SGD with stepsize 10−5

and epoch number 1000 to compute P and Q
ERM model and HTL model. We choose step-
size for θ to be 10−5 and that for λ to be 10−3 ,
as well as T = 2000 · nP in our method. We fix
nQ = 50 and vary nP from 100 to 1500. The
results are reported in Figure 5. Target ERM
model performs poorly since the target sample size is small, while our method can still enjoy an
adaptive rate and slightly outperforms HTL.

7 Conclusion

In this paper, we propose a concrete optimization algorithm with provable convergence and general-
ization guarantee in supervised transfer learning. The analyzed procedure is a mixed-samples SGD
approach that alternates between sampling from source or target data at an adaptive sampling rate.
Both theoretical and experimental results show that our method is adaptive to whether the source or
target data are most beneficial. This work aims to initiate the theoretical study of computationally
efficient methods for transfer learning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly claim our contributions and scope in both abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out that our theoretical results are for convex functions which can be
a potential limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In our Theorems, we clearly list the assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We report clear experiments setup in the Experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not make our code public at this moment. The data used in the
experiments are open source data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss this in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report them in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethic.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This is a theoretical paper so we are not aware of any societal impacts of it.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This is a theoretical paper so we are not aware of any risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the references for the datasets used in the experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Algorithm 3: Mixed-Sample SGD (Restated for General Θ)
Input: θ0 = θQ,0 = 0, λ0 = 0, stepsize {αt}T−1

t=0 and η, γ, ϵQ.
for t = 0, . . . , T − 1 do

Draw ξt ∼ Bernoulli( 1
1+λt

)

if ξt = 1 then
Sample (xt, yt) uniformly from SP

θt+1 = PΘ(θt − η(1 + λt)∇ℓ(θt;xt, yt))
end
else

Sample (xt, yt) uniformly from SQ

θt+1 = PΘ(θt − η(1 + λt)∇ℓ(θt;xt, yt))
end
Sample (xt, yt) uniformly from SQ

λt+1 = [(1− γη)λt + η(ℓ(θt;xt, yt)− ℓ(θQ,t;xt, yt)− 3ϵQ)]+
θQ,t+1 = PΘ(θQ,t − αt∇ℓ(θQ,t;xt, yt))

end
θ̂PQ = ℓ2 projection of 1

T

∑T−1
t=0 θt onto the constraint set

{
θ : R̂Q(θ)− R̂Q(θQ,T ) ≤ 3ϵQ − ϵ0

}
.

Output: θ̂PQ

9 Results for General Losses

In this section, we provide the results for general convex losses. We consider a hypothesis class
H .

= {x 7→ hθ(x) : θ ∈ Θ}. We make the following assumption on the loss function ℓ.

Assumption 3. ℓ(θ;x, y) is m1-strongly convex and m2-smooth in θ for any (x, y) ∈ SPQ.

We define κ
.
= m1/m2 as the condition number of ℓ.

We consider general Θ ⊆ RD, possibly a strict subset, and therefore present a version of the algorithm
that projects iterates back to Θ, provided a projection operator PΘ (see Algorithm 3); when Θ = RD,
i.e. is unbounded, the operator reduces to identity mapping so Algorithm 3 reduces to Algorithm 1 in
the main paper. Note that this projection operator is usually cheap for the common choices of Θ: for
example, for the sake of regularization in practice (e.g., ridge-type regularization), often Θ is an ℓ2
unit ball, whereby PΘ(θ) = θ/max {1, ∥θ∥}.

For the convergence analysis, we need the following definitions.

Definition 4 (Key Lipschitz Parameters). Let ρ .
=
∥∥∥θ0 − θ̃PQ

∥∥∥. We then define

Ĝθ = sup


∥∇ℓ(θ;x, y)∥ :

∥∥∥θ − θ̃PQ

∥∥∥2 ≤ 2ρ2, (x, y) ∈ SPQ,

∥θ∥ ≤ 1 + log(T + κ)

m1
sup

(x′,y′)∈SQ

∥∇ℓ(θQ,0;x
′, y′)∥ .

 ,

Ĝλ = sup


|ℓ(θ;x, y)− ℓ(θ′;x, y)− 3ϵQ| :

∥∥∥θ − θ̃PQ

∥∥∥2 ≤ 2ρ2, (x, y) ∈ SPQ,

∥θ′∥ ≤ 1 + log(T + κ)

m1
sup

(x′,y′)∈SQ

∥∇ℓ(θQ,0;x
′, y′)∥ .

 .

The above definition captures the Lipschitzness of the risk function on the iterates generated during
our algorithm proceeding.

Definition 5 (See [6]). For ϵ > 0, let r(ϵ) .
= inf

{
∥∇R̂Q(θ)∥2 : θ ∈ Θ, R̂Q(θ)− R̂Q(θ̂Q) = ϵ

}
.

This notion is used to control the distance between the return solution and solution before the last
projection step, i.e., ∥θ̄T − θ̂PQ∥ where θ̄T

.
= 1

T

∑T−1
t=0 θt. In linear regression, we can explicitly

compute it as r(ϵ) = ϵ · λ+
min(Σ̂Q).
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Theorem 4 (Strongly Convex and Smooth Result). Let ρ2 = ∥θ0 − θ̃PQ∥2, τ ≤ 0.1, and σ2
PQ, cη be

some positive numbers such that

σ2
PQ ≤ 256

(
1 + (λ∗)2 + ρ2

)
Ĝ2

θ, and cη ≤ min

{
ρ

2
√
2Ĝλ

,
ρ

16
√
6σPQ

√
log 2/τ

,
ρ

CPQ

}
,

where CPQ = 2m1(1 + 2κ)
(

1
m2

1
∥∇R̂Q(θQ,0)∥2 + ∥θQ,0∥2

)
+

6σ2
Q log(2/τ)

m1
, for σ2

Q =(
log(T+2κ)

m1
sup(x,y)∈SQ

∥∇ℓ(θQ,0;x, y)∥
)2

.

Assume the parameters in Algorithm 3 are set as η =
cη√
T

, γ =
Ĝ2

θcη√
T

, αt = 1
m1

· 1
t+2κ and

ϵ0 =
CPQ

T+2κQ
. Assume T ≥ max{ 4CPQm1

r(3ϵQ) , (
CPQ·(log(T+2κQ))2

Ĝλ

√
ϵQ log 1/τ

)2}, and r(3ϵQ) ≤ 1, then, with

probability at least 1 − τ over the randomness of Algorithm 3, the empirical risk of the returned
solution satisfies:

R̂P (θ̂PQ)− R̂P (θ̃PQ) ≲

(
Ĝθ + Ĝλ

√
log

1

τ

)
·

 Ĝ2
θ

cη
+ ĜθĜλ

√
log 1

τ

r(3ϵQ)
√
T

+
λ∗Ĝλ

√
log 1

τ + ρ2

cη√
T

 .

Statistical Implications. In this section we give an example of how the above Theorem 4 can be
converted generically to statistical guarantees on transfer (as was done for the linear regression case).

For intuition, Theorem 4 guarantees that R̂P (θ̂PQ) is small, i.e., close to R̂P (θ̃PQ), while we also
know R̂Q(θ̂PQ) is also small, i.e., close to R̂Q(θ̂Q) (since R̂P (θ̂PQ) is a projection of the average
iterate onto the constraint set centered at θ̂Q,T ). Thus, if in addition, we have concentration of
empirical risks to true risks, we can convert the guarantees of Theorem 4 to statistical transfer
guarantees.

The results below illustrate the above intuition. These results are expressed in terms of generic
relations between P and Q risks given as follows.

Definition 6 (Weak Modulus [5]). Given ϵ > 0, we define the modulus

δ(ϵ)
.
= sup {EQ(θ) : EP (θ) ≤ ϵ, θ ∈ Θ} .

