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The psychometric function describes how an experimental variable, such as stimulus strength, influences
the behaviour of an observer. Estimation of psychometric functions from experimental data plays a cen-
tral role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences.
Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the
behaviour of observers. Here we extend the standard binomial model which is typically used for psycho-
metric function estimation to a beta-binomial model. We show that the use of the beta-binomial model
makes it possible to determine accurate credible intervals even in data which exhibit substantial overdis-
persion. This goes beyond classical measures for overdispersion—goodness-of-fit—which can detect
overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian
inference methods for estimating the posterior distribution of the parameters of the psychometric func-
tion. Unlike previous Bayesian psychometric inference methods our software implementation—psignifit
4—performs numerical integration of the posterior within automatically determined bounds. This avoids
the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive
numerical tests show the validity of the approach and we discuss implications of overdispersion for
experimental design. A comprehensive MATLAB toolbox implementing the method is freely available;
a python implementation providing the basic capabilities is also available.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction scaled cumulative probability density function—relating the inde-
In psychophysics, experimental psychology and the behavioural
neurosciences, researchers attempt to measure detection or dis-
crimination behaviour as a function of stimulus level, i.e. some
changeable aspect of the stimulus or experimental setup controlled
by the researcher. The range of applications is vast, from simple
detection of spots of lights or Gabor patches to categorical percep-
tion of faces in experimental psychology and from discrimination
performance of a single neuron up to the behaving animal in neu-
roscience. After data collection, researchers frequently fit a psycho-
metric function to their data—almost always an appropriately
pendent variable on the abscissa to the observer’s behaviour on
the ordinate. Researchers then obtain the ‘‘threshold” and, some-
times, the slope from the estimated psychometric function. Detec-
tion or discrimination behaviour, or performance, is thus
summarised using one or two values, namely the threshold and
the slope.

Thus fitting the psychometric functions to experimental data is
of central importance for many fields. Given this importance, much
research was conducted to either investigate the efficiency and
reliability of the data collection (e.g. Blackwell, 1952; Watson &
Pelli, 1983; Green, 1990; Treutwein, 1995; García-Pérez, 1998;
Kontsevich & Tyler, 1999; Jäkel & Wichmann, 2006; Shen &
Richards, 2012) or how to obtain accurate estimates of the psycho-
metric function parameters (e.g. O’Regan & Humbert, 1989;
Treutwein & Strasburger, 1999; Wichmann & Hill, 2001a;
Knoblauch & Maloney, 2012).
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However, unless one has collected infinitelymany trials per psy-
chometric function, theparameters of thepsychometric functionare
not fully constrained by the data and there remains uncertainty
regarding theestimatedparameters. Tobeable todrawvalid conclu-
sions when comparing thresholds and slopes from different experi-
mental conditions, it is essential that this uncertainty is quantified.
Typically, the uncertainty is expressed in the form of confidence
intervals around the point estimates. Unfortunately, a reliable and
accurate characterisation of this uncertainty is more difficult to
obtain than the estimates themselves, partly due to the small size
of typical datasets collected during behavioural experiments.1

The bootstrap (Efron, 1979; Efron & Tibshirani, 1994) was the
first numerical sampling method applied to psychophysical data
in order to characterise the uncertainty of the point estimates,
i.e. to obtain confidence intervals (Foster & Bischof, 1987;
Maloney, 1990; Foster & Bischof, 1991, 1997; Wichmann & Hill,
2001b).2 Hill (2002) showed, however, that bootstrapped confidence
intervals in the context of psychometric function estimation can be
too small, a result confirmed by both Kuss et al. (2005) and Fründ,
Haenel, and Wichmann (2011).3

As an alternative to the bootstrap, Bayesian statistics,4 is centred
on the notion of how to quantify uncertainty, and thus Bayesian
statistics, too, offers a suitable theoretical framework to analyse data
obtained in psychophysics, experimental psychology and the beha-
vioural neurosciences. Bayesian statistics is, furthermore, especially
suited for the small datasets (sample sizes) typically gathered in
behavioural experiments. Kuss et al. (2005) provide a detailed and
tutorial-style introduction to Bayesian inference for psychometric
functions, and show results from numerical simulations suggesting
that credible intervals obtained from Bayesian inference are more
accurate than those obtained using the bootstrap. Similar results
were later obtained by Fründ et al. (2011).

Bayesian inference for psychometric functions cannot be per-
formed analytically, and instead has to rely on numerical methods
to obtain the posterior distribution of the parameters given the
data. Both Kuss et al. (2005) and Fründ et al. (2011) use Markov
chain Monte Carlo (MCMC) methods to generate samples from
the posterior distribution over parameters. MCMC is a standard
method in Bayesian inference in general, and, in principle, allows
Bayesian inference to be performed on many statistical problems.
Unfortunately MCMC requires considerable statistical expertise
from the user to fine tune the proposal distribution and the sam-
pling step size, and especially to detect when the sampling fails.
MCMC methods thus rarely work ‘‘automatically” with no or little
1 Much of conventional statistics relies on the asymptotic behaviour of estimators
and probability distributions, i.e. relies on—ultimately infinitely—large datasets.
Wichmann and Hill (2001a, 2001b) showed that, for the typical size of psychophysical
datasets, methods based on asymptotic theory are not always reliable.

2 Note that the ‘‘confidence intervals” estimated in the frequentist statistical
framework, e.g. via the bootstrap, are not the same as the ‘‘credible intervals”
obtained from Bayesian statistics. For a discussion of this difference in the context of
psychometric functions see Kuss, Jäkel, and Wichmann (2005), p. 480–481. We
always calculate credible intervals in what follows. For readers unfamiliar with the
distinction, Bayesian credible intervals are what most people intuit when they think
about confidence intervals, whereas the frequentist confidence intervals do not
provide this Hoekstra, Morey, Rouder, and Wagenmakers (2014).

3 Knoblauch and Maloney (2012) provide a comprehensive and clearly presented
different approach to psychometric function estimation using the well-established
framework of generalised linear models (GLMs). Their GLM approach benefits from a
broad array of existing tests, confidence intervals, and software implementations.
However, fitting asymptotes requires an alternation between the fitting of the GLM
and fitting the asymptotes and the methods available to calculate confidence intervals
are either based on asymptotic distributions for the parameter estimates or on
bootstrapping. Thus the GLM approach provides no alternative approach for
uncertainty assessment and, thus, no principled treatment of overdispersion.

4 Detailed treatments of Bayesian statistics be found in many available textbooks,
for example in O’Hagan (1994), Gelman et al. (2013), Jaynes (2003), and Kruschke
(2014).
user intervention the way analytical methods and the bootstrap do.
Kuss et al. aptly summarise the problem in their paper: A difficulty
of the proposed method is that using Markov chain Monte Carlo meth-
ods is nontrivial and requires the Markov chains to be inspected and
parameters to be set by the user. In practice, the parameters are found
in a trial-and-error procedure. Kuss et al. (2005, p. 491). For many
researchers in psychophysics, experimental psychology and the
behavioural neurosciences this difficulty precludes the use of the
MCMC-based Bayesian methods introduced by Kuss et al. (2005)
and Fründ et al. (2011), and they still have to rely on the easier
to use, albeit less accurate, bootstrap-based methods, e.g. the psig-
nifit 2.5 toolbox by Wichmann and Hill (2001a, 2001b).

Finally, there is one more hurdle for inferring the uncertainty
about the psychometric function parameters: overdispersion.
Overdispersionmeans that the variance of themeasured data is lar-
ger than expected from the binomialmodel, whichmay happen due
to fluctuations in attention, vigilance, criteria or unmodelled
aspects of the stimulus. Consequently all estimates of the uncer-
tainty based on the binomial model become too small, whether
based on Bayesian or on frequentist statistics if the data are overdis-
persed. To prevent this, early approaches used goodness-of-fit mea-
sures like deviance to detect overdispersion but could only suggest
to reject overdispersed datasets (Wichmann & Hill, 2001b). Later
Fründ et al. (2011) presented amethod to performa post hoc correc-
tions of error bars for overdispersed datasets. However there has
been no method which directly incorporated overdisperion in psy-
chometric function fitting, despite the fact that the beta-binomial
model for overdispersed binomial data has been well established
for many years (Williams, 1982; McCullagh & Nelder, 1989, chap.
4.5, exercise 4.17; also see Venables & Ripley, 2013, chap. 7.5).

1.1. Contributions of this paper

The contributions of the current paper are fourfold:

1. We extend psychometric function modelling from the standard
binomial to a beta-binomial model to capture overdispersion.
We show that this model not only allows statistical inference
from overdispersed data from a beta-binomial observer, but
yields reasonable results for other sources of overdispersion,
e.g. stemming from several types of serial dependencies
(Sections 3.1 and 3.2).

2. We show that fitting a beta-binomial model provides a way of
detecting overdispersion consistent with goodness-of-fit mea-
sures. In contrast with these approaches which can merely
reject overdispersed data, this method allows valid statistical
inference even for overdispersed data.5

3. We introduce a pain-free method for Bayesian inference for
psychometric functions. First, we compute the posterior distri-
bution of the parameters using numerical integration without
the need for MCMC sampling techniques and any user interven-
tion. Second, we suggest default priors and parameters for the
Bayesian inference which in our simulations and experience
yield good results, again without user intervention.6 Third, we
provide an implementation of the method, psignifit 4, coded in
pure MATLAB7 without dependencies on external code (such as
mex-files) or other toolboxes, which eases the installation for
the user, and helps the platform-independence.
5 Assuming, of course, that the data are reasonably well modelled using a sigmoidal
function.

6 Expert users can, of course, override any of the default choices in the software
implementation, see the third sense of being pain-free.

7 Similarly the python implementation does not require the user to compile code or
link-in compiled binaries; furthermore, it does not require the user to install ‘‘exotic”
packages.
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4. We show that the proposed method yields essentially unbiased
point estimates of the width and the threshold of the psycho-
metric function8 as well as an accurate estimate of the residual
uncertainty, i.e. credible intervals with appropriate coverage for
both the standard binomial observer (supplementary material
S.1–S.3) and overdispersed observers (Sections 3.1 and 3.2).

2. Models, priors, methods and notation

2.1. The standard binomial model for psychophysical data

The standard observer model for psychometric functions
assumes that each trial is a Bernoulli-trial with the success proba-
bility given by the value of the psychometric function independent
of all other trials. As a consequence, the number of success in a
block of fixed stimulus level is binomially distributed. Note that
we here refer to any collection of trials with a fixed stimulus level
as a block, whether they were collected en bloc or not.

