
Neural Solver Selection for Combinatorial Optimization

Chengrui Gao * 1 2 Haopu Shang * 1 2 Ke Xue 1 2 Chao Qian 1 2

Abstract

Machine learning has increasingly been employed
to solve NP-hard combinatorial optimization prob-
lems, resulting in the emergence of neural solvers
that demonstrate remarkable performance, even
with minimal domain-specific knowledge. To
date, the community has created numerous open-
source neural solvers with distinct motivations
and inductive biases. While considerable efforts
are devoted to designing powerful single solvers,
our findings reveal that existing solvers typi-
cally demonstrate complementary performance
across different problem instances. This suggests
that significant improvements could be achieved
through effective coordination of neural solvers
at the instance level. In this work, we propose the
first general framework to coordinate the neural
solvers, which involves feature extraction, selec-
tion model, and selection strategy, aiming to al-
locate each instance to the most suitable solvers.
To instantiate, we collect several typical neural
solvers with state-of-the-art performance as al-
ternatives, and explore various methods for each
component of the framework. We evaluated our
framework on two typical problems, Traveling
Salesman Problem (TSP) and Capacitated Vehicle
Routing Problem (CVRP). Experimental results
show that our framework can effectively distribute
instances and the resulting composite solver can
achieve significantly better performance (e.g., re-
duce the optimality gap by 0.88% on TSPLIB and
0.71% on CVRPLIB) than the best individual neu-
ral solver with little extra time cost. Our code is
available at https://github.com/lamda-bbo/neural-
solver-selection.

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, China 2School of Artificial
Intelligence, Nanjing University, China. Correspondence to: Chao
Qian <qianc@nju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Combinatorial Optimization Problems (COPs) involve find-
ing an optimal solution over a set of combinatorial alter-
natives, which has broad and important applications such
as logistics (Konstantakopoulos et al., 2022) and manufac-
turing (Zhang et al., 2019). To solve COPs, traditional ap-
proaches usually depend on heuristics designed by experts,
requiring extensive domain knowledge and considerable
effort. Recently, machine learning techniques have been
introduced to automatically discover effective heuristics for
COPs (Bengio et al., 2021; Cappart et al., 2023), leading to
the burgeoning development of end-to-end neural solvers
that employ deep neural networks to generate solutions for
problem instances (Bello et al., 2017; Kool et al., 2019;
Joshi et al., 2019). Compared to traditional approaches,
these end-to-end neural solvers can not only get rid of the
heavy reliance on expertise, but also realize better inference
efficiency (Bello et al., 2017).

To enhance the capabilities of neural solvers, a variety of
methods have been proposed, with intensive effort on the
design of frameworks, network architectures, and training
procedures. For example, to improve the performance across
different distributions, (Jiang et al., 2022) proposed adap-
tively joint training over varied distributions, and (Bi et al.,
2022) leveraged knowledge distillation to integrate the mod-
els trained on different distributions. For generalization
on large-scale instances, (Fu et al., 2021) implemented a
divide-and-conquer strategy, (Luo et al., 2023) proposed a
heavy-decoder structure to better capture the relationship
among nodes, while (Gao et al., 2024) utilized the local
transferability and introduced an additional local policy
model. Diffusion models (Sun & Yang, 2023) have also
been adapted to generate the distribution of optimal solu-
tions, demonstrating impressive results. More works include
bisimulation quotienting (Drakulic et al., 2023), latent space
search (Chalumeau et al., 2023), local reconstruction (Cheng
et al., 2023; Ye et al., 2024; Zheng et al., 2024) and so on.

As various neural solvers are emerging in the community,
the state-of-the-art records for the overall performance on
benchmark problems are frequently refreshed. However,
the detailed comparison of these neural solvers on each
instance has been rarely discussed. Here, we empirically ex-
amined the performance of several prevailing neural solvers

1

https://github.com/lamda-bbo/neural-solver-selection
https://github.com/lamda-bbo/neural-solver-selection


Neural Solver Selection for Combinatorial Optimization

LEHD BQ ELG Omni0.0

0.1

0.2

0.3

0.4

Pe
rc

en
ta

ge
s o

f W
in

ni
ng

 (%
)

(a) Percentages of Winning

LEHD BQ ELG Omni0

2

4

6

8

10

Op
tim

al
ity

 G
ap

 (%
)

Scale-related capacity
Capacity from triangular distributions 

(b) Optimality Gap (Average)

Open-source community
Solver 1 Method: LEHD

• Autoregressive
• Training scale: 100

Information:

Solver 2 Method: DIFUSCO

• Diffusion model
• Training scale: 500

Information:

……
Diverse solver pool

Feature extraction

Selection model

Selection strategy

COP instance

Selected
solvers 

Solve

(c) Our Framework

Figure 1: (a), (b): Observation from the comparison of prevailing neural solvers at instance level. Details of the settings are
provided in Section 4.1. (c): Our proposed selection framework.

on each instance, as illustrated in Figure 1(a) and 1(b).
As expected from the no-free-lunch theorem (Wolpert &
Macready, 1997), we find that:

• As shown in Figure 1(a), there exists no single neural
solver that can dominate all the others on every instance, and
different neural solvers win on different instances, demon-
strating their complementary performance at instance level.

• As shown in Figure 1(b), the modification of instance
distribution can almost reverse the domination relationship
of neural solvers, which further verifies that different neural
solvers are good at instances with specific characteristics
due to their intrinsic inductive biases.

These observations suggest that it may potentially bring
impressive improvements to the overall performance, if
multiple neural solvers are coordinated to solve instances to-
gether. In fact, recent works have already made preliminary
attempts from the perspective of ensemble learning (Jiang
et al., 2023) and population-based training (Grinsztajn et al.,
2023). However, their individual solvers share the same ar-
chitecture, resulting in limited diversity. On the other hand,
as all of the individual solvers should run during inference,
these methods can hardly achieve ideal efficiency.

Motivated by the observations above, we, for the first time,
propose a general framework to coordinate end-to-end neu-
ral solvers for COPs at the instance level by selecting suit-
able individual solvers for each instance, as illustrated in
Figure 1(c). Specifically, our proposed framework consists
of three key components, which are summarized as follows:

• Feature extraction: For each problem instance, extract
features for effectively identifying their characteristics.

• Selection model: Based on the features of instances, train
a selection model that can be utilized to identify suitable
solvers for each instance.

• Selection strategy: Due to the intricate structures of

COPs, using only the most suitable individual solver pre-
dicted by the selection model may fail. Therefore, it is
important to design robust selection strategies based on the
confidence of the selection model.

To verify the effectiveness of our proposed framework, we
collect several prevailing open-source neural solvers and
their released models with competitive performance in the
community to construct the pool of individual solvers, and
provide several implementations for each component of the
framework. For feature extraction, we utilize the graph at-
tention network (Veličković et al., 2018; Kool et al., 2019)
to encode COP instances, and further propose a refined en-
coder with pooling to leverage the hierarchical structures of
COPs. For selection model, we train it from the perspective
of classification and ranking, respectively. We also imple-
ment several selection strategies, including top-k selection,
rejection-based selection, and so on. Detailed descriptions
are provided in Section 3. We conduct experiments on two
widely studied COPs: Traveling Salesman Problem (TSP)
and Capacitated Vehicle Routing Problem (CVRP). Experi-
mental results exhibit that our framework can generally se-
lect suitable individual solvers for each instance to achieve
significantly better performance with limited extra time con-
sumption. Compared to the best individual solver, our frame-
work reduces the optimality gap by 0.82% on synthetic
TSP, 2.00% on synthetic CVRP, 0.88% on TSPLIB (Reinelt,
1991), and 0.71% on CVRPLIB Set-X (Uchoa et al., 2017).
As the first preliminary attempt on neural solver selection
for COPs, we also analyze the influence of various imple-
mentations of components, and discuss on future directions.

2. Related works
2.1. End-to-end neural solvers for COPs

Traditional approaches for COPs have achieved impressive
results, but they often rely on problem-specific heuristics

2



Neural Solver Selection for Combinatorial Optimization

and domain knowledge by experts (Helsgaun, 2000; 2017).
Instead, recent efforts focus on utilizing end-to-end learning
methods. A prominent fashion is autoregression, which em-
ploys graph neural networks in an encoder-decoder frame-
work and progressively extends a partial solution until a
complete solution is constructed (Vinyals et al., 2015; Bello
et al., 2017; Kool et al., 2019). However, these methods tend
to exhibit poor generalization performance across distribu-
tions and scales (Joshi et al., 2022). To address the general-
ization issue, considerable efforts have been dedicated from
various perspectives, including meta-learning (Zhou et al.,
2023), knowledge distillation (Bi et al., 2022), prompt learn-
ing (Liu et al., 2024), instance-conditioned adaptation (Zhou
et al., 2024a), adversarial training (Wang et al., 2024) and
nested local views (Fang et al., 2024).

Another popular kind of end-to-end learning methods is
non-regressive, which predicts or generates the distributions
of potential solutions. Typically, (Joshi et al., 2019; Ye
et al., 2023) employed graph neural networks to predict
the probability of components appearing in an optimal so-
lution, represented with the form of heatmap. Diffusion
models (Sun & Yang, 2023; Sanokowski et al., 2024) have
also been adapted to generate the distribution of optimal
solutions, demonstrating better expressiveness than classical
push-forward generative models (Salmona et al., 2022).

2.2. Solving COPs with multiple neural solvers

Recent studies have made preliminary attempts to integrate
multiple neural solvers to enhance overall performance on
COPs. For example, (Jiang et al., 2023) adopted ensemble
learning, where multiple neural solvers with identical archi-
tecture are trained on different instance distributions through
Bootstrap sampling. During inference, the outputs of all
the solvers are averaged at each action step. (Grinsztajn
et al., 2023) proposed a population-based training method
Poppy, where multiple decoders with a shared encoder are
trained simultaneously as a population of solvers, with a re-
ward targeting at maximizing the overall performance of the
population. When solving a problem instance, each solver
generates solutions independently, and the best solution is
selected as the final result. However, these works suffer
from heavy cost as multiple solvers have to be run for each
instance. Even they propose to share a common encoder
for each solver, experiments still demonstrate undesired in-
ference time (Grinsztajn et al., 2023). On the other hand,
different solvers share the same neural architecture, which
may limit the diversity and thus the final performance.

