
Dynamic Tuning Towards Parameter and Inference
Efficiency for ViT Adaptation

Wangbo Zhao1,2∗ Jiasheng Tang2,3† Yizeng Han2,4 Yibing Song2,3 Kai Wang1
Gao Huang4 Fan Wang2 Yang You1†

1National University of Singapore 2DAMO Academy, Alibaba Group
3Hupan Laboratory 4Tsinghua University

Code: https://github.com/NUS-HPC-AI-Lab/Dynamic-Tuning

Abstract

Existing parameter-efficient fine-tuning (PEFT) methods have achieved significant
success on vision transformers (ViTs) adaptation by improving parameter efficiency.
However, the exploration of enhancing inference efficiency during adaptation
remains underexplored. This limits the broader application of pre-trained ViT
models, especially when the model is computationally extensive. In this paper, we
propose Dynamic Tuning (DyT), a novel approach to improve both parameter and
inference efficiency for ViT adaptation. Specifically, besides using the lightweight
adapter modules, we propose a token dispatcher to distinguish informative tokens
from less important ones, allowing the latter to dynamically skip the original block,
thereby reducing the redundant computation during inference. Additionally, we
explore multiple design variants to find the best practice of DyT. Finally, inspired
by the mixture-of-experts (MoE) mechanism, we introduce an enhanced adapter to
further boost the adaptation performance. We validate DyT across various tasks,
including image/video recognition and semantic segmentation. For instance, DyT
achieves superior performance compared to existing PEFT methods while evoking
only 71% of their FLOPs on the VTAB-1K benchmark.

1 Introduction

With the remarkable success of Vision Transformers (ViTs) [20, 53, 26], fine-tuing pre-trained ViT
on other data domains [90] or task applications [89, 36, 60, 79, 31] is becoming a common practice.
However, as model sizes increase [88, 16, 52], the associated adaptation costs become prohibitive
due to the burden of fine-tuning and inference on the target task. Parameter-efficient fine-tuning
(PEFT) methods (e.g. AdaptFormer [12], LoRA [34], and VPT [36]), are proposed to tackle the
tuning problem by reducing tunable model parameters. They usually update a small amount of
parameters while keeping the original model fixed, which reduces learnable parameters effectively
while maintaining fine-tuning accuracy.

Despite the extensive research in parameter efficiency, the inference efficiency on target tasks is less
explored. We numerically demonstrate the inference efficiency of three representative PEFT methods
in Figure. 1(a), revealing that none of them reduces the computation during inference compared
to full tuning. This limitation poses challenges for adapting pre-trained ViT to downstream tasks,
particularly when the model is computationally extensive. To this end, we aim to unify both parameter
and inference perspectives for efficient ViT adaptations.

*Work done during an internship at DAMO Academy, Alibaba Group, wangbo.zhao96@gmail.com
†Corresponding authors, jiasheng.tjs@alibaba-inc.com, youy@comp.nus.edu.sg

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/NUS-HPC-AI-Lab/Dynamic-Tuning

12.54

17.61 17.58
18.30

17.58

77.14

74.75 74.60

71.96

68.96

-29%
+8.18

(a) (b)

Figure 1: FLOPs and Accuracy of ViT-B/16 [20] on VTAB-1K [89]. “Full tuning” denotes that all
parameters are fine-tuned. AdaptFormer [12], LoRA [34] and VPT [36] are typical PEFT methods.

Dynamic networks [83, 67, 48] demonstrate that token pruning helps to reduce model inference costs.
However, these designs primarily focus on pre-training from scratch or full tuning on the same dataset,
without considering data domain transfer. Furthermore, the token pruning operation constraints these
methods on visual recognition scenarios, limiting their further applications e.g. dense prediction [93].
Our motivation thus arises from how to develop dynamic modules together with PEFT methods to
enhance both parameter and inference efficiency during ViT adaptation, which should also suit a
wide range of visual tasks.