As it is common practice, we model the psychometric function
w as a scaled sigmoid function S, which is a strictly monotonic
function from the stimulus level x on the real line to the unit inter-
val ½0;1� approaching 0 for small x and 1 for large x. To specify the
shape of this sigmoid function we choose a family of sigmoid func-
tions Sðx;m;wÞ, with parameters m, the threshold, and w, the
width. The threshold m is the level at which the unscaled sigmoid
function has value 0.5, i.e. Sðx ¼ m;m;wÞ ¼ 0:5 and the width w
is the difference between the levels at which the function reaches
0.05 and 0.95. These parameters are illustrated in Fig. 1A, and
mathematical details are provided in Appendix A.

Equivalently the sigmoid S can be parametrised by a shift
parameter a and parameter b that describes the slope. However,
in this paper we follow Alcala-Quintana and Garcia-Perez (2004)
and Kuss et al. (2005) who proposed the width-parametrization
for the following reasons9: First, the threshold and the width have
an easily accessible meaning and are measured in the same units—
particularly the width is easier to interpret and understand than
the slope parameter being directly, or even inversely, proportional
to the slope of S. Second, the parameterisation in terms of threshold
m and width w has the same meaning for all sigmoid families and
thus allows easy comparison between data fitted with any sigmoid.
Third, specifying an appropriate prior is much more difficult for the
parameter b than for the width w—we refer the interested reader to
Kuss et al. (2005) on pp. 484–485 and their Fig. 3. Fourth, because
threshold m and width w have the same meaning independent of
the choice of sigmoid S, we can choose a single set of priors indepen-
dent of the choice of S.10

The toolbox provides several sigmoid functions. Additional
functions can be easily added by the user.11 Currently the following
seven functions are implemented:

1. The cumulative normal function.
2. The logistic function.
3. The cumulative Gumbel distribution.
4. Its reversed form, the reversed cumulative Gumbel.
8 Meaning the bias is small compared to the credible intervals. Fully unbiased
statistical estimators are rare and simulations cannot exclude small biases.

9 If, for whatever reason, the researcher prefers a and b, it is easy to convert one set
of parameters to the other, see Appendix A.1. Psignifit 4 can convert m and w to a and
b for any of the supplied sigmoid families.
10 The equivalent prior on the individual standard parametrisation differs between
different sigmoids and can be complicated depending on the mapping between
parameters.
11 Psignifit 4 is explicitly coded to be extendible; if a user requires a particular
sigmoid not supplied by default, they can add it easily, and make this extension
accessible to the scientific community via github as explained on https://github.com/
wichmann-lab/psignifit.
5. The cumulative T1-distribution with one degree of freedom.
6. The Weibull function.
7. The log-normal function.

Numbers 1 and 2 are the most common psychometric functions
and have similar, symmetric shapes; numbers 3 and 4 are asym-
metric, i.e. approach one asymptote faster than the other; number
5 is a strongly heavy tailed distribution, i.e. approaches both
asymptotes slower; numbers 6 and 7 are widely used for stimuli
on a logarithmic scale.12 These families are illustrated in Fig. 1B
and their formulae are listed in Table A.1.

Using the chosen sigmoid family, the psychometric function w is
defined with two additional parameters k and c for the upper and
lower asymptote, scaling the sigmoid function:

wðx;m;w; k; cÞ ¼ cþ ð1� k� cÞSðx;m;wÞ ð1Þ

In this parametrization k denotes the probability of an incorrect
answer at infinitely high stimulus levels; c denotes the probability
of a correct answer for infinitely low stimulus levels. These two
parameters can be fixed or estimated from the data, depending on
the experimental design (see Section 2.3 for details). For an ideal
observer k would always be zero. In practice however, k should
not be fixed at zero as Wichmann and Hill (2001a) showed that
the estimates for width and threshold can be severely biased if
the upper asymptote is not allowed to be lowered in response to
stimulus-independent lapses (errors unrelated to the stimulus
level).13 This rescaling changes the percent correct at the threshold
and the points which define the width, which thus do not have per-
cent corrects of 5%; 50% and 95% necessarily.
2.2. The beta-binomial model for overdispersed data

The standard binomial observer model assumes that each trial
is a Bernoulli-trial with a fixed success probability independent
of all other trials. This assumption is an idealisation, however,
and it is typically not exactly correct. It is well known that obser-
vers show fluctuations in performance due to fatigue or changes
in their attentional state on longer time-scales, and that trials in
psychophysics are not independent of each other on short time-
scale either (for a recent overview and statistical analysis see
Fründ, Wichmann, & Macke, 2014). Typically, fluctuations in per-
formance and serial dependencies result in data with variances lar-
ger than the variance of the binomial distribution: Data are
overdispersed. Thus the standard binomial model provides only a
lower bound for the variance of the actual variance inherent in
behavioural data. Hence the credible intervals derived from this
model might be too narrow. Fründ et al. (2011) simulated two dif-
ferent overdispersed observers resulting from learning or perfor-
mance fluctuations respectively, and showed confidence and
credible intervals derived from the standard binomial model to
be too small indeed. Analyses of real-world data confirmed both
types of overdispersion to be present.14
12 In extremely rare cases no sigmoid may be a good model for the psychometric
function, e.g. for the unusually shaped psychometric functions reported by Henning,
Millar, and Hill (2000) exhibiting a plateau region. In such cases a non-parametric fit
may be the better choice as advocated by _Zychaluk and Foster (2009), who propose a
locally weighted linear fit with a link function to map the prediction to the ½0;1�
interval
13 Note that the interpretation of a scaled sigmoid function is mathematically
equivalent to a binomial mixture model: In the binomial mixture model the
proportion correct answers of the observer results from two independent Bernoulli
processes, one of (stimulus independent) guessing, and one being governed by the
experimental design and the sensitivity of the observer; proof of the equivalence is
provided in A.2.
14 Fründ et al. (2011) cite preliminary conference reports; the experiments are now
published in Maertens andWichmann (2013) and Schönfelder andWichmann (2013).

https://github.com/wichmann-lab/psignifit
https://github.com/wichmann-lab/psignifit


A B C

Fig. 1. A. Definition of the parameters: thresholdm, the stimulus level at which the unscaled psychometric function reaches 0.5; widthw, the difference between the stimulus
levels for which the unscaled function reaches 0.05 and 0.95, respectively; the lapse rate k, the difference between the upper asymptote and 1; the guess rate c, the difference
between the lower asymptote and 0.0. B. The implemented psychometric function families on a linear stimulus level: The cumulative normal, the logistic, the Gumbel and
reversed Gumbel (both asymmetric) and a T1-distribution with df ¼ 1 (heavy tail distribution). C. The two implemented psychometric function families for logarithmic scales,
for which we define the width and the threshold on the natural logscale: The Weibull and the log-normal.

15 Measures of overdispersion only approximate this value due to the necessarily
approximate numerical estimation from data and uncertainty about the true wðxÞ.
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Many different goodness-of-fit measures exist to measure the
amount of overdispersion in data, typically termed lack of fit in this
context. The most classical and perhaps most well-known measure
is the overdispersion factor i.e. howmany times larger the variance
of the observations around the psychometric function is compared
to the predicted (binomial) variance:

1
Nb

XNb

i¼1

yi
ni
� wðxiÞ

� �2

1
ni
wðxiÞð1� wðxiÞÞ

ð2Þ

where Nb is the number of blocks, xi is the stimulus level for block i
and yi and ni are the number of correct trials and the total number
of trials respectively.

This lack-of-fit measure converges to 1.0 for binomial data and
many large blocks. Some variants of this formula exist depending
on the variance normalisation and the weighting of blocks (see
Collett (2002) for other goodness of fit measures and their
discussion).

However such measures are not recommended for binomial
data, as the distribution of binomial data becomes highly asym-
metric for expected values near 0 and 1; furthermore the above
estimates are biased for small sample sizes (Collett, 2002). Instead,
for binomial data, deviance D is the recommended goodness-of-fit
measure, and it is defined as:

D ¼ �2 log PðdatajMMaxÞð Þ � log PðdatajhÞð Þ½ �; ð3Þ
i.e. as �2 times the difference of the model log-likelihood
(logðPðdatajhÞÞ) to the log-likelihood of the model MMax

(logðPðdatajMMaxÞÞ) with a free parameter for each block (i.e. fitting
the data perfectly). This measure of goodness-of-fit for psychomet-
ric functions was explored in detail by Wichmann and Hill (2001a).
Deviance converges to 1.0 for a large block from the binomial model
and thus to the number of blocks for the whole function.

Fründ et al. (2011) suggested to apply a post hoc fix to improve
the coverage of the confidence or credible intervals if data are
overdispersed: they increased the size of the estimated intervals
using a post hoc correction factor. The correction factor is based
on an estimate of the residual dispersion around the most probable
psychometric function from a standard binomial fit. This model
does not, however, provide principled methods for full Bayesian
inference in a beta-binomial model.

Here, we provide methods for full Bayesian inference in a beta-
binomial model (Prentice, 1986) in which overdispersion is treated
as an additional parameter. The beta-binomial model assumes that
the success-probability per block at a constant intensity x is itself a
beta-distributed random variable with mean wðxÞ. Thus the
success-probability is not fixed at wðxÞ as in the standard binomial
model but is drawn randomly once for each block. The variance of
the success-probability is scaled by a new scale parameter g—rang-
ing from 0 and 1—such that the variance of the success probability
equals g2wðxÞ 1� wðxÞð Þ.

Thus for the beta-binomial model with scale parameter g the
mean percent correct remains wðxÞ as in the standard binomial
model, but the variance of percent correct becomes

g2 þ 1�g2
N

� �
wðxÞ 1� wðxÞð Þ for a block of N trials. For g ¼ 0 the vari-

ance reaches its lower limit given by 1
NwðxÞ 1� wðxÞð Þ, i.e. the vari-

ance of the standard binomial observer. For g ¼ 1 the variance
reaches its maximum given by wðxÞ 1� wðxÞð Þ, i.e. independent of
N; in the most extreme case increasing the number of trials N does
not lead to any reduction in the uncertainty about the location of
the mean.

Consequently the variance of percent correct according to the
beta-binomial model is 1þ ðN � 1Þg2 times the one of the binomial
distribution. Thus the beta-binomial distribution is overdispersed
by this factor and measures of overdispersion yield approximately
this value.15

Thus for g ¼ 0 the beta-binomial model reduces to the standard
binomial model; but for values of 0 < g 6 1 the beta-binomial
model becomes progressively more overdispersed. Note that the
factor of overdispersion depends on the number of trials per block,
as g scales the standard deviation of a distribution which is drawn
from once per block. Thus any interpretation of g depends on the
number of trials per block; an issue we return to in the discussion
in Section 4.2.

