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Abstract

We consider the problem of detecting a community of densely connected vertices in
a high-dimensional bipartite graph of size n; X ng. Under the null hypothesis, the
observed graph is drawn from a bipartite Erdés-Renyi distribution with connection
probability pg. Under the alternative hypothesis, there exists an unknown bipartite
subgraph of size k1 x ko in which edges appear with probability p; = pg + d for
some 0 > 0, while all other edges outside the subgraph appear with probability pg.
Specifically, we provide non-asymptotic upper and lower bounds on the smallest
signal strength §* that is both necessary and sufficient to ensure the existence
of a test with small enough Type I and Type II errors. We also derive novel
minimax-optimal tests achieving these fundamental limits when the underlying
graph is sufficiently dense. Our proposed tests involve a combination of hard-
thresholded nonlinear statistics of the adjacency matrix, the analysis of which may
be of independent interest. In contrast with previous work, our non-asymptotic
upper and lower bounds match for any configuration of ny, ns, k1, ks.

1 Introduction

The analysis of community structure is a fundamental task in statistical network science [27, 24].
In the 2000’s, a series of striking works including (but not limited to) [3, 9, 30, 53, 56] observe the
ubiquity of community-based organization in real world network data. Inspired by these observations,
a vast literature has emerged over the past two decades attempting to understand the statistical
limits of detecting and recovering planted communities in random graphs [20, 48, 50, 59, 4, 8, 49],
detecting geometry in graphs defined via latent metric spaces [14, 13, 44, 25], and establishing
fundamental computational limits for the community detection and recovery problems [31, 16, 60,
46, 12]. Here, we draw a careful distinction between community detection and community recovery.
In the community detection problem, also sometimes referred to as the Planted Dense Subgraph
(PDS) problem, the statistician observes a random graph and aims to determine whether the graph
was drawn from an Erd6s-Renyi family, or if it contains a densely connected community of vertices
(i.e., a dense subgraph). In contrast, the community recovery problem involves assigning each vertex
in the observed graph to a latent community, under the assumption that such community structure
exists. We focus on community detection in the present work, and we refer readers to [1] for a
comprehensive review of the results pertaining to the recovery problem in the stochastic block model.

Existing work studying community detection can be divided into two categories. The first camp,
including [4, 59, 57, 61], focuses on detecting the presence of a small community of k& nodes in a
high-dimensional graph of n nodes, typically in an asymptotic setting with k& = o(n). In these papers,
the authors focus on deriving sufficient and necessary conditions on the difference in connection
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probabilities between the planted subgraph and the rest of the vertices for which detection of the
subgraph is possible. While these works are able to give asymptotically precise characterizations of
the detection boundary for their problems of interest, their results are limited in generality, as they
constrain themselves to fully symmetric settings (the adjacency matrices of the full graph and the
subgraph, with the exception of [57], are square) and make asymptotic assumptions that prohibits the
appearance of complex phenomena; see for instance equation (6) in [4].

A parallel line of work considers the community detection problem in stochastic block models
(SBM’s) [38, 48, 51, 2, 6,7, 8, 28]. Here the focus is on the statistician’s ability detect the presence
of two or more communities in the observed graph, and deriving conditions on the difference in
expected degree between the communities under which detection is possible. The early work [51]
gives fundamental results related to the famed Kesten-Stigum threshold, although they are confined
to the restricted case of two equally sized communities. While recent papers such as [8, 52] allow
for a growing number of potentially asymmetric communities, these works still required the average
expected degree across communities to be held constant, which prevents their results from applying
to graphs with highly imbalanced communities. The restriction is lifted in [29], in which the authors
study community detection in the degree-corrected block model. However, similar to the works of [4,
59, 57], the results of [29] hold only in a particular asymptotic regime.