In this paper, we introduce Dynamic Tuning (DyT), an efficient approach for ViTs adaptation that
achieves both parameter and inference efficiency. Specifically, we design a token dispatcher for
each transformer block learning to dynamically determine whether a token should be activated or
deactivated. Only those activated tokens will traverse the entire block and an extra lightweight adapter
module, while the remaining tokens skip the original block and will solely be processed by the adapter.
DyT does not reduce the total number of tokens, making it suitable for both visual recognition and
dense prediction scenarios. Additionally, since the impact of token skipping during adaptation has not
been explored, we propose four model variants to determine the best practice for DyT. Finally, as the
adapter module is set to process all the visual tokens, we propose a mixture-of-expert(MoE)-based
adapter design that further enhances token processing with negligible additional FLOPs. Through
these designs, our DyT fulfills both parameter and inference efficiency for ViTs adaptation.

Comprehensive evaluations for DyT are conducted from multiple perspectives. In the image domain,
as shown in Figure 1(b). DyT surpasses existing PEFT methods while consuming only 71% of the
ViT-B FLOPs on the VTAB-1K benchmark [89]. When visual tokens are scaled up from images to
videos, our DyT shows superior generalization ability on action recognition benchmarks, e.g. K400
[10] and SSV2 [25], with a reduction of 37GFLOPs. In the scenario where labels are scaled up from
recognition to segmentation, our DyT even outperforms full tuning on ADE20K [93] with 21GFLOPs
reduction. These experimental results indicate that the proposed DyT is efficient in both parameter
and inference across various visual tasks and directs a promising field for efficient model adaptation.

2 Related Works

Parameter-efficient fine-tuning. Parameter-efficient fine-tuning (PEFT) is designed to adapt a
pre-trained model to downstream tasks by only tuning a small part of the parameters. Existing PEFT
methods can broadly be categorized into three groups: adapter-based methods, re-parametrization-
based methods, and prompt-based methods. Adapter-based methods [12, 33, 62, 38, 14] insert
some tiny modules into the original model and only these inserted modules are updated during
fine-tuning. Re-parametrization approaches [87, 34, 47, 21, 18] usually cooperate with reparameteri-
zation techniques, directly modifying specific parameters in the pre-trained model. Prompt-based
methods [36, 2, 95, 94, 40, 9, 8] involve appending a small number of learnable tokens to input
sequences, thereby adapting intermediate features in frozen layers. Please refer to [84, 46] to find
more comprehensive reviews.

However, PEFT methods primarily focus on improving parameter efficiency during fine-tuning while
overlooking inference cost reduction. In this paper, we propose to improve the parameter efficiency
and address inference hosts simultaneously for efficient ViT adaptation.

2

Dynamic neural networks. Dynamic neural networks[28, 63, 92] can dynamically adjust their
architectures based on the input data, which enables them to control the computational redundancy
based on input data. Existing methods have explored dynamic layer depth [71, 4, 81, 30, 27, 86],
dynamic channel width [32, 43, 29, 82] and dynamic routing [45] in convolutional neural networks.
When it comes to the era of vision transformer, many works [77, 76, 69, 67, 48, 74, 57, 59, 58, 64]
attempt to improve the inference efficiency by reducing the token redundancy. For instance, Liang et
al. [48] identify and consolidate inattentive tokens into only one token in each transformer layer. Rao
et al. [67] progressively discard less informative tokens between layers. Wang et al. [76] adjust the
number of tokens to represent images. A more detailed literature review can be found in [28, 75].
Zhou et al. [96] propose assessing token significance with a ReLU function to effectively tackle
point cloud analysis. Although these approaches have shown significant success in vision tasks,
they require training a model from scratch or fine-tuning all parameters on the same dataset used in
pre-training, making them unsuitable for efficient ViT adaptation.

In contrast to these methods, the proposed method can adapt pre-trained knowledge to diverse
downstream datasets and tasks, while reducing the computational cost during inference by introducing
negligible additional parameters.

3 ViTs Adaptation with Dynamic Tuning

In the following, we first introduce the vision transformer and the adapter architecture in Section 3.1.
Subsequently, we present the proposed dynamic tuning (DyT) and explore its four variants in
Section 3.2 and Section 3.3, respectively. Furthermore, we build an MoE-adapter, which effectively
enhances the adaptation performance without introducing additional computational cost, as elaborated
in Section 3.4. Finally, we introduce the loss functions of our method in Section 3.5.