In words, the weak modulus captures the best achievable Q risk, if the learner only has access to P ’s
data. For instance, in linear regression, as explained in the main paper and shown in [5] it can be
upper bounded as δ(ϵ) ≤ 2λmax(Σ

−1
P ΣQ) · ϵ+ 2EQ(θ∗P ).

We next consider some traditional concentration results for bounded losses in terms of the Rademacher
complexity of the loss class.

Assumption 4 (Boundedness of Loss). We assume ℓ(θ;x, y) ≤ Mℓ for any θ ∈ Θ, (x, y) ∈ X × Y .

Remark 3. The Assumption 4 hold for a strongly convex loss given that the parameter θ’s norm is
bounded, e.g., ∥θ∥ ≤ B, ∀θ ∈ Θ. For example, in linear regression, if we assume the label space
Y ⊆ [−My,My], then ℓ(θ;x, y) = (θ⊤x− y)2 ≤ 2B2M2

x + 2M2
y .

We then introduce the Rademacher complexity which characterizes the complexity of a class and will
be used to derive uniform convergence result.

Definition 7 (Rademacher complexity). Let F be a family of functions mapping from Z to R and
Z = {z1, . . . , zn} be the i.i.d. samples drawn from distribution µ. Then, the empirical Rademacher
complexity of F with respect to dataset Z is defined as

R̂n(F)
.
= Eε∈{±1}n

[
sup
f∈F

1

n

∑n

i=1
εif(zi)

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables with P{εi = 1} = P{εi = −1} = 1/2.
Then Rademacher complexity Rn(F) is defined as Rn(F)

.
= ER̂n(F)
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Assumption 5 (Bounded Rademacher Complexity of Loss Class). We assume Rn(ℓ ◦ H) ≤ BH,ℓ√
n

for some positive real number BH,ℓ which characterizes the complexity of the loss class ℓ ◦ H.
Remark 4. The Assumption 5 is standard. Here we give some examples.

For linear classifier class H .
=
{
x 7→ θ⊤x : θ ∈ Rd, ∥θ∥ ≤ B

}
with L-Lipschitz loss, the bound [24,

Lemma 26.10] is given by Rn(ℓ ◦ H) ≤ LBMx√
n

.

For l layer neural network class H .
=
{
x 7→ Wlσ(Wl−1 . . . σ(W1x)) : ∥Wj∥F ≤ Bj

}
with L-

Lipschitz loss, the bound [25, Theorem 1] is given by

Rn(ℓ ◦ H) ≲
LMx

√
l
∏l

j=1 Bj√
n

.

For general VC class H ⊆ {−1, 1}X with VC dimension d, the bound [26, Corollary 3.8] is given by

Rn(ℓ ◦ H) ≲
√

d logn
n .

With the above two assumptions we can derive the following rate of uniform convergence.
Proposition 1 (Uniform Convergence). Let µ denote either P or Q. With probability at least 1− τ ,
the following statement holds:

sup
h∈H

|Rµ(θ)− R̂µ(θ)| ≤ 2
BH,ℓ√
nµ

+Mℓ

√
log 2

τ

2nµ
.

Corollary 1 (Statistical Transfer Guarantees). Let

ϵP = 2
BH,ℓ√
nP

+Mℓ

√
log 2

τ

2nP
, ϵQ = 2

BH,ℓ√
nQ

+Mℓ

√
log 2

τ

2nQ
.

Then with probability at least 1 − 3τ over the randomness of Algorithm 3 and SP and SQ, the
returned solution satisfies

EQ(θ̂PQ) ≤ 5 ·min {ϵQ, δ (3ϵP )} ,
provided a number of iterations

T ≳

(
Ĝθ + Ĝλ

√
log

1

τ

)2

·

 Ĝ2
θ

cη
+ ĜθĜλ

√
log 1

τ

r(2ϵQ)ϵP
+

λ∗Ĝλ

√
log 1

τ + ρ2

cη

ϵP

2

.

Here we achieve a transfer guarantee similar to that in Theorem 1. The rate is still adaptive—it
achieves the better rate between solely target ERM and source ERM. The required iteration number
depends on the ϵP and r(ϵQ), also similar to that in Theorem 1.

10 Additional Experiments

In this section we provide additional experimental results.

10.1 More Results on CIFAR10 Dog vs Cat dataset

Here we provide more results on CIFAR10. To verify the adaptivity of the algorithm with increasing
target samples, we conduct the experiment with fixed nP = 100 and gradually increasing nQ from
100 to 1500. We use SGD with stepsize 10−5 and epoch number 1000 to compute P and Q ERM
model and HTL model. We choose stepsize for θ to be 10−5 and that for λ to be 10−3 , as well as
T = 2000 · max {nP , nQ} in our method. We set the source dataset to be 80% dog samples and
20% cat samples, and the ratio for target is adjusted to 50% dog and 50% cat. As we can see from
Figure 6, in this setting source data are not informative so the source ERM performs poorly. As the
target sample size increases, the target ERM can give promising performance, and our method can
also adapt to it. HTL performs the best in this setting, but its runtime dramatically increases as the
target sample size increases.
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10.2 Binary Classification Results on the Malware IoT dataset

Here we provide results on the CIC-IDS-2017 dataset [27]. It is a network traffic dataset where the
goal is to predict whether the traffic is benign (normal) or malicious (abnormal). We train a linear
classifier with hinge loss. We use the network traffic data collected on Wednesday (Wednesday-
workingHours.pcap_ISCX.csv) as the source dataset, and that on Friday (Friday-WorkingHours-
Afternoon-DDos.pcap_ISCX.csv) as the target. We first fix the total Q sample size nQ = 1000
and gradually increase the P sample size from 1000 to 3000. We set stepsize for θ to be 10−5 and
for λ to be 10−3 and ϵQ = 1√

nQ
. Since the abnormal data are very few, to ensure an acceptable

Type-II error, we use weighted hinge loss with weight 1
2 , i.e., R̂µ(θ)

.
= 1

2 R̂µ,1(θ) +
1
2 R̂µ,0(θ) where

R̂µ,0(θ), R̂µ,1(θ) denote the empirical risk on the normal data and abnormal data respectively, which
is widely used in weighted SVM for imbalanced dataset [28]. The results are shown in Figure 7. As
we can see, as the number of abnormal data from P is growing, our method gains from the source data
and yields a better Type-I and Type-II error than baselines. The runtime of our method is significantly
less than HTL since HTL needs expensive cross-validation process.

11 Missing Proofs in Section 4.1

In this section, we provide the missing proofs in Section 4.1. We first introduce the following helper
lemma that lower bounds the norm of the constraint gradient on the boundard of the constraint set.
Lemma 8 (Lower and upper bound of boundary gradient). For any ϵ > 0, the following statements
hold:

min
θ:R̂Q(θ)−R̂Q(θ̂Q)=ϵ

∥∥∥∇R̂Q(θ)
∥∥∥2 = ϵλ+

min(Σ̂Q).

Proof. We start by proving the first statement. First, the θ on the boundary of the constraint set

satisfies:
∥∥∥θ − θ̂Q

∥∥∥2
Σ̂Q

= ϵ. We first decompose θ as θ = θ
′
+ θ⊥ where θ

′ ∈ Range(Σ̂Q) and θ⊥ is

in the null space of Σ̂Q .

Now we examine the gradient norm:

min
θ:R̂Q(θ)−R̂Q(θ̂Q)=ϵ

∥∥∥∇R̂Q(θ)
∥∥∥2 = min

∥θ−θ̂Q∥2

Σ̂Q
=ϵ

∥∥∥Σ̂Q(θ − θ̂Q)
∥∥∥2

= min
∥θ′−θ̂Q∥2

Σ̂Q
=ϵ,θ′∈Range(Σ̂Q)

∥∥∥Σ̂Q(θ
′ − θ̂Q)

∥∥∥2
= min

u∈Range(Σ̂Q),∥u∥=1

∥∥∥√ϵΣ̂
1
2

Qu
∥∥∥2 = ϵλ+

min(Σ̂Q).