Given the limitations of existing work, there remains a great interest in studying community detection
in random graph models beyond those covered by the literature. In particular, previous results do
not apply to the family of bipartite graphs, which are defined as sets of edges between two disjoint
sets of vertices. In practice, the two sets of vertices may be of very different size, meaning that the
results tailored for square adjacency matrices [4, 59, 2, 51] do not capture the subtleties of community
detection in bipartite graphs. Furthermore, any planted subgraph in a bipartite graph is, by definition,
itself bipartite. While the recent paper [57] considers the detection of bipartite communities, they
assume that these communities are planted in a larger non-bipartite graph and hence, similarly to [4,
59, 2, 51], fail to fully characterize the detection boundary in the bipartite case. We also comment that
bipartite graphs can be thought of as a special case of a multi-community SBM; however, as outlined
above, the prior work studying this problem introduces its own limitations [8, 52, 29]. As bipartite
graphs are increasingly used as modeling tools in the diverse fields of biology and medicine [54],
information science [47], and game theory [55], this lack of understanding in the bipartite setting
constitutes a significant gap in the statistics and machine learning literature.

In this paper, we aim to address this gap. Following [4, 59], we formalize the problem of detecting
a community in a random bipartite graph as a hypothesis testing problem. We observe a random
bipartite graph G defined on disjoint sets of vertices (nodes) V; and Vs of size n; and ng respectively.
Under the null hypothesis, an edge appears between any two nodes in G with equal probability
po > 0. Under the alternative hypothesis, there exist subsets of nodes Vi, C V; and Vi, C Vs of
size k1 and k9 such that any pair of nodes in Vg, X Vg, are connected with an elevated probability
no less than py + d, where d > 0. We derive the minimax rate of separation 6* [35], which is defined
as the smallest value of § such that consistent community detection is possible (see Equation (4) for a
formal definition). Our results are non-asymptotic in nature, and hold for any values of ny, no, k1,
and k9. This degree of precision allows us to describe subtle phase transitions in the separation rate
0* which have not been observed in the existing community detection literature.

The paper is structured as follows. In Sections 1.1, 1.2, and 1.3 we review relevant literature, outline
our contributions, and collect notation used through the paper. In Section 2 we formally state our
problem of interest. Our main results and a discussion thereof are given in Section 3 and Section 4.
We conclude with a summary of the limitations of our results and promising directions for future
work in Section 5. All of the proofs are provided in the supplement.

1.1 Prior work

The framework that we use to study optimal community detection in random graphs was pioneered
by Arias-Castro and Verzelen [4, 59]. In [4], the authors provide matching asymptotic upper and
lower bounds on the minimax risk of detecting a community of vanishing size in a dense graph.
They also handle the cases when the size of the community and the baseline connection probability
po are unknown, and provide polynomial-time tests using a convex relaxation of the max degree
test, following [11]. In [59], the authors extend their analysis to sparse graphs. While the papers
[4, 59] broke significant ground, their results are still limited, as they only consider the restricted



fully symmetric setting of n; = nsy and k; = ko. Subsequent works derive analogous theoretical
results for hypergraphs [62, 61], in which edges can be drawn between more than two vertices. The
work [33] studies community detection under information constraints, namely that the statistician can
only access small parts of the graph via non-adaptive edge queries. More recently, [57] considers the
detection of a bipartite (i.e., imbalanced) community in a non-bipartite graph. We provide a detailed
comparison of our results to the results of [57] in Section 3.

In the stochastic block model (SBM) literature, the community detection problem is posed as the task
of distinguishing an SBM with a given set of parameters from an Erd6s-Renyi graph. This problem
was first considered by [38], whose results were later refined by [51, 48, 2], which established
that detection is possible if and only if the signal strength is above the Kesten-Stigum threshold,
as conjectured by [23]. In [6, 7], the authors prove analogous results for asymptotically growing
expected degrees and provide optimal hypothesis tests based on signed cycle statistics. The work of
[8] provides an impossibility result for distinguishability for SBM’s with a possibly growing number
of communities, and [28] analyzes a powerful test in this setting constructed using small subgraph
statistics.

Under the framework of [4, 59], community detection is equivalent to detecting a submatrix in
the observed adjacency matrix. The seminal work of [15] provides matching upper and lower
bounds for detecting a sparse submatrix of elevated mean in a matrix of Gaussian random variables
under a particular asymptotic regime. Following this, [46] initiates a rigorous study of statistical-
computational gaps in the submatrix detection problem which was continued by [16, 32, 12]. In [45],
the authors study the problem of detecting a planted sparse sub-tensor in a high dimensional Gaussian
tensor. Finally, [22] derives upper and lower bounds for detecting the presence of multiple sparse
submatrices in Gaussian noise that are tight up to log factors.

