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Abstract

Deep equilibrium (DEQ) models are widely recog-
nized as a memory efficient alternative to standard
neural networks, achieving state-of-the-art perfor-
mance in language modeling and computer vision
tasks. These models solve a fixed point equation
instead of explicitly computing the output, which
sets them apart from standard neural networks.
However, existing DEQ models often lack formal
guarantees of the existence and uniqueness of the
fixed point, and the convergence of the numerical
scheme used for computing the fixed point is not
formally established. As a result, DEQ models
are potentially unstable in practice. To address
these drawbacks, we introduce a novel class of
DEQ models called positive concave deep equi-
librium (pcDEQ) models. Our approach, which
is based on nonlinear Perron-Frobenius theory,
enforces nonnegative weights and activation func-
tions that are concave on the positive orthant. By
imposing these constraints, we can easily ensure
the existence and uniqueness of the fixed point
without relying on additional complex assump-
tions commonly found in the DEQ literature, such
as those based on monotone operator theory in
convex analysis. Furthermore, the fixed point
can be computed with the standard fixed point
algorithm, and we provide theoretical guarantees
of its geometric convergence, which, in particu-
lar, simplifies the training process. Experiments
demonstrate the competitiveness of our pcDEQ
models against other implicit models.

1Faculty of Electronics, Photonics, and Microsystems,Wrocław
University of Science and Technology, Wrocław, Poland 2Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus
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1. Introduction
Implicit models (Bai et al., 2019; 2020; Chen et al., 2018;
El Ghaoui et al., 2021; Baker et al., 2023; Tsuchida & Ong,
2023; Revay et al., 2020; Wei & Kolter, 2021; Geng et al.,
2021) are attracting considerable interest owing to their
improved memory efficiency compared to standard neural
networks. These models solve implicit equations instead
of explicitly computing the output of the layers, and they
can be divided into two main categories: neural ordinary
differential equations (Neural ODEs) (Chen et al., 2018) and
deep equilibrium models (DEQ) models (Bai et al., 2019).

Neural ODEs solve differential equations parameterized by
the neural network input, with the output representing the
solution to these equations. On the other hand, the implicit
layers of DEQ models solve nonlinear fixed point equations
that are not necessarily derived from differential equations.
An interesting aspect about DEQ models is that a single im-
plicit DEQ layer emulates a standard neural network with an
infinite number of layers and tied weights. While both DEQ
models and neural ODEs require constant training mem-
ory, DEQ models often outperform neural ODEs, achieving
state-of-the-art results in language modeling tasks (Bai et al.,
2019) and computer vision tasks (Bai et al., 2020; Xie et al.,
2022). However, a potential limitation of standard DEQ
models is that they are based on iterative methods that re-
quire careful initialization, tuning of hyperparameters, and
special regularization (e.g., recurrent dropout) to ensure con-
vergence to the fixed point, which is hard to guarantee with
existing approaches. In general, standard DEQ models oper-
ate heuristically, and in many cases they even lack formal
guarantees regarding the existence and uniqueness of the
fixed point problem being solved.

To overcome the limitations of existing DEQ models, we
introduce a new variant called positive concave deep equi-
librium (pcDEQ) models. In particular, these pcDEQ mod-
els address issues related to the existence and uniqueness
of the fixed point. Furthermore, the fixed points of the
proposed pcDEQ models can be easily computed with the
standard fixed point iteration, and we provide formal guaran-
tees of geometric convergence. The theoretical foundation
of pcDEQ models is rooted in nonlinear Perron-Frobenius
(NPF) theory (Lemmens & Nussbaum, 2012; Lins, 2023),
which is commonly used in the analysis of nonnegative
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monotonic (order-preserving) and scalable functions. To
ensure these properties in pcDEQ models, we enforce non-
negative weights and activation functions that are concave
in the nonnegative orthant. An additional advantage of our
proposed model is that the standard Jacobian-based back-
propagation algorithm (Bai et al., 2019) can be used for
training without requiring any changes.

We summarize our contributions as follows:

1. We propose a new class of DEQ models, called
pcDEQ models, which are based on nonlinear Perron-
Frobenius theory and are equipped with guarantees of
the existence and uniqueness of the fixed point. Further-
more, we prove that the standard fixed point iteration
for the proposed pcDEQ models converges to the fixed
point geometrically fast.

2. We empirically show that, for the proposed pcDEQ ar-
chitectures, in practice, only a few iterations are needed
to achieve numerical convergence, and the number of
iterations does not increase over the course of training.

3. We demonstrate competitive improvement of the pro-
posed approach in terms of accuracy and number of
parameters over existing alternatives for image classifi-
cation tasks.

2. Related Work
In the seminal paper (Bai et al., 2019), DEQ models have
been applied to language modeling tasks, and they have been
shown to outperform standard neural networks constructed
with a similar number of parameters. In subsequent studies,
Bai et al. proposed multiscale extensions of DEQ models
(Bai et al., 2020), where a single DEQ model is used for
image classification and image segmentation. Since these
pioneering studies, DEQ models have been successful in
many applications, including, to name a few, object detec-
tion (Wang et al., 2023), optical flow estimation (Bai et al.,
2022), video semantic segmentation (Ertenli et al., 2022),
medical image segmentation (Zhang et al., 2022), snapshot
compressive imaging (Zhao et al., 2023), image denoising
(Chen et al., 2023; Gkillas et al., 2023a), machine transla-
tion (Zheng et al., 2023), inverse problems (Gilton et al.,
2021; Zou et al., 2023), music source separation (Koyama
et al., 2022), federated learning (Gkillas et al., 2023b), and
diffusion models (Geng et al., 2023; Pokle et al., 2022).
These models are strongly based on the fixed point theory
that we summarize below.