Figure 6: Binary Classification on the CIFAR10 Dog vs Cat dataset. We fix nP = 100 and
increase nQ gradually. (Left) Target excess risk (Middle) Target misclassification rate. (Right)
Runtime comparison. Our method (θ̂PQ) is still comparable with target ERM. HTL (θ̂HTL) slightly
outperforms ours, but as nQ increases, the runtime of HTL dramatically increases.
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Figure 7: Binary Classification on the CIC-IDS-2017 dataset. We fix nQ = 1000 (total samples from Q) and
increase nP (abnormal samples) gradually. (Top-Left) Overall Target Error (Top-Right) Target Type-I Error
(Bottom-Left) Target Type-II Error (Bottom-Right) Runtime comparison. Our method (θ̂PQ) achieves better
overall accuracy than baselines. We also achieve better and more stable Type-II error than all other baselines.
The runtime of our method is also significantly less than HTL.

Proof of Lemma 1:

Proof. Due to Jensen’s inequality, we have that
∥∥∥θ0 − θ̃PQ

∥∥∥2 ≤ 2
∥∥∥θ0 − θ̂P

∥∥∥2 + 2
∥∥∥θ̂P − θ̃PQ

∥∥∥2,
which is at most

1

2λ2
min(Σ̂P )

∥∥∥∇R̂P (θ0)
∥∥∥2 + 2

∥∥∥θ̂P − θ̃PQ

∥∥∥2 ≤

∥∥∥∇R̂P (θ0)
∥∥∥2

2λ2
min(Σ̂P )

+
2
∥∥∥θ̂P − θ̃PQ

∥∥∥2
Σ̂P

λmin(Σ̂P )
.

Since θ̃PQ is the minimizer of R̂P within constraint set, and θ̂Q is also in the constraint set, we have

∥∥∥θ̂P − θ̃PQ

∥∥∥2
Σ̂P

≤
∥∥∥θ̂P − θ̂Q

∥∥∥2
Σ̂P

≤

∥∥∥∇R̂P (θ̂Q)
∥∥∥2

4λmin(Σ̂P )
.

Putting pieces together we have

∥∥∥θ0 − θ̃PQ

∥∥∥2 ≤

∥∥∥∇R̂P (θ0)
∥∥∥2

2λ2
min(Σ̂P )

+

∥∥∥∇R̂P (θ̂Q)
∥∥∥2

2λ2
min(Σ̂P )

.

Proof of Lemma 2:

Proof. For θ such that
∥∥∥θ − θ̃PQ

∥∥∥2 ≤ 2ρ2, we examine the upper bound of its norm. According to
triangle inequality we have:

∥θ∥ ≤
√
2ρ+

∥∥∥θ̃PQ

∥∥∥ ≤ 3ρ.
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The rest of the proof follows:

∥∇ℓ(θ;x, y)∥ =
∥∥x(θ⊤x− y)

∥∥ ≤ M2
x ∥θ∥+MxM̂y.

Proof of Lemma 3:

Proof. The proof simply follows the definition of ℓ:

|ℓ(θ;x, y)− ℓ(θ′;x, y)− 6ϵQ| ≤ (θ⊤x− y)2 + (θ′
⊤
x− y)2 + 6ϵQ

≤ 2M2
x ∥θ∥2 + 2M̂y + 2M2

x ∥θ′∥2 + ϵQ

≤ 18

(
M2

xρ
2 + M̂y +

M4
xM̂

2
y (1 + log(T + 2κQ))

2

(λ+
min(Σ̂Q))2

)
+ 6ϵQ.

Proof of Lemma 4:

Proof. Due to the first order optimality condition we have

∇R̂P (θ̃PQ) + λ∗∇R̂Q(θ̃PQ) = 0 =⇒ λ∗ =

∥∥∥∇R̂P (θ̃PQ)
∥∥∥∥∥∥∇R̂Q(θ̃PQ)
∥∥∥ .

To upper bound
∥∥∥∇R̂P (θ̃PQ)

∥∥∥ we notice that∥∥∥∇R̂P (θ̃PQ)
∥∥∥ =

∥∥∥2Σ̂P (θ̃PQ − θ̂P )
∥∥∥

≤ 2

√
λmax(Σ̂P )

∥∥∥Σ̂1/2
P (θ̃PQ − θ̂P )

∥∥∥ = 2

√
λmax(Σ̂P )

√
R̂P (θ̃PQ)− R̂P (θ̂P ).

Define θ′ to be the model on the boundary of constraint set, and also on the range of Σ̂Q. That is,∥∥∥θ′ − θ̂Q

∥∥∥2
Σ̂Q

= 6ϵQ and θ′ ∈ Range(Σ̂Q). Since θ̃PQ is the minimizer of R̂P (·) in the constraint

set, we know that∥∥∥∇R̂P (θ̃PQ)
∥∥∥ ≤ 2

√
λmax(Σ̂P )

√
R̂P (θ′)− R̂P (θ̂P )

= 2

√
λmax(Σ̂P )

∥∥∥Σ̂1/2
P (θ′ − θ̂P )

∥∥∥
≤ 2λmax(Σ̂P )

∥∥∥θ′ − θ̂P

∥∥∥
≤ 2λmax(Σ̂P )

∥∥∥θ′ − θ̂Q

∥∥∥+ 2λmax(Σ̂P )
∥∥∥θ̂Q − θ̂P

∥∥∥
≤ 2λmax(Σ̂P )

1√
λ+
min(Σ̂Q)

∥∥∥Σ̂1/2
Q (θ′ − θ̂Q)

∥∥∥+ 2λmax(Σ̂P )
∥∥∥θ̂Q − θ̂P

∥∥∥
=

2λmax(Σ̂P )√
λ+
min(Σ̂Q)

·
√
6ϵQ + 2λmax(Σ̂P )

∥∥∥θ̂Q − θ̂P

∥∥∥ .
To lower bound

∥∥∥∇R̂Q(θ̃PQ)
∥∥∥, we again evoke Lemma 8 that

∥∥∥∇R̂Q(θ̃PQ)
∥∥∥ ≥ 2

√
λ+
min(Σ̂Q) · 6ϵQ.

Putting pieces together will conclude the proof.
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12 Missing Proofs in Section 5.2

Proof of Lemma 5:

Proof. The proof mainly follows Proposition 8 of [5]. With probability at least 1− 2τ , the following

two facts hold. For one hand, for any θ ∈
{
θ :
∥∥∥θ − θ̂Q

∥∥∥2
Σ̂Q

≤ 6ϵQ

}
, we know

EQ(θ) =
∥∥θ − θ∗Q

∥∥2
ΣQ

≤ 2
∥∥∥θ − θ̂Q

∥∥∥2
ΣQ

+ 2
∥∥∥θ∗Q − θ̂Q

∥∥∥2
ΣQ

≤ 4
∥∥∥θ − θ̂Q

∥∥∥2
Σ̂Q

+ 2ϵQ ≤ 26ϵQ.

where at the second inequality we evoke the matrix concentration result from Lemma 3 of [5]. For
the other hand, for any θ such that EQ(θ) ≤ ϵQ, we have∥∥∥θ − θ̂Q

∥∥∥2
Σ̂Q

≤ 3

2

∥∥∥θ − θ̂Q

∥∥∥2
ΣQ

≤ 3
∥∥θ − θ∗Q

∥∥2
ΣQ

+ 3
∥∥∥θ̂Q − θ∗Q

∥∥∥2
ΣQ

≤ 6ϵQ.