1.2 Our contributions

In this paper, we make the following contributions.

1. We fully settle the non-asymptotic expression of the minimax rate 0* defined in (4), which
holds provided the graph is sufficiently dense, as specified in Assumption 1. In contrast
to the previous literature, our bounds always match up to multiplicative constants for any
possible values of n1,ny, k1 and ko, especially in the under-explored unbalanced regimes
where k1 < ks or n; < ngy. Our results reveal subtle phase transitions that, to the best of
our knowledge, had not been documented in previous work.

2. Our lower bound on ¢* stated in Theorem 1 holds without requiring Assumption 1 and uses
a very precise application of the second moment method [42]. It requires several non-trivial
lemmas for controlling the moment-generating function of the product of binomial random
variables, and substantially departs from the lower bound strategies proposed in [15] and [4].

3. Our upper bound stated in Theorem 2 is achieved by carefully combining three tests: A
standard total degree test and two entirely novel tests referred to as the truncated degree
test and the max truncated degree test. The two novel tests are defined using truncated
non-linear functions of the adjacency matrix, building on the truncated x? test recently
studied in the Gaussian sequence model [21, 40, 43, 19]. However, substantial modifications
of the truncated 2 test are needed to address two challenges:

(a) Moving from the vector case to the matrix case, which requires subtle Bonferroni
corrections of the classical truncated 2 test.

(b) Handling matrices whose entries are Bernoulli rather than Gaussian random variables,
which require significant adjustments of the truncated y? test to carefully manage the
complex sub-poissonian tails of the binomial distribution.

Our upper bound holds under Assumption 1, which we discuss thoroughly in later sections.
We also prove a series of lemmas in the supplement that we use to control the Type I
and Type II errors of these tests, and we anticipate that these results will be of interest to
researchers studying related problems.



1.3 Notation

The following notation will be used throughout the paper. For p € N, let [p] := 1,...,p. We use
Pi(n) to denote the set of subsets of [n] of size k. For a,b € R, denote a V b := max{a,b}
and a A b =: min{a,b}. We will use a < b if there exists a constant C' > 0 depending on 7
such that a < Cb. Wesay a < bifa < band b < a. For two sets A; and A,, we denote
Ay x Ay = {(4,) : i € Ay,j € Ay} as the Cartesian product of A; and A,. For a finite set
A, we use |A| to denote the cardinality of A. We use 1.y as the indicator function, meaning that
1,4 = 1lif the event A occurs and 14 = 0 otherwise. For a matrix X, we use X;; to denote its (4, J)m
entry. Given two probability distributions P and Q, we use TV(P, Q) = sup, [P(4) — Q(A4)]| to
denote the total variation distance between P and Q. We use ¢, C, C', C’, ¢1, co, ¢3, and ¢4 to denote
constants whose value may change between instances of their usage in the paper. We will also use
the convention that [a, b] = () for any two real numbers a, b such that a > b. For any two integers
n,k € NU {0}, we denote by (Z) the binomial coefficient, equal to m

2 Problem statement

Let ny,n9, k1, k2 € N be integers considered as fixed throughout the paper, and assume k; < ng
and ko < no. Let G = (&€, V1, V2) be a random undirected bipartite graph defined on disjoint sets
of vertices V1 = {Vi1,..., Vi, and Vo = {Va1,..., V2, }. We observe the adjacency matrix
A € R™*"2 with entries A;; = 1{V1 ; is connected to V5 ; by an edge} and assume that the edges
are mutually independent Bernoulli random variables. For some parameter py € [0, 1] assumed to be
fixed throughout the paper, our objective is to determine whether each pair of vertices in V; x Vs is
connected with probability pg, or if there exists a community (i.e., a bipartite subset of vertices) that
is connected with greater probability p; > pg + & for some 6 > 0.