3.1 Preliminary

Vision Transformer (ViT) consists of a stack of layers. The multi-head self-attention block denoted as
Attn, and multi-layer perceptron block, termed as MLP are the main components in each layer. The
input of each layer can be denoted as X = [xcls,x1,x2, ...xN] ∈ R(N+1)×C , containing N image
tokens and a classification token xcls.

The adapter architectures have been widely explored in previous PEFT methods [12, 38, 33]. An
adapter is generally designed as a bottleneck module, which consists of a project layer Wdown ∈
RC×d to squeeze the channel dimension and another project layer Wup ∈ Rd×C for dimension
restoration. Here, d denotes the bottleneck dimension and d ≪ C ensures the efficiency of the
adapter. Given an input feature X, the adapter operation is formulated as:

Xadapt = Adapter(X) = σ(XWdown)Wup, (1)

where σ denotes a nonlinear function e.g. ReLU. In this study, we follow this general architecture to
build the adapter within dynamic tuning. We place the adapter in parallel with an Attn block, MLP,
or an entire transformer layer, which will be presented in detail in Section 3.3.

3.2 Dynamic Tuning

In Vision Transformers (ViTs), the computational burden primarily resides in the transformer layers.
Specifically, the operations in Attn and MLP account for approximately 35.8% and 63.5% of
total FLOPs in ViT-B/16 [20]. Previous works [67, 48] have revealed that there exists a token-
redundancy issue in ViTs and found that some tokens can be discarded without sacrificing the
performance. Inspired by this, we propose an efficient ViT adaptation approach, named Dynamic
Tuning (DyT), which not only maintains parameter efficiency during fine-tuning but also reduces
redundant computation during inference. The core idea is dynamically selecting tokens for processing
within transformer blocks. Given the input tokens X of a block, DyT can be formulated as:

X′ = Block(TD(X)) + Adapter(X), (2)

where Block can represent an multi-head self-attention block Attn, a multi-layer perceptron MLP,
or an entire transformer layer. The proposed token dispatcher (TD) learns to selectively activate or
deactivate tokens. Only the activated tokens are input into the Block, while all tokens are processed
by the Adapter.

3

Block

1 0 0 1 0

Block

Adapter

0.9 0.3 0.8 0.40.2

1 0 0 1 0

(a) Fine-tuning Stage

Dispatch

(b) Inference Stage

Sig
Gumbel Noise

th=0.5

Sig

th=0.5

Adapter

Forward
propagation

Backward
propagation

Sig Sigmoid
function

Element-wise
product

Element-wise
add

Dispatch Token dispatch
based on

Figure 2: Overview of Dynamic Tuning. (a) In the fine-tuning stage, we adopt Gumbel Noise to
enable end-to-end training. (b)In the inference stage, TD selects K activated tokens Xs from X
based on the mask M, which saves the computations on those deactivated tokens in Block. Block
can represent a Attn block, a MLP block, or an entire transformer layer.

Token dispatcher. The key point in DyT is to select partial tokens which will be passed through
Attn and/or MLP. A straightforward approach is randomly selecting tokens with a predefined
probability and adapting the model to conduct downstream tasks with these selected tokens. However,
this simplistic strategy risks discarding informative tokens while retaining less important tokens,
potentially hindering the adaptation performance. To tackle this problem, we propose a token
dispatcher (TD), which learns to select tokens during the adaptation. Specifically, given the input
tokens X ∈ R(N+1)×C , TD learns to selectively activate a sequential of tokens Xs ∈ RK×C , where
K represents the number of activated tokens. To achieve this, it should obtain a mask M ∈ RN+1,
which indicates whether a token should be activated or deactivated.

To obtain M, we adopt a projection layer Wg ∈ RC×1 followed by a sigmoid function to predict the
activation probability S ∈ RN+1. Then, we set 0.5 as the threshold to determine the activation of
each token. This can be formulated as:

S = Sigmoid(XWg), Mn =

{
1 if Sn ≥ 0.5

0 if Sn < 0.5
∈ M. (3)

Mn = 1 denotes that the n-th token is activated and will subsequently undergo the process of Block.
Conversely, if Mn = 0, the token will be deactivated and skip the Block. In practice, we always set
the mask value of the classification token xcls to 1, allowing it to traverse the entire network. Notably,
the number of additional parameters introduced in TD is negligible, with only C parameters in the
linear layer Wg .