The likelihood for the beta-binomial model can still be calcu-
lated directly for each observation given the (now) five parame-
ters: h ¼ ðm;w; k; c;gÞ (see A.1)—thus, from a computational point
of view, it results in a simple and straightforward extension of
standard binomial model.

Given a formula for the likelihood we can also compute the
deviance of the model and the deviance distribution according to
the beta-binomial model with different g. In agreement with the
variance measures the deviance depends on the number of trials
measured in a block. For the binomial model it converges to 1 with



16 Clearly, our default priors are not the only possible or accurate ones, nor do we
claim that they reflect the belief of every user; users of the software can use other
priors they deem appropriate for their problem.
17 In the section ‘‘Prior distributions” by Kuss et al. (2005, p. 483–484), the authors
present another argument against the use of flat priors for parameters: The difference
between flat priors in model space versus flat priors on the parameters of a model.
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growing block size. For the beta-binomial model it diverges at dif-
ferent speeds depending on g (see Fig. 2F).

To provide some intuition about the beta-binomial model, we
show example data and how the variability and expected deviance
changes for different beta-binomial observers (Fig. 2). We show
three observers for illustration: The standard binomial observer
(black; panel A), a moderately overdispersed beta-binomial
observer (g ¼ 0:2; dark blue; panel B) and a strongly overdispersed
beta-binomial observer (g ¼ 0:5; light blue; panel C). For all three
observers a sample dataset with 500 trials in 20 blocks of 25 trials
each was generated from the same generating psychometric func-
tion (m ¼ w ¼ 1:0 and k ¼ c ¼ 0:02). The generating psychometric
function is shown as the dashed line, the Maximum A Posteriori
(MAP) estimates of psignifit 4 as solid lines in their respective
colour. The increasing variance in the data from panel A–B and C
is visible as the increased number of data points at ‘‘larger”
distances from the generating psychometric function.

If a binomial observer has a probability p of being correct, then
its success probability p is p in every block. In the beta-binomial
model, however, this is a random variable and only the mean cor-
responds to p. On a block-by-block basis p—the success probabil-
ity—is drawn from a beta-distribution. We plot the probability
density functions (PDFs) of these beta-distributions for four pro-
portions correct (p = 0.2, 0.5, 0.7 and 0.9) and the two beta-
binomial observers with g ¼ 0:2 and 0.5 as introduced in the pre-
vious paragraph in panel D and mark the mean p with red circles.
For the binomial observer this graph would be a delta function at p
(not shown).

To illustrate how the block variability depends on g and on the
number of measured trials we plot the standard deviation of pro-
portion correct in a block of trials against the number of trials mea-
sured, normalised to the variance of a single Bernoulli trial, for a
number of g’s (Panel E). For the standard binomial observer
(g ¼ 0, black curve) the standard deviation decreases proportional
to the square-root of N. For beta-binomial observers, however,
increasing the number of trials N results in a smaller reduction of
the remaining uncertainty and especially the standard deviation
does not converge to 0 but to g times the standard deviation of a
single trial such that the factor to the binomial model grows for
larger blocks.

Finally, we show the expected deviance of data generated by
the three model observers against a binomial model. The deviance
is shown as a function of the number of trials, and for four different
(mean) proportions correct (p = 0.2, 0.5, 0.7 and 0.9). The dashed
line at 1.0 marks the asymptotic value for binomial data, the dotted
line a typical cut off of 2.0 for what is often informally regarded as
a still ‘‘well behaved” dataset. First of all, note that for a single trial
the beta-binomial model degenerates to the binomial model (all
curves start exactly the same points). Second, note that deviance
for binomial data asymptotically converges to 1.0 (by design),
but that convergence is a function of p. For the beta-binomial
observers deviance increases with increasing number of trials per
block. As standard goodness-of-fit measures are based on detecting
overly large deviance this graph illustrates their sensitivity to
detect overdispersion in (beta-binomial) data: Stronger overdis-
persion increases deviance more making it detectable with smaller
blocks.

The beta-binomial model implies a specific form of overdisper-
sion, namely that the underlying performance level is constant
within each block of data and changes randomly from block to
block. For data obtained in a traditional blocked design—i.e. stimuli
are grouped into blocks of the same magnitude rather than being
randomised, sometimes termed blocked constant stimulus—this is
a reasonable assumption. If the data were not collected in blocks,
however, the situation is not as straightforward. The good news
is that we show that the beta-binomial model can still be used to
model overdispersion under conditions of stimulus randomisation;
we discuss the issue in detail in Section 4.2.

2.3. Prior distributions for the parameters

We use Bayesian inference to obtain parameter estimates, and
Bayesian inference requires a prior distribution PðhÞ over the five
parameters h ¼ ðm;w; k; c;gÞ. The prior distribution should ideally
reflect the scientists’ degree of belief about the true parameters
of the model. The default priors we provide and test in the simula-
tions reported in this article were chosen pragmatically: they yield
good inference results without the need of user intervention.16 For
psychometric functions it is reasonable to assume the priors of the
five parameters to be independent of each other, i.e. we can factorise
PðhÞ and define the prior as the product of the marginal priors for
each parameter: PðhÞ ¼ PðmÞPðwÞPðkÞPðcÞPðgÞ.

The numerical values for threshold m and width w can be any
real or positive number respectively, depending on the type of
experiment and parametrisation of the independent variable cho-
sen by the scientist. Thus there is no universal prior for threshold
m and width w that could ever be derived from statistical consid-
erations alone. However, a non-informative (or ‘‘flat”) prior would
not be a good choice either, because the likelihood has an infinite
integral over the real line. Thus maximum likelihood estimates of
the parameters may diverge for small datasets and a flat prior typ-
ically does not capture the scientist’s belief about the true param-
eters: In foveal contrast detection, e.g., one rarely beliefs that
contrast thresholds are below 0.001% contrast or above 20% for
motivated adult subjects and spatial frequencies around
2–4 c/deg. Hence choosing a prior assigning equal probability to
the threshold being at 0.001%, 1.0% and 20% would not be reason-
able—at least outside an ophthalmologist’s laboratory.17 To
overcome this problem, we derive the priors PðmÞ and PðwÞ automat-
ically from the x-levels of the data set to be analysed:

� For the threshold we choose a uniform prior over the range of
the data with a cosine fall off to 0 over half the range of the data.
This prior expresses the belief that the threshold is anywhere in
the range of the tested stimulus levels with equal probability
andmay be up to 50% of the spread of the data outside the range
with decreasing probability (see Fig. 3, first column, top and
bottom rows).

� For the width we choose a uniform prior between two times the
minimal distance of two tested stimulus levels and the range of
the stimulus levels with cosine fall offs to 0 at the minimal dif-
ference of two stimulus levels and at 3 times the range of the
tested stimulus levels (see Fig. 3, second column, top and bot-
tom rows).

For k and c we consider three types of scenarios:

� N-alternative forced choice (N-AFC) experiments, when the lower
asymptote is known and fixed at c ¼ 1=N and the upper asymp-
tote is free.

� Equal asymptote experiments in which the asymptotes are free,
but assumed to be equal (k ¼ c).

� YesNo experiments with two independent free asymptotes.

Whenever the asymptotes are free we chose a beta-distribution
with parameters ð1;10Þ as a prior for both PðkÞ and PðcÞ. This is a
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Fig. 2. Illustrations of the beta-binomial model we use to model overdispersion. A–C: example datasets for a binomial and two beta-binomial observers with g ¼ 0:2 and
g ¼ 0:5 scaling the overdispersion, 500 simulated trials over 20 linearly spaced stimulus levels each, k ¼ c ¼ 0:02 and threshold = width = 1.0. The dashed line shows the
generating function. D: beta-distribution densities for different means marked by the red arrows and standard deviations corresponding to g ¼ 0:2 or 0:5. E: standard
deviation of the proportion correct in a block of trials against the number of trials measured, normalised to the variance of a single Bernoulli trial. F: expected deviance of
binomial data (black; panel A), weakly beta-binomial data (dark blue; panel B) and strongly beta-binomial data (light blue, panel C) against a binomial model; the deviance is
shown as a function of the number of trials, and for four different (mean) proportions correct (p = 0.2, 0.5, 0.7 and 0.9). The dashed line at 1 marks the asymptotic value for
binomial data, the dotted line a typical cut off around the value 2 for what is often regarded as a still ‘‘well behaved” dataset.
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prior on the unit interval with a finite peak at 0 and a mean of
1
11 � 9:09%. This prior has the same precision as the posterior after
9 correct trials which test only k or c: The most probable lapse or
guessing rate is 0, i.e. the PDF peaks at zero and higher rates are
progressively less probable. This choice of priors assumes that
lapses (and guesses in YesNo) are rare. This prior is shown in
Fig. 3, third column, top and bottom rows.

We chose this prior because it yielded relatively unbiased
results for threshold and width for a large range of simulated lapse
rates. There are other priors with similarly good inference proper-
ties, but with a peak away from zero. We chose the prior with the
peak at zero because in the absence of evidence for lapsing it
induces a (small) bias towards larger widths and smaller lapse
rates—we mainly work with highly trained psychophysical obser-
vers. In different contexts and for different users a prior with a
peak away from zero may well be preferable. The supplementary
material S.4 contains a detailed evaluation of the influence of dif-
ferent prior distributions on inference.

For gwe again chose to use a beta-distribution with parameters
ð1; kÞ and thus a finite peak at 0, expressing the belief that, in the
absence of data suggesting otherwise, a standard binomial obser-
ver with g ¼ 0 to be most likely. As there are little data available
on the overdispersion observed in typical experiments, we had lit-
tle intuition about the prior for g. Thus we simulated three differ-
ent observers: A standard binomial observer (g ¼ 0), a moderately
overdispersed beta-binomial observer (g ¼ 0:2) and a strongly
overdispersed beta-binomial observer (g ¼ 0:5) (see Fig. 2). After
observing the range of coverages we obtained for different
strengths of the prior we chose k ¼ 10 as default value. A beta-
distribution with parameters ð1;10Þ represents a prior which did
not yield dramatically too small—nor dramatically inflated—cover-
ages of the credible intervals for any of the simulated observers
(details are presented in S.5, Fig. S9).