Formally, we formulate this testing problem in terms of the mean structure of the adjacency matrix A.
Define the matrix P = E[A] € R™ *"2, which represents the matrix of connection probabilities of
the random graph G. For any two subsets K1 € Py, (n1), Ko € Pk, (n2) and any § > 0, we define

V(i,j)€K1XK22Pij2p0+5 }

O(K,, Ky, 6) = PER”IX"QS.L{ )
(K1, K2, 9) { V(i,j) ¢ K1 x Ky : Pij = po

A mean matrix P belongs to © (K, K», ) if the bipartite community indexed by K7 x K» is more
densely connected than the rest of the graph. Our focus in this paper is to optimally detect an unknown
bipartite community of size k1 X ks. To this end, for any § > 0, we let

O(k1, ka,na,m2,0) = | U O(K1, K3, 6).
K1€Py,(n1) K2€Pk,y(n2)
We consider the following testing problem
Ho : V(i,7) € [n1] x [n2], P;j =po against H; : P € O(ky, k2, n1,n2,9). (D

The hypothesis Hy is equivalent to observing a bipartite ErdSs-Renyi random graph with parameter
po. The hypothesis H; is equivalent to the existence of an unknown bipartite community of size
k1 X ko with connection probabilities at least pg + 9.

A test is a measurable function of the observed data A taking its values in {0,1}. We measure
the quality of a test A by its risk, defined as the sum of its Type I and worst-case Type II errors.
Specifically, denoting by Pp the probability distribution of A for P € O(ky, ko, n1,mn2,0), and
letting [Py denote the distribution of A under the null hypothesis, the risk of a test A is defined as

R(A,8) =Po(A =1) + sup Pp(A = 0). )
Pe@(nl,ng,kl,kQ,é)

The minimax risk associated with the problem (1) is defined as
R*(kl,kg,nl,ng,é) :1ng(A,5), (3)
where the infimum is taken over all tests A. For a desired level of risk € (0, 1), considered as a
fixed constant throughout, we are interested in the minimax separation rate 6* defined as
5*:inf{5>O:R*(k1,k2,n1,n2,5)Sn}. “4)



The minimax separation rate §* encodes the difficulty of the testing problem. It is the infimal signal
strength ensuring the existence of a test with Type I plus Type II errors controlled by the desired
level of risk 1. The goal of the paper is to derive the value of §* in terms of n1, ns, k1, k2 and pgy up
to absolute multiplicative constants, and to construct the minimax-optimal tests achieving a risk at
most 7 for the testing problem (1) when the separation satisfies § > C'0* for some constant C' > 0
depending only on 7.

3 Main results

For any k1, k2, 11,12 € N and for a constant C' > 0 to be chosen later, we define

—_ 1 12 "
¢(k1,k27n17n2) - kl log <1 + k% log (e<k1)>) (5)

¢(k17k27n17n2>:{Z%log(l—i—’,zg) if 2 < C ©
0 otherwise.
1 no
u(kl,k27n1,n2)=k—110g (kz) 1{%10g<%)>1} @)
To alleviate the notation, we will write
$12 = ¢(l€17k2,n1,n2) $21 = ¢(k2,/€1,n2,n1)
1/)12:1/1(k1,k‘2,n1,n2) P21 :1/1(k2,k‘1,n2,n1)
v1a = v(ky, ka,n1,n2) vo1 = v(ka, k1,n2,n1).
Finally, we define the quantities
R := R(ky, k2,n1,n2) = (Y12 4+ h21) A dp12 A o1 3

and
R= (Y12 4+ vo1) A (Y21 + v12) A P12 A o1
We will prove that the minimax separation rate 0* satisfies
(6*)* < po(1 — po)R,
for any values of k1 k2, ny and ng, under Assumption 1 on pg given in Section 3.2.

3.1 Lower bound
The following theorem gives a lower bound on §* that holds for any values of n1, 1o, k1, k2 and pg.
Theorem 1 Let ) € [0, 1] be given. There exist constants c, C > 0 that depend on 1 only, such that
if 62 < cpo(1 — po) R with (6) defined with C = C, then it holds

R*(kl, kg, ni, no, 5) > 1.
Theorem 1 yields the lower bound (6*)? > ¢5po(1—po) R by definition of 6*. The proof of Theorem 1

uses a careful application of the second moment argument [42, 37, 34, 36, 15, 4]. We refer the reader
to the supplement for details.