Fine-tuning stage. However, directly using threshold makes M a discrete decision, resulting in a
non-differentiable problem during fine-tuning. To address this, we incorporate the Gumbel Noise
[32] into sigmoid to replace the original sigmoid function during fine-tuning. It can be formulated as:

S = Gumbel-Sigmoid(XWg) = Sigmoid(
XWg +G1 −G2

τ
), (4)

where G1, G2 ∼ Gumbel(0, 1). τ represents the temperature and is set to 5.0 by default. Further
details of Gumbel-Sigmoid are provided in the Appendix A.7. Subsequently, we can obtain M using
the same operation in Equation.3. The Gumbel Noise makes the sampling of M stochastic during
training and we adopt S as a differentiable approximation of M. Both of these help TD to be trained
in an end-to-end manner. The calculation of forward and backward propagations during training can
be formulated as:

Xs =

{
Block(X) ·M Forward Propagation
Block(X) · S Backward Propagation

, (5)

The Equation 2 can be reformulated into:

X′ = X+Xs +Adapter(X), (6)
From Equation 5, only the block outputs, Block(X), of those activated tokens are retained, while
others are masked out by M. As shown in Figure 2 (a), during the fine-tuning stage, all tokens within
X still need to traverse the Block.

4

Attn
DyT

MLP

Attn Dispatch

Attn
DyT
MLP

MLP Dispatch

DyT
Attn

DyT
MLP

Attn-MLP Dispatch

Attn MLP

Layer Dispatch

DyT

Figure 3: Model variants. For brevity, we omit the LayerNorm [1] in Attn and MLP blocks. “DyT”
denotes the dynamic tuning presented in Figure 2.

Inference stage. During inference, we can directly adopt Equation 3 to generate the dispatch mask
M and obtain activated tokens Xs ∈ RK×C in TD. Then, we can only feed them into Block. Only
processing K tokens effectively reduces the computational cost because K < N . In practice, we
add padding to the output from the Block to maintain tensor shape. This results in Equation 2. See
Figure 2 (b) for a detailed illustration of the inference stage.

3.3 Model Variants

The Block in Equation 2 can be instantiated into any blocks in the original ViT, such as a multi-head
self-attention block Attn, a multilayer perceptron block MLP, or even a complete transformer layer
in ViT. Since the impact of skipping tokens in these blocks during the adaptation fine-tuning remains
non-trivial to estimate and has not been explored in previous works, we propose four model variants
and conduct experiments to determine the best practice.

• Attention Dispatch: Considering the quadratic computational complexity of the Attn block
with respect to the token numbers, skipping tokens before applying Attn can significantly
reduce computation. In this design, multi-head self-attention is exclusively performed
between activated tokens, while other tokens are bypassed, which may hurt the interaction
between tokens.

• MLP Dispatch: Based on the analysis in Section 3.2, we observe that MLP takes ∼63.5%
FLOPs in ViT-B/16 and propose to skip tokens only before MLP. It enables that the
interaction between tokens in Attn is not affected.

• Attention-MLP Dispatch: An alternative strategy is skipping tokens before both self-attention
and MLP blocks. This design permits a higher activation rate in both Attn and MLP while
maintaining similar computational efficiency comparable to “Attention Dispatch” and “MLP
Dispatch”. However, it costs double the additional parameters in adapters.

• Layer Dispatch: Inspired by “Attention-MLP Dispatch”, we can dispatch tokens before a
transformer layer. Specifically, tokens are identified by one TD to be activated or deactivated
in the subsequent entire layer. With the same activation rate, its computation is similar to
“Attention-MLP Dispatch” while requiring fewer parameters to build adapters.

We demonstrate the architecture variants in Figure 3. The experimental results and analyses of these
variants are presented in Section 4.2.