Note that all priors are derived solely from the tested stimulus
levels (‘‘x-values”), chosen by the experimenter, not on the data
from the observer. The heuristics for threshold and width are based
on the assumption of an experimenter choosing the stimulus levels
reasonably in the range where the behaviour changes. For other
sampling schemes—adaptive procedures, or situations in which
observers never reach performance levels above 60% in YesNo or
80% in 2-AFC—this heuristic will be sub-optimal. In such cases
the user of psignifit 4 is required to supply a manually chosen x-
range, to replace the default stimulus range (see Section S.3).
2.4. Bayesian inference

To estimate the parameters from the data we use Bayesian
inference (see Gelman et al., 2013; Kruschke, 2014, for an introduc-
tion). Given the beta-binomial model described in Section 2.2, we
can calculate the likelihood LðhjdataÞ ¼ PðdatajhÞ (A.1). Together
with the prior PðhÞ as described in Section 2.3, we can compute
the five-dimensional posterior PðhjdataÞ over all parameters h as:

PðhjdataÞ ¼ PðhÞLðhjdataÞR
X PðhÞLðhjdataÞdh ð4Þ

Themain calculation step is to calculate the integral over all pos-
sible parameters in the denominator. To calculate this integral we
first span a sparser grid over the 5 dimensional space and evaluate
the likelihood and the prior on all grid points. Then we omit parts
of the grid which contain less than e�7 � 1

1000 of the marginal poste-
rior to focus the grid on the parts that contain probability mass.



Fig. 3. Illustration of the priors on the different parameters for measurements at 11 equally spaced x-levels from 0.0 to 1.0. The solid blue curve in the panels in the top row
shows the heuristically derived prior densities from the range and spacing of the x-levels for m and w in the first and second column, respectively. In the third column we
show the default prior for k (and c if it is free), a beta-distribution with parameters ð1;10Þ. The coloured psychometric functions correspond to the 0%, 25%, 75% and 100%
quantiles of the prior. All thresholds (first column) and widths (second column) between the orange and bright green curves receive a non-zero prior probability. All other
parameters in the respective panels were set to the mean prior values corresponding to the black plots. The priors shift and scale with the stimulus range as described in the
main text.
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Subsequently we run a second evaluation of the non-normalised
posterior on the refined, denser grid. For this final grid we use 40
gridpoints along the threshold and width and 20 for k; c and g.
The chosennumbersof 40 and20arebasedon simulations exploring
the change in the size of the 95% credible intervals as a function of
the number of gridpoints, ensuring an error below 5% on the size
of the credible intervals (see Appendix B.2, Fig. B.13). From the eval-
uations of the unscaled posterior on the refined grid we perform
numerical integration to obtain the normalisation constant and pro-
ceed to normalise the posterior (see Appendix B.1 for details).

The posterior distribution represents the complete result of the
Bayesian analysis. From the posterior distribution we can compute
a maximum a posteriori (MAP) estimate by optimisation and (grid
evaluations of) posterior marginal distributions for each parameter
separately, as well as for parameter combinations. These marginal
posterior distributions can be used to obtain credible intervals and
posterior correlations of parameters. From the marginal distribu-
tions we can also compute a mean and a median estimate.
Throughout this paper we use the MAP estimate as the point esti-
mate, as we found that the mean and median estimates for low
numbers of trials per psychometric function (N < 200� 300) are
often strongly biased for the width, as the default prior influences
the final estimate too strongly (supplementary material: S.6).

An example result for the Bayesian analysis is displayed in
Fig. 4, emphasising that the result of the analysis is not only a sin-
gle parameter value but a distribution over the possible parameter
values. Note that for clarity we restrict the presentation to the
threshold and width parameters, but the posterior extends over
the other three parameters as well.
3. Evaluations of the method and software

To test the statistical method and software implementation we
performed extensive numerical simulations. Each simulation pro-
ceeded as follows. First, we generated datasets from one of many
different simulated observers. Second, we ran psignifit 4 on the
datasets—using the default parameters and priors. Third, we eval-
uated the accuracy (bias) of the point estimates for threshold and
slope as well as the coverage of the credible intervals. The coverage
of the credible interval assesses how often they contain the param-
eter used to generate the data, i.e. a 95%-credible interval should
contain the generating parameter 950 times in a simulation using
1000 repetitions. We report all results throughout the paper for the
95% confidence level. However we confirmed that all conclusions
drawn from the 95% data remain true for the 68% confidence level,
i.e. roughly �1 standard deviation of a Gaussian.

First we confirmed that the method, implementation, and
default priors work well and as expected with binomial data using
various sampling schemes, data collected using adaptive methods
(Wetherill & Levitt, 1965; Levitt, 1971; Watson & Pelli, 1983; Pelli,
1987), and for data with lapse rates as high as 10%. Details and sim-
ulation results can be found in the supplementary material S.1–S.4.
3.1. Psychometric function estimation with overdispersed, beta-
binomial, data

The purpose of the simulations reported in this section is a test
of the software implementation and default priors for the beta-
binomial model. To this end we simulate data from (stationary)
beta-binomial observers, and then apply Bayesian inference using
the exact model from which the data were generated.

The simulated observers had a threshold and width of 1.0, i.e.
m ¼ w ¼ 1:0, and for every simulated dataset the lapse rate was
drawn from a uniform distribution between 0 and 0.1, i.e.
k � Uð0;0:1Þ. In case of simulated YesNo experiments the lower
asymptote was drawn from a uniform distribution between 0
and 0.1 as well, i.e. c � Uð0;0:1Þ. Both k and c thus had consider-
able variability; furthermore, the distribution of both parameters
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Fig. 4. Example results of the Bayesian analysis for a psychometric function measured with 500 trials. The data with the Maximum A Posteriori (MAP) estimate of the
function shape are plotted on the left. On the right the marginal posterior for the threshold and the width is displayed. Attached to it are marginal distributions for the single
parameters. The prior is also displayed as the dashed grey line; the grey shade filling most of the marginal distributions corresponds to the extracted 95% credible intervals.
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does not match the used priors: The default priors PðkÞ and PðcÞ for
k and c are beta-distributions with parameters ð1;10Þ (see
Section 2.3; Fig. 3). Both the large variability as well as the generat
ing-distribution-to-prior-mismatch were chosen to ensure realistic
and taxing tests for the methods and software.18

We simulated:

� Two degrees of overdispersion: We used the values g ¼ 0:2 to
simulate a moderately overdispersed observer, and g ¼ 0:5 for
a strongly overdispersed observer. The two values correspond
to those shown in Fig. 2.

� Three types of experiments:
1. 2-AFC with three estimated parameters (threshold m,

width w, lapse rate k);
2. YesNo with four estimated parameters (threshold m,

width w, lapse rate k, lower asymptote c);
3. YesNo with equal asymptotes, i.e. three estimated param-

eters (threshold m, width w, lapse rate equal to the lower
asymptote: k ¼ c).

� Two different sigmoidal functions S: The cumulative Gaussian
and the Weibull.

� Constant stimulus design with three sampling schemes: Five
blocks, ten blocks and the number of blocks equal to the num-
ber of trials (see Fig. 5). Note that the priors PðmÞ and PðwÞ were
automatically obtained from the x-levels of the data, as
described in Section 2.3.

� Five different number of trials per psychometric function: 50,
100, 200, 400, and 800.

� One thousand repetitions for each of the combinations above, to
be able to assess coverage.

Thus we simulated a 2 � 3 � 2 � 3 � 5 � 1000 design with 180,000
datasets and a total of 55:8� 106 trials.

The sampling schemes we used are meant to represent typical
sampling schemes. They all cover the range of the psychometric
18 Wichmann and Hill (2001a, 2001b), for example, only used six different values for
k, the maximum being 0.05—exactly the mean of the k’s we used, and only half the
maximum value of 0.1 during our simulations. In addition, the distribution and range
of their k’s corresponded to their uniform prior.
function well, but they are not optimal. Shen and Richards
(2012) and Kontsevich and Tyler (1999) discuss optimal sampling
points for the parameters of the psychometric function and discuss
how to sample them adaptively during data acquisition.

The key results of these simulations for the moderately beta-
binomial observer with g ¼ 0:2 are shown in Fig. 6. Threshold esti-
mates are unbiased (panel A), and width estimates are unbiased,
too (panel B). The coverages of the credible intervals for threshold
and width are reasonable and in the range of 92–97%, see panels C
and D.

Fig. 7 shows the data for the strongly beta-binomial observer
with g ¼ 0:5. Note that such a strong overdispersion is more severe
than exhibited by any observer in the substantial body of real data
we analysed, or the simulated serially-dependent observers (see
Sections 3.2 and 3.3 and Fig.’s &9–11C). Nonetheless, even for this
severely overdispersed observer—and the default prior for the
strength of the beta-parameter g—we estimate threshold and
width accurately (panels A and B). The coverage of the credible
intervals is too small, however, in the range around 80% for the
threshold and 85% for the width for data from blocked sampling
schemes.

In summary, this set of simulations shows that the method
works accurately and with good credible interval coverage for
the problem of estimating psychometric functions for realistically
overdispersed data stemming from a moderately beta-binomial
observer (g ¼ 0:2). For strongly overdispersed data the imple-
mented default prior precludes fitting appropriately large values
for the beta parameter g. As a result the credible interval coverage
falls short of the desired 95% by up to 10–15% in the worst cases of
our simulations.19

3.2. Robustness against other sources of overdispersion

The purpose of the simulations reported in this section is to test
whether the beta-binomial model can adequately cope with other
19 If an experimenter is faced with data with extreme overdispersion, they can
always change the prior parameters of psignifit 4 to accommodate such datasets— for
example to betað1;5Þ. For an uniform prior—as an extreme case—the inference
becomes slightly conservative even for the strongly overdispersed observer, and
strongly conservative for binomial observers (supplementary material S.5).



Fig. 5. Constant stimulus designs used for our simulations. For each sampling
scheme we placed blocks of equal number of trials uniformly distributed between
m� 0:75w and mþ 0:75w. We simulated three placements, one with five blocks,
one with 10 blocks, and one with as many blocks as trials (shown here with 100
trials).

22 The ‘‘correct” functions had similar thresholds as the ones we used for generation
for the fluctuating observer (Range: ½0:9763;1:0126�) and the interval biased observer
(Range: ½0:9598;1:0176�). For the sequential dependent observer some functions for
the 2AFC case yielded lower thresholds extending the range to lower values
(½0:8708;1:0176�). For the width the fluctuating observer yielded higher values
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forms of overdispersion. To this end we modelled three observers
exhibiting serial-dependencies between their responses. The exis-
tence of serial-dependencies between successive responses is well
known at least since the early 1950s (Senders & Sowards, 1952;
Verplanck, Collier, & Cotton, 1952; Howarth & Bulmer, 1956;
Green, 1964; for a recent review and statistical assessment see
Fründ et al., 2014).