Let Rn be the standard Euclidean metric space and let
f : Rn → Rn. If f is a Lipschitz contraction, meaning
it is Lipschitz continuous with a Lipschitz constant L < 1,
then the Banach fixed point theorem guarantees the unique-
ness and existence of the fixed point x⋆ = f(x⋆) in Rn.
Moreover, the fixed point iteration xk+1 = f(xk) converges

linearly to x⋆ for any initial point x1 ∈ Rn. However, if
f is not a Lipschitz contraction, questions related to the
existence and uniqueness of the unique point, and also the
convergence of the fixed point iteration, become more del-
icate, and these issues have been the subject of extensive
research in the mathematical literature.

In modern convex analysis, there has been a significant fo-
cus on nonexpansive mappings in Hilbert spaces (Yamada
et al., 2011), which are mappings with Lipschitz constant
equal to one, and their relation to monotone operator the-
ory (Bauschke & Combettes, 2017). Nonexpansive map-
pings do not necessarily have a fixed point, and, if the fixed
point set is nonempty, it may not be a singleton in gen-
eral. Furthermore, even if the fixed point exists, then the
fixed point iteration may fail to converge, in which case
one can resort to various iterative methods based on the
the Krasnosel’skii-Mann iteration to ensure it. Particular
instances of this iteration include well-known algorithms
used in machine learning, such as the projected gradient
method, the proximal forward-backward splitting method,
the Douglas-Rachford splitting method, the projection onto
convex sets method, and many others (Yamada et al., 2011).

Monotone operator theory in DEQ models has been ex-
plored in (Winston & Kolter, 2020), a study that introduces
the monotone operator deep equilibrium (monDEQ) models.
These models ensure both the existence and uniqueness of
the fixed point, while also guaranteeing the convergence of
the forward-backward splitting algorithm and Peaceman-
Rachford splitting algorithm to the fixed point. However,
approaches of this type require restrictions on weights that
can only be enforced with complex numerical techniques.

To avoid the above difficulties, we use in this study non-
linear Perron-Frobenius theory (Krause, 2015; Lemmens &
Nussbaum, 2012) as an alternative to traditional theory in
Hilbert spaces. More specifically, we consider deep equilib-
rium layers that belong to the class of standard interference
mappings. These mappings, introduced in the next sec-
tion, have been widely used in wireless networks (Yates,
1995; Schubert & Boche, 2011; Stanczak et al., 2009; You
& Yuan, 2020; Miretti et al., 2023a;b; Shindoh, 2020; 2019;
Cavalcante et al., 2016; 2019). They are not necessarily
nonexpansive in Hilbert spaces, but they are contractive
(though not necessarily Lipschitz contractions) in some met-
ric spaces defined on cones, such as the cone of positive
vectors. Before introducing SI mappings and their applica-
tions in DEQ models, we first need to establish the notation
and formally introduce the concept of DEQ layers.

3. Preliminaries
The nonnegative cone and its interior (i.e., the positive cone)
are denoted as, respectively,

Rn
+ := {(x1, . . . , xn) ∈ Rn | (∀k ∈ {1, . . . , n}) xk ≥ 0}.
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and

int(Rn
+) := {(x1, . . . , xn) ∈ Rn

+ |
(∀k ∈ {1, . . . , n}) xk > 0}.

Let x, y ∈ Rn
+. The partial ordering induced by the non-

negative cone is denoted as x ≤ y ⇔ y − x ∈ Rn
+. In

a similar way, for x ̸= y, x < y ⇔ y − x ∈ Rn
+, and

x ≪ y ⇔ y − x ∈ int(Rn
+). The fixed point set of a func-

tion f : X → Y with Y and X being subsets of a given set
S is denoted as

Fix(f) = {x⋆ ∈ X | f(x⋆) = x⋆}.

3.1. Deep Equilibrium Layers

We now have all the necessary notation to introduce generic
DEQ models.

Definition 3.1. A DEQ layer maps an input x ∈ X ⊂ Rn

to an output z⋆ ∈ Fix(gx) ⊂ Y ⊂ X , where gx : X → Y
is an explicit function given by

gx : X → Y : z 7→ σ(Wz + x); (1)

W : X → Y is a linear operator (weight matrix); and
σ : X → Y is a (vector-valued nonlinear) activation func-
tion, composed elementwise from a given scalar activation
function.

In the above definition, closed-form expressions for the
implicit function x 7→ z⋆ ∈ Fix(gx) are not required, and
the numerical scheme used to compute the output z⋆ ∈
Fix(gx) from a given input x is not specified. As a result,
to ensure that the implicit function x 7→ z⋆ ∈ Fix(gx) is
well-defined and independent of the numerical scheme used
to compute the output, we require Fix(gx) to be a singleton
for every x ⊂ X . This fixed point formulation allows for
direct implicit differentiation, which is crucial for training
DEQ models (Bai et al., 2019). In the text that follows,
for convenience, we always refer to a DEQ layer using its
explicit function gx because, with the above restriction of
Fix(gx) being a singleton, the implicit function x 7→ z⋆ ∈
Fix(gx) is well-defined.

One of the simplest numerical schemes for computing fixed
points, which is the numerical scheme we consider in this
study, is the standard fixed point iteration, which, using the
notation in Definition 3.1, we can write as

(∀k ∈ N) zk+1 = gx(zk) with z1 ∈ X. (2)

3.2. Standard Interference and Positive Concave
Mappings

The DEQ layers that we propose in this study are a proper
subclass of standard interference mappings, defined as fol-
lows.

Definition 3.2. A mapping g : Rn
+ → int(Rn

+) is said to be
a standard interference if it is

1. monotonic

(∀x ∈ Rn
+)(∀x̃ ∈ Rn

+) x ≤ x̃ =⇒ g(x) ≤ g(x̃), and
(3)

2. scalable

(∀x ∈ Rn
+)(∀λ > 1) g(λx) ≪ λg(x). (4)

Remark 3.3. Monotonic mappings in the sense of Definition
3.2 are also known as order-preserving mappings in the
mathematical literature, and they should not be confused
with monotone operators used in convex analysis (Ryu &
Boyd, 2016; Bauschke et al., 2017), which is a different
concept in general.