Consider that the burgeoning community has proposed many
methods from various perspectives, resulting in diverse neu-
ral solvers with different inductive biases. Properly coordi-
nating them can potentially bring significant improvement
on overall performance. Motivated by the observation in

Figure 1(a) and 1(b), we propose to select suitable ones from
a pool of diverse individual solvers for each instance. Note
that similar idea has been utilized in the area of algorithm
selection (Kerschke et al., 2019; He et al., 2025) and model
selection (Zhang et al., 2023), but has never been explored
in the area of neural combinatorial optimization. By solver
selection at instance level, any existing or newly constructed
neural solver can be utilized, and only the selected individ-
ual solvers need to be run in inference, thereby maintaining
high efficiency.

3. The proposed framework
This section introduces our proposed framework of coordi-
nating neural solvers for COPs. Our target is learning to
select the suitable solvers for each problem instance. To
address it, the framework comprises three key components:

Feature extraction: To select the most suitable neural
solvers for each instance, it is essential to extract the in-
stance features, which is challenging as the COPs are usually
intricate. In this work, we first utilize the graph attention
encoder (Kool et al., 2019) to encode COP instances, and
further propose a refined graph encoder with pooling, which
can leverage the hierarchical structures of COPs.

Selection model: We train a neural selection model with the
graph encoder to identify the most suitable solvers. Specif-
ically, we implement two loss functions from the perspec-
tives of classification and ranking.

Selection strategies: Due to the complexity of COPs, it
may be risky to rely solely on the selection model to iden-
tify the best solver. To address this, we propose compromise
strategies to allocate multiple solvers (if necessary) to a sin-
gle instance based on the confidence levels of the selection
model, pursuing better performance with limited extra cost.

3.1. Feature extraction

For feature extraction, it depends on the COP to be solved.
Here, we use the two most prevailing problems, TSP and
CVPR, in the neural solver community for COPs (Kwon
et al., 2020; Luo et al., 2023; Drakulic et al., 2023) as ex-
amples, which will also be employed in our experiments.
TSP and CVRP involve finding optimal routes over a set
of nodes. For TSP, the objective is to find the shortest pos-
sible route that visits each node exactly once and returns
to the starting node. Each TSP instance consists of nodes
distributed in Euclidean space. For CVRP, the goal is to plan
routes for multiple vehicles to serve customer nodes with
varying demands, starting and ending at a depot node, while
minimizing the total travel distance and satisfying vehicle
capacity constraints (Dantzig & Ramser, 1959). Both TSP
and CVRP instances can be represented as fully connected
graphs, where nodes correspond to locations (cities or cus-

3



Neural Solver Selection for Combinatorial Optimization

tomers). The graph representation makes them suitable for
encoding using Graph Neural Networks (GNNs), which can
effectively capture the structural information inherent in
these problems (Khalil et al., 2017; Kool et al., 2019). In
this paper, we design two types of GNN-based encoders
tailored for TSP and CVRP instances as follows.

Graph attention encoder. We take the CVRP as an exam-
ple to describe the computation of the graph encoder. The
raw features x ∈ RN×3 of a CVRP instance are a set of
nodes {(xi, yi,mi)|i ∈ [N ]}, where (xi, yi) are the node
coordinates, mi is the node demand, N is the number of
nodes, and [N ] denotes the set {1, 2, . . . , N}. First, a linear
layer is employed on every node for initial node embed-
dings, i.e., H0 = xW , where W ∈ R3×d are the weights
and d denotes the embedding dimension. Given initial em-
beddings, multiple graph attention layers (Veličković et al.,
2018; Kool et al., 2019) are applied to iteratively update the
node embeddings as H l = AttentionLayerl(H l−1), where
l ∈ [L] and L is the number of layers. Since the graphs of
TSP and CVRP are both fully connected, the graph attention
layer covers every pair of nodes and self-connections, which
becomes similar to the self-attention mechanism (Vaswani
et al., 2017). Details of the attention layer are in Appendix
A.1. Finally, the node embeddings output by the last layer
are averaged to form the instance representation, like most
COP encoders (Khalil et al., 2017; Kool et al., 2019).

Hierarchical graph encoder. Averaging the final node
embeddings may result in sub-optimal instance represen-
tations that are too flat to effectively capture the hier-
archical structures inherent in COPs (Goh et al., 2024).

Graph attention

×𝑳 blocks

Pooling

+

Hierarchical 
feature 𝒐𝒍

Instance features

COPs Instance

Final feature 𝒐𝑳#𝟏

Readout

𝒐𝟏 + 𝒐𝟐 +⋯+ 𝒐𝑳 + 𝒐𝑳#𝟏

Figure 2: Illustration of the hi-
erarchical graph encoder.

Inspired by (Lee et al.,
2019), we design a hier-
archical graph attention
encoder to address this
limitation, which suc-
cessively downsamples
the graph of an instance
using graph pooling,
and aggregates features
from each downsam-
pling level to construct
a comprehensive graph
representation, as illus-
trated in Figure 2. The
hierarchical graph en-
coder contains L blocks.
In each block, several graph attention layers are applied, and
then the graph pooling layer selects representative nodes to
form a coarsened graph that preserves important features.
Consider the l-th block, where the number of selected nodes
is denoted as Nl. To quantify the representativeness of each
node for graph pooling, an additional graph attention layer
is introduced to compute representative scores. Specifically,

the graph attention layer computes score embeddings H l
score

based on the current node embeddings H l, which encode
rich information about the graph structure and node features.
These score embeddings H l

score are then mapped to scalar
representative scores via linear layer. The complete process
is shown as follows:

H l
score = AttentionLayerlscore(H

l), Zl = σ(H l
scoreW

l
score),

where Zl ∈ RN l−1×1 are the representative scores of
the N l−1 nodes preserved in the (l − 1)-th block, σ is a
non-linear function (here we use the tanh function), and
W l

score ∈ Rd×1 are the parameters of the linear layer. Subse-
quently, we sort the nodes according to their representative
scores and select top-N l nodes (N l < N l−1 < N ) to
preserve. To make this pooling layer trainable via back-
propagation (LeCun et al., 2002), we further combine the
representative score together with the embeddings of their
corresponding nodes as follows: H̃ l = H l + Zl1, where
1 ∈ R1×d is a vector with all the elements being 1. Intu-
itively, this operation can separate the embeddings of high
scored nodes from the embeddings of low scored nodes.

Figure 2 shows the complete encoder, where L blocks are
stacked, and each block is formed by several graph atten-
tion layers followed by a pooling layer. By successively
applying L encoder blocks, the number of preserved nodes
gradually decreases as N l = α · N l−1 (α is set to 0.8 in
our experiments). This process constructs a hierarchy of
the original graph and its coarsened versions, enabling the
encoder to capture multi-level structural information effec-
tively. Within each block, we apply a readout layer that
aggregates the embeddings after the graph attention layers
by mean pooling and max pooling (Lee et al., 2019), i.e.,

ol = σ(Mean(H l)∥Max(H l)),

where Mean() computes the average embedding over the
nodes, Max() computes the maximum along the column
dimension, ∥ denotes concatenation, and σ is a non-linear
function. The result ol provides the representation of the
l-th coarsened graph. At the last layer, we also readout
oL+1 from the final embeddings. To form the hierarchical
instance representation, we sum the representations of all
levels as o =

∑L+1
l=1 ol.

3.2. Selection model

We employ a Multiple-Layer Perception (MLP) to predict
the compatibility scores of neural solvers, where a higher
score indicates that it is more suitable to allocate the instance
to the corresponding neural solver. This MLP model takes
the instance representation and the instance scale N as input
and outputs a score vector, where the value of each index is
the score of the corresponding neural solver. In summary,

4



Neural Solver Selection for Combinatorial Optimization

the graph encoder and the MLP are cascaded to compose a
selection model, which can produce the compatibility scores
of solvers for the COP instances in an end-to-end manner.
Advanced neural solver features can be incorporated for
richer information, as discussed in Section 5. However, we
find that even using fixed indices of neural solvers can be
effective, which will be clearly shown in our experiments.
We train the selection model using a supervised dataset
comprising thousands of synthetic COP instances. The
objective values obtained by the neural solvers are recorded
as supervision information. Intuitively, a neural solver with
a lower objective value (for minimization) has a higher
compatibility score. To learn it, we employ two losses from
the perspectives of classification and ranking.

Classification. The selection problem is formulated as
classification, where the most suitable neural solver for a
given instance serves as the ground truth label. By employ-
ing classification loss functions such as cross-entropy loss
in our experiments, we can train a selection model. How-
ever, this approach focuses on identifying the optimal neural
solver and ignores sub-optimal solvers, which may lead to
unsatisfactory performance when the selection is inaccurate.

Ranking. The neural solvers can be sorted according to
the objective values they obtain, thereby forming a ranking
of the given solvers, denoted by ϕ : [M ] → [M ], where
ϕ(i) is the index of the rank-i solver and M is the number
of solvers. We then train the selection model by maximizing
the likelihood of producing correct rankings based on the
computed scores (Xia et al., 2008),

max
θ

EI [

M∑
i=1

log
exp(gθ(I)ϕI(i))∑M
j=i exp(gθ(I)ϕI(j))

],

where gθ denotes the selection model with parameters θ,
I denotes a problem instance, and ϕI is the ground-truth
ranking on instance I . This ranking loss can leverage the
dominance relationship of all neural solvers, including sub-
optimal ones, which can make the selection more robust.

3.3. Selection strategies

Considering that the intricate structures of COPs may pose
great challenges to the selection model, besides greedy se-
lection (choosing the highest-scoring solver), we propose
several compromise strategies that allow multiple solvers
for a single instance based on the confidence level of the
selection model, aiming to improve the overall performance
with little extra cost.

• Top-k selection. The top-k selection method can be
adopted for better optimality, where we select and ex-
ecute the neural solvers with top-k scores for each in-
stance, thus constructing a portfolio of multiple solvers.

This approach increases the likelihood of including
the optimal solver but incurs additional computational
overhead due to the execution of multiple solvers.