� A fluctuating observer, whose threshold m varied over time
according to an autoregression model from trial i to trial
iþ 1 : miþ1 ¼ 1þ 0:95ðmi � 1Þ þ 0:05Nð0;1Þ,20 which results in
slow fluctuations of the threshold around 1:0 roughly ranging
from 0:6 to 1:4. This could be caused by drifts in attention, con-
centration or sleepiness.

� A sequential dependent observer, whose threshold was 0.2 lower
after correct trials and 0.2 higher after incorrect trials, i.e. whose
performance depends on the previous trial.21

� An interval biased observer, who prefers the interval which was
the correct one in the previous trial, simulated by a shift in
threshold of 0:2 up when the target was in the preferred inter-
val, and 0:2 down if it was not.

The first two observers have a higher variance in their responses
at a given x-level, while the third creates no dependence between
the correctness of trials and thus for fitting is mostly equivalent to
a binomial observer with a wider psychometric function.

For the sampling schemes we again chose the two well-behaved
sampling schemes with 5 or 10 blocks shown in Fig. 5. In addition
we simulated data by either blocking or mixing the trials of differ-
ent stimulus levels in random order, as the observers simulated
here behave differently depending on the previous trial—there is
no difference between blocked and intermixed trials for binomial
or beta-binomial observers investigated in the previous three sec-
tions (see the discussion of blocking of trials either during the
experiment or during the analysis in Section 4.2). Thus we simu-
lated a 2 � 3 � 4 � 3 � 5 � 1000 design with 360;000 datasets
and a total of 11:16� 107 trials.
20 Nð0;1Þ indicating a standard, normally distributed random variable with zero
mean and unit variance.
21 This introduces positive correlations for the correctness of trials and thus
overdispersion (Prentice, 1986).
The key results for all three observers are shown in Fig. 8. We
normalised the width estimates and credible intervals to the value
obtained by fitting a single function to the data from all 1000 data-
sets, which always yielded well constrained fits. This was neces-
sary as the threshold fluctuations on average lead to a wider
psychometric function, which we define here as the ‘‘correct” func-
tion.22 Threshold estimates are again unbiased (panel A), and width
estimates are essentially unbiased, i.e. no more biased than for the
binomial and beta-binomial observers (panel B).23 The coverages of
the credible intervals for the threshold are reasonable in the range
of 75–98% (panel C) although the fluctuating observer is covered
worse than the other observers. Note the interactions between the
number of trials and blocks for the sequential dependent observers;
Note in addition that the interval sequential dependent observer
shows no overdispersion at all, although its width is inflated. Finally
the coverage for the width is reasonable for all observers, although
there is a slight decline for the blocked sampling schemes with 10
blocks to approximately 90% coverage for the sequential dependent
and the fluctuating observer (Panel D).

To see how the beta-binomial model compares to the standard
binomial analysis we fitted the same data setting g ¼ 0, i.e. per-
forming a pure binomial analysis —as previous psychometric func-
tion estimation methods would have done. In all cases and for all
overdispersed observers—regardless of the cause of the overdisper-
sion—the beta-binomial analysis produces superior results, espe-
cially for larger trial numbers, when the binomial analysis yields
progressively worse credible intervals (see Fig.’s 9 and 10).

In summary, this set of simulations shows that the method
works accurately and with reasonable credible interval coverage
not only for the beta-binomial type of overdispersion, but also
for at least three types of sequentially dependent observers.
Especially coverage is improved compared to the standard bino-
mial analysis, using the default settings of psignifit 4.
3.3. Real data: inflated variance versus goodness-of-fit

The purpose of the tests reported in this section are twofold:
First, we compare the fitted psychometric functions of psignifit 4
on real world data from contrast detection and discrimination
experiments (Wichmann, 1999) to those obtained using the ‘‘old”
psignfit 2.5 toolbox (Wichmann & Hill, 2001a). Second, we compare
fitted estimates of overdispersion, g, in psignifit 4 to deviance in the
‘‘old” psignfit 2.5 toolbox. We show that the beta-binomial model
increases credible intervals mostly when deviance signals a bad
fit, i.e. the beta-binomial model provides a viable inferencemethod.

We used 540 datasets from contrast detection and discrimina-
tion experiments originally from Wichmann’s DPhil thesis; some
were published later (Wichmann, 1999; Bird, Henning, &
Wichmann, 2002; Henning, Bird, & Wichmann, 2002); the experi-
ments used different presentation times, spatial frequencies, obser-
vers and numbers of trials (100–1550 trials per function, usually in
blocks of 50 trials with constant stimulus level, mean number of tri-
als: 504). For 51 of these psignifit 2.5 crashed24, while psignifit 4 fit-
ted all datasets using the default settings; thus we were left with 489
datasets for which both toolboxes succeeded in fitting the data.
(Range: ½1:0287;1:2609�), the sequential dependent observer yielded both higher and
lower values (Range: ½0:7086;1:4211�), and the interval dependent observer yielded
only higher values again (Range: ½1:1789;1:4210�).
23 Most likely caused by the lapse rate prior as discussed in detail in S4.
24 Crashes were caused by divergence of the estimates for the original data or the
datasets for bootstrapping.
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Fig. 6. Simulation results for the moderately overdispersed observer with g ¼ 0:2 for linearly spaced constant stimulus designs. A: average MAP estimates against the number
of trials. The thick line marks the grand average, the coloured symbols individual conditions computed from 1000 simulations each. The dashed line marks the true parameter
value of 1.0 and the grey shade the average 95% credible interval over all conditions. B: MAP estimates of the width, plotting conventions as in A. C: coverage of the 95%
credible intervals for the threshold. The continuous black line marks the nominal value of 950 of the 1000 simulations, the dotted lines mark the interval [926,971], which
would contain the measured coverage in 99:9% of cases if the true one was exactly 95%. D: coverage of the credible intervals for the width. A perfectly unbiased estimate
would lie at exactly 1 in A and B and perfect credible interval size would produce a coverage of 950 in all conditions in C and D.
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The key results of these simulations are displayed in Fig. 11. We
plot the point estimates from psignifit 4 against those of psignifit 2.5
for threshold and width. These show that the methods are reason-
ably consistent in their parameters estimates (Panel A & B); the red
symbols mark datasets for which the toolboxes deviated by more
than 20% from each other and we inspected those N ¼ 63 datasets
by hand, see below. In panel C we plot the g parameter of the esti-
mated overdispersion against the deviance from the binomial
model as estimated by psignifit 2.5 (see explanation in panel F of
Fig. 2 for the exact relation of these two measures). First, panel C
shows that considerable over-dispersion exist even in simple con-
trast detection and discrimination experiments with experienced
observers. Second, for all 293 statistically ‘‘innocuous” datasets
for which psignifit 2.5 estimated a p-value below 0:975 in the
deviance test, psignifit 4 barely inflates variances, i.e. g < :00014.
Thus the fitting of a beta-binomial model with an appropriate prior
does not lead to a dramatic increase of credible intervals for real
world data, mirroring our simulation results (c.f. panels A in Fig.’s
9 and 10). Third, 85 poorly fit datasets, with average deviance val-
ues of 1.259 are rejected by psignifit 2.5. The practical usefulness
of this rejection is questionable, however, and we discuss this point
below in Section 4.3. Psignifit 4, on the other hand, inflates the vari-
ance and, very likely, returns correct credible intervals.

As mentioned above, there were N ¼ 63 datasets for which the
toolboxes deviated by more than 20% from each other, and they
are shown as the red symbols in panels A and B of Fig. 11. Inspec-
tion of all the individual datasets and their fits revealed that, first,
psignifit 4’s estimates are preferable (see below), and, second, that
the differences are explicable in terms of the different priors used
in the two toolboxes. We observed three different scenarios:
1. 45 datasets displayed a lapse rate substantially larger than the
5% (default) limit on the lapse rate of psignifit 2.5. On these
datasets psignifit 2.5 fitted a lapse rate of 5% and was thus
forced to fit a larger width than psignifit 4. This explains all data-
sets for which psignifit 4 fitted smaller widths.

2. 9 datasets were sampled extremely sparsely (2–4 blocks in
total). For these datasets psignifit 2.5 frequently fitted a step
function between two blocks. The prior on the width w in psig-
nifit 4, on the other hand, enforces a width of at least the differ-
ence of the nearest blocks. This explains some cases for which
psignifit 4 fitted larger widths.

3. 9 shallow psychometric functions without data at high x-levels
were fit with 5% lapse rate by psignifit 2.5, and with 0% in
psignifit 4; this clearly reflects their priors on k in the absence of
evidence—uniform between 0% and 5% in psignifit 2.5, a beta-
function ð1;10Þ peaking at zero in psignifit 4—which explains
the remaining cases for which psignifit 4 fitted larger widths.

Differences in threshold occurred only together with differences
in width estimation; as the different estimates of the width and the
lapse rate also affect the threshold estimates, the three factors
above are sufficient to explain all differences between the two
methods and their implementations.

In summary, this set of tests shows the method using the default
settings to work accurately for estimating psychometric functions
from real world data, containing a substantial number of rather
poorly sampled psychometric functions. We showed that, first,
psignifit 4 did not fail to fit a single of the 540 datasets, whereas
psignifit 2.5 failed on 51 of them (9.1% failure rate). Second, if psig-
nifit 4 and psignifit 2.5 differed in their fitted threshold or width,
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Fig. 7. Simulation results for the stronger beta-binomial observer (g ¼ 0:5). Plotted are simulation results for well-sampled, linearly spaced constant stimulus designs with
plotting conventions as in Fig. 6. Even for severely overdispersed data and the default prior for the strength of the beta-parameter g, we estimate threshold and width
accurately, although the coverage of the credible intervals is too small (range 75–95%).
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we preferred the results returned by psignifit 4. Third, for statisti-
cally innocuous datasets psignifit 4 did not unnecessarily inflate
the variance controlled by the g parameter of the beta-binomial
model. Fourth, for datasets lacking in goodness-of-fit—large abso-
lute average deviance—psignifit 4 increased g in line with the
increasing deviance.
3.4. Blocking of trials

For the statistical analysis of the binomial model blocking of tri-
als has no influence on the results, as the likelihood does not
change depending on how or whether data are blocked. However,
the beta-binomial model assumes that the percent correct is drawn
new once per block. Hence it matters for the beta-binomial model
which trials form a block, or are grouped together as a block. In
addition, the size of blocks puts an upper bound on how large
the overdispersion can be in any model with independent
blocks—independent blocks of single trials cannot be overdispersed
and all models reduce to the binomial model.