SI mappings have at most one fixed point (Yates, 1995), and
its existence can be established with Proposition A.4 in the
appendix, which uses the concepts of asymptotic mappings
(Definition A.2) and nonlinear spectral radius (Definition
A.3). A proper subclass of SI mappings is the class of the
positive concave mappings (see Proposition A.6), defined
below.

Definition 3.4. Let g : Rn
+ → Rn

+ be concave with respect
to the cone order; i.e.,

(∀x ∈ Rn
+)(∀y ∈ Rn

+)(∀t ∈ (0, 1))

g(tx+ (1− t)y) ≥ tg(x) + (1− t)g(y).

(5)

Then g is called a nonnegative concave (NC) mapping. Fur-
thermore, if the codomain of g is in the set of positive vectors
(i.e., g : Rn

+ → int(Rn
+)), then g is called a positive concave

(PC) mapping.

We emphasize that NC mappings are not SI mappings in
general (e.g., x 7→ x for x ∈ Rn

+ is an NC, but not an
SI mapping), only PC mappings are guaranteed to be SI
mappings without any further assumptions, see (Cavalcante
et al., 2016; 2019).

An important property of PC mappings, which we exploit
in this study, is that, if a fixed point exists, the fixed point
iteration is guaranteed to converge geometrically fast to the
fixed point (Proposition A.7).

4. PC Deep Equilibrium Layers
We now proceed to construct the proposed pcDEQ layers
gx based on the theory described in the previous section. In
particular, recall that, by restricting DEQ layers to the class
of PC mappings, we obtain simple conditions to guarantee
the existence and uniqueness of the fixed point z⋆, and we
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also have the simple iterative scheme in (2) to compute the
fixed point, which is an algorithm that converges geomet-
rically fast for PC mappings. We start by restricting the
activation functions to be nonnegative concave in the non-
negative cone, and, for later reference, the next remark gives
examples of such functions.
Remark 4.1. We divide the activation functions allowed
by the proposed framework into two classes: nonnegative
concave functions and positive concave activation func-
tions. Common examples in the neural network literature
are shown in the two lists below.

1. continuous NC activation functions (R+ → R+):

• (ReLU6) x 7→ min{x, 6}
• (hyperbolic tangent) x 7→ tanh x

• (softsign) x 7→ x
1+x

2. continuous PC activation functions (R+ → int(R+)):

• (sigmoid) x 7→ 1
1+exp (−x)

We recall that the activation functions from the above lists
are applied elementwise to vector arguments, see Defini-
tion 3.1. The following lemma provides two simple suffi-
cient conditions to construct positive concave DEQ layers.

Lemma 4.2. Consider a DEQ layer gx : Rn
+ → int(Rn

+) of
the form in (1) in Definition 3.1 for an input x. Then:

• (Assumption 1) z 7→ gx(z) := σ(Wz+x) is a PC map-
ping gx : Rn

+ → int(Rn
+) if z ∈ Rn

+, W ∈ Rn×n
+ , x ∈

int(Rn
+), and σ is constructed elementwise from any

scalar activation function from List 1 in Remark 4.1;

• (Assumption 2) z 7→ gx(z) := σ(Wz + x) is a PC
mapping gx : Rn

+ → int(Rn
+) if z ∈ Rn

+, W ∈ Rn×n
+ ,

x ∈ Rn
+, and σ is constructed elementwise from the

scalar activation function from List 2 in Remark 4.1.

Proof. Let fx : Rn
+ → Rn

+ be given by z 7→ Wz + x and
let σ : Rn

+ → Rn
+ be the activation function. Let fx and

σ satisfy either Assumption 1 or Assumption 2, so that
gx = σ ◦ fx. We note that both fx and σ belong to the class
of NC mappings. Let z1, z2 ∈ Rn

+ and t ∈ (0, 1). Then, by
concavity of fx:

fx(tz1 + (1− t)z2) ≥ tfx(z1) + (1− t)fx(z2).

Hence, monotonicity of σ implies that

σ[fx(tz1 + (1− t)z2)] ≥ σ[tfx(z1) + (1− t)fx(z2)].

From the concavity of σ we deduce

σ[tfx(z1)+(1−t)fx(z2)] ≥ tσ(fx(z1))+(1−t)σ(fx(z2)).

By combining the above two inequalities, we conclude that

(σ◦fx)(tz1+(1−t)z2) ≥ t(σ◦fx)(z1)+(1−t)(σ◦fx)(z2),

implying that gx = σ ◦ fx is an NC mapping under either
Assumption 1 or Assumption 2. To show that gx is a PC
mapping, we first note that, by the monotonicity of fx, one
has fx(z) ≥ fx(0) for z ∈ Rn

+.

Under Assumption 1, we have y0 := fx(0) = x ≫ 0, so
that (∀z ∈ Rn

+) fx(z) ≫ 0. We now note that a selection
of any of the scalar activation functions from List 1 for
σ satisfies (∀v ≫ 0) σ(v) ≫ 0, so that σ(y0) = (σ ◦
fx)(0) = gx(0) ≫ 0. Since gx is monotonic, one has
(∀y ∈ Rn

+) gx(y) ≥ gx(0) ≫ 0, thus gx is a PC mapping.

On the other hand, if Assumption 2 is satisfied, we note
that, in this case, σ(0) ≫ 0, hence (∀z ∈ Rn

+) gx(z) =
(σ ◦ fx)(z) ≫ 0, which implies gx is also a PC mapping in
this case. ■

For convenience, the DEQ layers satisfying the assumptions
in Lemma 4.2 are formally defined below.