• Rejection-based selection. To balance efficiency and
effectiveness, we propose the rejection-based selection
strategy, which adaptively selects greedy or top-k se-
lection. Recognizing that the confidence of greedy se-
lection varies between instances, an advanced strategy
is to employ the top-k selection for low-confidence in-
stances to enhance performance and utilize only greedy
selection for high-confidence ones to minimize compu-
tational cost. To implement this strategy, we can use a
confidence measure to determine whether to accept or
reject greedy selection. If the confidence in greedy se-
lection is below a threshold, we reject it and apply the
top-k selection to the instance. In this paper, we adopt
the simple yet effective softmax response (Hendrycks
& Gimpel, 2017) as the confidence measure and de-
fine the threshold by rejecting a certain fraction of test
instances with the lowest confidence levels.

• Top-p selection. We further propose a top-p selec-
tion strategy that selects the smallest subset of solvers
with normalized scores sum up to at least p. It can
adaptively determine the number of selected neural
solvers by covering a certain amount of confidence,
rather than relying on a fixed number k. The value of
p is predefined or adjusted according to time budget.

4. Experiments
To examine the effectiveness of our proposed selection
framework, we conduct experiments on TSP and CVRP,
investigating the following Research Questions (RQ): RQ1:
How does the proposed selection framework perform com-
pared to individual neural solvers? RQ2: How does the
proposed selection framework perform when the problem
distribution shifts and the problem scale increases? RQ3:
How do different implementations of components affect the
performance of the framework? We introduce the experi-
mental settings in Section 4.1 and investigate the above RQs
in Section 4.2.

4.1. Experimental settings

We generate synthetic TSP and CVRP instances by sam-
pling node coordinates from Gaussian mixture distribu-
tions (more details of the data generation are provided in
Appendix A.2.1). For training, we generate 10, 000 TSP
and CVRP instances and apply 8-fold instance augmen-
tation (Kwon et al., 2020). For test, a smaller synthetic
datasets with 1, 000 instances is used. Figures 1(a) and
1(b) in Section 1 depict results on the CVRP test dataset.
To evaluate the out-of-distribution performance, we utilize

5



Neural Solver Selection for Combinatorial Optimization

two well-known benchmarks with more complex problem
distributions and larger problem scales (up to N = 1002):
TSPLIB (Reinelt, 1991) and CVRPLIB Set-X (Uchoa et al.,
2017). For TSPLIB, we select a subset of instances with
N ≤ 1002, and CVRPLIB Set-X includes instances ranging
from N = 100 to 1000. These problem scales are larger
than N ∈ [50, 500] in our training datasets. Notably, in Ap-
pendix A.10, we also include experiments on larger scales
up to N = 2000 for further evaluation.

Open-source neural solvers. We choose recent open-
source neural solvers with state-of-the-art performance
as the candidates, including Omni (Zhou et al., 2023),
BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023),
DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023),
ELG (Gao et al., 2024), INViT (Fang et al., 2024) and MV-
MoE (Zhou et al., 2024b). More details about the realization
can be found in Appendix A.2.2. Considering that some
neural solvers contribute little to the overall performance,
we iteratively eliminate the least contributive solver from
the candidates, resulting in a more compact neural solver
zoo. This process reduces the zoo size to 7 solvers for TSP
and 5 for CVRP. Further details of the elimination procedure
are provided in Appendix A.3.

Hyperparameters. Limited by space, we provide the
details of hyperparameters in our experiments in Ap-
pendix A.2.3, including the hyperparameters of graph en-
coders, hyperparameters of training, and hyperparameter of
selection strategies.

Performance metrics. Following previous studies, we use
the gap to the best-known solution cI(σ̂)−cI(σ

∗)
cI(σ∗) as the per-

formance metric, called optimality gap, where σ̂ is the solu-
tion obtained by each method, σ∗ is the best-known solution
computed by extensive search of expert solvers (Helsgaun,
2017; Vidal, 2022), and cI() is the cost function of problem
instance I . We also report the average time (including both
the running of solvers and selection) to evaluate efficiency, .

4.2. Experimental results

RQ1: How does the proposed selection framework per-
form compared to individual neural solvers? In Table 1,
we present the performance of several implementations of
our selection framework on synthetic TSP and CVRP, along-
side the results of the top-3 individual neural solvers1. We
can observe that all implementations of our framework out-
perform the best neural solver on both TSP and CVRP,
demonstrating the effectiveness of our framework. For ex-
ample, using ranking loss and the top-k selection strategy
with k = 2, our framework achieves average optimality
gaps of 1.51% on TSP and 4.82% on CVRP, surpassing the

1DIFUSCO and T2T have multiple trained models. We only
report the best results of these models.

best individual solver’s gaps of 2.33% on TSP and 6.82%
on CVRP, achieved by DIFUSCO and Omni, respectively.
Moreover, except utilizing the top-k strategy, our selection
framework is nearly as efficient as running a single solver. In
some cases, our framework can obtain better optimality gaps
while consuming even less time. For instance, using rank-
ing loss and greedy selection on TSP leads to the average
optimality gap 1.86% with 1.33s, while the best individual
solver DIFUSCO achieves 2.33% gap with 1.45s. In Table 1,
Oracle (the fourth row) denotes the optimal performance
for selection, which is obtained by running all individual
solvers for each instance and selecting the best one. The
best optimality gaps achieved by our selection framework
(using ranking loss and top-k selection with k = 2) are close
to Oracle, with gaps of 1.51% on TSP and 4.81% on CVRP,
compared to Oracle’s gaps of 1.24% on TSP and 4.64% on
CVRP. Furthermore, our framework can offer significant
speed advantages over Oracle, e.g., consuming an average
time of 2.56s on TSP, whereas Oracle requires an average
time of 8.93s. Note that complete results for all individual
solvers are provided in Appendix A.12.

Extension of RQ1: Is the performance of the top-k se-
lection better than the solver portfolio with the same
size? The top-k strategy enhances the performance by
running a selected subset of the solver zoo for each instance,
which certainly costs more time than individual solvers.
For a fair comparison, we benchmark our top-k selection
method against a solver portfolio of the same size k. We
construct this solver portfolio by exhaustively enumerating
all possible subsets of size k and selecting the one with the
best overall performance. As shown in Appendix A.6, our
top-k selection consistently outperforms the size-k solver
portfolio across k = {1, 2, 3, 4} on all datasets, i.e., TSP,
CVRP, TSPLIB and CVRPLIB Set-X, demonstrating the
effectiveness of our selection model.

RQ2: How does the proposed selection framework per-
form when the problem distribution shifts and the prob-
lem scale increases? We evaluate the generalization perfor-
mance on two benchmarks, TSPLIB and CVRPLIB Set-X,
which contain out-of-distribution and larger-scale instances.
As shown in Table 2, all implementations of our selection
framework generalize well, where the ranking model us-
ing top-k selection improves the optimality gap by 0.88%
(i.e., 1.95%-1.07%) on TSPLIB and by 0.71% (i.e., 6.10%-
5.39%) on CVRPLIB Set-X, compared to the best individual
solvers T2T and ELG on these two benchmarks. These re-
sults show that our selection framework is robust against the
distribution shifts and increases in problem scale.

RQ3: How do different implementations affect perfor-
mance? We evaluate and compare different implementa-
tions of the three components in our framework:

(1) Feature extraction methods. We compare the man-

6



Neural Solver Selection for Combinatorial Optimization

Table 1: Empirical results on synthetic TSP and CVRP datasets, reporting the mean (standard deviation) over five independent
runs. The top three individual solvers are included for comparison, and Oracle denotes the optimal performance for selection,
which is computed by running all individual solvers in the zoo for each instance and selecting the best one. The best
individual solver and its results are underlined, and the best optimality gaps, excluding Oracle, are highlighted in boldface.

Methods TSP

Gap Time

BQ (3rd) 3.00% 1.40s
T2T (2nd) 2.40% 1.58s
DIFUSCO (1st) 2.33% 1.45s
Oracle 1.24% 8.93s

Selection by classification

Greedy 1.94% (0.02%) 1.36s (0.01s)
Top-k (k = 2) 1.53% (0.01%) 2.52s (0.04s)
Rejection (20%) 1.81% (0.01%) 1.63s (0.01s)
Top-p (p = 0.5) 1.84% (0.03%) 1.55s (0.06s)

Selection by ranking

Greedy 1.86% (0.01%) 1.33s (0.01s)
Top-k (k = 2) 1.51% (0.02%) 2.56s (0.03s)
Rejection (20%) 1.75% (0.02%) 1.63s (0.01s)
Top-p (p = 0.5) 1.68% (0.02%) 1.86s (0.07s)

Methods CVRP

Gap Time

LEHD (3rd) 7.37% 1.01s
BQ (2nd) 7.20% 1.59s
Omni (1st) 6.82% 0.24s
Oracle 4.64% 4.38s

Selection by classification

Greedy 5.35% (0.02%) 0.64s (0.01s)
Top-k (k = 2) 4.81% (0.01%) 1.87s (0.03s)
Rejection (20%) 5.19% (0.03%) 0.77s (0.01s)
Top-p (p = 0.8) 5.16% (0.03%) 0.87s (0.08s)

Selection by ranking

Greedy 5.31% (0.01%) 0.62s (0.01s)
Top-k (k = 2) 4.82% (0.01%) 1.90s (0.04s)
Rejection (20%) 5.15% (0.02%) 0.74s (0.01s)
Top-p (p = 0.8) 4.99% (0.02%) 1.03s (0.03s)

ual features (Smith-Miles et al., 2010) (see Appendix A.4),
graph attention encoder (Kool et al., 2019), and hierarchical
graph encoder in Table 3. All methods are trained using
ranking loss, and we report the optimality gap with greedy
selection. As shown in Table 3, even the simplest manual
features perform well, achieving better results than the best
individual solver across three datasets — TSP, CVRP, and
TSPLIB. This further validates the effectiveness of our selec-
tion framework. Comparing the third and fourth columns,
we observe that the graph attention encoder consistently
outperforms manual features on all datasets, verifying the
superiority of learned features. More manual features are
compared in Appendix A.5. Furthermore, by comparing the
fourth and fifth columns, we find that while the graph atten-
tion encoder has already been effective on synthetic datasets,
introducing the hierarchical encoder can further improve
generalization performance on out-of-distribution datasets,
TSPLIB and CVRPLIB Set-X, which is quite important in
practice. This enhanced generalization capability may be
attributed to the hierarchical encoder’s ability to leverage
the inherent hierarchical structures in COPs. More ablation
studies of the hierarchical encoder are in Appendix A.7.