3.4 MoE-Adapter

In DyT, the adapter is responsible for processing all tokens, requiring it to have enough capability,
particularly when the downstream tasks e.g. semantic segmentation are challenging to adapt. To
tackle this problem, we propose a MoE-adapter, inspired by mixture-of-experts [68, 80]. It effectively
enhances the capability of the adapter with introducing negligible computation cost.

A MoE-adapter comprises a routing layer Wr ∈ RC×N and N adapter experts, denoted as
{Wi

down ∈ RC×d,Wi
up ∈ Rd×C}Ni=1. The routing layer generates a series of scalar as the weights

for the experts based on input features. The features from different images may yield distinct expert
weights. Specifically, we first conduct average pooling across all tokens to generate a feature as
the global representation of them. Subsequently, this representation is fed into the routing layer to
generate weight scalars {α1, α2, ...αN}. Finally, tokens are processed by each expert independently
and combined with the corresponding weight. We demonstrate this in Figure 4.

However, this increases the computational cost of the adapter in proportion to the number of experts
N . To address this problem, we adopt its mathematical equivalence to process X in practice, which

5

can be formulated as:
Xadapt = σ(XWmoe

down)W
moe
up , (7)

where Wmoe
down =

∑N
i=1 α

iWi
down and Wmoe

up =
∑N

i=1 α
iWi

up. The design endows the MoE-
adapter with the same capacity as N individual adapters, while maintaining computational efficiency
equivalent to that of a single adapter (the computational cost in the routing layer is negligible).

3.5 Loss Functions

Routing

Element-wise
product

Nonlinear
function

Element-wise
add

Figure 4: The architecture of the MoE-adapter.
It is consist of N adapter experts.

For an image I , we calculate the cross-entropy
loss Lcls = −y log(ŷ) between the predicted
probability ŷ and its corresponding one-hot
label y, to supervise the learning of classifi-
cation. To control the average activation rate
r in the entire model, we add a loss term to
constrain the number of activated tokens in
the dynamic tuning, which can be formulated
as: Lrate = (1

L×N

∑L
l=1

∑N
n=1 M

l
n − r)2,

where L denotes the number of layers in ViT.
Ml

n represents the mask generated in TD from
the l-th layer. Additionally, we employ a loss
L′
cls = −y log(y′) to supervise the adaptation

of the complete model, where y′ is the output
probability without employing the token dis-
patcher. Thus, this complete model can also act as a teacher to enhance the dynamic tuning during
adaption by a distillation loss Ldistill = KL(y′, y), where KL represents the Kullback-Leibler diver-
gence loss. Therefore, the overall loss function is defined as L = Lcls + L′

cls + Ldistill + αLrate,
where α serves as the weight of the activation rate loss and is set to 2.0 by default. Note that, DyT
can also achieve competitive performance without the distillation loss (see Appendix A.6).

4 Experiments

4.1 Experiment Settings

Datasets. To evaluate the adaptation performance, we conduct experiments on VTAB-1K [89]
benchmark. The training data in this benchmark is extremely limited, with only 1,000 training
samples for each task. Different from existing PEFT works [12, 38, 39], which mainly focusing
on VTAB-1K, we also conduct experiments on three image classification datasets with complete
training sets, including CIFAR-100 [41], SVHN [24], Food-101 [6]. Additionally, we adopt two
video datasets, Kinetic-400 (K400) [10] and Something-Something V2 (SSv2) [25], to evaluate the
performance when the number of tokens scaled up. All images or frames are resize into 224 ×
224. For the dense prediction task, we evaluate our method on two widely recognized semantic
segmentation datasets, AED20K [93] and COCO-stuff [7]. The results of semantic segmentation are
presented in the Appendix A.4. We run each task three times and report the averaged results. The
error bars are small (< 0.1) and omitted for simplification.

Implementation Details. We conduct all experiments based on the ViT-B/16 [20], which is pre-
trained on ImageNet21K [17] with full supervision, unless otherwise specified. Results based on
ViT-L are presented in the Appendix A.10. The bottleneck dimension d is set to 64 by default. We
adopt the same training schedule as [12]. Detailed hyperparameters for each experiment can be found
in the Appendix A.8. The default setting in experiments is marked in color .