Definition 4.3. Let gx : Rn
+ → int(Rn

+) be a DEQ layer of
the form in (1) for a given input x. If gx (including the input
x) satisfies Assumption 1 in Lemma 4.2, then gx is called a
pcDEQ-1 layer. If gx satisfies Assumption 2 in Lemma 4.2,
then gx is called a pcDEQ-2 layer. By pcDEQ we mean a
layer gx that is either a pcDEQ-1 layer or a pcDEQ-2 layer.

PcDEQ-1 and pcDEQ-2 layers are illustrated in Figure 1.

Figure 1. The visualization of the possible construction of pcDEQ
layers. The symbols shown in the figures mean: Rn×n

+ ∋ W+ -
nonnegative weights, Rn

+ ∋ z+ - nonnegative vector of fixed point
iteration, Rn

+ ∋ x+ - nonnegative input to the layer, int(Rn
+) ∋

x++ - positive input to the layer, σNC - nonnegative concave
activation function (List 1 in Remark 4.1) and σPC - positive
concave activation function (List 2 in Remark 4.1).

Lemma 4.2 asserts that pcDEQ layers are PC mappings
for any allowed input x, which, in view of Proposition
A.6, implies that they are also SI mappings. We can now
use Definition A.2 to provide the form of the asymptotic
mapping associated with a pcDEQ layer. The assertion of
Proposition 4.4 follows from Proposition 11 in (Piotrowski
et al., 2024), and, for completeness, we include the proof
below.
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Proposition 4.4. For a given input x, let gx,∞ : Rn
+ → Rn

+

be the asymptotic mapping (in the sense of Definition A.2)
of a pcDEQ layer gx : Rn

+ → int(Rn
+) satisfying Definition

4.3. Then gx,∞(z) = 0 for every z ∈ Rn
+.

Proof. The asymptotic mapping gx,∞ according to Defini-
tion A.2 is defined as follows

gx,∞(z) = lim
p→∞

1

p
gx(pz) = lim

p→∞

σ(Wpz + x)

p
. (6)

Applying L’Hôpital’s rule to the activation function σ with
p as an argument, we have

gx,∞(z) = lim
p→∞

σ′(Wpz + x)Wz. (7)

For activation functions composed from any scalar activa-
tion functions in Remark 4.1, we have limp→∞ σ′(Wpz +
x) = 0, hence also

lim
p→∞

σ′(Wpz + x)Wz = 0. ■ (8)

The following Corollary 4.5 follows directly from Proposi-
tion 4.4.

Corollary 4.5. With notation in Proposition 4.4, let
ρ(gx,∞) ∈ R+ be the spectral radius of gx,∞ in the sense
of Definition A.3 for a given input x. Then ρ(gx,∞) = 0.

Based on the previous results, Proposition 4.6 establishes the
existence and uniqueness of the fixed point for the pcDEQ
layers, in addition to the geometric convergence of the fixed
point iteration.

Proposition 4.6. Let gx : Rn
+ → int(Rn

+) be a pcDEQ layer
satisfying Definition 4.3. Then gx has a unique fixed point
z⋆ for every input x satisfying the conditions in Definition
4.3. Moreover, the fixed point iteration of gx in (2) converges
geometrically in the sense of Definition A.1 to z⋆ for any
z1 ∈ Rn

+ and any input x.

Proof. Choose any input x satisfying the conditions in Def-
inition 4.3. From Lemma 4.2, gx is a PC mapping. Thus,
from Proposition A.6, gx is also an SI mapping. From Corol-
lary 4.5, the nonlinear spectral radius of gx is ρ(gx,∞) = 0.
If follows from Proposition A.4 that gx has a unique fixed
point z⋆. Then, from Proposition A.7 it follows that the
fixed point iteration of gx in (2) converges geometrically to
z⋆ with a factor c ∈ [0, 1) for any starting point z1 ∈ Rn

+.
■

5. Experiments
The experiments were carried out on three commonly known
computer vision datasets: MNIST, SVHN, and CIFAR-10.

The proposed pcDEQ1 models were compared with compet-
itive approaches for which the uniqueness of the fixed point
is mathematically established, namely: monotone operator
deep equilibrium models (monDEQ) (Winston & Kolter,
2020), neural ordinary differential equations (NODE) (Chen
et al., 2018), and augmented neural differential equations
(ANODE) (Dupont et al., 2019). The comparison was per-
formed according to the results reported in (Dupont et al.,
2019; Winston & Kolter, 2020). For pcDEQ models, the
fixed point z⋆ is computed using the standard fixed point it-
eration in (2). The stopping criterion of fixed point iteration
is based on the relative error, calculated as ||zk+1−zk||

||zk+1|| ≤ ϵ,
where || · || is a Frobenius norm and ϵ is a tolerance. In our
experiments, the tolerance ϵ was set to 1e− 4.

The experiments were performed using the Google Colab
platform with a NVIDIA Tesla T4 16GB GPU.

5.1. Architecture Setup

According to Definition 4.3, we consider two options to
build pcDEQ layers, pcDEQ-1 (Figure 1 (a)) and pcDEQ-2
(Figure 1 (b)). For both options, the nonnegative weights
W+ are achieved by projecting the negative values to zeros
after backpropagation. To construct pcDEQ-1, it is nec-
essary to provide a positive input x++ (see Figure 1 (a)),
which is performed by applying elementwise the softplus
activation function (σ : R → int(R+)) before the pcDEQ-1
layer, as the activation functions in networks with pcDEQ-1
layers are functions from List 1 in Remark 4.1. In the case
of the pcDEQ-2 model, the activation function is a PC acti-
vation function from List 2 in Remark 4.1. For pcDEQ-2,
the nonnegativity of x+ is achieved by applying the ReLU
activation function before the DEQ layer.