Proof of Lemma 6:

Proof. First notice the following decomposition: ∥θ − θ∗P ∥
2
ΣP

≤ 2
∥∥∥θ − θ̃PQ

∥∥∥2
ΣP

+

2
∥∥∥θ̃PQ − θ∗P

∥∥∥2
ΣP

. For the first term in RHS of above inequality, with probability at least 1− τ , we

have

2
∥∥∥θ − θ̃PQ

∥∥∥2
ΣP

≤ 4
∥∥∥θ − θ̃PQ

∥∥∥2
Σ̂P

= 4
(
R̂P (θ)− R̂P (θ̃PQ)−

〈
∇R̂P (θ̃PQ), θ − θ̃PQ

〉)
.

Since both θ and θ̃PQ are in the constraint set of Problem (2), and θ̃PQ is the optimal solution

within the set, we know
〈
∇R̂P (θ̃PQ), θ − θ̃PQ

〉
≥ 0. Hence, we know 2

∥∥∥θ − θ̃PQ

∥∥∥2
ΣP

≤

4
(
R̂P (θ)− R̂P (θ̃PQ)

)
.

Now we proceed to bounding 2
∥∥∥θ̃PQ − θ∗P

∥∥∥2
ΣP

. Notice that with probability at least 1− 2τ

2
∥∥∥θ̃PQ − θ∗P

∥∥∥2
ΣP

≤ 4
∥∥∥θ̃PQ − θ̂P

∥∥∥2
ΣP

+ 4
∥∥∥θ̂P − θ∗P

∥∥∥2
ΣP

≤ 8
∥∥∥θ̃PQ − θ̂P

∥∥∥2
Σ̂P

+ 4
∥∥∥θ̂P − θ∗P

∥∥∥2
ΣP

≤ 8
∥∥∥θ∗P − θ̂P

∥∥∥2
Σ̂P

+ 4
∥∥∥θ̂P − θ∗P

∥∥∥2
ΣP

≤ 12
∥∥∥θ∗P − θ̂P

∥∥∥2
ΣP

+ 4
∥∥∥θ̂P − θ∗P

∥∥∥2
ΣP

≤ 16ϵP ,

where at second and fourth step we evoke matrix concentration result from Lemma 3 of [5], at third
step we use the fact that θ̃PQ is the optimal solution within the set. Putting pieces together will
conclude the proof.

Proof of Lemma 7:

Proof. Since θ∗P /∈
{
θ :
∥∥∥θ − θ̂Q

∥∥∥2
Σ̂Q

≤ 6ϵQ

}
, then from Lemma 5 we know with probability at

least 1− 2τ , EQ(θ∗P ) ≥ ϵQ ≥ 1
26EQ(θ) holds.
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13 Proof of Convergence

In this section we will present the proof of the convergence result. We first introduce some useful
lemmas.

13.1 Technical Lemmas

The following proposition is standard and will be used to show the sub-gaussianity of the stochastic
gradients.

Proposition 2. Given a random variable X , if a ≤ X ≤ b with probability 1, then X is a (b−a)2

4
sub-Gaussian random variable.

The next lemma establishes the convergence of θQ,t.

Lemma 9 (High probability convergence of θQ,t). If we choose αt =
1

λ+
min(Σ̂Q)(t+2κQ)

, then with
probability at least 1− τ , for any t ≥ 0 we have:

R̂Q(θQ,t)− R̂Q(θ̂Q) ≤
λ+
min(Σ̂Q)(1 + 2κQ)

∥∥∥θ̂Q∥∥∥2
t+ 2κQ

+
6σ2

Q log(2/τ)(log t+ 1)

λ+
min(Σ̂Q)(t+ 2κQ)

for σ2
Q =

(
M2

x

(
1+log(T+2κQ)

λ+
min(Σ̂Q)

MxMy

)
+MxMy

)2
.

Proof. We first examine the boundedness of ∥θQ,t∥. According to updating rule of θQ,t we have

∥θQ,t∥ =
∥∥θQ,t−1 − αtxt(x

⊤
t θQ,t−1 − yt)

∥∥
≤
∥∥(I− αtxtx

⊤
t )θQ,t−1

∥∥+ αt ∥xtyt∥

≤ ∥θQ,0∥︸ ︷︷ ︸
=0

+

t∑
s=1

1

λ+
min(Σ̂Q)(s+ 2κQ)

MxM̂y

≤ 1 + log(t+ 2κQ)

λ+
min(Σ̂Q)

MxMy. (8)

Hence we can compute the sub-Gaussian parameter. Notice that∥∥∥∇ℓ(θQ,t;xt, yt)−∇R̂Q(θQ,t)
∥∥∥ ≤

∥∥∥xtx
⊤
t − Σ̂Q

∥∥∥ ∥θQ,t∥+
∥∥∥∥xtyt −

1

nQ
X⊤

QyQ

∥∥∥∥
≤ 2M2

x

(
1 + log(t+ 2κQ)

λ+
min(Σ̂Q)

MxMy

)
+ 2MxM̂y

≤ 2M2
x

(
1 + log(T + 2κQ)

λ+
min(Σ̂Q)

MxMy

)
+ 2MxM̂y.

According to Proposition 2, we know
∥∥∥∇ℓ(θQ,t;xt, yt)−∇R̂Q(θQ,t)

∥∥∥ is(
M2

x

(
1+log(t+2κQ)

λ+
min(Σ̂Q)

MxMy

)
+MxMy

)2
sub-Gaussian.

Now, we evoke the result from Theorem 3.7 from [29] that if the gradient noise is σQ sub-Gaussian,
then with our choice of αt, with probability at least 1− τ it holds for any integer t > 0 that

R̂Q(θQ,t)− R̂Q(θ̂Q) ≤
λ+
min(Σ̂Q)(1 + 2κQ)

∥∥∥θ̂Q∥∥∥2
t+ 2κQ

+
6σ2

Q log(2/τ)(log t+ 1)

λ+
min(Σ̂Q)(t+ 2κQ)

.
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The next lemma proves the sub-Gaussianity of the stochastic gradient used to update θt.
Lemma 10. Let

gθ =

{
(1 + λ)∇ℓ(θ;x, y), (x, y) ∼ SP , w.p.

1
1+λ

(1 + λ)∇ℓ(θ;x, y), (x, y) ∼ SQ, w.p.
λ

1+λ

and
δ =

∥∥∥∇R̂P (θ) + λ∇R̂Q(θ)− gθ

∥∥∥ .
Then for any θ ∈

{
θ : ∥θ − θ̃PQ∥2 ≤ 2ρ2

}
and λ ∈

{
λ : (λ− λ∗)2 ≤ 2ρ2

}
, we have

E[exp(δ2/σ2
PQ)] ≤ exp(1) for σ2

PQ = 256
(
1 + (λ∗)2 + ρ2

)
Ĝ2

θ.

Proof. We use ξ = 1 to denote the event that we sample from P , and otherwise from Q. For
notational convenience we define δµ

.
= ∥∇R̂µ(θ) − ∇ℓ(θ;x, y)∥ where x, y is sampled from

µ , for µ denoting either P or Q. We also define ζPQ
.
=
∥∥∥∇R̂P (θ)−∇R̂Q(θ)

∥∥∥. Since

δ =
∥∥∥∇R̂P (θ) + λ∇R̂Q(θ)− (1 + λ)(I {ξ = 1}∇ℓ(θ;x, y) + I {ξ = 0}∇ℓ(θ;x, y))

∥∥∥, we can
verify that
E exp

(
δ2/σ2

PQ

)
=

1

1 + λ
E exp

(∥∥∥∇R̂P (θ) + λ∇R̂Q(θ)− (1 + λ)∇ℓ(θ;x, y)
∥∥∥2 /σ2

PQ

)
+

λ

1 + λ
E exp

(∥∥∥∇R̂P (θ) + λ∇R̂Q(θ)− (1 + λ)∇ℓ(θ;x, y)
∥∥∥2 /σ2

PQ

)
≤ 1

1 + λ
E exp

(
2(1 + λ)2δ2P

σ2
PQ

+
2λ2ζ2PQ

σ2
PQ

)
+

λ

1 + λ
E exp

(
2ζ2PQ

σ2
PQ

+
2(1 + λ)2δ2Q

σ2
PQ

)

≤ 1

1 + λ

(
exp(

2λ2ζ2PQ

σ2
PQ

)E exp

(
2(1 + λ)2

δ2P
σ2
PQ

)
+ λ exp

(
2ζ2PQ

σ2
PQ

)
E exp(

2(1 + λ)2δ2Q
σ2
PQ

)

)
.