(2) Loss functions to train the selection model. We can
clearly observe from Tables 1 and 2 that the model trained
with ranking loss generally outperforms that trained with
classification loss, particularly when employing top-p selec-
tion or under out-of-distribution settings. We also compare
their accuracy of selecting the best single individual, which
is similar as shown Appendix A.9. Thus, the benefit of
ranking loss over classification loss shows the importance
of incorporating the dominance relationships among sub-

optimal solvers.

(3) Selection strategies. Greedy selection is efficient by
selecting only the predicted best solver. Instead, top-k se-
lection selects the best k solvers for better optimality gaps,
but resulting in longer time. Rejection-based and top-p se-
lection provide a trade-off between optimality gap and time.
Here, we focus on the evaluation of rejection-based and
top-p selection. We tune their hyperparameters (e.g., rejec-
tion ratio, k, and p) to obtain a range of results, provided
in Appendix A.8. The results show that the rejection-based
selection with smaller k (k = 2 or 3) tends to achieve better
trade-off. Comparing top-p and rejection-based selection,
their performance has no obvious difference. This is ex-
pected as their principles are both running more individual
neural solvers when the confidence of the selection model is
insufficient. However, the top-p selection may be preferable
in practice since only one hyperparameter p is associated.

4.3. Exploration on neural solver features

To enable generalization to unseen neural solvers, we pro-
pose a preliminary feature extraction method that leverages
representative instances to characterize each neural solver.
Specifically, for a given neural solver, we sort those in-
stances where the neural solver performs the best in ascend-
ing order according to the ratio of the objective value that
the solver obtains to the runner-up objective value and select
the top 1% as its representative instances. Then, we use an
instance encoder to obtain embeddings for representative
instances as their token vectors. A two-layer transformer
model further processes these token vectors to learn a sum-

7



Neural Solver Selection for Combinatorial Optimization

Table 2: Generalization results to TSPLIB and CVRPLIB Set-X datasets, which contain real-world out-of-distribution
instances with larger scales.

Methods TSPLIB

Gap Time

BQ (3rd) 3.04% 1.44s
DIFUSCO (2nd) 2.13% 1.44s
T2T (1st) 1.95% 1.74s
Oracle 0.89% 9.14s

Selection by classification

Greedy 1.54% (0.05%) 1.33s (0.02s)
Top-k (k = 2) 1.22% (0.10%) 2.47s (0.02s)
Rejection (20%) 1.42% (0.11%) 1.54s (0.03s)
Top-p (p = 0.5) 1.49% (0.11%) 1.37s (0.02s)

Selection by ranking

Greedy 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 1.28% (0.04%) 1.46s (0.06s)

Methods CVRPLIB Set-X

Gap Time

BQ (3rd) 10.31% 2.60s
Omni (2nd) 6.21% 0.38s
ELG (1st) 6.10% 1.31s
Oracle 5.10% 6.81s

Selection by classification

Greedy 5.96% (0.12%) 1.06s (0.08s)
Top-k (k = 2) 5.44% (0.08%) 2.40s (0.25s)
Rejection (20%) 5.83% (0.12%) 1.31s (0.09s)
Top-p (p = 0.8) 5.79% (0.09%) 1.42s (0.17s)

Selection by ranking

Greedy 5.76% (0.04%) 1.31s (0.10s)
Top-k (k = 2) 5.39% (0.06%) 2.56s (0.13s)
Rejection (20%) 5.63% (0.05%) 1.60s (0.08s)
Top-p (p = 0.8) 5.61% (0.03%) 1.72s (0.08s)

Table 3: Mean (standard deviation) of optimality gaps of different feature extraction methods. All the models are trained
using ranking loss, and employ greedy selection.

Datasets Best solver Manual Attention encoder Hierarchical encdoer

TSP 2.33% 1.97% (0.01%) 1.87% (0.02%) 1.86% (0.01%)
CVRP 6.82% 5.49% (0.08%) 5.30% (0.01%) 5.31% (0.01%)

TSPLIB 1.95% 1.83% (0.03%) 1.45% (0.11%) 1.33% (0.06%)
CVRPLIB 6.10% 6.35% (0.06%) 5.87% (0.06%) 5.76% (0.04%)

marized feature, which serves as the feature representation
of the neural solver.

To integrate a newly added neural solver, we first identify its
representative instances from a synthetic dataset and employ
the aforementioned networks to compute its feature repre-
sentation. The selection model can then leverage the newly
added solver by considering its feature during selection,
without the need for any fine-tuning. The implementation
details of each component are described as follows.

Instance tokenization. We use a hierarchical graph en-
coder as the tokenization encoder to generate embeddings
for each representative instance. To stabilize the instance to-
kens during training, we update θ′ using a momentum-based
moving average of the parameters θ of the instance feature
encoder: θ′ ← m·θ′+(1−m)·θ, where m ∈ [0, 1) is a mo-
mentum coefficient (We set m = 0.99 in experiments). Only
the parameters θ are updated via back-propagation. This
momentum update ensures that θ′ evolves more smoothly
than θ, resulting in stable instance tokenization.

Transformer architecture. For each neural solver, we
utilize the tokens of its representative instances along with
a learnable summary token to compute a summary repre-

sentation. We apply two attention layers for this purpose.
The first layer is a self-attention mechanism applied over all
tokens (including the summary token), enabling interactions
among them. The second attention layer uses only the sum-
mary token as the query and all tokens as keys and values,
effectively aggregating information from all tokens into the
summary token. The final embedding of the summary token
is then output as the neural solver’s representation.

Selection model with neural solver features. The se-
lection model integrates both the instance features and the
neural solver features to output a score for each instance-
solver pair. We employ an MLP to compute these scores.
For each instance, the scores across all neural solvers are
normalized to derive the probability distribution.

To evaluate the effectiveness of this method, we remove the
second-best neural solver from the current solver zoo, train
the selection model using the supervision information over
the pruned solver zoo, and reintroduce the removed solver
during testing. Figure 3 presents the top-k selection per-
formance with and without the newly added (extra) solver.
The results show that the performance with the newly added
solver is generally better than the performance without it,
demonstrating that the selection model can leverage the

8



Neural Solver Selection for Combinatorial Optimization

1 2 3 41.2

1.4

1.6

1.8

Op
tim

al
ity

 g
ap

 (%
)

TSP

1 2 3 4

1.0

1.1

1.2

1.3

1.4

TSPLIB

Top-k (With extra  olver) Top-k

Figure 3: Performance of introducing an extra neural solver
based on the neural solver feature. The results of top-k selec-
tion with and without extra neural solver are presented. The
horizontal axis represents the number of selected solvers.

information of unseen solvers without any finetuning. In
other words, the selection model can generalize to unseen
solvers. However, we observe a slight decrease in top-1 per-
formance, indicating that the current feature design is not
accurate enough for the most precise top-1 selection. This
highlights the need for further refinement and optimization
to our preliminary feature extraction method.

5. Conclusion and discussions
In this paper, we propose a general framework for neural
solver selection for the first time, which can effectively
select suitable solvers for each instance, leading to signif-
icantly better performance with little additional computa-
tional time, as validated by the extensive experiments on two
well-studied COPs, TSP and CVRP. Besides TSP and CVRP,
our proposed selection framework is adaptable to other prob-
lems. For new problems, one only needs to customize the
feature extraction component. For instance, when adapting
our framework to scheduling problems, one can adjust the
graph attention encoder according to MatNet (Kwon et al.,
2021) (i.e., add edge embeddings). We hope this preliminary
work can open a new line for neural combinatorial optimiza-
tion. Within the proposed selection framework, we prelimi-
narily investigate several implementations of the three key
components: Feature extraction, training loss functions, and
selection strategies. Techniques such as hierarchical graph
encoder, ranking loss, rejection-based selection, and top-p
selection notably enhance overall performance. Beyond the
techniques presented, we discuss several promising avenues
for further research under this framework.

Feature extraction for neural solvers. Our method, which
uses fixed indices for neural solvers, assumes a static neural
solver zoo and cannot directly utilize any newly added neu-
ral solvers during deployment. To enable zero-shot general-
ization to unseen neural solvers, it is essential to construct a
smooth feature space for solvers, where those with similar
preferences and biases are positioned closely together. In

Section 4.3, we design a preliminary method for extracting
features of neural solvers to facilitate generalization to un-
seen solvers. The results show that it enables generalization
to unseen neural solvers, where adding an extra solver can
improve the selection performance. For future improve-
ments, some approaches may be worth exploring, such as
utilizing large language models to encode the neural solvers
from their codes and descriptions (Wu et al., 2024), or learn-
ing representations from their trained parameters (Kofinas
et al., 2024), which can involve internal solver information
and potentially bring improvements.

Runtime-aware selection for learn-to-seach solvers. In
this paper, since the average runtime of most individual neu-
ral solvers is short (approximately 1–2 seconds), we ignored
their time difference during the training of the selection
model, and only used the objective values obtained by the
neural solvers as supervision information (by classification
or ranking). However, if there are some time-consuming
learn-to-search solvers, such as NeuOpt (Ma et al., 2021;
2023) and local reconstruction methods (Kim et al., 2021;
Ye et al., 2024), in the solver pool, the runtime should be
considered in the performance ranking. In such cases, de-
veloping a runtime-aware selection method to balance com-
putational time and solution optimality would be necessary.

