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Abstract

Accurate segmentation of perivascular space (PVS) is essential for its quantitative anal-
ysis and clinical applications. Various segmentation methods have been proposed, but
semi-supervised learning methods have never been attempted. Here, we propose a 3D
multi-channel, multi-scale semi-supervised PVS segmentation (M2SS-PVS) network. We
incorporated multi-scale image features in the encoder and applied a few strategies to
mitigate class imbalance issue. Our M2SS-PVS network segmented PVS with the highest
accuracy and high sensitivity among all the tested supervised and semi-supervised methods.
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1. Introduction

Perivascular spaces (PVSs) are extracellular spaces containing interstitial or cerebrospinal
fluid surrounding cerebral small penetrating arteries and veins (Jessen et al., 2015). PVS is
visible on brain MRI scans of healthy individuals but also considered a hallmark of aging
and an early anomaly of neuro-degenerative disease as it becomes enlarged along with aging
and Parkinson’s disease, multiple sclerosis, and small vessel disease (Zhu et al., 2010).

PVS burden is generally evaluated using semi-quantitative rating scales on T1- or T2-
weighted MRI (Potter et al., 2015). Manual detection and delineation of PVS are currently
the gold standard for neuro-radiological evaluation, but it is highly labor-intensive and sub-
ject to inter-rater bias. Early automated approaches were based on unsupervised methods
including simple thresholding, edge detection, or morphological operations but yielded poor
results (Uchiyama et al., 2008). More recent studies have adopted supervised methods for
PVS segmentation. For example, Lan H. et al. incorporated a convolutional neural net-
work (CNN) into weakly supervised learning framework and achieved a Fβ score of 0.76

© 2023 Y. Chai, H. Zhang, G. Park, E. Lopez, C. Zang, J. Ha, O. Elhawary & H. Kim.



Chai Zhang Park Lopez Zang Ha Elhawary Kim

within the region of interests, requiring a further improvement (Lan et al., 2023). However,
PVS segmentation is very challenging due to 1) various shape and size of PVS; 2) class-
imbalance issues. In addition, supervised deep learning generally requires a large size of
training samples with labels.

Therefore, we propose a 3D multi-channel (T1, T2 MRI), multi-scale semi-supervised
perivascular space segmentation (M2SS-PVS) network, to leverage the information con-
tained in a larger number of unlabeled images. To evaluate the performance of our proposed
M2SS-PVS network, we computed three metrics: DSC, the absolute percentage volume dif-
ference (AVD), and recall among M2SS-PVS, supervised multi-scale and mono-scale feature
extraction, and semi-supervised learning with mono-scale feature extraction.

2. Materials and Method

Materials. In this work, we used T1 and T2 turbo spin echo images (both in the resolution
of 0.8 mm3) in the Human Connectome Project in Aging (HCP-A) (Bookheimer et al.,
2019). Our subjects were sampled considering the age range of 45 years or older (63.8±14.1)
and sex balance (18F). Twelve out of 33 subjects were manually segmented for PVS by two
medical students reviewing both T1 and T2 images and evaluated by a neurologist.

Figure 1: The architecture of the proposed M2SS-PVS network. It consists of an encoder and decoder
network. A: The network follows an encoder-decoder structure. The supervised learning part is optimized
by focal loss. In the unsupervised part, the pseudo label produced by T1 and T2 and the predicted results
produced by the augmented images are optimized by consistency loss. B: We designed multi-scale feature
extraction in the encoder to incorporate different level of features in the successive layers.

Network Architecture. The framework of the proposed M2SS-PVS network is illustrated
in Fig.1. The supervised model is fed with labeled T1 and T2 images in the two complemen-
tary channels, and the unsupervised model is fed with unlabeled T1 and T2 images as well
as those pairs augmented by applying standard Gaussian noise. The supervised loss was
designed as: Ls = 1

N

∑N
i=1 focal loss(Plabel, Ppred), where Ppred =Model(xlabel). Focal loss

(Lin et al., 2017) is designed to mitigate imbalanced class learning and optimize the super-
vised model. A consistency loss (binary cross entropy) was calculated between the pseudo
labels (on the original unlabeled images) and the PVS predicted on the augmented im-

2



ages to optimize the unsupervised model: Lu = 1
Nu

∑Nu
i=1 1[P ′pred > σ]BCE(P ′pseudo, P

′
pred),

where P ′pseudo =Model(xunlabel), P
′
pred =Model(Augmentation(xunlabel)), 1 is the indica-

tor function and σ is the confidence threshold (σ = 0.8) to filter pseudo labels.

To robustly capture the various size and shape of PVS and various levels of anatomic
details in surrounding brain tissues, we integrating the multi-scale feature extraction into
the encoder network of the proposed M2SS-PVS. As shown in Figure 1B, the first level of
feature extraction consists of a convolutional and a pooling operation, and the second level
reverses the order of the operations. In this manner, these multi-scale features are then
fed into the corresponding encoder level. We design four multi-scale features in descending
order to be fed into the encoder.

Implementations and experiments. The proposed networks were implemented with
Python using the PyTorch deep learning library. The models were trained on Tesla V100
GPU. We randomly split the labeled subjects into training, validation, and testing sets
(8:1:1) for 5-fold validation. Each subject was divided into mini patches with the size of
32x32x32 voxels (stride=16), which yielded 1540 patches for each subject. In supervised
learning part, the model was fed only with labeled T1 and T2 images, while in semi-
supervised learning part, M2SS-PVS was trained using both labeled and unlabeled images
simultaneously. To alleviate class imbalance, we only chose the patches that include PVS
voxels for a warm-up training (epoch=20).

Evaluation. We compared the results of M2SS-PVS with the supervised methods using the
same encoder-decoder architecture 1) with and 2) without multi-scale feature extraction,
and 3) semi-supervised methods without multi-scale feature extraction.

3. Results and conclusions

The results are summarized in Table 1. Our proposed network achieved the highest DSC
and the lowest AVD compared to the other three networks. Mono-scale semi-supervised
model yielded the highest recall but the 2nd lowest DSC with the largest variance, suggest-
ing its sensitivity to PVS, but inaccurate and inconsistent segmentation across individual
PVSs. On the other hand, M2SS-PVS segmented PVS with the highest accuracy, highest
consistency (lowest variance), and high sensitivity.

Table 1: The performance of networks in Dice similarity coefficient (DSC), absolute percentage volume
difference (AVD), and Recall (mean ± standard deviation).

DSC AVD(%) Recall
Supervised (mono-scale) 0.50±0.15 55±11 0.70±0.19
Supervised (multi-scale) 0.56±0.44 51±83 0.54±0.44

Semi-supervised (mono-scale) 0.51±0.75 43±67 0.79±0.16
M2SS-PVS (multi-scale) 0.65±0.12 34±95 0.75±0.07

Our results demonstrate that the proposed method can improve PVS segmentation. We
did not compare our network with other semi-supervised learning methods, yet, it is worth
noting that our study was the first to employ a semi-supervised learning framework with
modification to address the challenges involved in PVS segmentation task.
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