Since 0 ≤ λ ≤
√
2ρ+ λ∗, so we have

E exp
(
δ2/σ̂2

)
≤ 1

1 + λ
exp

(
2(2(λ∗)2 + 4ρ2)4Ĝ2

θ/σ
2
PQ

)
E exp

(
(4 + 4(2(λ∗)2 + 4ρ2))δ2P /σ

2
PQ

)
+

λt

1 + λt
exp

(
4Ĝ2

θ/σ
2
PQ

)
E exp

(
(4 + 4(2(λ∗)2 + 4ρ2))δ2Q/σ

2
PQ

)
.

Due to our choice σ2
PQ = 256

(
1 + (λ∗)2 + ρ2

)
Ĝ2

θ, we have

E exp
(
δ2/σ2

PQ

)
≤ 1

1 + λ
exp (1/8) (exp(1))1/8 +

λ

1 + λ
exp (1/8) (exp(1))1/8 ≤ exp(1).

Then, we establish the convergence of the penalized objective, under the dynamic of Algorithm 1.
Lemma 11. For Algorithm 1, the following statement holds true for any λ ≥ 0 with probability at
least 1− τ :(

R̂P (θ̄T )− R̂P (θ̃PQ)
)
+ λ(R̂Q(θ̄T )− R̂Q(θ̂Q)− 6ϵQ)−

(
γ

2
+

1

2ηT

)
λ2

≤ ρ2

ηT
+ ηĜ2

λ + ηĜ2
θ +

Ĝλ

√
3 log 2

τ√
T

(
λ∗ + 2

√
2ρ
)
+

√
2ρσPQ

√
3 log 2

τ√
T

+
CPQ(log(T + 2κQ) + 2)2

(
λ∗ +

√
2ρ
)

T
+

 Ĝλ

√
3 log 2

τ√
T

+
CPQ(log(T + 2κQ) + 2)2

T

λ,

where CPQ := (1 + 2κQ)M
2
xM

2
y +

6σ2
Q log(2/τ)

λ+
min(Σ̂Q)

, σ2
Q =

(
M2

x

(
1+log(T+2κQ)

λ+
min(Σ̂Q)

MxMy

)
+MxMy

)2
.
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Proof. Define the constraint function g(θ) := R̂Q(θ) − R̂Q(θ̂Q) − 6ϵQ and L(θ, λ)
.
= R̂P (θ) +

λg(θ)− γλ2

2 . We first show that
∥∥∥θt − θ̃PQ

∥∥∥2 + ∥λt − λ∗∥2 ≤ 2ρ2, for any t ∈ [T ]. We prove this
by induction. Assume this holding for t, and for t+ 1 we have∥∥∥θt+1 − θ̃PQ

∥∥∥2 =
∥∥∥θt − ηgtθ − θ̃PQ

∥∥∥2
=
∥∥∥θt − θ̃PQ

∥∥∥2 − 2
〈
ηgtθ, θt − θ̃PQ

〉
+ η2

∥∥gtθ∥∥2 ,
where gtθ =

{
(1 + λt)∇ℓ(θt;xt, yt), (xt, yt) ∼ SP , w.p.

1
1+λt

(1 + λt)∇ℓ(θt;xt, yt), (xt, yt) ∼ SQ, w.p.
λt

1+λt

.

Then for t+ 1, we have:∥∥∥θt+1 − θ̃PQ

∥∥∥2 ≤
∥∥∥θt − θ̃PQ

∥∥∥2 − 2ηt

〈
∇R̂P (θt) + λt∇R̂Q(θt), θt − θ̃PQ

〉
+ 2

√
2ηδtρ+ η2t (1 + λt)

2Ĝ2
θ

≤
∥∥∥θt − θ̃PQ

∥∥∥2 − 2η
(
L(θt, λt)− L(θ̃PQ, λt)

)
+ 2

√
2ηδtρ+ η2(1 + λt)

2Ĝ2
θ

where δt =
∥∥∥∇R̂P (θt) + λt∇R̂Q(θt)− gtθ

∥∥∥, and at last step we use the convexity of L(·, λt).
According to Lemma 10 we know that

E[gtθ] = ∇R̂P (θt) + λt∇R̂Q(θt),E[exp
(
δ2t /σ

2
PQ

)
] ≤ exp(1)

. Similarly, we have:

|λt+1 − λ∗|2 = |λt − λ∗|2 + 2η
〈
gtλ, λt − λ∗〉+ η2|gtλ − γλt|2

≤ |λt − λ∗|2 + 2η
〈
R̂Q(θt)− R̂Q(θ̂Q)− ϵQ − γλt, λt − λ∗

〉
+ 2

√
2ηrtρ+ 2

√
2ηhtρ+ 2η2Ĝ2

λ

≤ (1− γη)|λt − λ|2 − 2η (L(θt, λ
∗)− L(θt, λt))

+ 2
√
2ηrtρ+ 2

√
2ηhtρ+ 2η2Ĝ2

λ,

where
gtλ = ℓ(θt;xt, yt)− ℓ(θQ,t;xt, yt)− 6ϵQ

and

rt =
∥∥∥ℓ(θt;xt, yt)− ℓ(θQ,t;xt, yt)− (R̂Q(θt)− R̂Q(θQ,t))

∥∥∥ , ht = |R̂Q(θQ,t)− R̂Q(θ̂Q)|

and at last step we use the γ concavity of L(θt, ·). It is easy to see that

E[gtλ] = R̂Q(θt)− R̂Q(θ̂Q)− ϵQ,E[exp
(
r2t /Ĝ

2
λ

)
] ≤ exp(1).

Putting pieces together we have∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ∗|2 ≤
(
|λt − λ∗|2 +

∥∥∥θt − θ̃PQ

∥∥∥2)− 2η
(
L(θt, λ

∗)− L(θ̃PQ, λt)
)

+ 2
√
2ηδtρ+ 2

√
2ηrtρ+ 2

√
2ηhtρ+ 2η2Ĝ2

λ + η2(1 + λt)
2Ĝ2

θ

≤
(
|λt − λ∗|2 +

∥∥∥θt − θ̃PQ

∥∥∥2)− 2η
(
L(θt, λ

∗)− L(θ̃PQ, λt)
)

︸ ︷︷ ︸
≥− γ(λ∗)2

2

+ 2η2Ĝ2
λ + η2(1 +

√
2ρ+ λ∗)2Ĝ2

θ + 2
√
2ηρ(δt + rt + ht)

where the last step is due to

L(θt, λ
∗)− L(θ̃PQ, λt) = R̂P (θt) + λ∗g(θt)−

(
R̂P (θ̃PQ) + λtg(θ̃PQ)

)
︸ ︷︷ ︸

≥0

−γ(λ∗)2

2
+

γλ2
t

2
.
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Performing telescoping sum yields:∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ∗|2 ≤
(∥∥∥θ0 − θ̃PQ

∥∥∥2 + |λ0 − λ∗|2
)
+ 2η2Ĝ2

λ + η2(1 +
√
2ρ+ λ∗)2Ĝ2

θ

+ 2
√
2ηρ

t∑
s=0

δs + 2
√
2ηρ

t∑
s=0

rs + 2
√
2ηρ

t∑
s=0

hs + Tγη(λ∗)2.