Compared to monDEQ models, the construction of pcDEQ
layers is much simpler and does not require a special layer
implementation. MonDEQ layer has to be carefully param-
eterized by a set of two weights to satisfy the assumptions
of strong monotonicity, which results in overparameteriza-
tion and a more complicated implementation. Furthermore,
computing convolutions in monDEQ models requires calcu-
lating fast Fourier transforms, which, as noted in (Winston &
Kolter, 2020), are empirically 2-3 times slower than comput-
ing convolutions in a standard manner. On the other hand, in
pcDEQ models, as mentioned previously, the only require-
ment is to use concave activation functions and constrain
the weights to be nonnegative. Such a parameterization
does not produce extra computational overhead compared
to standard DEQ models.

In experiments, we consider three types of pcDEQ mod-

1The Pytorch source code of pcDEQs along with examples of
use is available at the following link: https://github.com/
mateuszgabor/pcdeq

5

https://github.com/mateuszgabor/pcdeq
https://github.com/mateuszgabor/pcdeq


Positive Concave Deep Equilibrium Models

els with four activation functions from Remark 4.1. The
first type of network is based on using one linear pcDEQ
layer. The second type of network is based on using one
convolutional pcDEQ layer, and the last type is based on the
use of three convolutional pcDEQ layers, between which
the explicit downsampling layers occur. The architectural
details are discussed in Appendix B, and the experimental
hyperparameters for each network in Appendix C. Networks
using a single linear pcDEQ layer have “L” suffix in their
name. A similar scenario is for networks with a single con-
volutional pcDEQ layer, to network name suffix “SC” is
added. For networks with three convolutional pcDEQ layers,
the suffix “MC” is added to the network name. The suffix
“MT” in monDEQs refers to the multi-tier architecture used
in (Winston & Kolter, 2020).

5.2. Results

Tables 1, 2, and 3 show the results obtained by pcDEQ mod-
els with compared methods for MNIST, SVHN and CIFAR-
10, respectively. As the results show, the architectures based
on pcDEQ achieve competitive results compared to other
implicit models. In each scenario, pcDEQ models were
constructed with a smaller number of parameters compared
to NODE, ANODE, and monDEQ. In the case of the results
obtained on the MNIST dataset (Table 1), all pcDEQ con-
figurations outperform the NODE, ANODE, and monDEQ
approaches. For the results obtained on the SVHN dataset
(Table 2), it can be seen that the highest accuracy is obtained
by pcDEQ with ReLU6 activation functions and three con-
volutional layers. In the case of results obtained on the
CIFAR-10 dataset, Table 3 shows that with a lower number
of parameters, pcDEQ models can achieve similar or better
results compared to NODE, ANODE, or monDEQ. More-
over, similar to previous works, we trained larger pcDEQ
models with data augmentation on CIFAR-10. As can be
seen, for this setup, pcDEQ with three pcDEQ convolutional
layers and softsign activation functions achieves the highest
accuracy among all pcDEQ configurations.

Figure 2 shows the training curves for the pcDEQ models
with a single convolutional layer. For other cases, the figures
are attached in Appendix D.

5.3. Convergence Analysis

Figure 3 shows the average number (among all batches in
epoch) of fixed point iterations to compute a fixed point
per epoch for the pcDEQ model with a single convolutional
layer. From this figure, it can be seen that the convergence is
very fast and accurate. For pcDEQ with sigmoid activation
function, the fixed point iteration satisfies the stopping cri-
terion with less than eight iterations. From Proposition 4.6,
we know that the convergence of the fixed point iteration for
the pcDEQ models is geometric. We could improve the con-

Table 1. Test accuracies of pcDEQ models averaged over five runs
on MNIST dataset compared with NODE, ANODE and monDEQ;
† as reported in (Dupont et al., 2019); ‡ as reported in (Winston &
Kolter, 2020).

Method MNIST

#Parameters Accuracy [%]

NODE† 84K 96.4
ANODE† 84K 98.2
monDEQ-L‡ 84K 98.1
monDEQ-SC‡ 84K 99.1
monDEQ-MT‡ 81K 99.0
pcDEQ-1-L-ReLU6 70K 98.1
pcDEQ-1-L-Tanh 70K 98.2
pcDEQ-1-L-Softsign 70K 98.1
pcDEQ-2-L-Sigmoid 70K 98.1
pcDEQ-1-SC-ReLU6 69K 99.2
pcDEQ-1-SC-Tanh 69K 99.2
pcDEQ-1-SC-Softsign 69K 99.1
pcDEQ-2-SC-Sigmoid 69K 98.9
pcDEQ-1-MC-ReLU6 41K 99.3
pcDEQ-1-MC-Tanh 41K 99.2
pcDEQ-1-MC-Softsign 41K 99.2
pcDEQ-2-MC-Sigmoid 41K 98.7

Table 2. Test accuracies of pcDEQ models averaged over five runs
on SVHN dataset compared with NODE, ANODE and monDEQ;
† as reported in (Dupont et al., 2019); ‡ as reported in (Winston &
Kolter, 2020).

Method SVHN

#Parameters Accuracy [%]

NODE† 172K 81.0
ANODE† 172K 83.5
monDEQ-SC‡ 172K 88.7
monDEQ-MT‡ 170K 92.4
pcDEQ-1-SC-ReLU6 165K 88.0
pcDEQ-1-SC-Tanh 165K 88.1
pcDEQ-1-SC-Softsign 165K 88.4
pcDEQ-2-SC-Sigmoid 165K 87.3
pcDEQ-1-MC-ReLU6 131K 93.0
pcDEQ-1-MC-Tanh 131K 92.3
pcDEQ-1-MC-Softsign 131K 92.3
pcDEQ-2-MC-Sigmoid 131K 91.5

vergence rate with vector extrapolation techniques. This fact
is very interesting because such fast convergence is achieved
without using any acceleration method. The interesting fact
is that in standard DEQ and monDEQ models, the number
of iterations of the used iterative method increases during
training; in the proposed pcDEQ architectures, this effect
does not occur. For other architecture configurations, the
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Figure 2. Test accuracies during training for the pcDEQ model with a single convolutional layer over five experiment runs.