4.2 Analysis

Model variants. In Table 1, we compare the performance of four model variants across both image
and video datasets. We set the activation rate r in “Attention Dispatch” and “MLP Dispatch” variants
to 0.5, and to 0.7 for “Attention-MLP Dispatch” and “Layer Dispatch” variants, and train each
respectively. This results in similar average FLOPs for four variants. We observe that the default

6

Table 1: Comparison of model variants. “Params. (M)” indicates the additional parameters in
backbones. “FLOPs (G)” denotes the average FLOPs on CIFAR-100.

Model Variant Params.(M) ↓ FLOPs (G) ↓ Image Accuracy (%) ↑ Video Accuracy (%) ↑
CIFAR-100 SVHN Food-101 K400 SSv2

Attention Dispatch 1.19 14.77 84.58 96.55 86.67 69.67 41.56
MLP Dispatch 1.19 12.21 91.37 97.08 90.32 75.28 45.43

Attention-MLP Dispatch 2.38 12.93 90.03 96.66 88.61 74.62 41.83
Layer Dispatch 1.19 13.08 89.38 96.57 89.05 74.72 43.94

Table 2: Effectiveness of MoE-Adapter. DyT† denotes the DyT with MoE-adapters. Standard
adapter is enough to handle image datasets while MoE-adapter is more suitable for challenging
scenarios, such as video datasets. It theoretically does not increase extra computational cost, but
the FLOPs slightly vary in different models since the learned token dispatch strategy in the TD is
different. N represents the number of experts.

Model Params. (M) ↓ FLOPs (G) ↓ Image Accuracy (%) ↑ Video Accuracy (%) ↑
CIFAR-100 SVHN Food-101 K400 SSv2

DyT 1.19 12.21 91.37 97.08 90.32 75.28 45.43
DyT† N = 2 2.40 12.58 91.07 96.09 89.98 74.55 45.78
DyT† N = 4 4.80 12.29 91.01 96.90 89.77 75.43 46.56
DyT† N = 8 9.60 12.44 90.45 96.84 89.53 75.34 46.06
DyT† N = 12 14.40 12.43 90.31 96.72 89.32 75.17 44.97

setting “MLP Dispatch” achieves superior performance across five datasets while maintaining the
lowest computational cost. Although “Attention-MLP Dispatch” and “Layer Dispatch” also exhibit
good performance on K400, the former incurs double additional parameters while the latter lacks
generalization capability on other datasets. The comparison between “MLP Dispatch” and other
variants proves that only skipping tokens in MLP blocks is a better design. More investigations on
model variants can be found in our Appendix A.3.

Effectiveness of MoE-adapter. We conduct experiments to explore the effectiveness of the MoE-
adapter and the results are illustrated in Table 2. The MoE-adapter design ensures that the FLOPs will
theoretically remain the same as the ordinary adapter, with the computational cost from the routing
function being negligible. However, in practical scenarios, the computational cost is also influenced
by the learned token dispatch strategy within the Token Dispatcher (TD), leading to slightly varying
FLOPs across different models in Table 2.

We observe that the performance on image datasets drops when we increase the expert number in
MoE-adapter. This phenomenon can be attributed to the simplicity of image datasets and the model
does not require too many parameters to adapt. In contrast, for video datasets, such as K400 and
SSv2, the best accuracy is achieved 4 experts. The reason behind this is that the domain gap between
the pre-training dataset and video datasets is large and the model needs sufficient adapter capacity to
learn the adaptation. This proves that we can introduce the MoE-adapter when the target dataset is
difficult to adapt.

Visualization of token activation rate in each layer. In Figure 5, we visualize the token activation
rates across different layers in ViT-B/16 [20]. We observe that the model tends to activate more tokens
in lower layers while deactivating tokens in higher layers. This phenomenon can be attributed to that
the model tends to take more general knowledge from the lower layers of the pre-trained model and
learn more task-specific knowledge in higher levels. Additionally, the activation results vary across
different datasets. For instance, SSv2 demonstrates increased token activation rate in Layer 5 and
Layer 6 compared to other datasets, whereas SVHN experiences substantial token deactivation in
Layer 6, 7, and 8. This discrepancy arises from that the model needs different knowledge from the
pre-trained weights to address dataset-specific challenges.