Due to Lemma 4 of [30], we know with probability 1− τ/2,

T−1∑
t=0

δt ≤
√
Tσ2

PQ

√
3 log

2

τ
,

T−1∑
t=0

rt ≤
√

TĜ2
λ

√
3 log

2

τ
, (9)

and also according to Lemma 9, ht ≤ λ+
min(Σ̂Q)(1+2κQ)∥θ̂Q∥2

t+2κQ
+

6σ2
Q log(2/τ)(log t+1)

λ+
min(Σ̂Q)(t+2κQ)

for σ2
Q =(

M2
x

(
1+log(T+2κQ)

λ+
min(Σ̂Q)

MxMy

)
+MxMy

)2
, which yields:

t∑
s=0

hs =

t∑
s=0

λ+
min(Σ̂Q)(1 + 2κQ)

∥∥∥θ̂Q∥∥∥2
s+ 2κQ

+
6σ2

Q log(2/τ)(log s+ 1)

λ+
min(Σ̂Q)(s+ 2κQ)


≤

(
λ+
min(Σ̂Q)(1 + 2κQ)

∥∥∥θ̂Q∥∥∥2 + 6σ2
Q log(2/τ)(log t+ 1)

λ+
min(Σ̂Q)

)
(log(t+ 2κQ) + 2)

≤ CPQ · (log(t+ 2κQ) + 2)2, (10)

where CPQ := (1+2κQ)M
2
xM

2
y +

6σ2
Q log(2/τ)

λ+
min(Σ̂Q)

, and in the first inequality we use the fact
∑t

s=1
1
s ≤

1 +
∫ t

1
1
s ≤ 1 + log t. Putting pieces together yields:∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ∗|2 ≤ |λ0 − λ∗|2 +
∥∥∥θ0 − θ̃PQ

∥∥∥2 + 2η2Ĝ2
λ + η2(1 +

√
2ρ+ λ∗)2Ĝ2

θ

+ 4
√
2ηρ

√
TσQ

√
3 log

2

τ
+ 2

√
2ηρCPQ(log(t+ 2κQ) + 2)2 + Tγη(λ∗)2.

(11)

Since we choose η =
cη√
T

and γ = Ĝ2
θη, where

cη ≤ min

 ρ

2
√
2Ĝλ

,
ρ

2(1 +
√
2ρ+ λ∗)Ĝθ

,
ρ

16
√
6σPQ

√
log 2

τ

,
ρ

4CPQ

 ,

we conclude that
∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ∗|2 ≤ 2ρ2.

Now by similar analysis we have that for any λ ≥ 0∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ|2 ≤
∥∥∥θt − θ̃PQ

∥∥∥2 + |λt − λ|2 − 2η(L(θt, λ)− L(θ̃PQ, λt))

+ 2η2Ĝ2
λ + η2(1 + λt)

2Ĝ2
θ

+ 2η ⟨ℓ(θt;xt, yt)− ℓ(θQ,t;xt, yt)− (ℓ(θt)− ℓ(θQ,t)), λt − λ⟩

+ 2η
〈
ℓ(θ̂Q)− ℓ(θQ,t), λt − λ

〉
+ 2ηrt

∥∥∥θt − θ̃PQ

∥∥∥
≤
∥∥∥θt − θ̃PQ

∥∥∥2 + |λt − λ|2 − 2η(L(θt, λ)− L(θ̃PQ, λt))

+ 2η2Ĝ2
λ + η2(1 + λt)

2Ĝ2
θ

+ 2ηrt (λt + λ) + 2ηht (λt + λ) + 2
√
2ηδtρ.

30



Since |λt − λ∗| ≤
√
2ρ we know λt ≤ λ∗ +

√
2ρ. Hence we have∥∥∥θt+1 − θ̃PQ

∥∥∥2 + |λt+1 − λ|2 ≤ |λt − λ|2 +
∥∥∥θt − θ̃PQ

∥∥∥2 − 2η(L(θt, λ)− L(θ̃PQ, λt))

+ 2η2Ĝ2
λ + η2(1 + λt)

2Ĝ2
θ + 2ηrt

(
λ∗ +

√
2ρ
)
+ 2ηht

(
λ∗ +

√
2ρ
)

+ 2ηrtλ+ 2ηhtλ+ 2
√
2ηδtρ.

Performing telescoping sum yields:

1

T

T−1∑
t=0

L(θt, λ)− L(θ̃PQ, λt) ≤
1

2ηT
(|λ0 − λ|2 +

∥∥∥θ0 − θ̃PQ

∥∥∥2) + 1

T
ηĜ2

λ +
1

2T
η

T−1∑
t=0

(1 + λt)
2Ĝ2

θ

+
1

T

T−1∑
t=0

rt

(
λ∗ +

√
2ρ
)
+

1

T

T−1∑
t=0

ht

(
λ∗ +

√
2ρ
)
+

1

T

T−1∑
t=0

rtλ

+
1

T

T−1∑
t=0

htλ+
√
2ρ

1

T

T−1∑
t=0

δt.

By the definition of Lagrangian, we have

1

T

T−1∑
t=0

(R̂P (θt) + λg(θt)−
γ

2
λ2 − R̂P (θ̃PQ)− λt g(θ̃PQ)︸ ︷︷ ︸

≤0

+
γ

2
λ2
t )

≤ 1

2ηT
(|λ0 − λ|2 +

∥∥∥θ0 − θ̃PQ

∥∥∥2) + 1

T
ηĜ2

λ +
1

2T
η

T−1∑
t=0

(1 + λt)
2Ĝ2

θ

+
1

T

T−1∑
t=0

rt

(
λ∗ +

√
2ρ
)
+

1

T

T−1∑
t=0

ht

(
λ∗ +

√
2ρ
)
+

1

T

T−1∑
t=0

rtλ+
1

T

T−1∑
t=0

htλ+
√
2ρ

1

T

T−1∑
t=0

δt.

Evoking the bound from (9) and (10) yields:

1

T

T−1∑
t=0

(R̂P (θt) + λg(θt)−
γ

2
λ2 − R̂P (θ̃PQ) +

γ

2
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T
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√
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√
3 log 2
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T

.

Plugging in λ0 = 0, θ0 = 0 and re-arranging the terms yields:

1

T

T−1∑
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(R̂P (θt)− R̂P (θ̃PQ)) +
1

T

T−1∑
t=0

λg(θt)−
(
γ

2
+

1

2ηT

)
λ2

≤ ρ2

ηT
+ ηĜ2
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1
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CPQ(log(T + 2κQ) + 2)2(λ∗ + 2

√
2ρ)

+

 Ĝλ

√
3 log 2
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T

+
CPQ(log(T + 2κQ) + 2)2

T

λ.
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By our choice, γ = Ĝ2
θη, so we have

1

T

T−1∑
t=0

(
R̂P (θt)− R̂P (θ̃PQ)

)
+

1

T

T−1∑
t=0

λg(θt)−
(
γ

2
+

1

2ηT
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λ2
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Ĝλ

√
3 log 2
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√
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3 log 2
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CPQ(log(T + 2κQ) + 2)2

T

λ.

Define θ̂T = 1
T

∑T−1
t=0 θT , and then by Jensen’s inequality we have(

R̂P (θ̄T )− R̂P (θ̃PQ)
)
+ λ(R̂Q(θ̄T )− R̂Q(θ̂Q)− 6ϵQ)−

(
γ

2
+

1

2ηT

)
λ2

≤ ρ2
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Ĝλ

√
3 log 2
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√
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√
3 log 2
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1
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CPQ(log(T + 2κQ) + 2)2(λ∗ +

√
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 Ĝλ

√
3 log 2

τ√
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+
CPQ(log(T + 2κQ) + 2)2

T

λ.

13.2 Proof of Theorem 2

Proof. Note that Lemma 11 holds for any λ ≥ 0. Now let’s discuss by cases. If θ̄T is in the constraint
set, then θ̂PQ = θ̄T and we simply set λ = 0 and get the convergence:

R̂P (θ̂PQ)− R̂P (θ̃PQ)

≤ ρ2

ηT
+ ηĜ2

λ + ηĜ2
θ +

Ĝλ

√
3 log 2

τ√
T

(
λ∗ + 2

√
2ρ
)
+

√
2ρσPQ

√
3 log 2

τ√
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1

T
CPQ · (log(T + 2κQ) + 2)2

(
λ∗ +

√
2ρ
)
.