Enhance the neural solver zoo by training. As shown in
Figure 6, current neural solvers can exhibit complementary
performance over instances without any modification, which
has motivated our framework of neural solver selection. In-
spired by the population-based training (Grinsztajn et al.,
2023), we can further enhance their complementary ability
through finetuning, i.e., each neural solver is finetuned on
those instances where it performs the best. We can also train
new solvers from scratch by maximizing their performance
contribution to the current solver zoo and iteratively add
such new solvers for enhancement. Moreover, to facilitate
the training and deployment of a neural solver zoo, it is es-
sential to develop a unified platform that provides interfaces
for executing and training diverse neural solvers, such as an
extension to the existing RL4CO (Berto et al., 2024).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgement
This work was supported by the Science and Technol-
ogy Project of the State Grid Corporation of China (5700-
202440332A-2-1-ZX).

9



Neural Solver Selection for Combinatorial Optimization

References
Bachlechner, T., Majumder, B. P., Mao, H. H., Cottrell,

G., and McAuley, J. J. Rezero is all you need: fast
convergence at large depth. In Proceedings of the 37th
Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 1352–1361, Virtual, 2021.

Bai, Y., Zhao, W., and Gomes, C. P. Zero training overhead
portfolios for learning to solve combinatorial problems.
arXiv:2102.03002, 2021.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforce-
ment learning. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon,
France, 2017.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Berto, F., Hua, C., Park, J., Luttmann, L., Ma, Y., Bu, F.,
Wang, J., Ye, H., Kim, M., Choi, S., Zepeda, N. G.,
Hottung, A., Zhou, J., Bi, J., Hu, Y., Liu, F., Kim, H.,
Son, J., Kim, H., Angioni, D., Kool, W., Cao, Z., Zhang,
J., Shin, K., Wu, C., Ahn, S., Song, G., Kwon, C.,
Xie, L., and Park, J. RL4CO: An extensive reinforce-
ment learning for combinatorial optimization benchmark.
arXiv:2306.17100, 2024. https://github.com/
ai4co/rl4co.

Bi, J., Ma, Y., Wang, J., Cao, Z., Chen, J., Sun, Y., and
Chee, Y. M. Learning generalizable models for vehicle
routing problems via knowledge distillation. In Advances
in Neural Information Processing Systems 35 (NeurIPS),
pp. 31226–31238, New Orleans, LA, 2022.

Campello, R. J. G. B., Moulavi, D., and Sander, J. Density-
based clustering based on hierarchical density estimates.
In Proceedings of the 17th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pp.
160–172, Gold Coast, Australia, 2013.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chalumeau, F., Surana, S., Bonnet, C., Grinsztajn, N., Pre-
torius, A., Laterre, A., and Barrett, T. Combinatorial
optimization with policy adaptation using latent space
search. In Advances in Neural Information Processing
Systems 36 (NeurIPS), pp. 7947–7959, New Orleans, LA,
2023.

Cheng, H., Zheng, H., Cong, Y., Jiang, W., and Pu, S. Se-
lect and optimize: Learning to aolve large-scale TSP
instances. In Proceedings of the 26th International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
pp. 1219–1231, Valencia, Spain, 2023.

Dantzig, G. B. and Ramser, J. H. The truck dispatching
problem. Management Science, 6(1):80–91, 1959.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli, J.-
M. BQ-NCO: Bisimulation quotienting for generalizable
neural combinatorial optimization. In Advances in Neural
Information Processing Systems 36 (NeurIPS), pp. 77416–
77429, New Orleans, LA, 2023.

Fang, H., Song, Z., Weng, P., and Ban, Y. INViT: A general-
izable routing problem solver with invariant nested view
transformer. In Proceedings of the 41st International Con-
ference on Machine Learning (ICML), pp. 12973–12992,
Vienna, Austria, 2024.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large TSP instances. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), pp. 7474–7482, Virtual, 2021.

Gao, C., Shang, H., Xue, K., Li, D., and Qian, C. To-
wards generalizable neural solvers for vehicle routing
problems via ensemble with transferrable local policy. In
Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 6914–6922, Jeju,
Korea, 2024.

Goh, Y. L., Cao, Z., Ma, Y., Dong, Y., Dupty, M. H., and
Lee, W. S. Hierarchical neural constructive solver for real-
world TSP scenarios. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), pp. 884–895, Barcelona, Spain, 2024.

Grinsztajn, N., Furelos-Blanco, D., Surana, S., Bonnet,
C., and Barrett, T. Winner takes it all: Training per-
formant RL populations for combinatorial optimization.
pp. 48485–48509, New Orleans, LA, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, Las Vegas, NV, 2016.

He, X., Shang, H., and Qian, C. How to train algorithm
selection models: Insights from black-box continuous
optimization. In 15th Workshop on Evolutionary Com-
putation for the Automated Design of Algorithms at
GECCO’25, Málaga, Spain, 2025.

Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., and
Kerschke, P. On the potential of normalized TSP features
for automated algorithm selection. In Proceedings of the

10

https://github.com/ai4co/rl4co
https://github.com/ai4co/rl4co


Neural Solver Selection for Combinatorial Optimization

16th ACM/SIGEVO Workshop on Foundations of Genetic
Algorithms (FOGA), pp. 1–15, Virtual Event, Austria,
2021.

Helsgaun, K. An effective implementation of the lin–
kernighan traveling salesman heuristic. European Journal
of Operational Research, 126(1):106–130, 2000.

Helsgaun, K. An extension of the lin-kernighan-helsgaun
TSP solver for constrained traveling salesman and vehicle
routing problems. Technical report, 2017.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neu-
ral networks. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon,
France, 2017.

Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. Learning to solve
routing problems via distributionally robust optimization.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pp. 9786–9794, Virtual, 2022.

Jiang, Y., Cao, Z., Wu, Y., Song, W., and Zhang, J.
Ensemble-based deep reinforcement learning for vehicle
routing problems under distribution shift. In Advances in
Neural Information Processing Systems 36 (NeurIPS), pp.
53112–53125, New Orleans, LA, 2023.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv:1906.01227, 2019.

Joshi, C. K., Cappart, Q., Rousseau, L., and Laurent, T.
Learning the travelling salesperson problem requires
rethinking generalization. Constraints, 27(1-2):70–98,
2022.

Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H.
Automated algorithm selection: Survey and perspectives.
IEEE Transactions on Evolutionary Computation, 27(1):
3–45, 2019.

Khalil, E. B., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems 30 (NeurIPS), pp. 6348–6358, Long Beach, CA,
2017.

Kim, M., Park, J., and kim, j. Learning collaborative poli-
cies to solve NP-hard routing problems. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems 34 (NeurIPS), pp. 10418–10430, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San
Diego, CA, 2015.

Kofinas, M., Knyazev, B., Zhang, Y., Chen, Y., Burghouts,
G. J., Gavves, E., Snoek, C. G., and Zhang, D. W. Graph
neural networks for learning equivariant representations
of neural networks. In Proceedings of the 12th Interna-
tional Conference on Learning Representations (ICLR),
Vienna, Austria, 2024.

Konstantakopoulos, G. D., Gayialis, S. P., and Kechagias,
E. P. Vehicle routing problem and related algorithms for
logistics distribution: A literature review and classifica-
tion. Operational Research, 22(3):2033–2062, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In Proceedings of the 7th
International Conference on Learning Representations
(ICLR), New Orleans, LA, 2019.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. POMO: Policy optimization with multiple op-
tima for reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp. 21188–
21198, Virtual, 2020.

Kwon, Y.-D., Choo, J., Yoon, I., Park, M., Park, D., and
Gwon, Y. Matrix encoding networks for neural combina-
torial optimization. volume 34, pp. 5138–5149, Sydney,
Australia, 2021.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. Effi-
cient backprop. In Neural networks: Tricks of the trade,
volume 7700, pp. 9–48. 2002.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling.
In Proceedings of the 36th International Conference on
Machine Learning (ICML), pp. 3734–3743, Long Beach,
California, 2019.

Li, Y., Guo, J., Wang, R., and Yan, J. T2T: From distribution
learning in training to gradient search in testing for combi-
natorial optimization. In Advances in Neural Information
Processing Systems 36 (NeurIPS), pp. 50020–50040, New
Orleans, LA, 2023.

Liu, F., Lin, X., Liao, W., Wang, Z., Zhang, Q., Tong, X.,
and Yuan, M. Prompt learning for generalized vehicle
routing. In Proceedings of the 33rd International Joint
Conference on Artificial Intelligence (IJCAI), pp. 6976–
6984, Jeju, Korea, 2024.

Luo, F., Lin, X., Liu, F., Zhang, Q., and Wang, Z. Neural
combinatorial optimization with heavy decoder: Toward
large scale generalization. In Advances in Neural Infor-
mation Processing Systems 36 (NeurIPS), pp. 8845–8864,
New Orleans, LA, 2023.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In Advances

11



Neural Solver Selection for Combinatorial Optimization

in Neural Information Processing Systems 34 (NeurIPS),
pp. 11096–11107, Virtual, 2021.

Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-Opt. In Advances in Neural Information Pro-
cessing Systems 36 (NeurIPS), pp. 49555–49578, New
Orleans, LA, 2023.

Manchanda, S., Michel, S., Drakulic, D., and Andreoli,
J.-M. On the generalization of neural combinatorial op-
timization heuristics. In Proceedings of the 33rd/26th
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML PKDD), pp.
426–442, Grenoble, France, 2022.

Nazari, M., Oroojlooy, A., Takáč, M., and Snyder, L. V.
Reinforcement learning for solving the vehicle routing
problem. In Advances in Neural Information Processing
Systems 31 (NeurIPS), pp. 9861–9871, Montréal, Canada,
2018.

Reinelt, G. TSPLIB - A traveling salesman problem library.
ORSA Journal on Computing, 3(4):376–384, 1991.

Salmona, A., De Bortoli, V., Delon, J., and Desolneux, A.
Can push-forward generative models fit multimodal distri-
butions? In Advances in Neural Information Processing
Systems 35 (NeurIPS), pp. 10766–10779, New Orleans,
LA, 2022.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffusion
model framework for unsupervised neural combinatorial
optimization. In Proceedings of the 41st International
Conference on Machine Learning (ICML), Vienna, Aus-
tria, 2024.

Seiler, M., Pohl, J., Bossek, J., Kerschke, P., and Trautmann,
H. Deep learning as a competitive feature-free approach
for automated algorithm selection on the traveling sales-
person problem. In Proceedings of 16th International
Conference on Parallel Problem Solving from Nature
(PPSN), pp. 48–64, Leiden, The Netherlands, 2020.