Table 3. Test accuracies of pcDEQ models averaged over five runs
on CIFAR-10 dataset compared with NODE, ANODE and mon-
DEQ; † as reported in (Dupont et al., 2019); ‡ as reported in
(Winston & Kolter, 2020); * with data augmentation.

Method CIFAR-10

#Parameters Accuracy [%]

NODE† 172K 53.7
NODE‡* 1M 59.9
ANODE† 172K 60.6
ANODE‡* 1M 73.4
monDEQ-SC‡ 172K 74.0
monDEQ-SC‡* 854K 82.0
monDEQ-MT‡ 170K 72.0
monDEQ-MT‡* 1M 89.0
pcDEQ-1-SC-ReLU6 165K 76.3
pcDEQ-1-SC-Tanh 165K 76.6
pcDEQ-1-SC-Softsign 165K 76.4
pcDEQ-2-SC-Sigmoid 165K 75.5
pcDEQ-1-MC-ReLU6 131K 78.2
pcDEQ-1-MC-ReLU6* 661K 89.2
pcDEQ-1-MC-Tanh 131K 76.5
pcDEQ-1-MC-Tanh* 661K 88.5
pcDEQ-1-MC-Softsign 131K 77.1
pcDEQ-1-MC-Softsign* 661K 89.0
pcDEQ-2-MC-Sigmoid 131K 71.0
pcDEQ-2-MC-Sigmoid* 661K 85.6

situation is similar to that described in this section, and the
results are given in Appendix D.

5.4. Lipschitz Continuity

In this section, by considering the standard Euclidean met-
ric space, we show empirically that the assumptions used
to determine the uniqueness of the fixed point are weaker
compared to the standard assumptions in convex analysis.

In general, to determine the uniqueness of the fixed point
based on the Banach fixed point theorem, we need informa-
tion about a Lipschitz constant of the function, and, in the
machine learning literature, we often consider the standard
Euclidean space. In the case of neural networks, if the used
activation functions are nonexpansive (such as those in Re-
mark 4.1), then a Lipschitz constant L w.r.t. the standard
Euclidean space is upper bounded by the product of spectral
norms of weight operators (Combettes & Pesquet, 2020) as
follows:

L ≤
m∏
i=1

||Wi||, (9)

where m is the number of weight operators and || · || is the
spectral norm.

For the simple scenario, we investigated the pcDEQ model
containing one linear pcDEQ layer (m = 1) with four
activation functions. The average largest singular value per
epoch for the entire training process is shown in Figure
4. It can be concluded that for the network with softsign,
hyperbolic tangent, and sigmoid activation function, the
Lipschitz constant in (9) is L > 1 for most of the training
time. For such a case, the uniqueness of the fixed point
cannot be determined from the Banach fixed point theorem,
because the Lipschitz constant L in (9) does not satisfy
L < 1. In the case of a network with the ReLU6 activation
function, the Lipschitz constant in (9) satisfies L < 1 for
the entire training process. In such a case, the Banach fixed
point theorem can be used to determine the uniqueness of
the fixed point and the linear convergence to it by using fixed
point iteration. However, there are no guarantees that even
for ReLU6 the Lipschitz constant L will always be less than
one, for example, with different learning rates, initialization,
architecture, etc. On the other hand, the necessary and
sufficient conditions of the uniqueness of the fixed point
of SI mappings are weaker compared to the Banach fixed
point theory, because the uniqueness of the fixed point is
independent of a Lipschitz constant and the unique fixed
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Figure 3. Number of fixed point iterations for computing the fixed point in forward and backward passes for the pcDEQ model with a
single convolutional layer over five experiment runs.

point can still exist even if L > 1.
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Figure 4. Largest singular value of pcDEQ linear layer over five
experiment runs.

6. Limitations
The proposed approach may appear restrictive due to the
non-negativity constraint on weights and the use of con-
cave activation functions. However, these restrictions are
essential to ensure theoretical guarantees, such as the unique-
ness of the fixed point and the convergence of the standard

fixed point iteration. It is important to note that existing
approaches offering similar guarantees, such as monDEQ
models, also impose constraints to ensure that the mappings
are strongly monotone in the sense used in convex analysis.
The advantage of our approach is that the imposed restric-
tions are simpler to implement in practice compared to those
based on monotone operator theory.

7. Conclusions
In this study, we have proposed a new class of DEQ models
with guarantees of the existence of a unique fixed point. The
parametrization of pcDEQ is very simple, and it does not re-
quire any sophisticated training modifications compared to
standard DEQ models. Moreover, the fixed point can be eas-
ily computed with the standard fixed point iteration, and the
convergence is guaranteed to be geometric. The proposed
pcDEQ models are based on the theory of SI mappings,
which are widely used in the wireless literature. To the best
of our knowledge, this is the first practical application of SI
mappings theory in the deep learning literature.