If θ̄T is not in the constraint set, we set λ =
R̂Q(θ̄T )−R̂Q(θ̂Q)−6ϵQ

γ+ 1
ηT

, and define g(θ) := R̂Q(θ) −

R̂Q(θ̂Q)− 6ϵQ for notational simplicity, which yields:

(R̂P (θ̄T )− R̂P (θ̃PQ)) +
(g(θ̄T ))
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ηT )
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Ĝλ
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3 log 2
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3 log 2
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+
1
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CPQ · (log(T + 2κQ) + 2)2
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2ρ
)
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3 log 2
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+
CPQ · (log(T + 2κQ) + 2)2

T

∣∣∣∣∣ g(θ̄T )γ + 1
ηT

∣∣∣∣∣ . (12)

Since θ̄T is not in the constraint set and θ̂PQ is the projection of it onto inexact constraint set
g̃(θ) := R̂Q(θ) − R̂Q(θQ,T ) − 6ϵQ + ϵ0 ≤ 0, by KKT condition we know g̃(θ̂PQ) = 0 and
θ̄T − θ̂PQ = s · ∇g̃(θ̂PQ) for some s > 0. Defining ∆ := ϵ0 − (R̂Q(θQ,T )− R̂Q(θ̂Q)), and due to
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our choice of T we know ∆ ≥ 0. Then we have

g(θ̄T ) = g(θ̄T )− g̃(θ̂PQ)

= g̃(θ̄T )− g̃(θ̂PQ)− (g̃(θ̄T )− g(θ̄T ))

= g̃(θ̄T )− g̃(θ̂PQ)− (R̂Q(θ̂Q)− R̂Q(θQ,T ) + ϵ0)

≥
〈
∇g̃(θ̂PQ), θ̄T − θ̂PQ

〉
−∆ =

∥∥∥∇g̃(θ̂PQ)
∥∥∥ ∥∥∥θ̄T − θ̂PQ

∥∥∥−∆

where the inequality is due to convexity of g(·). Evoking Lemma 8 with ϵ = 6ϵQ− ϵ0+ R̂Q(θQ,T )−
R̂Q(θ̂Q) gives that ming̃(θ)=0

∥∥∥∇g̃(θ̂PQ)
∥∥∥ ≥

√
λ+
min(Σ̂Q)(6ϵQ − ϵ0 + R̂Q(θQ,T )− R̂Q(θ̂Q)) ≥√
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min(Σ̂Q)3ϵQ, so g(θ̄T ) ≥

√
λ+
min(Σ̂Q)3ϵQ

∥∥∥θ̄T − θ̂PQ

∥∥∥ − ∆, where the second inequality is
due to that ϵ0 ≤ 3ϵQ.

On the other hand, since θ̂PQ is the projection of θ̄T onto constraint set, and θ̃PQ is in the constraint
set, we know ∥∥∥θ̂PQ − θ̃PQ

∥∥∥2 ≤
∥∥∥θ̂T − θ̃PQ

∥∥∥2 ≤ 2ρ2.

Hence θ̂PQ also falls in the set
{
θ :
∥∥∥θ − θ̃PQ

∥∥∥2 ≤ 2ρ2
}

, so the gradient upper bound Ĝθ applies

to θ̂PQ. Hence we also know

g(θ̄T ) = g(θ̄T )− g̃(θ̂PQ)

= R̂Q(θ̄T )− R̂Q(θ̂Q)− 6ϵQ − (R̂Q(θ̂PQ)− R̂Q(θQ,T )− 6ϵQ + ϵ0)

≤ Ĝθ

∥∥∥θ̄T − θ̂PQ

∥∥∥− ϵ0.

Plugging the upper and lower bound of g(θ̄T ) into (12) yields:

(R̂P (θ̄T )−R̂P (θ̃PQ)) +
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∥∥∥θ̄T − θ̂PQ

∥∥∥−∆

)2

4(cηĜ2
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3 log 2
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Ĝθ

∥∥∥θ̄T − θ̂PQ

∥∥∥ .
Notice the following decomposition:

R̂P (θ̄T )− R̂P (θ̃PQ) ≥ R̂P (θ̄T )− R̂P (θ̂PQ) ≥ −Ĝθ

∥∥∥θ̄T − θ̂PQ

∥∥∥ .
Also notice the fact (a− b)2 ≥ 1

2a
2 − b2 holding for any a > 0, b > 0, we know

(√
λ+
min(Σ̂Q)3ϵQ

∥∥∥θ̄T − θ̂PQ

∥∥∥−∆

)2

≥ 1

2
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min(Σ̂Q)3ϵQ

∥∥∥θ̄T − θ̂PQ

∥∥∥2 −∆2.
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Putting pieces together yield the following inequality:

a
∥∥∥θ̄T − θ̂PQ

∥∥∥2 − b
∥∥∥θ̄T − θ̂PQ

∥∥∥− c ≤ 0,

where:

a =
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b =
Ĝθ
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Ĝλ
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3 log 2
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)
+ Ĝθ. Solving the above quadratic

inequality yields:∥∥∥θ̄T − θ̂PQ

∥∥∥ ≤ b+
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θ +

1
cη
)

3
√
Tλ+

min(Σ̂Q)ϵQ

√
CPQ · (log(T + 2κQ) + 2)2

(
λ∗ +

√
2ρ
)

T

=
16(cηĜ
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where at the last step we use the fact
√
ab ≤ a2+b2

2 . Finally, note the following decomposition:

R̂P (θ̂PQ)− R̂P (θ̃PQ) = R̂P (θ̂PQ)− R̂P (θ̄T ) + R̂P (θ̄T )− R̂P (θ̃PQ)

≤ Ĝθ
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Ĝθ +
2Ĝλ
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Since we assume T ≥ T ≥
(
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Ĝλ
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, we know
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Plugging bound of
∥∥∥θ̄T − θ̂PQ

∥∥∥ and Lemma 9 yields:
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cηĜ2
θ +

1
cη

Ĝθ
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Since we choose ϵ0 =
CPQ
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, we know 2ϵ0√
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.

Now we simplify the above bound. By the definition of cη we know cη ≤ 1
Ĝθ

, so we have
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√
log

2

τ

) ρ2

cη
+ cη(Ĝ
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(λ∗ + ρ)Ĝλ + ρσPQ

)√
log 2

τ√
T

 .

Again recall we choose: T ≥
(

4CPQ·(log(T+2κQ))2

Ĝλ
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≤ Ĝλ

√
log 1/τ√
T

.

So we have
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R̂P (θ̂PQ)− R̂P (θ̃PQ)

≤
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θ) +
√
2ρσPQ

√
3 log 2

τ√
T


≲

(
Ĝθ + Ĝλ
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((λ∗ + ρ)Ĝλ + ρσPQ)

√
log 1

τ + ρ2

cη
+ cηĜ
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Finally, by definition of cη we know ρ2
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≥ cηĜ
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concludes the proof:

R̂P (θ̂PQ)− R̂P (θ̃PQ) ≲
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14 Proof of the Results of General Loss

In this section we provide the missing proofs in Section 9. We first introduce the following lemma
which establishes the convergence of auxiliary iterates θQ,t to Q ERM model.

Lemma 12 (High probability convergence of θQ,t). If we choose αt = 1
m1

· 1
t+2κ , then with

probability at least 1− τ , for any t ≥ 0 we have:

R̂Q(θQ,t)− R̂Q(θ̂Q) ≤
m1(1 + 2κQ)(

2
m2

1
∥∇R̂Q(θQ,0)∥2 + 2∥θQ,0∥2)
t+ 2κ

+
6Ĝ2

θ log(2/τ)(log t+ 1)

m1(t+ 2κ)
.