Smith-Miles, K., Van Hemert, J., and Lim, X. Y. Understand-
ing TSP difficulty by learning from evolved instances.
In Proceedings of the 4th International Conference on
Learning and Intelligent Optimization (LION), pp. 266–
280, Venice, Italy, 2010.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Advances in
Neural Information Processing Systems 36 (NeurIPS), pp.
3706–3731, New Orleans, LA, 2023.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and
Subramanian, A. New benchmark instances for the ca-
pacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30 (NeurIPS), pp. 5998–6008, Long
Beach, CA, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR), Vancouver, Canada, 2018.

Vidal, T. Hybrid genetic search for the CVRP: Open-source
implementation and swap* neighborhood. Computers &
Operations Research, 140:105643, 2022.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems
28 (NeurIPS), pp. 2692–2700, Montreal, Canada, 2015.

Wang, C., Yu, Z., McAleer, S., Yu, T., and Yang, Y. ASP:
Learn a universal neural solver! IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(6):4102–
4114, 2024.

Wolpert, D. H. and Macready, W. G. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997.

Wu, X., Zhong, Y., Wu, J., Jiang, B., and Tan, K. C. Large
language model-enhanced algorithm selection: Towards
comprehensive algorithm representation. In Proceedings
of the 33rd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 5235–5244, Jeju, Korea, 2024.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. List-
wise approach to learning to rank: Theory and algorithm.
In Proceedings of the 25th International Conference on
Machine Learning (ICML), pp. 1192–1199, Helsinki, Fin-
land, 2008.

Ye, H., Wang, J., Cao, Z., Liang, H., and Li, Y. DeepACO:
neural-enhanced ant systems for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems
36 (NeurIPS), pp. 43706–43728, 2023.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
GLOP: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
Proceedings of the 38th AAAI Conference on Artificial
Intelligence, pp. 20284–20292, Vancouver, Canada, 2024.

Zhang, J., Ding, G., Zou, Y., Qin, S., and Fu, J. Review
of job shop scheduling research and its new perspectives
under industry 4.0. Journal of Intelligent Manufacturing,
30:1809–1830, 2019.

Zhang, Y.-K., Huang, T.-J., Ding, Y.-X., Zhan, D.-C., and
Ye, H.-J. Model spider: Learning to rank pre-trained

12



Neural Solver Selection for Combinatorial Optimization

models efficiently. Advances in Neural Information Pro-
cessing Systems 36 (NeurIPS), pp. 13692–13719, 2023.

Zheng, Z., Zhou, C., Xialiang, T., Yuan, M., and Wang,
Z. UDC: A unified neural divide-and-conquer frame-
work for large-scale combinatorial optimization problems.
arXiv:2407.00312, 2024.

Zhou, C., Lin, X., Wang, Z., Tong, X., Yuan, M., and
Zhang, Q. Instance-conditioned adaptation for large-
scale generalization of neural combinatorial optimization.
arXiv:2405.01906, 2024a.

Zhou, J., Wu, Y., Song, W., Cao, Z., and Zhang, J. Towards
omni-generalizable neural methods for vehicle routing
problems. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), pp. 42769–42789,
Honolulu, HI, 2023.

Zhou, J., Cao, Z., Wu, Y., Song, W., Ma, Y., Zhang, J.,
and Xu, C. MVMoE: Multi-task vehicle routing solver
with mixture-of-experts. In Proceedings of the 39th Inter-
national Conference on Machine Learning (ICML), pp.
61804–61824, Vienna, Austria, 2024b.

13



Neural Solver Selection for Combinatorial Optimization

A. Appendix
A.1. Graph attention layer

The graph attention layer is composed of two sub-layers: a multi-head attention sub-layer (Vaswani et al., 2017) and a
feed-forward sub-layer. Each sub-layer is equipped with residual connection (He et al., 2016) and ReZero normaliza-
tion (Bachlechner et al., 2021) for stable convergence of training. Denote the embedding of the i-th node as hi (i.e., the i-th
row of H). Since the graphs of TSP and CVRP are typically considered to be fully connected, the graph attention layer is
calculated as

ĥi = hl−1
i + αlMHAl

i(h
l−1
1 ,hl−1

2 , ...,hl−1
N ),

hl
i = ĥi + αlFF(ĥi),

where l is the layer index, i is the node index, αl is a learnable parameter used in the ReZero normalization, MHA and FF
are short for the multi-head attention and the feed-forward network, respectively. For the implementations of the basic
components MHA and FF, we refer to (Vaswani et al., 2017) for details. Specifically, following the common settings of
previous works, we set the dimension of h to 128, the number of heads in MHA to 8, and the hidden dimension of FF to 512.

A.2. Supplement of experimental settings

A.2.1. DATA GENERATION

Synthetic TSP and CVRP instances are generated for training, where the node coordinates, demands, and vehicle capacities
are all sampled from manually defined distributions. The scale of each instance is sampled from [50, 500] randomly. Details
of node coordinates, vehicle capacity, and node demands are introduced as follows.

Node coordinates To generate diverse training instances, we utilize Gaussian mixture distributions to sample the node
coordinates for both TSP and CVRP, which is common in previous works (Manchanda et al., 2022; Zhou et al., 2023) and
demonstrates effectiveness on approximating various node distributions with different hardness levels (Smith-Miles et al.,
2010). First, we randomly select the number of Gaussian components c ∼ U(0, 15) (when c = 0, we use the uniform
distribution) and partition the nodes randomly into c groups, one for each component. For each Gaussian component,
we sample the mean coordinates µ = (xµ, yµ) by xµ ∼ U(0, 1) and yµ ∼ U(0, 1), and sample the variances varx and
vary uniformly from [1, 100]. The covariance cov is sampled uniformly from [−√varx · vary,

√
varx · vary), forming the

covariance matrix Σ =

[
varx cov
cov vary

]
. Node coordinates are sampled from the N(µ,Σ) and then scaled to the square of

x, y ∈ [0, 1]. Unlike conventional Gaussian mixture distributions (Manchanda et al., 2022; Zhou et al., 2023), which often
use an identity covariance matrix, our approach employs randomized covariance matrices Σ. This modification can produce
more diverse instances by introducing more variability in the node distributions.

Vehicle capacity and node demands We employ two vehicle capacity distributions to generate CVRP instances: (1)
Scale-related distribution (Zhou et al., 2023): The vehicle capacity is proportional to the scale N , defined as Q = 30+ ⌈N5 ⌉.
(2) Triangular distributions (Uchoa et al., 2017): The parameters of the triangular distribution include the upper limit ub,
mode m, and lower limit lb, which are randomly sampled in succession as follows: ub ∼ U(20, N

2 ), m ∼ U(5, ub), and
lb ∼ U(3,m). The triangular distribution T (lb,m, ub) is then used to generate vehicle capacities, resulting in more diverse
CVRP instances compared to the fixed capacity setting (Nazari et al., 2018). Each capacity distribution is selected with
equal probability. Node demands mi are sampled uniformly from U(1, 10) and normalized by dividing by Q.

A.2.2. DETAILED SETTINGS OF OPEN SOURCE SOLVERS

We choose recent open-source neural solvers with state-of-the-art performance as the candidates, including Omni (Zhou
et al., 2023), BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023), DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023),
ELG (Gao et al., 2024), INViT (Fang et al., 2024) and MVMoE (Zhou et al., 2024b). Greedy decoding is used for all the
methods to avoid stochasticity. We set the pomo size to 100 and the augmentation number to 8 for the methods based on
POMO (Kwon et al., 2020). The number of denoising steps is set to 50 and the number of 2-opt iterations is set to 100 for
diffusion-based methods. These individual solvers constitute a neural solver zoo. Ideally, if we can always select the best
solver from the zoo for each instance, the optimal performance is achieved, which is also the performance upper bound

14



Neural Solver Selection for Combinatorial Optimization

of our selection model. Considering that some neural solvers contribute little to the overall performance, we iteratively
eliminate the least contributive solver from the candidates, resulting in a more compact neural solver zoo, which reduces the
zoo size to 7 solvers for TSP and 5 for CVRP. Further details of the elimination procedure are provided in Appendix A.3.

A.2.3. DETAILED SETTINGS OF HYPERPARAMETERS

(1) Hyperparameters of graph encoders. For the graph attention encoder, we set the number of layers to 4. For the
hierarchical graph encoder, we use 2 blocks where each block has 2 attention layers. The embedding dimension is set to 128.
Other details of encoders can be found in Appendix A.1. (2) Hyperparameters of training. The Adam optimizer (Kingma
& Ba, 2015) is employed for training, where we set the learning rate to 1 × 10−4 and the weight decay to 1 × 10−6.
The number of epochs is set to 50. The final model is chosen according to the performance on a validation dataset with
1, 000 synthetic instances. We train 5 selection models using different random seeds and report the mean and standard
deviation of their performance. (3) Hyperparameters of selection strategies. For the top-k strategy, we set k = 2. For
the rejection-based strategy, we reject the 20% of instances with the lowest confidence levels (i.e., the highest selection
probability of all individual solvers), and apply top-2 selection to these rejected instances. For the top-p strategy, we set
p = 0.5 for TSP and p = 0.8 for CVRP.

A.3. Eliminate useless neural solvers

The preserved neural solvers should have distinct strengths in certain problem instances, ensuring that they can bring
significant improvements in overall performance. Motivated by this, we propose a simple yet effective heuristic strategy to
build the neural solver zoo based on the assessment of their contribution to the overall performance.

Given the alternative neural solvers S = {s1, s2, s3, ....}, we assess the contribution of a specific solver si ∈ S by the
degradation of performance after removing it. That is, the assessment of si can be formalized as

A(si) = EI [PI(S)− PI(S/si)] ,

where PI(·) denotes the performance of a neural solver zoo on instance I . Here we use the percentage of the optimality gap
to define PI(·) and employ a validation set for the estimation of expectations. According to this criteria, we can estimate
the alternative solvers and remove the one with the lowest assessed contribution from S. This process repeats iteratively
until for all si ∈ S , A(si) surpasses the predefined threshold δ, indicating the significance of each alternative neural solver.
In practice, we collect the prevailing competitive neural solvers in the community to compose the original S and set δ as
0.01%.