This study provides the foundation for extending the pro-
posed method to a larger and less restricted class of map-
pings with guarantees similar to SI mappings. As an exam-
ple, one may aim to weaken further the assumptions used to
construct pcDEQ models to obtain more versatile models,
capable of incorporating a wider class of weight operators
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and activation functions in DEQ layers. Such a direction
seems feasible in view of the recent results on the exis-
tence and shape of the fixed point sets of (subhomogeneous)
weakly standard interference (WSI) neural networks pro-
vided in (Piotrowski et al., 2024). Another promising future
research in the direction proposed in this paper should focus
on providing even stronger guarantees of convergence rate
compared with the geometric convergence of the fixed point
iteration of pcDEQ models established in this paper. Indeed,
the empirical convergence analysis provided in Section 5.3
suggests that the actual rate of convergence may actually be
linear.
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A. Known Results
Definition A.1. (Ortega & Rheinboldt, 2000)[Chapter 9] Let (xk : k ∈ N) be a sequence in Rn, then (xk : k ∈ N)
converges geometrically to x⋆ ∈ Rn with a rate c ∈ [0, 1) and a constant γ > 0 if

∀k ∈ N ||xk+1 − x⋆|| ≤ γck, (10)

where || · || is a given norm.

Definition A.2. (Cavalcante et al., 2019; Oshime, 1992) Let f : Rn
+ → int(Rn

+) be an SI mapping in the sense of
Definition 3.2. The asymptotic mapping associated with f is the mapping defined by

f∞ : Rn
+ → Rn

+ : z 7→ lim
p→∞

1

p
f(pz). (11)

We recall that the above limit always exists and that the resulting asymptotic mapping f∞ is positively homogeneous; i.e.,
(∀α > 0) (∀z ∈ Rn

+) f∞(αx) = αf∞(z).

Definition A.3. The (nonlinear) spectral radius of an SI mapping is defined as the largest eigenvalue of the corresponding
asymptotic mapping (Cavalcante et al., 2019; Oshime, 1992), and it is given by

p(f∞) := max{λ ∈ R+ | ∃z ∈ Rn
+ \ {0} s.t. f∞(z) = λz} ∈ R+. (12)

Proposition A.4. (Cavalcante et al., 2019) Let f : Rn
+ → int(Rn

+) be an SI mapping. Then Fix(f) ̸= ∅ if and only if
p(f∞) < 1. Furthermore, if a fixed point exists, then it is positive and unique.

Corollary A.5. (Cavalcante et al., 2016) If f : Rn
+ → Rn

+ is an NC mapping or f : Rn
+ → int(Rn

+) is a PC mapping in the
sense of Definition 3.4, then f is monotonic.

Proposition A.6. (Cavalcante et al., 2016; 2019) If f : Rn
+ → int(Rn

+) is a PC mapping, then f is an SI mapping.

Proposition A.7. (Piotrowski & Cavalcante, 2022) Let f : Rn
+ → int(Rn

+) be a PC mapping with a fixed point x⋆ ∈ int(Rn
+).

Then, for any x1 ∈ Rn
+, the fixed point iteration of f converges geometrically to x⋆ with a factor c ∈ [0, 1) w.r.t. any metric

induced by a norm in Rn.

B. Architecture Details
As noted in Section 5, we consider three types of architectures of pcDEQ models. Based on the results of previous DEQ
papers (Bai et al., 2019; 2020), using some regularization techniques can prevent overfitting and improve the final results.
Therefore, similar to standard DEQ models (Bai et al., 2019) for each pcDEQ layer, we apply weight normalization (Salimans
& Kingma, 2016). Similarly to the official tutorial on implicit models (Kolter et al., 2020), we also used batch normalization
before and after the DEQ layer, which allows improving the final results. In Figures 5, 6, 7, the meaning of the blocks is as
follows:

• Linear — linear layer,

• BN — batch normalization layer,

• pcDEQ-1 — pcDEQ-1 layer in Definition 4.3,

• pcDEQ-2 — pcDEQ-2 layer in Definition 4.3,

• Conv2D — 2D convolutional layer,

• Conv2D, s=2 — 2D convolutional downsampling layer with stride equal to 2,

• BN + Softplus — batch normalization layer followed by a softplus activation function,

• BN + ReLU — batch normalization followed by ReLU activation functions,

• MaxPool + BN — max pooling layer followed by batch normalization,

• AvgPool — average pooling layer.
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B.1. Architecture with Single pcDEQ Linear Layer

Architectures of pcDEQ models with a single linear pcDEQ layer for two variants of pcDEQ layers in the sense of Definition
4.3 are presented in Figure 5. As in standard DEQ models, the first and last linear layer is an explicit layer.

Figure 5. Architectures of pcDEQ models with single linear pcDEQ layer. Subfigure (a) presents architecture with pcDEQ-1 layer and (b)
with pcDEQ-2 layer.

B.2. Architecture with Single pcDEQ Convolutional Layer

Architectures of pcDEQ models with a single convolutional pcDEQ layer are similar to those with linear layers in the
previous subsection. Figure 6 shows the architectures used in the experiments. The max. pooling layers have a kernel of size
3× 3 with padding p = 1 and stride s = 1. The avg. pooling layer has kernel of size 8× 8 with padding p = 0 and stride
s = 8.

Figure 6. Architecture of pcDEQ models with single convolutional pcDEQ layer. Subfigure (a) presents architecture with pcDEQ-1 layer
and (b) with pcDEQ-2 layer.

B.3. Architecture with Multiple pcDEQ Convolutional Layers

In practice, larger DEQ models with multiple convolutional layers are implemented as single layer fusion of multiple scales
(Bai et al., 2020), between which the upsampling and downsampling are performed. The same idea was applied to monDEQ
models in the mult-tier architecture. This is a nice engineering idea, but it is complicated in practice. Moreover, computing
the fusion of fixed points (for each scale) simultaneously is difficult to analyze and can involve an increased computational
cost. In this work, we take another approach that combines implicit DEQ layers with explicit downsampling layers between
them. A similar approach was used in (Xie et al., 2022), which investigated the idea of having multiple implicit layers
instead of one. It should be noted that the explicit downsampling layers are unconstrained, such as the first and last layers.
The proposed architecture is shown in Figure 7. The max. pooling layers have a kernel of size 3× 3 with padding p = 1 and
stride s = 1. The avg. pooling layer has kernel of size 4× 4 with padding p = 0 and stride s = 4.
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Figure 7. Architecture of pcDEQ models with three convolutional pcDEQ layer. Subfigure (a) presents architecture with pcDEQ-1 layers
and (b) with pcDEQ-2 layers.