3.2 Upper bound

Now we present a matching upper bound on the minimax rate of separation §*. We do so by carefully
combining three testing procedures, which are each constructed from the observed adjacency matrix
A. Our three hypothesis tests are defined as follows.

1. Total degree test: Let 04eg = +/M1n2po(1 — po) and define the test statistic

ni na
1

> (Aij —po) ©)

o
deg 1 j=1

The total degree test is defined as Ageg = 1(tgeg > h) for a choice of threshold h > 0.



2. Truncated degree test: To define this test, we introduce the Bennett function, defined as

hp(z) = (14 z)log(l+ z) — =, Vo > —1. (10)
hp(—1) =1. (11)

For any j € [nz],anda > 1,let & = \/n1po(1 — po) and define

_ 1 &
A= 5 Z(Aij —Po)
i=1

GA; GA.
Wj =ni(1—po) hp (—J) + n1po h3< . ) (12)
n1(1 — po) n1Po
Letting v}t = Eg [Wl |fll > a] and 7 > 0 denote a parameter to be chosen later, define
n2
ttrunc—deg,l = Z (W] - V:-Ll)].(Aj > T). (13)
j=1

The truncated degree test is as Af},unc_de&l = l(tmmc_deg,l > h) for some threshold h > 0.

3. Max truncated degree test: For any J; € Py, (n1) and any j € [ng], we let 0, ; =

v k1po(1 — po) and define
1
trn,g= _ Z (Aij —po)

O—l‘t 1. 0—1,4t 1
Wi j =ki(1—po) hp (M) + kipo h (kaﬁ;j) . (14)

Letting v = Eq [Wy, |ts,; > a] and 7 > 0 be a parameter to be chosen later, define

n2

max-trunc-deg,1 = 1MaX Z (WJl,j - Vfl)l(t‘]hj > 7') ‘ J1 € P, (’I’Ll) . (15)
=1

Finally, for a choice of threshold ~ > 0, we define the maximum truncated degree test as
Arlllbq'clx—trunc-deg,1 = l(tmax—trunc-deg,l > h)

Analogously, we define the tests Ar};ax—trunc—deg,Q and Afﬁunc_degg by swapping the roles of k1, k2, and

n1, ny in the definitions of Aﬁax_trunc_deg,l and Agunc_degl respectively.

For some constant ¢; > 0 depending only on the desired level of risk 7, we further combine the
degree and truncated degree tests as follows. Let

h1 o my h} omg
Ahl’h2 o Atrunc-deg,l if k32 2 c1, d Ah/uh/z _ Alrunc—deg,Q if k2 Z ¢,
a - Ah2 h . an b - h/2 .
dee otherwise A dee otherwise.

Using these procedures as our building blocks, we construct our final test A* by applying the relevant
test depending on what part dominates in the expression of the rate R. Specifically, our optimal test
is defined as

h3 e D
Ar}l:ax»trunc—deg,l if Z? - 11[}12 + Va1
3 3 —
A* — Amax—trunc—deg,2 if {% =121 + V12
AZIJLZ it R = ¢1s
R, hY e
Ab if R = qj)gl .

Our upper bound on the risk of A* holds under the following assumption, which guarantees that the
observed graph G is sufficiently dense.



Assumption 1 (Graph density.) There exists a constant C,, > 0 depending only on 1 such that the
baseline connection probability py satisfies po < 1/4 and

;f;ZQ log (6(21) (Z;)) ifR= (Y12 + v21) A (Y21 + 112)

- 217 log (1—1—%) if R = ¢12 and ny > k3
Do 2 2 ~
i 1og (1 n %) if R = ¢y andny > k?
1
nc" otherwise.
1n2

The upper bound py < % in Assumption 1 is used to apply Slud’s inequality for binomial anti-
concentration [58]. We invoke the different cases of Assumption 1 depending on the exact construction
of A*. Assumption 1 places us in a quasi-normal moderate deviation regime, which enables us to
control the tails of the test statistics (9), (13), and (15) with sufficient precision. These tests are
based on binomial statistics, which exhibit sub-Gaussian concentration properties in the moderate
deviation regime and sub-poissonian concentration in the large deviation regimes (see, e.g., [5, 17, 39,
18]). This dichotomy has also been noted in the two companion papers [4] and [59], which split the
analysis between the case of dense graphs, where a quasi-normal regime emerges (see the first row
of Table 1 in [4]), and sparse graphs, where fundamentally different behaviors occur due to lower
connectivity. In this paper, we follow the same approach by restricting to dense graphs as specified in
Assumption 1, and leave the case of sparse graphs for future work. Furthermore, Assumption 1 has a
natural probabilistic interpretation, as codified in the following propositions.