The neural solver zoos before and after elimination are listed in Table 4. Note that for DIFUSCO and T2T, multiple
models are released. We collect both the models trained on the N = 100 dataset and the N = 500 dataset as alternatives
simultaneously.

Table 4: The neural solver zoo before and after elimination.

Stage Neural solver zoo for TSP Neural solver zoo for CVRP

Before elimination
BQ, LEHD, Omni, ELG, INViT,

DIFUSCO (N=100), DIFUSCO (N=500),
T2T (N=100), T2T (N=500)

BQ, LEHD, Omni, ELG, INViT, MVMoE

After elimination
BQ, LEHD, ELG,

DIFUSCO (N=100), DIFUSCO (N=500),
T2T (N=100), T2T (N=500)

BQ, LEHD, Omni, ELG, MVMoE

A.4. Manual features

We reproduce the manual features proposed by (Smith-Miles et al., 2010), which use statistical information and cluster
analysis results to describe the characteristics of TSP. In this paper, we adopt these features: the standard deviation of the
distances, the coordinates of the instance centroid, the radius of the TSP instance, the fraction of distinct distances, the
variance of the normalized nearest neighbour distances (nNNd’s), the coefficient of variation of the nNNd’s, the ratio of

15



Neural Solver Selection for Combinatorial Optimization

the number of clusters to the number of nodes (Here we use HDBSCAN algorithm (Campello et al., 2013) to generate
clusters), the ratio of number of outliers to nodes, and the mean radius of the clusters. For CVRP, we further add the mean
and standard deviation of node demands to the features.

A.5. Comparisons with traditional algorithm selection methods

To further demonstrate the effectiveness of our proposed techniques, we provide additional comparison results between our
proposed method and existing algorithm selection methods for non-neural TSP solvers (Smith-Miles et al., 2010; Seiler
et al., 2020), as shown in Table 5. In fact, the method of using features from (Smith-Miles et al., 2010) and our ranking
model was also compared in Table 3. The R package salesperson2 provides the up-to-now most comprehensive collection
of features for TSP and is widely used in algorithm selection methods (Seiler et al., 2020; Heins et al., 2021). Based on
the feature set of salesperson, we reproduce an advanced algorithm selection method (Seiler et al., 2020) following the
pipeline that computes hand-crafted features, conducts feature selection, and applies random forest for classification, where
we employ the univariate statistical test to select important features. Besides, we also combine the salesperson features with
our ranking model for ablation, denoted by ”(Seiler et al., 2020) + Ranking” in Table 5.

Table 5: Comparison experiments with algorithm selection methods for TSP. We report the mean (standard deviation) over
five independent runs.

Methods Synthetic TSP TSPLIB

Gap Time Gap Time

Single best solver 2.33% 1.45s 1.95% 1.74s
Oracle 1.24% 8.93s 0.89% 9.14s

Algorithm selection methods

(Smith-Miles et al., 2010) + Ranking 1.97% (0.01%) 1.37s (0.01s) 1.83% (0.03%) 1.32s (0.05s)
(Seiler et al., 2020) 2.12% (0.04%) 1.35s (0.00s) 1.56% (0.01%) 1.34s (0.05s)
(Seiler et al., 2020) + Ranking 1.95% (0.01%) 1.33s (0.03s) 1.55% (0.03%) 1.27s (0.06s)

Our selection method using ranking

Greedy 1.86% (0.01%) 1.33s (0.01s) 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 1.51% (0.02%) 2.56s (0.03s) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 1.75% (0.02%) 1.63s (0.01s) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 1.68% (0.02%) 1.86s (0.07s) 1.28% (0.04%) 1.46s (0.06s)

The experimental results in Table 5 indicate that our proposed method can achieve superior performance than advanced
algorithm selection methods on both synthetic TSP and TSPLIB. Comparing the fifth and sixth rows, our proposed
hierarchical encoder demonstrates superior performance over the salesperson features, especially on the out-of-distribution
benchmark TSPLIB. Additionally, the comparison of the fourth and fifth rows shows that our deep learning-based ranking
model achieves better results than traditional classification methods. Furthermore, the results of the last three rows illustrate
that our proposed adaptive selection strategies effectively enhance optimality with minimal increases in time consumption.

A.6. Results of top-k selection.

We compare the performance of our top-k selection and the solver portfolio with the same size k on four datasets, including
TSP, CVRP, TSPLIB and CVRPLIB Set-X. As shown in Figure 4, our top-k selection consistently outperforms the size-k
solver portfolio across k ∈ {1, 2, 3, 4}. We also observe that the performance of our top-k selection is close to the Oracle
when k = 4. Moreover, it is expected that the performance improvement of our top-k selection gradually diminishes as k
increases, since the performance of solver portfolio is also approaching the Oracle (the gray line).

Related works, such as ZTop (Bai et al., 2021), employ a fixed set of neural solvers to construct a portfolio for all instances,
resembling the static portfolio approach compared in this study. In contrast, our top-k selection strategy dynamically
constructs instance-specific portfolios, offering greater flexibility and a higher potential for performance improvement. As
demonstrated in Figure 4, our method consistently outperforms the static portfolio approach across all portfolio sizes.

2https//github.com/jakobbossek/salesperson

16

https//github.com/jakobbossek/salesperson


Neural Solver Selection for Combinatorial Optimization

1 2 3 4
k

1.2

1.4

1.6

1.8

2.0

2.2

Op
tim

al
ity

 g
ap

 (%
)

TSP

1 2 3 4
k

1.0

1.2

1.4

1.6

1.8

2.0 TSPLIB

1 2 3 4
k

5.0

5.5

6.0

6.5

CVRP

1 2 3 4
k

5.2

5.4

5.6

5.8

6.0

CVRPLIB Set-X

OPT Solver portfolio with size k Top-k selection

Figure 4: Comparisons of the proposed top-k selection and the solver portfolio with size k.

A.7. Ablation of the hierarchical graph encoder.

The proposed hierarchical graph encoder utilizes graph pooling to downsample the instance graph and aggregates features
obtained from multiple levels of the downsampled graphs. A graphical illustration of the downsampling process is provided
in Appendix A.11, where we can find some consistent patterns which are intuitively reasonable. To evaluate the effectiveness
of the graph pooling, we employ a graph encoder that aggregates the features from multiple layers for comparison, which is
a clear ablation study since the main difference is that it does not have the graph pooling operation.

The results in Table 6 show that using our hierarchical graph encoder outperforms the encoder that simply accumulates
multi-layer features, especially in terms of the generalization performance on CVRPLIB Set-X. This demonstrates the
effectiveness of the graph pooling operation.

Table 6: Ablation study of hierarchical graph encoder. We report the mean and standard deviation of five independent runs.
All the models are trained using ranking loss, and employ greedy selection.

Datasets Attention encoder + Multi-layer features Hierarchical encoder

TSP 1.87% (0.02%) 1.87% (0.01%) 1.86% (0.01%)
CVRP 5.30% (0.01%) 5.30% (0.02%) 5.31% (0.01%)

TSPLIB 1.45% (0.11%) 1.35% (0.05%) 1.33% (0.06%)
CVRPLIB 5.87% (0.06%) 5.86% (0.08%) 5.76% (0.04%)

To evaluate the computational efficiency of the hierarchical encoder, we provide detailed comparisons of the computation
cost and optimality between our hierarchical encoder and a typical graph encoder. The results are shown in Table 7, which
includes the inference time per instance on TSPLIB, training time per epoch, and the average optimality gap on TSPLIB.

Table 7: Comparisons of the computation cost and optimality between our hierarchical encoder and a typical attention
encoder.

Methods Inference time of
selection model

Inference time of
neural solvers

Training time
each epoch Optimality gap

Naive attention encoder 0.0054s 1.2600s 1m40s 1.54%
Hierarchical encoder 0.0070s 1.2961s 2m30s 1.37%

We can observe from the second column that the introduction of our hierarchical encoder will increase the inference time
of the selection model a little bit, e.g., from 0.0054s to 0.0070s. However, as shown in the second and third columns, the

17



Neural Solver Selection for Combinatorial Optimization

inference time of the selection model is orders of magnitude shorter than that of the neural solvers, so the inference efficiency
of the selection model is less of a concern. The fourth column shows that the training time per epoch of the naı̈ve encoder
and the hierarchical encoder are 1m40s and 2m30s, respectively. Although the hierarchical encoder slows the training, the
total runtime for 50 epochs is still only 2 hours, which is acceptable in most scenarios. Therefore, the performance metric
(i.e., optimality gap) of different encoders is more crucial, especially the generalization performance. If the encoder learns
robust representations, we can directly transfer the selection model to different datasets in a zero-shot manner, saving the
time for fine-tuning and adaptation. Considering the better generalization (e.g., the optimality gap decreases from 1.54% to
1.37%), we believe that the proposed hierarchical encoder is a better choice.

A.8. Detailed comparisons of selection strategies

According to the mechanisms of the four selection strategies, they have different preferences in the trade-off of efficiency
and optimality. Generally, for efficiency, Greedy > Rejection ≈ Top-p > Top-k, for optimality, Top-k > Rejection ≈ Top-p
> Greedy. Meanwhile, the hyper-parameters of them can be used for balancing efficiency and optimality as well. As a
result, the choice of different selection strategies can be decided by the users according to their preference, and we suggest
using Top-p or Rejection as the default choices since they can adaptively select solvers based on the confidence.

The rejection-based selection and top-p selection are both designed to achieve better performance with little additional
time consumption. To evaluate them in detail, we tune their parameters (e.g., rejection ratio, k, and p) to obtain a range of
results. For the rejection-based selection, we use k ∈ {2, 3, 4} and vary the rejection ratio from 0.05 to 0.85 in increments of
0.05. For the top-p selection, we adjust the value of p from 0.40 to 0.95 in increments of 0.01. The results of the optimality
gap and time consumption are provided in Figure 5. As shown in the figures, the rejection strategy with smaller k tends
to achieve better optimality gaps using the same time consumption. Therefore, we recommend k = 2 or 3 when using
rejection-based selection. Comparing top-p selection and rejection-based selection, we can not definitively conclude which
strategy is superior, which is expected since they share a similar idea of utilizing confidence levels to decide whether to
employ multiple solvers. However, the top-p selection may be preferable in practice due to its simplicity, where only a
single hyperparameter p requires tuning.