To assess how the inference depends on how data are blocked
we performed another set of simulations. Most parameters we kept
as in the other simulations, e.g. we simulated cumulative Normal
and Weibull functions, for the three types of experiments and
two levels of overdispersion, moderate and very strong g ¼ 0:2
and 0:5. We simulated 4 trials at 12 stimulus levels (48 trails in
total) as well as 4, 8, 16 and 32 at 25 stimulus levels each (resulting
in 100, 200, 400 and 800 trials in total). However, during the sim-
ulations we simulated 2 blocks of equal even number of trials at
each stimulus level—each with a newly drawn percent correct
according to a beta-binomial model. Thus the ‘‘true” underlying
block sizes were half those given above, i.e. 2 � 2 trials at 12 levels;
2 � 2, 2 � 4, 2 � 8 and 2 � 16 trials at 25 stimulus levels. Then we
performed Bayesian inference three times: Either we used the cor-
rect number of blocks per stimulus level (2), or we fused all data at
one stimulus level into one block, or we split every block in half
yielding 4 blocks per stimulus level. We refer to the conditions
as correct pooling (as in the data generation), more pooling because
one block in the analysis is based on two simulated blocks, and less
pooling because the analysis used twice as many blocks of data
(with half the number of trials per block) as during data
generation.

The coverage results for these simulations are displayed in
Fig. 12. The point estimates were as good as in the other
simulations, and were essentially independent of how the data
were blocked.

In summary, these simulations for randomly fluctuating (beta-
binomial) observers indicate the following: When the correct num-
ber of trials or more were pooled per block, the results are correct
for all conditions, i.e. too much pooling is not detrimental. If more
blocks were formed—and thus fewer trials pooled per block—the
coverage became too small for larger datasets and the strongly
overdispersed observer, i.e. too little pooling is problematic.
4. Discussion

4.1. Extension to the beta-binomial model

We extend psychometric function modelling from the standard
binomial to a beta-binomial model to capture overdispersion. We
show that this model works well both for binomial data (see sec-
tions in supplementary material, S.1–S.3) as well as for overdis-



A B

C D

Fig. 8. Results from three non binomial observers differentiated by colour. One observer whose threshold fluctuates over time, one whose probability correct depends on the
outcome of the previous trial and one whose bias depends on the previous trial. Plotting conventions as in Fig. 6, but with different symbol shapes for the different sampling
schemes and whether stimuli were blocked or not.

Fig. 9. Beta-binomial coverage (grey) and standard binomial coverage (black) for the threshold for six different simulated observers (with single datasets colour coded as in
the previous Fig.’s 6–8); see text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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persed data from a beta-binomial observer (Fig.’s S1, 6 and 7), for
which the standard binomial analysis fails (Fig.’s 9 and 10).

The beta-binomial model models a specific kind of overdisper-
sion. We have shown that fitting the beta-binomial model yields
an accurate statistical description of the amount of overdispersion,
but the fitted model does not provide any information about the
cause of the overdispersion. What makes the beta-binomial useful
in practice is that correcting the statistical inference under overdis-
persion seems to work with the beta-binomial model relatively
independent of the cause for the overdispersion. The beta-



Fig. 10. Same as Fig. 9 but for the width.

A B C

Fig. 11. The point estimates of psignifit 2.5 and 4 are largely consistent on 489 real data psychometric functions for contrast detection and discrimination. A, B: log–log
scatterplots of threshold and of 1./slope at 50% correct respectively. Fits marked in red deviate more than 20% from each other. These were investigated by hand and results
are described in the main text. The insets show two psychometric functions for which psignifit 2 and 4 disagree, marked with blue dots as examples for the situations
described in the text. The black line is the fit by psignifit 4, the grey line the fit of psignifit 2. C: scatterplot of average absolute deviance residual per block from psignfit 2.5 vs.
fitted g value from psignifit 4. A deviance of 1.0 per block is expected for a binomial observer. Larger values indicate overdispersion. Note that few datasets have a g of around
0.2; none have values larger than 0.35, supporting our argument made above that a g of 0.5 denotes an extreme form of overdispersion. The insets show the two most
overdispersed psychometric functions, again marked with blue dots in the scatter plot.
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binomial model yields reasonable results for other sources of
overdispersion stemming from several types of serial dependencies
(Fig. 8), for which the standard binomial model fails (Fig. 9 and 10).

If one desires to study the overdispersion itself, different analy-
ses are necessary to differentiate different causes for overdisper-
sion. For example, fits to different parts of the data can be
calculated to detect learning or fatigue or the dependence of trials
can be studied as demonstrated by Schönfelder and Wichmann
(2013) or Fründ et al. (2014).

4.2. Blocking

Two issues need to be considered concerning the blocking of tri-
als: Whether to block them during the statistical analysis, and
whether to block them during experiments.

4.2.1. Blocking during the statistical analysis
Our simulations of randomly fluctuating observers indicate that

pooling blocks which, in reality, were independent is not problem-
atic and does not degrade inference, whereas not pooling enough
results in credible intervals with too little coverage (see 3.4). Thus
from a practical point we advise to pool trials at a given stimulus
level and otherwise identical conditions during psychometric func-
tion estimation unless performance might have changed over the
experiment systematically.

However, one should never pool data automatically, without
careful inspection of the data: Our simulations were performed
using a randomly fluctuating (beta-binomial) observers. That is,
the time-averaged success probability of such an observer is con-
stant, but at any point in time the success probability fluctuates
up and down. If data exhibit systematic overdispersion, resulting
from learning for example, one should not pool trials which might
have different success probabilities. If blocks from a learning
observer are pooled, the different success probabilities of the sub-
sets are not represented any more: Pooling results in a single large
block of average performance instead of a block with low perfor-
mance at the beginning, and a block with higher performance at
the end due to learning. Consequently one cannot notice that there



Fig. 12. Results for simulations when the pooling differs from the simulated blocks of the beta-binomial model. Only the coverage results are shown, as the average point
estimate is largely independent of the pooling. Correct pooling means that each block in the simulation was one block in the fit. For less pooling we split each simulated block
in two for the fit. For more pooling we pooled two simulated blocks of the same stimulus level into one block. Plotting conventions as in Fig. 6C and D.

25 Note that data are still overdispersed and the coverage of the credible intervals is
reduced, i.e. mixing trials of different stimulus levels reduces, but does not overcome
the overdispersion problem.
26 Especially adaptive procedures violate this in their current form, as they often
sample only single trials at a given stimulus level. Maybe enforcing them to choose
from a (much) smaller set of possible stimulus levels might be beneficial, i.e. may
represent a suitable compromise between their efficiency to find the ‘‘threshold”
during the experiment, and the ability to estimate overdispersion from the collected
data after the experiment.
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were systematic performance differences. This problem occurs
only if the deviations from the mean psychometric function cancel
reliably due to the systematicity of the source of overdispersion. In
such cases g would erroneously be estimated as too close to zero
(no or little overdispersion when in fact there was a lot due to
learning).

Thus if one suspects or knows that observers improve during
the experiment, or for other reasons expects systematic perfor-
mance variations—e.g. when collecting data for natural images
and one has reason to believe that some images make the task
much harder than others—it is advisable to keep the data for
potentially different situations separate, and not to pool
excessively.

This scenario did not occur in our simulations, as we always
assumed that the means of the blocks randomly fluctuate around
the psychometric function. Then the pooled blocks are still overdis-
persed and the inference remains correct.

4.2.2. Blocking during experiments
For data collection classical psychophysics recommended to

block trials of equal signal strength, i.e. to use the method of
blocked constant stimulus with as few different stimulus levels
as possible (Blackwell, 1952; Jäkel & Wichmann, 2006). Such an
experimental design yields lower and more stable and repeatable
thresholds, at least in highly experienced observers. Contrary to
these recommendations the typical advice in psychological
methods classes is to ‘‘randomise presentation order as much as
possible.” This is suggested to minimise the influence of the many
uncontrolled parameters that may influence an observer, and thus
to reduce overdispersion.

In accordance with the general psychology recommendation we
find statistical inference to be more stable for mixed presentations
for the realistic simulated nonstationarities we explored in
Section 3.2. Both the binomial and the beta-binomial analyses yield
better coverage for the mixed presentations than for the blocked
presentations (see Fig. 8).25
4.2.3. Discussion on blocking
Our results confirm the idea that mixing stimulus levels may

reduce overdispersion caused by sequential dependencies
(Fig. 8). At the same time, our results suggest it is beneficial to pool
trials into one block if possible—unless one suspects data to be
affected by learning; furthermore, for g to be estimated from the
data one requires approximately ten or more blocks, providing a
limit on the amount of pooling—for the estimation of the psycho-
metric function. The latter is not justified by a better correspon-
dence of model and reality, but for purely pragmatic reasons: We
find that blocking too many trials (within reasonable limits, see
comment above) into one block degrades inference much less than
blocking too few (Fig. 12). For experimental design we thus recom-
mend: First, and in accordance with Blackwell, to measure more
trials per level rather than more levels, as small blocks weaken
the inference about overdispersion.26 Second, an unlike Blackwell,
to randomise the order of trials to minimise the unwanted overdis-
persion resulting from extraneous influences. Third, to pool data at a
given level from a single session into one block during psychometric
function estimation.
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4.3. Going beyond goodness-of-fit

In earlier publications on psychometric functions it was empha-
sised to check the goodness-of-fit, that is, how well the model
explains the data (Wichmann & Hill, 2001a). The aim of these
checks is to detect when a model does not fit the data. In general
this is obviously sound advice: If a model does not fit the data, it
is very often of little use. However, in the context of psychometric
function fitting this recommendation may be too strict, or at least
of little practical use: Often there is no alternative to fitting a psy-
chometric function, and the goodness-of-fit rejection leaves
researchers without a viable option to proceed.

With the beta-binomial model, however, researchers can draw
valid conclusions from overdispersed data, providing them with a
viable option. The overdispersion parameter of the beta-binomial
model measures a very similar property as classical measures of
goodness-of-fit, namely the additional variance around the func-
tion (Section 2.2; c.f. Fig. 11). But in the case of the beta-
binomial model the overdispersion parameter can be used to
increase the uncertainty until the data are consistent with the fit-
ted model, instead of rejecting the model.
4.4. Pain-free implementation

We provide an implementation of the method in pure
MATLAB27, which is largely automated, designed to be easy to use
and reasonably fast on modern laptop or desktop computers (� 1 s
for 4 parameters and � 20 s for 5). This implementation is discussed
in B.1 and its numerical stability in B.2. It uses numerical integration
and thus does not need MCMC sampling techniques; furthermore,
the default priors and parameter settings are general enough to
cover at least the broad range of simulations presented in this paper
(with the exception of the prior if data come from adaptive proce-
dures, as discussed in Section S.3).