Proof. We first examine the boundedness of ∥θQ,t∥. Define et
.
= ∇ℓ(θQ,t;xt, yt)−∇ℓ(θQ,0;xt, yt)

. According to updating rule of θQ,t we have

∥θQ,t+1 − θQ,0∥ ≤ ∥θQ,t − αt∇ℓ(θQ,t;xt, yt)− (θQ,0 − αt∇ℓ(θQ,0;xt, yt))∥
+ αt ∥∇ℓ(θQ,0;xt, yt)∥

=

√
∥θQ,t − θQ,0∥2 − 2αt ⟨et, θQ,t − θQ,0⟩+ α2

t ∥et∥
2

+ αt ∥∇ℓ(θQ,0;xt, yt)∥
≤ ∥θQ,t − θQ,0∥+ αt ∥∇ℓ(θQ,0;xt, yt)∥

≤
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j=0

α2
j ∥∇ℓ(θQ,0;xj , yj)∥2

≤
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1
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t+ 2κ
sup

(x,y)∈SQ

∥∇ℓ(θQ,0;x, y)∥

≤ 1 + log(T + 2κ)

m1
sup

(x,y)∈SQ

∥∇ℓ(θQ,0;x, y)∥ (13)

where the third step is due to the co-coercivity of the gradient of the convex and smooth functions:

⟨∇ℓ(θQ,t;xt, yt)−∇ℓ(θQ,0;xt, yt), θQ,t − θQ,0⟩ ≥
1

m2
∥∇ℓ(θQ,t;xt, yt)−∇ℓ(θQ,0;xt, yt)∥2 .
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Hence we can bound ∥θQ,t∥ as

∥θQ,t∥ ≤ ∥θQ,t − θQ,0∥+ ∥θQ,0∥

≤ 1 + log(T + 2κ)

m1
sup

(x,y)∈SQ

∥∇ℓ(θQ,0;x, y)∥ .

Hence we can compute sub-Gaussian parameter. By the definition of Ĝθ∥∥∥∇ℓ(θQ,t;xt, yt)−∇R̂Q(θQ,t)
∥∥∥ ≤ 2 sup

(x,y)∈SQ

∥∇ℓ(θQ,t;x, y)∥ ≤ 2Ĝθ

According to Proposition 2, we know
∥∥∥∇ℓ(θQ,t;xt, yt)−∇R̂Q(θQ,t)

∥∥∥ is Ĝ2
θ sub-Gaussian.

Now, we evoke the result from Theorem 3.7 from [29] that if the gradient noise is Ĝ2
θ sub-Gaussian,

then with our choice of αt, with probability at least 1− τ it holds for any integer t > 0 that

R̂Q(θQ,t)− R̂Q(θ̂Q) ≤
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+

6Ĝ2
θ log(2/τ)(log t+ 1)

m1(t+ 2κ)
.

We further bound ∥θ̂Q∥2 as

∥θ̂Q∥2 ≤ 2∥θ̂Q − θQ,0∥2 + 2∥θQ,0∥2

≤ 4

m1
(R̂Q(θQ,0)− R̂Q(θ̂Q)) + 2∥θQ,0∥2

≤ 4

m1
(R̂Q(θQ,0)− min

θ∈RD
R̂Q(θ)) + 2∥θQ,0∥2

≤ 4

m1
· 1

2m1

∥∥∥∇R̂Q(θQ,0)
∥∥∥2 + 2∥θQ,0∥2

which concludes the proof.

14.1 Proof of Theorem 4

Proof. The proof is almost identical to that of Theorem 2. In Section 13.2, choosing CPQ =

m1(1 + 2κ)( 2
m2

1
∥∇R̂Q(θQ,0)∥2 + 2∥θQ,0∥2) + 6Ĝ2

θ log(2/τ)
m1

and plugging in g̃(θ) = R̂Q(θ) −
R̂Q(θQ,T )− 3ϵQ + ϵ0, then we have

g(θ̄T ) = g(θ̄T )− g̃(θ̂PQ)

= g̃(θ̄T )− g̃(θ̂PQ)− (g̃(θ̄T )− g(θ̄T ))

= g̃(θ̄T )− g̃(θ̂PQ)− (R̂Q(θ̂Q)− R̂Q(θQ,T ) + ϵ0)

≥
〈
∇g̃(θ̂PQ), θ̄T − θ̂PQ

〉
−∆ =

∥∥∥∇g̃(θ̂PQ)
∥∥∥ ∥∥∥θ̄T − θ̂PQ

∥∥∥−∆

Let θ0 be such that g(θ0) = 0, and then we have

min
g̃(θ)=0

∥∇g(θ)∥ ≥ min
g̃(θ)=0

∥∇g(θ0)∥ − ∥∇g(θ0)−∇g(θ)∥

≥ r(3ϵQ)− 2m1 (g(θ0)− g(θ)) = r − 2m1g(θ0)|g̃(θ)=0

= r(3ϵQ)− 2m1(ϵ0 − (R̂Q(θQ,T )− R̂Q(θ̂Q)))

≥ r(3ϵQ)− 2m1ϵ0

, so g(θ̄T ) ≥ (r(3ϵQ)− 2m1ϵ0)
∥∥∥θ̄T − θ̂

∥∥∥−∆. Since we choose ϵ0 =
CPQ

T and T ≥ 4CPQm1

r(3ϵQ) , we

know r(3ϵQ)− 2m1ϵ0 ≥ 1
2r(3ϵQ). The rest of the proof follows the same way.
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14.2 Proof of Proposition 1

Proof. By the standard Rademacher complexity analysis (see [26]) we know:

sup
h∈H

|Rµ(θ)− R̂µ(θ)| ≤ 2Rn(ℓ ◦ H) +Mℓ

√
log 2

τ

2nµ
.

Plugging in the upper bound of Rn(ℓ ◦ H) from Assumption 5 concludes the proof.

14.3 Proof of Corollary 1

Proof. First, since θ̂PQ ∈ {θ : R̂Q(θ)− R̂Q(θ̂Q) ≤ 3ϵQ}, then by Proposition 1 and our choice of
ϵQ we know EQ(θ̂PQ) ≤ 5ϵQ with probability at least 1− τ over the randomness of SQ.

Then we discuss by cases. If θ∗P ∈ {θ : R̂Q(θ) − R̂Q(θ̂Q) ≤ 3ϵQ}, then since R̂P (θ̂PQ) −
R̂P (θ̃PQ) ≤ ϵP , by Proposition 1 and our choice of ϵP we know with probability at least 1− 2τ over
the randomness of SP and Algorithm 3,

EP (θ̂PQ) = RP (θ̂PQ)−RP (θ
∗
P )

= RP (θ̂PQ)− R̂P (θ̂PQ) + R̂P (θ̂PQ)− R̂P (θ̃PQ) + R̂P (θ̃PQ)− R̂P (θ
∗
P )︸ ︷︷ ︸

≤0

+ R̂P (θ
∗
P )−RP (θ

∗
P ) ≤ 3ϵP .

Hence EQ(θ̂PQ) ≤ δ(3ϵP ).

If θ∗P /∈ {θ : R̂Q(θ)− R̂Q(θ̂Q) ≤ 3ϵQ}, then we know EQ(θ∗P ) ≥ ϵQ with probability at least 1− τ
over the randomness of SQ. This is because for any θ such that EQ(θ) ≤ ϵQ, it must be in the set
{θ : R̂Q(θ)− R̂Q(θ̂Q) ≤ 3ϵQ}. To see this, note that

ÊQ(θ) ≤ EQ(θ) + 2ϵQ ≤ 3ϵQ.

Hence we know

EQ(θ̂PQ) ≤ 5ϵQ ≤ 5EQ(θ∗P ) ≤ 5δ(ϵP ).

Putting piece together we have with probability at least 1− 3τ , it holds that

EQ(θ̂PQ) ≤ 5min {ϵQ, δ(3ϵP )} .
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