1.4 1.6 1.8
Optimality gap (%)

2

3

4

5

A)
er
ag

e 
(im

e 
(s
) %

er
 in

s(
an

ce TSP

1.0 1.2 1.4 1.6
O%(imali(y ga% (%)

2

3

4

5

TSPLIB

4.8 5.0 5.2
O%(imali(y ga% (%)

1

2

3

CVRP

5.2 5.4 5.6
O%(imali(y ga% (%)

1

2

3

4

5

6
CVRPLIB

To%-% Rejec(ion ( =2) Rejec(ion ( =3) Rejec(ion ( =4)

(a) Selection by classification

1.4 1.6 1.8
Optimality gap (%)

2

3

4

5

6

Av
er

ag
e 

)im
e 

((
) p

er
 in

()
an

ce TSP

0.9 1.0 1.1 1.2
Op)imali)y gap (%)

2

3

4

5

6 TSPLIB

4.8 5.0 5.2
Op)imali)y gap (%)

1

2

3

CVRP

5.2 5.4 5.6
Op)imali)y gap (%)

2

3

4

5

6 CVRPLIB

T%p-p Re ec)i%n (k=2) Re ec)i%n (k=3) Re ec)i%n (k=4)

(b) Selection by ranking

Figure 5: Performance of the rejection-based and top-p selection.

18



Neural Solver Selection for Combinatorial Optimization

A.9. Selection accuracy

We present the accuracy of selecting the optimal neural solver in Table 8. The results show that the ranking model and
classification model generally have similar selection accuracy, except that the ranking model achieves better accuracy than
the classification model on CVRPLIB.

Table 8: Accuracy of models trained by different losses using greedy selection. We report the mean and standard deviation
of five independent runs.

Metrics Classification Ranking

Accuracy on TSP 36% (1%) 35% (1%)
Accuracy on CVRP 61% (1%) 62% (0%)

Accuracy on TSPLIB 40% (3%) 40% (7%)
Accuracy on CVRPLIB 52% (2%) 56% (3%)

A.10. Additional results for more neural solvers and larger-scale datasets

We add two divide-and-conquer solvers, GLOP (Ye et al., 2024) and UDC (Zheng et al., 2024), to our solver pool, increase
the problem scale from N ∈ [50, 500] to N ∈ [500, 2000] to conduct new experiments. The results shown in Table 9
demonstrate that our framework can be compatible with more neural solvers and can also improve performance over the
single best solver on larger-scale instances.

Table 9: Experimental results on the larger-scale instances with N ∈ [500, 2000]. We report the mean (standard deviation)
over five independent runs.

Methods Synthetic TSP with N ∈ [500, 2000]

Gap Time

Single best solver 6.104% 8.369s
Ours (Greedy) 5.540% (0.038%) 8.322s (0.036s)
Ours (Top-k, k = 2) 5.369% (0.003%) 15.566s (0.085s)

Single best of new solver pool 3.562% 5.274s
Ours with new solvers (Greedy) 3.126% (0.002%) 6.892s (0.006s)
Ours with new solvers (Top-k, k = 2) 2.955% (0.005%) 13.713s (0.036s)

19



Neural Solver Selection for Combinatorial Optimization

A.11. Illustration of the nodes sampled by hierarchical graph encoder

We illustrate the retained nodes after downsampling. Surprisingly, we can find some consistent patterns which are intuitively
reasonable. We summarize them as three main points:

• Cluster nodes. As illustrated in Figures 6(a) and 6(b), when instances contain certain clusters, the hierarchical encoder
tends to select a subset of “representative” nodes from each cluster, efficiently describing the entire spatial distribution.

• Specific blocks. As illustrated in Figures 6(c) and 6(d), when instances contain specific complex geometric patterns
like squares (Figure 6(c)) and arrays (Figure 6(d)), the hierarchical encoder can capture the nodes of these important
areas to identify their characteristics.

• Boundary nodes. For instances without clear sub-components, the hierarchical encoder tends to focus on boundary
nodes that describe the global shape, as illustrated in Figures 6(e) and 6(f).

(a) (b)

(c) (d)

(e) (f)

Figure 6: Illustrations of nodes selected by the hierarchical encoder. Each sub-figure represents an instance of TSP. The blue
nodes represent the original instance, and the red nodes represent the retained nodes after down-sampling by the hierarchical
encoder.

A.12. Complete results with all neural solvers

The complete experimental results with all individual solvers are presented in Table 10 and Table 11, where the average
objective values are provided for further comparisons.

20



Neural Solver Selection for Combinatorial Optimization

Table 10: Empirical results on synthetic TSP and TSPLIB datasets, reporting the mean (standard deviation) over five
independent runs. All individual solvers are included for comparison. The suffixes ’-N100’ and ’-N500’ indicate models
trained on datasets with N=100 and N=500, respectively. Obj denotes the average objective value on the dataset.

Methods TSP

Obj Gap Time

BQ 8.13 3.00% 1.61s
ELG 8.18 3.70% 0.45s
LEHD 8.17 3.57% 0.86s
T2T-N100 8.08 2.48% 1.71s
T2T-N500 8.08 2.40% 1.98s
DIFUSCO-N100 8.11 2.84% 1.46s
DIFUSCO-N500 8.07 2.33% 1.45s
Oracle 7.99 1.24% 8.93s

Selection by classification

Greedy 8.04 (0.00) 1.94% (0.02%) 1.36s (0.01s)
Top-k (k = 2) 8.01 (0.00) 1.53% (0.01%) 2.52s (0.04s)
Rejection (20%) 8.03 (0.00) 1.81% (0.01%) 1.63s (0.01s)
Top-p (p = 0.5) 8.03 (0.00) 1.84% (0.03%) 1.55s (0.06s)

Selection by ranking

Greedy 8.04 (0.00) 1.86% (0.01%) 1.33s (0.01s)
Top-k (k = 2) 8.01 (0.00) 1.51% (0.02%) 2.56s (0.03s)
Rejection (20%) 8.03 (0.00) 1.75% (0.02%) 1.63s (0.01s)
Top-p (p = 0.5) 8.02 (0.00) 1.68% (0.02%) 1.86s (0.07s)

Methods TSPLIB

Obj Gap Time

BQ 8.29 3.04% 1.44s
ELG 8.29 3.05% 0.40s
LEHD 8.26 2.57% 0.88s
T2T-N100 8.22 2.09% 1.76s
T2T-N500 8.21 1.95% 1.74s
DIFUSCO-N100 8.23 2.25% 1.44s
DIFUSCO-N500 8.22 2.13% 1.44s
Oracle 8.12 0.89% 9.14s

Selection by classification

Greedy 8.17 (0.00) 1.54% (0.05%) 1.33s (0.02s)
Top-k (k = 2) 8.15 (0.01) 1.22% (0.10%) 2.47s (0.02s)
Rejection (20%) 8.16 (0.01) 1.42% (0.11%) 1.54s (0.03s)
Top-p (p = 0.5) 8.17 (0.01) 1.49% (0.11%) 1.37s (0.02s)

Selection by ranking

Greedy 8.16 (0.00) 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 8.14 (0.00) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 8.15 (0.00) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 8.15 (0.00) 1.28% (0.04%) 1.46s (0.06s)

21



Neural Solver Selection for Combinatorial Optimization

Table 11: Empirical results on synthetic CVRP and CVRPLIB Set-X datasets, reporting the mean (standard deviation) over
five independent runs. All individual solvers are included for comparison. Obj denotes the average objective value on the
dataset.

Methods CVRP

Obj Gap Time

BQ 18.39 7.20% 1.59s
ELG 18.49 7.81% 0.82s
LEHD 18.42 7.37% 1.01s
MVMoE 19.48 13.56% 0.70s
Omni 18.32 6.82% 0.24s
Oracle 17.95 4.64% 4.38s

Selection by classification

Greedy 18.07 (0.00) 5.35% (0.02%) 0.64s (0.01s)
Top-k (k = 2) 17.98 (0.00) 4.81% (0.01%) 1.87s (0.03s)
Rejection (20%) 18.04 (0.01) 5.19% (0.03%) 0.77s (0.01s)
Top-p (p = 0.8) 18.04 (0.01) 5.16% (0.03%) 0.87s (0.08s)

Selection by ranking

Greedy 18.06 (0.00) 5.31% (0.01%) 0.62s (0.01s)
Top-k (k = 2) 17.98 (0.00) 4.82% (0.01%) 1.90s (0.04s)
Rejection (20%) 18.04 (0.00) 5.15% (0.02%) 0.74s (0.01s)
Top-p (p = 0.8) 18.01 (0.00) 4.99% (0.02%) 1.03s (0.03s)

Methods CVRPLIB Set-X

Obj Gap Time

BQ 71.21 10.31% 2.60s
ELG 68.50 6.10% 1.31s
LEHD 73.40 13.70% 1.60s
MVMoE 74.59 15.54% 0.90s
Omni 68.57 6.21% 0.38s
Oracle 67.85 5.10% 6.81s

Selection by classification

Greedy 68.41 (0.08) 5.96% (0.12%) 1.06s (0.08s)
Top-k (k = 2) 68.07 (0.05) 5.44% (0.08%) 2.40s (0.25s)
Rejection (20%) 68.32 (0.08) 5.83% (0.12%) 1.31s (0.09s)
Top-p (p = 0.8) 68.30 (0.06) 5.79% (0.09%) 1.42s (0.17s)

Selection by ranking

Greedy 68.28 (0.03) 5.76% (0.04%) 1.31s (0.10s)
Top-k (k = 2) 68.04 (0.04) 5.39% (0.06%) 2.56s (0.13s)
Rejection (20%) 68.19 (0.03) 5.63% (0.05%) 1.60s (0.08s)
Top-p (p = 0.8) 68.18 (0.02) 5.61% (0.03%) 1.72s (0.08s)

22