Despite the generality of the default priors there are some cases
for which they should at least be carefully assessed, especially if
the sampling scheme or the observers are not very typical.

The default priors for threshold and width assume that the sam-
pling scheme covers the interval over which the psychometric
function changes, i.e. contains the threshold and is nearly as wide
as the changing part of the psychometric function. This is, e.g. fre-
quently violated for adaptive sampling schemes which often cover
only a narrow range of x-values. For such cases the priors can be
adjusted easily in the software (see supplementary material S.3).

The default priors for the lapse and guessing rates were chosen
for reasonably experienced psychophysical observers. Other obser-
vers in, e.g. clinical settings or animal research, might require dif-
ferent priors if they lapse much more. Also different tasks might
require different assumptions about the guessing rate (see
supplementary material S.4 for alternative suggestions for the
lapse rate prior).
28 The only exception is the heavy tailed cumulative T1-distribution, which is
steeper than the other functions for the same width parameter and thus produce
width estimates which are consistently off by a factor; see supplementary material
4.5. Correctness and robustness

In Sections 3.1, 3.2, 3.3 as well as in the appendices and the sup-
plementary material we assessed the correctness and robustness of
the method against a substantial number of simulated datasets.
The method works well under ideal conditions (Fig. S1), but also
for badly sampled data (Fig. S2), adaptively sampled data
(Fig. S3) and different kinds of overdispersion (Fig.’s 6–8). Finally,
we ensured that the method works robustly on real world data
(Fig. 11). One aspect that allows the method to work well is the
careful choice of priors for the parameters. This is especially true
27 In addition we provide a basic version in python.
for the lapses, which we allowed to be as large as 10% during our
simulations without resulting in poor fits (see supplementary
material S.4).

Finally, we compared the results from different fitted sigmoids
and show that the method provides a robust analysis even if the
‘‘wrong” sigmoid family is fitted (see supplementary material
S.7)—this benefit stems from the common parameterisation of all
sigmoidal families in terms of threshold and width.28

4.6. Higher confidence levels

We thoroughly tested and present our method for the 95% con-
fidence level and checked the results for the 68% as well. Thus we
are very sure about our results up to the 95% confidence level.

Testing coverage for higher confidence levels requires more
simulations as the expected proportion of parameter estimates
lying outside the credible interval shrinks. Thus we could not check
coverage for higher confidence levels exhaustively.

However, we tested the 99% confidence level using only a
small subset of all binomial simulations29 with 10;000 repetitions
each. For these we found the coverages to be between 99:28% and
100% for threshold and width indicating a slightly larger than
nominal coverage than 99%—as for the 95% credible intervals. Fur-
thermore the numerical approximations for 99% credible intervals
still seem to be reliable. Thus 99% credible intervals appear to be
functional using our approach, at least up to the degree we could
test them.

If even higher confidence levels are required one should be
careful though, as our numerical approximation might become
inaccurate in the tails—a caveat applicable to many numerical
methods. To emphasise this, our software issues a warning if users
request confidence levels higher than 95%, reminding them that we
did not test such confidence levels extensively. For these high con-
fidence levels it might be necessary to change the settings for our
numerical method, adding more gridpoints or reducing the thresh-
old for parts of the parameter space to be included in the grid.

4.7. Bayesian inference

The estimation of psychometric functions particularly profits
from the Bayesian perspective, for the following three reasons:

First, Bayesian inference provides a principled way of integrat-
ing out the uncertainty over parameters which are not well con-
strained by the data. Thus it works even in scenarios where only
some, or even none, of the parameters are constrained by the data.
For example, datasets with few blocks hardly constrain g, and
datasets with little data in the asymptotic range hardly constrain
k. In such cases fitting a single value for these parameters, as fre-
quentist statistics does, cannot take the uncertainty about other
parameters into account. Thus fitting a single parameter value
yields unstable estimates for all parameters. In contrast, Bayesian
inference integrates the results for the different possible values
for the unconstrained parameters yielding sensible estimates and
credible intervals for the other parameters.

Secondly, we show that the method profits considerably from
the use of carefully pre-determined default priors (see supplemen-
tary material S.4 and S.5). Importantly, however, the default priors
do not unduly dominate the fits. For most real world datasets we fit
very similar parameters values as the original psignifit 2.5 (Fig. 11),
S.8 for details.
29 We simulated 2AFC and equal asymptote psychometric functions with 50 and
800 trials, using either 5 or 10 linearly spaced blocks.



Table A.1
The formulae for the seven implemented sigmoid families Sðx;m;wÞ. For notation we
use x, the stimulus level, m and w, the threshold and the width, U and U�1, the
cumulative standard normal distribution and its inverse, T1 and T�1

1 , the cumulative
T-distribution with 1 degree of freedom and its inverse, and log and exp the natural
logarithm and exponential functions.

Name Formula

Cumulative Gauss Sðx;m;wÞ ¼ U C x�m
w

� �
C ¼ U�1ð:95Þ �U�1ð:05Þ

Cumulative T1-
distribution

Sðx;m;wÞ ¼ T1 C x�m
w

� �
C ¼ T�1

1 ð:95Þ � T�1
1 ð:05Þ

Logistic Sðx;m;wÞ ¼ 1

1þe�2 logð 1
:05�1ÞX�m

w

Gumbel Sðx;m;wÞ ¼ 1� exp logð:5ÞeCx�m
w

� �
C ¼ logð� logð:05ÞÞ � logð� logð:95ÞÞ

Reversed Gumbel Sðx;m;wÞ ¼ exp logð:5ÞeCx�m
w

� �
C ¼ logð� logð:95ÞÞ � logð� logð:05ÞÞ
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i.e. the Bayesian point estimates are consistent with earlier purely
frequentist analyses; if both methods disagree, however, the new
Bayesian method seems preferable.

Finally, Bayesian statistics were previously shown to produce
credible intervals with better coverage than those obtained from
the bootstrap (Kuss et al., 2005; Fründ et al., 2011). This means that
for psychometric functions our Bayesian method even yields better
intervals according to a frequentist evaluation criterion.

Apart from its accuracy and reasonable credible interval cover-
age for single psychometric functions, a further advantage of Baye-
sian inference is that it allows the posterior distribution to be used
in further statistical analyses. We are aware that such inference is
often not performed routinely, and most statistical inference in
psychological and behavioural science is still done using hypothe-
sis tests, although they are a weak solution (Wagenmakers, 2007;
Nuzzo, 2014). But the posterior distributions our method and soft-
ware calculate could be used by the user, for example, for Bayesian
inference on a hierarchical model, predicting the parameters of the
psychometric functions across conditions or observers.

4.8. Too large coverage for binomial observer

Our method is conservative in terms of the coverage of the cred-
ible intervals, when the data are not overdispersed, i.e. binomial.
This is to be expected: For datasets of typical size it cannot be ruled
out that there might have been some overdispersion, and the
uncertainty about overdispersion leads to (slightly) larger credible
intervals. If one is sure that there is definitely no overdispersion in
the data, one should use the binomial model30 yielding less conser-
vative credible intervals. In general, however, yielding too high cov-
erage is more tolerable than yielding too low coverage.
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Appendix A. Mathematical details

A.1. Mathematical description of the model

We use the following model of psychometric functions: We
start with a family of sigmoid functions in the stimulus level
x; Sðx;m;wÞ, with parameters m, the threshold and w the width,
e.g. a strictly monotonically growing function S : R ! ½0;1� with
two parameters. For all families the parameters are chosen such
that m ¼ S�1ð:5Þ and w ¼ S�1ð:95Þ � S�1ð:05Þ.

We define the psychometric function w adding parameters k
and c for the upper and lower asymptote:

pi ¼ wðx;m;w; k; cÞ ¼ cþ ð1� k� cÞSðx;m;wÞ ðA:1Þ
30 Our software allows users to fit the standard binomial model as well.
To generate block i of data with ni trials at physical level xi, first
a success-probability for this block pi is drawn from a beta-
distribution with mean pi ¼ wðxi;m;w; k; cÞ and variance
g2pið1� piÞ using the fifth and last parameter g 2 ½0;1� which
scales the standard deviation of the beta-distribution between
the most extreme possible values. Then, ni Bernoulli-trials with
success-probability pi are drawn, to obtain the number of correct
trials ki, which is thus Binomial distributed with success-rate pi.
In formal short hand this is the following:

ki � Binomðni;piÞ

pi � Beta
1
g2 � 1

� �
pi;

1
g2 � 1

� �
1� pið Þ

� � ðA:2Þ

Using this model we can compute the Likelihood of a parameter
h ¼ ðm;w; k; c;gÞ with g0 ¼ 1

g2 � 1 for N Blocks of data with ki of ni

correct trials in Block i employing B, the beta function

LðhjdataÞ¼
YN
i¼1

ni

ki

� �
Bðkiþg0pi;ni�kiþg0ð1�piÞÞ

Bðg0pi;g0ð1�piÞÞ

¼
YN
i¼1

ni

ki

� �
Cðkiþg0piÞCðni�kiþg0ð1�piÞÞ

Cðniþg0Þ
Cðg0Þ

Cðg0piÞCðg0ð1�piÞÞ
ðA:3Þ

And thus the log-likelihood l with c ¼ logC the log-Gamma

function, by dropping the constant factor ni

ki

� �
as all calculations

require only a value proportional to the likelihood:

lðhjdataÞ ¼
XN
i¼1

cðki þ g0piÞ þ cðni � ki þ g0ð1� piÞÞ

� cðni þ g0Þ þ cðg0Þ � cðg0piÞ � cðg0ð1� piÞÞ ðA:4Þ
With these equations we perform standard Bayesian inference

and calculate the posterior probability PðhÞ by normalising the
prior pðhÞ times the likelihood to have integral 1, e.g. to be a
probability:

PðhjdataÞ ¼ LðhjdataÞpðhÞR
X pðhÞLðhjdataÞdh ðA:5Þ

Using these equations we can calculate marginal distributions
for the parameters, a mean and a median estimate and also a
MAP estimate by optimisation.
Weibull Sðx;m;wÞ ¼ 1� exp logð:5ÞeCðlogðxÞ�mÞ
w

� �
C ¼ logð� logð:05ÞÞ � logð� logð:95ÞÞ

Cumulative log-normal Sðx;m;wÞ ¼ U C logðxÞ�m
w

� �
,

C ¼ U�1ð:95Þ �U�1ð:05Þ
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A.2. Binomial mixture model

In Section 2.1 and Eq. (1) we introduced the psychometric func-
tion as an appropriately scaled sigmoid function. This interpreta-
tion of a scaled sigmoid function is mathematically equivalent to
a binomial mixture model (Kuss et al., 2005), as we show here
for completeness.