Proposition 1 Let ¢ > 0. There exists a constant C > 0 such that if

< log (e(m) <n2)> <po < 17
kiks k1) \ ko 4
then it holds Po (G has an empty k1 X ko bipartite subgraph) < c.
Here, we say that a subgraph G1 of G is empty if all the vertices in G1 has degree equal to 0.

Proposition 2 Let ¢ > 0. There exists a constant C' > 0 such that if

L lo n1 < pn < }
ks gle ky SPo > 1’
then it holds Py (31 € Pry(n1) : Yy 02, Ay = 0) <ec

Propositions 1 and 2 shows that Assumption 1 prevents the occurrence of extreme events under Py
that would otherwise inflate the Type I error of our testing procedures, especially the max truncated
degree test in (15). We remark that the lower bound on pg assumed in Proposition 2 is stronger than
what we need in Assumption 1; we include this result to provide intuition.

The following theorem guarantees that the minimax risk of A* is small whenever 9 is large enough.
Theorem 2 Let 1) € [0, 1] be given. Suppose that Assumption 1 holds. Then there exist constants
Cs,C > 0 and thresholds hy, ha, hg, ha > 0 such that if 6> > Cspo(1 — po) R with (6) defined with

C = C, then the test A* satisfies
R(A*,6) < n.

Theorem 2 demonstrates that our proposed test A* is able to match the lower bound on §* given
in Theorem 1 under Assumption 1. Combining Theorems 1 and 2, we have therefore identified the
minimax rate of separation * up to constants.

4 Discussion

4.1 Discussion on the proposed tests

Our test A* is a careful combination of three testing procedures. The total degree test has been
commonly applied in previous works [4, 57], along with the scan test, which consists of scanning



over all possible subgraphs of size k; X ko and rejecting if one of them contains an unusually large
number of edges. Notably, our results do not make use of the scan test, and highlight that it can
always be successfully replaced by a max truncated degree test, with lower time complexity?.

Our two novel tests Aﬁunc_de&l and Aﬁzx{mmdegyl build on the truncated x? test recently developed
in the Gaussian sequence model. Given a vector X € R?, the truncated x? test statistic is given by

d

T= (X?*I/a)lﬂXj‘ > a)

j=1
for some ¢ > 0 and where v, = E (Z2| |Z] > a). On top of being fast to compute, this test
has been shown to be optimal in the Gaussian sequence model for detecting s-sparse alternatives
separated in /5 norm when s < \/d [21], whereas the max test, which rejects for large enough
values of max { 3° . ; X7|.J € Ps(d)}, is known to be statistically suboptimal [10] while exhibiting
exponential time complexity.

We aim to adapt this test to the matrix case where X € R% %% For the sake of discussion, we will
focus on the truncated degree test (13), the ideas underlying the max truncated degree test (15) being
analogous. An idea for adapting the truncated x? test would be to use

ni n2 2 n2

Z ((ZXU) — Va>1(ZXij Z CL)

i=1 j=1 j=1

for some suitable re-centering parameters v, and v//,. Whereas squares of Gaussian random variables
concentrate sub-exponentially (see Lemma 5 in [43]), squares of binomial distributions do not exhibit
such favorable concentration properties, due to their sub-poissonian tails. In the definition of the test
statistics (12) and (14), we therefore replace the square function with a carefully chosen function
with slower growth. Focusing on the truncated degree test for illustration, and recalling (12), we can

check that
GA; GA; - A;
W, = 1-— hg| ————— h L) < 5A4,log(l+ —2).
i =mn1(1—po) B( n1(1p0)>+nlpo B(mpo) oAjlog(l+ 5)

When Aj < &, which exactly corresponds to the moderate deviation regime for binomial distributions,
we obtain W; =< A? and our test Statistic fyunc-deg,1 = Z;ﬁl (W; —vi)1(4; > 1) becomes
analogous to the truncated x? test described above. In the large deviation regime where A4; > &,
we have W; =< 5.A4; log(“), which grows less fast than A? and mitigates the extreme values of the
binomial distribution.