C. Experimental Details and Hyperparameters
In our experiments, we used three commonly known computer vision datasets: MNIST, SVHN, and CIFAR-10. MNIST
dataset consists 70,000 grayscale handwritten digit images. SVHN dataset consists of 99,289 RGB digit images from house
numbers. CIFAR-10 consists of 60,000 RGB images of 10 classes. For the MNIST dataset, the images have dimensions of
28× 28 pixels, and for the SVHN and CIFAR-10 32× 32 pixels. The statistics of the datasets are shown in Table 4.

Table 4. Dataset statistics.
Dataset #Train examples #Test examples

MNIST 60,000 10,000
SVHN 73,257 26,032
CIFAR-10 50,000 10,000

As mentioned in the paper, to compute fixed point in pcDEQ layers, the standard fixed point iteration was used. We
especially do not use any more sophisticated iterative methods such as Anderson acceleration or Broyden’s method, because
for such methods the guarantees of convergence to fixed point for PC mappings have not been proved in the literature. For all
networks, the AdamW (Loshchilov & Hutter, 2017) optimizer was used with a batch size of 64. All other hyperparameters
for each dataset and architecture are shown in Tables 5, 6 and 7. The expeeriments with pcDEQs were run five times.
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Table 5. MNIST hyperparameters.

Method Number of
channels Epochs LR LR decay

steps
LR decay

factor WD

pcDEQ-1-L-ReLU6 80 40 0.001 30 0.1 0.02
pcDEQ-1-L-Tanh 80 40 0.001 30 0.1 0.02
pcDEQ-1-L-Softsign 80 40 0.001 30 0.1 0.02
pcDEQ-2-L-Sigmoid 80 40 0.001 30 0.1 0.02
pcDEQ-1-SC-ReLU6 82 40 0.0007 30 0.1 0.02
pcDEQ-1-SC-Tanh 82 40 0.0007 30 0.1 0.02
pcDEQ-1-SC-Softsign 82 40 0.0007 30 0.1 0.02
pcDEQ-2-SC-Sigmoid 82 40 0.0002 30 0.1 0.02
pcDEQ-1-MC-ReLU6 12,24,48 40 0.0005 30 0.1 0.015
pcDEQ-1-MC-Tanh 12,24,48 40 0.0005 30 0.1 0.015
pcDEQ-1-MC-Softsign 12,24,48 40 0.0005 30 0.1 0.015
pcDEQ-2-MC-Sigmoid 12,24,48 40 0.0002 30 0.1 0.015

Table 6. SVHN hyperparameters.

Method Number of
channels Epochs LR LR decay

steps
LR decay

factor WD

pcDEQ-1-SC-ReLU6 125 80 0.0007 70 0.1 0.02
pcDEQ-1-SC-Tanh 125 80 0.0007 70 0.1 0.02
pcDEQ-1-SC-Softsign 125 80 0.0007 70 0.1 0.02
pcDEQ-2-SC-Sigmoid 125 80 0.0005 70 0.1 0.02
pcDEQ-1-MC-ReLU6 20,50,80 50 0.0005 40 0.1 0.015
pcDEQ-1-MC-Tanh 20,50,80 50 0.0005 40 0.1 0.015
pcDEQ-1-MC-Softsign 20,50,80 50 0.0005 40 0.1 0.015
pcDEQ-2-MC-Sigmoid 20,50,80 50 0.0002 40 0.1 0.015

Table 7. CIFAR-10 hyperparameters.

Method Number of
channels Epochs LR LR decay

steps
LR decay

factor WD

pcDEQ-1-SC-ReLU6 125 80 0.0005 70 0.1 0.02
pcDEQ-1-SC-Tanh 125 80 0.0005 70 0.1 0.02
pcDEQ-1-SC-Softsign 125 80 0.0005 70 0.1 0.02
pcDEQ-2-SC-Sigmoid 125 80 0.0002 70 0.1 0.02
pcDEQ-1-MC-ReLU6 20,50,80 50 0.0007 40 0.1 0.015
pcDEQ-1-MC-Tanh 20,50,80 50 0.0007 40 0.1 0.015
pcDEQ-1-MC-Softsign 20,50,80 50 0.0007 40 0.1 0.015
pcDEQ-2-MC-Sigmoid 20,50,80 50 0.0002 40 0.1 0.015
pcDEQ-1-MC-ReLU6* 100,120,140 120 0.0007 100 0.1 0.02
pcDEQ-1-MC-Tanh* 100,120,140 120 0.0007 100 0.1 0.02
pcDEQ-1-MC-Softsign* 100,120,140 120 0.0007 100 0.1 0.02
pcDEQ-2-MC-Sigmoid* 100,120,140 120 0.0002 100 0.1 0.02
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D. Additional Figures
D.1. MNIST
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Figure 8. Test accuracies, number of fixed point iterations in forward and backward passes during training for pcDEQ models with single
linear pcDEQ layer and three convolutional pcDEQ layers (average of forward and backward passes of three pcDEQ layers) on MNIST
dataset over five experiment runs.

D.2. SVHN
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Figure 9. Test accuracies, number of fixed point iterations in forward and backward passes (average of three pcDEQ layers) during training
for pcDEQ models with multiple convolutional pcDEQ layers on SVHN dataset over five experiment runs.
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D.3. CIFAR-10
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Figure 10. Test accuracies, number of fixed point iterations in forward and backward passes (average of three pcDEQ layers) during
training for pcDEQ models with three convolutional pcDEQ layers with and without data augmentation on CIFAR-10 dataset over five
experiment runs.
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