In the binomial mixture model the proportion correct answers
of the observer results from two independent Bernoulli processes:
First, with a probability pl the observer guesses independently of
stimulus intensity, and has a probability pc of guessing correctly.
The probability pc depends on the experimental design and is
typically pc ¼ 1=N where N denotes the number of response
alternatives, i.e. N ¼ 2 in 2AFC (For single-interval YesNo tasks,
we expect pc to be near 0). Second, with a probability 1� pl the
observer attempts to solve the task the best she can; in this
case the probability for a correct answer is wðx;m;w;pcÞ ¼
pc þ ð1� pcÞSðx;m;wÞ. Taken together these results in a Bernoulli
variable with a probability of success as a function of the stimulus
intensity x given by

wðx;m;w;pl;pcÞ ¼ ð1�plÞ½pc þ ð1�pcÞSðx;m;wÞ� þplpc

¼ ð1�pl �pc þplpcÞSðx;m;wÞ þ ð1�plÞpc þplpc

¼ ð1�pl �pc þplpcÞSðx;m;wÞ þpc

¼ pc þ ð1�pc �plð1�pcÞÞSðx;m;wÞ
¼ cþ ð1� c� kÞSðx;m;wÞ ðA:6Þ

If, in the second to last line, we substitute c ¼ pc and
k ¼ plð1� pcÞ, we obtain the last line, which shows the equiva-
lence of the binomial mixture model to the scaled asymptote for-
mulation of equation No. A.1.
Appendix B. Computational details

The numerical method for finding the posterior works as fol-
lows: we first evaluate the likelihood and the prior on a grid over
all parameters, compute the integral over the whole grid from
these values and divide by this integral. In practice there are some
choices to be made for this method though, for example howmany
grid points over which part of the parameter space to calculate.

After choosing these parameters of the method our final imple-
mentation still spends more than 90% of its running time evaluat-
ing the likelihood on the grid of possible parameter values. Thus
decreasing the number of necessary gridpoints and optimising
the evaluation of the likelihood was the main focus of our compu-
tational optimisations, which we describe and evaluate in this
appendix.

B.1. Implementation details

First we need to choose the endpoints or borders of the grid. As
an initial guess for the boundaries we can use the boundaries of the
prior support (as we use priors with bounded support these
boundaries are always finite). However, large parts of this area will
have very low posterior probability (as they will be very unlikely
under the likelihood model) and thus will contribute neither to
the normalisation integral nor to the credible intervals. To avoid
evaluation of the integral over areas with vanishingly low proba-
bility, we do a first approximation of the posterior with a sparse
grid and remove parts with low posterior probability. For this cal-
culation we use an initial grid with 20 grid points for threshold and
width and 10 for each of the other parameters. We then find all
gridpoints for which the area they represent has posterior marginal
probability larger than 1

1000 and choose the last gridpoint before
these and the first one after them as new boundaries.
This refinement of the borders yields a marked improvement of
the accuracy achievable with a given number of grid points per
dimension. Preliminary simulations confirmed that this truncation
of the integration region did not alter results noticeably.

Grid points are spaced linearly in parameter space between bor-
ders, and we were not able to identify non-linear spacings which
consistently yielded superior results. For the Weibull and the
cumulative normal this means that the tested thresholds and
widths are placed logarithmically on the stimulus axis, as the
parameters are defined on the logarithm of the stimulus.

As we use an orthogonal grid on the parameter space, many grid
points share the same threshold and width. Thus evaluating the
sigmoid function only once and reusing the value for the computa-
tion saves considerable computation time. Additionally the likeli-
hood evaluation can be vectorized on a grid, which is very
efficient in higher level programming languages and for paral-
lelization. Together these improved the computation times by a
factor of several hundred compared to separate computation for
the different grid points.

Evaluation of the likelihood according to the beta-binomial
model formulas becomes numerically unstable for small values
of g, because the parameters of the beta-distribution diverge

limg!0
1
g2 � 1

� �
¼ þ1

� �
. As, for very small values of g the beta-

binomial model is indistinguishable from a binomial model, we
calculate the probability according to the binomial model for
g2 < 10�9.

Once the likelihood is evaluated we use simple trapezoid addi-
tion to calculate the integral over the grid. While there are more
sophisticated approaches for numerical integration like sparse
grids (Gerstner & Griebel, 1998; Heiss & Winschel, 2008), we chose
not to use such methods, because a full grid makes marginaliza-
tions and the visualisation of the actually integrated function
easier.

To obtain the marginal distributions and point estimates, we
calculate marginal distributions simply as a sum over the probabil-
ity mass. Then we can compute the mean as the sum over the grid-
points weighted by their probability and the median by
approximating the marginal distribution by the linear interpola-
tion of the computed discrete values. For the MAP we start a
Nelder-Mead simplex algorithm (Lagarias, Reeds, Wright, &
Wright, 1998) as implemented in MATLAB (2012) as ‘‘fminsearch”
from the maximum on the grid.

B.2. Tests of numerical approximation

The number of gridpoints on each dimension determines the
trade-off between computation time and numerical accuracy. Here
we chose the number of gridpoints based on the accuracy of the
credible intervals obtained. We assessed this accuracy with two
sets of simulations, first changing the number of grid points sepa-
rately per parameter, then simultaneously for all parameters
(Fig. B.13).

For each simulation, we first simulated 25 datasets for each
experiment type, 50, 400 and 1000 trials, and the Weibull and
the cumulative Gaussian. For the first simulation we fitted them
changing the number of gridpoints on each dimension from 10 to
150 (100 for Yes No) in steps of 10 while keeping the others con-
stant at 75 gridpoints. For the second simulation we kept the ratio
of grid point numbers constant and changed the absolute number
for threshold and width from 20 to 60 in steps of 2 resulting in
steps of 1 from 10 to 30 for the other parameters. In total we sim-
ulated 450 datasets for each simulation and ran 48,750 + 9450 fits
to choose the number of grid points.

The results of the simulations displayed in Fig. B.13 show that
the credible interval estimates converge for increasing number of



A B C

Fig. B.13. Tests of the numerical approximations used. A: accuracy of the credible interval estimates, changing sampling per dimension. Plotted is the size of the computed
credible interval divided by the size computed with 150 gridpoints for 50 datasets � 3 sample sizes � 3 experiment types each, against the number of gridpoints used in the
fit, changing the gridpoints of one dimension only. The dashed lines mark 5% error, which was the maximum we tolerated, the dotted lines mark the chosen value. B: as in A,
but changing the number of gridpoints on all dimensions simultaneously using a fixed ratio between dimensions based on the result displayed in A. C: total number of
gridpoints against the number of gridpoints on one dimension for fits with 3, 4 or 5 parameters. The number of gridpoints scales linearly with computation time. Roughly 107

datapoints take one second per datapoint to compute on an office computer.
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grid points. We used the result with the maximum number of grid-
points as a proxi for the true value. Using this proxy, we find that
the maximal errors in credible interval size were smaller than 5%
whenever we used more than 40 grid points on threshold and
width and 20 on the others, and we therefore chose these numbers
for further simulations and as the default settings of the software.

We also analysed the numerical accuracy results for credible
intervals with coverage from 15% to 95% levels in steps of 10%
and at 99%. The results were very similar to the ones for 95% cred-
ible intervals we present here. Thus we can confirm the method to
work for other credible interval sizes as well, but skip their detailed
presentation here for brevity.

Using 40 grid points for threshold and width and 20 for the
other 3 parameters, the calculation of the posterior takes roughly
1 s per data block on an ordinary office computer in the case of a
full 5 parameter model and.05 or.0025 s for models with 4 or 3
parameters. (nAFC experiments with/without beta-binomial
model), which is substantially faster than currently available
MCMC based methods (Kuss et al., 2005). For standard data sizes
the computations thus take only a few seconds even for the 5
parameter model and can be almost instantaneous for fewer free
parameters.

To confirm that the numerical integration method and more
standard MCMC methods yield similar results we ran an adaptive
Metropolis Hastings algorithm to sample the posterior for each of
the 18 combinations of the three sample sizes, experiment types
and the two sigmoid shapes. For each psychometric function we
ran 10 adaptive Metropolis Hastings chains (Haario, Saksman, &
Tamminen, 2001), in which we adjusted the covariance matrix of
a Gaussian proposal to be the covariance of the previous 90% of
the samples after every 1000 samples, adapting the size by up-

scaling the proposal distribution by exp 15
iþ50

� �
after accepting the

i-th proposal, and downscaling by exp � 5
iþ50

� �
after denying the

ith proposal. Thus the acceptance probability converged to 25%
(near the optimal value for Gaussians of 27:9=27:5% found by
Gelman, Roberts, & Gilks, 1996). After adapting for 50 000 samples
we left each chain running for another 50,000 samples with con-
stant proposal distribution and kept only these second 50 000 trials
as an approximation of the posterior. This MCMC method yielded
and effective sample size of 9634–25,233 from the 500,000 sam-
ples per psychometric function.
The MCMC results confirmed the results we obtained from the
numerical analysis, i.e. the confidence intervals from the MCMC
analysis differed less than 5% from the numerical integration
results in each of the 18 cases. We then sub-sampled the posterior
samples independently to obtain an estimate how many samples
one needs to estimate the credible intervals. Drawing 100 sets of
samples for each size and psychometric function we found that
roughly 5000 independently drawn samples were necessary to
obtain estimates with less than 5% error in credible intervals size.
For a Metropolis Hastings algorithm this corresponds to at least
100000 samples, as Gelman et al., 1996 found that it can maxi-
mally reach an efficiency of 6:2%=7:6% even for a Gaussian distri-
bution in 5/4 dimensions.

Drawing 100;000 samples for a demo dataset took roughly 60 s
on a usual desktop computer compared to 20 s for a 5 dimensional
numerical integral and 1 s for a 4 dimensional numerical integral.
Thus with our implementation the numerical integration is indeed
considerably faster. However an implementation more optimised
for single parameter values and a well tuned MCMC method could
probably beat the numerical integration method for the 5 dimen-
sional integral, while beating the method for the 4 or lower dimen-
sional integrals would be challenging. Furthermore the numerical
integration method saves the hassle of checking convergence and
mixing of MCMC chains.
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.visres.2016.02.
002.
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