Heuristically, the truncated degree test is optimal when one sub-graph of the elevated community
is large and the other is small. The max-truncated degree test is optimal when both sub-graphs
are small. To demonstrate this: Suppose that one of the communities is very large, for example
ko = ng to fix ideas, and the other one is small (k; < 7). In the corresponding adjacency matrix,
all entries within a row are i.i.d. Bernoulli random variables with the same probability parameter.
It is well-known that a sufficient statistic of m i.i.d. data points X1, ..., X, ~ Bernoulli(p) is the
sum Y ;" | X; ~ Binomial(m, p). Therefore, the column vector obtained as the row-wise sum of
the adjacency matrix is a sufficient statistic of the data. This vector is simply the vector of node
degrees in the first sub-graph of the bipartite graph. Therefore, when one of the two sub-graphs is
large enough, the problem can be reduced to a vector-based problem. A classical test statistic in such
cases is the truncated chi-square test, which we apply to the degree vector with a slight refinement to
account for the sub-Poissonian tails of the binomial distribution. This yields the truncated degree test.

When both sub-graphs of the elevated community are small, collapsing the matrix into a single vector
(by summing over rows or columns) discards too much information from the data. In this case, a
natural idea would rather be to scan over all possible bipartite subgraphs of size k; X ko and reject the
null hypothesis when one such subgraph contains an unusually large number of edges—an approach
proposed in [57]. Unfortunately, this procedure is not optimal. Instead, we propose a non-trivial
refinement that builds on the truncated chi-square test, adapted to tackle two key challenges: 1) the

*Computing AR2, 1 gee 1 Tequires O(kina (1)) operations, rather than O(k1 ks (1) (}:2)) for the scan
test.



data are matrix-valued, not a vector-valued, and 2) the entries are Bernoulli rather than Gaussian
random variables. Our procedure, the max-truncated degree test as formally defined in equation (14),
is obtained by scanning and summing over subsets along one dimension of the matrix, applying a
non-linear transformation based on the Bennett function, and truncating along the other dimension
— analogous to the truncated chi-square test statistic. This procedure captures subtle concentration
effects of bipartite graphs when both communities are small and achieves the minimax optimal risk
in this regime.

4.2 Comparison with existing results

Through Theorems 1 and 2, we have shown
(6%)* < po(1 — po)R, (16)

with R defined in (8). We can understand the nuances of (16) by first considering our results when
restricted to the fully balanced (effectively non-bipartite) setting. Suppose that ky = ko = k and
ny = ng = n, and that n < C'k2. From the definition of R, we can rewrite (16) as

ot Sy = o () s (1)

If k% > 1lor k% < 1, the form of 6* in (17) matches that given by Theorem 2 of [4] in the moderate
deviation regime imposed by Assumption 1. Our result is, in fact, more refined than that of [4], as we
are able to precisely capture the phase transition around ;7 < 1 thanks to our truncated degree test.

The detection boundary for imbalanced bipartite graphs is more complex. The following proposition
describes a new phase transition that emerges in the imbalanced bipartite setting, but not in the
non-bipartite setting.

Proposition 3 Suppose that k3 > ény ko for a constant ¢ > 0 and k;j < cjnj for j € {1,2} where
c1,ce > 0 are sufficiently small constants. Additionally, suppose that there exists a constant o > 0

such that ny > k2+"‘ and that Z—i >e log(%). Then it holds

(5*)2 1 < nlkg )
——— =< —log |1+ —=log(n . 18
pol—po) T %8 2 g(n2) (18)

. . .. k -
In particular, this reveals a phase transition at ”}C%z log(ng) =< 1.

To our knowledge, (18) is described nowhere in the existing community detection literature, as
previous works either impose restrictions on the shape of the observed graph and the community
of interest (i.e. enforcing ny = no and/or k1 = ks) or provide results that are not sharp for all
configurations of n1, no, k1, and ko. The recent paper of [57] presents the results that are most similar
to ours in the literature. They consider the case n1 = no = n with k1 # ko in the asymptotic regime
k1 + k2 = o(n). We again emphasize that our results hold for n; # ny and any k; and ko, and as
such are immediately more general than those of [57]. However, we argue that our results are more
precise even in the restricted case of n; = ny = n and k1 + k2 = o(n). Under the assumption that
Po, 0" = O(n~) for o € (0, 2], in Theorem 1 of [57] the authors show that

(6%)2 1 A n? AN
po(L—po)  \kiAks K2kZTKZVEZ)’
and in Theorem 2, they show

(6%)2 _O(log(n) N Anlog(n))

po(1 = po) ki Nky ' K2KE T K2V K3

We refer readers to equations (14) and (15) in [57] and the surrounding discussion for details. Their
lower bound on §* is loose by a logarithmic factor in n, and the asymptotic assumption 6* = ©(n~%)
excludes the regime in which the complex rate that we derive in (16) emerges. As such, the results of
[57] do not describe, for instance, the phase transition (18). We also comment on the assumptions
on po made in [57] and in our work. Recall that the results of [57] require pg = n~* for a € (0, 2],
where under our Assumption 1, we require at least pg 2> n% and, in certain regimes, we need

~




Po 2 7 10g((2) (). This assumption is stronger than that of [57], and hence excludes our
results from holding for all values of py considered by [57]. However, as their results are not
sharp, they are not able to describe the entirety of the detection boundary in the case when our
Assumption 1 does not hold. We anticipate that the minimax rate of separation §* may actually differ
non-trivially from the rate derived in [57] in this setting, and we view the extension of our results
beyond Assumption 1 as a crucial piece of future work. Finally, we remark that [26] extends the
results of [57] beyond planted bipartite subgraphs, but they do so in the same asymptotic setting and
thus suffer from the same limitations.

S Conclusion, limitations, and open problems

We have presented a rigorous study of the community detection problem in bipartite graphs. We
present a lower bound on the minimax rate of separation, and describe a novel optimal testing strategy
that achieves the minimax rate when the observed graph is dense. Our non-asymptotic results hold for
all possible dimensions of the observed graph and the planted subgraph, which reveals new behavior
in the detection boundary. Here, we outline some limitations and opportunities for future work.

Adaptivity to unknown pg, k1, and k5. All three of our tests require knowledge of pg, the connection
probability under the null hypothesis, which is typically unavailable in practice. In [4], the authors
consider this problem in the case of non-bipartite graphs, and find that community detection without
knowledge of pg exhibits substantially different behavior. We anticipate that similar phenomena will
arise in the bipartite setting.

Furthermore, our max truncated degree test requires knowledge of the size of the community as
encoded in k1 and ko. Optimal adaptivity to unknown k7 and k5 is achieved in previous works such
as [15, 4] by scanning over possible values of k; and k2 and performing a Bonferroni correction.
However, this not an option for us, since the tails of the test statistic (15) are too heavy to still be
optimal after a union bound. One possible strategy is to use Lepski-style adaption as in [41]; we
leave this to future work.

Beyond dense bipartite graphs. The tightness of our upper bound in Theorem 2 relies on Assumption
1. Prior work in the non-bipartite community detection literature [59] suggests that the detection
landscape is very different for sparse graphs. Understanding optimal detection in bipartite graphs
when py is extremely small will potentially require testing procedures and new techniques for proving
lower bounds, likely based on the truncated second moment method [35, 15, 4, 59].

Computational considerations. Our max truncated degree test is unfeasible to compute on datasets
of even moderate size. It is well established that the community detection problem in non-bipartite
graphs exhibits a statistical-computational gap [46, 4, 31, 12, 22, 57, 26], meaning that it is not, in
general, possible to optimally detect a planted community with a test that runs in polynomial time.
We conjecture that this gap persists in the bipartite case, and establishing this phenomenon formally
is an open problem of great interest.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We substantiate all claims made in the abstract and introduction in Section 3.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We address all serious limitations in Section 5, and outline many possible
avenues for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide all proofs in the supplementary material.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We affirm that we comply with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work is entirely theoretical, and we anticipate no societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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16.

Answer: [NA]
Justification: We do not release any assets in the present work.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper dow not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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