It is noteworthy that nearly all tokens are deactivated in the final layer across five datasets, especially
CIFAR-100, SVHN, and K400, where the activation rates are exactly 0%. This indicates that on these
datasets, we can directly drop the original MLP block in Layer11 without hurting the performance,
which further reduces about 4.7M *, 5.4% of the ViT-B total parameters.

*There are two linear layers with weights of size 768 × (4 × 768) in a MLP block, results in 2 × 768 ×
(4× 768) ≈ 4.7M parameters

7

0 0 1.4 0

7.1

Figure 5: Token activation rate in different layers. We visualize the token activation rates in
ViT-B/16. “Overall” denotes the mean activation rate in the whole model, which arrives at around
50% when r is set to 0.5. “Layer0” and “Layer11” denote the lowest and highest level, respectively.
Notably, the activation rate in the last layer is exactly 0% on CIFAR-100, SVHN, and K400 datasets.

Visualization of activated tokens. In Figure 6, we visualize two representative samples from
K400. We can observe that the model tends to deactivate those tokens that are less informative e.g.
tokens of the sky in (a) and tokens of grass in (b). In higher layers, such as layer7 and layer10,
only those tokens from the primary objects are activated. This further proves the the existence of
token redundancy problems in ViT and provides validation for the rationality behind our approach.
Additional visualizations are available in Appendix A.11.

Layer1 Layer4 Layer7 Layer10 Layer1 Layer4 Layer7
7

Layer10

(a) (b)Deactivate less informative tokens from the sky Tokens from the primary object (boy) are always activated

Figure 6: Visualization of activated tokens. We present two representative samples from the K400
dataset. Blue patches represent the tokens activated in token dispatcher (Detailed in Section 3.2).
Results verify that the token dispatcher has learned to identify informative tokens during fine-tuning.

4.3 VTAB-1K Results

Comparison with PEFT methods. To evaluate the adaptation performance when the training
data is limited, we adapt the VTAB-1K [89] benchmark, which a widely employed to evaluate the
performance of adaptation tasks. Following exiting works, we reduce the bottleneck dimension d to
8, resulting in only 0.16M extra parameters. We vary the activation rate r in DyT in the range [0.5,
0.7, 0.9] and conduct fine-tuning, obtaining three models with different inference costs.

The results are presented in Table 3. Although previous methods, such as ConvPass [38] and Res-
Tuning [37], achieve satisfactory performance, they do not improve the efficiency during inference
and even introduce additional FLOPs compared with full fine-tuning. In contrast, with only 12.54
GFLOPs, about 71% of the cost in original ViT-B, our method has outperformed previous methods
e.g. LoRA [34] and VPT [36], by a large margin. Remarkably, the DyT model with r = 0.9 does not
surpass the performance of the DyT model with r = 0.7. This observation suggests the presence of
computational redundancy in the transformer after adaptation, which further validates the significance
of dynmaic tuning. These experimental results validate that DyT effectively improves parameter
efficiency and inference efficiency while maintaining the adaptation performance.

Dynamic tuning achieves actual acceleration. As a hardware-agnostic metric, FLOPs is not the
most suitable choice to evaluate the inference efficiency across diverse platforms. The real inference
speed has usually been ignored in previous PEFT methods. Here, we adopt two GPUs (Tesla V100
and Tesla T4) and a CPU Xeon(R) Platinum 8163 to comprehensively evaluate the efficiency of
our methods and three representative PEFT methods, including LoRA [34], AdaptFormer [12], and
VPT [36]. The batch size during inference is set to 512 and 32 for GPUs and the CPU, respectively.
The results, as summarized in Table 4, reveal that our method achieves better performance while
effectively accelerating inference speed compared to existing PEFT methods on different platforms.

8

Table 3: Performance and efficiency comparison on VTAB-1K. “Group Mean” indicates the
averaged accuracy of three groups. “Params. (M)” denotes the number of trainable parameters in
backbones. “FLOPSs (G)” is the average FLOPs across all datasets. Bold font and underline denote
the best and the second-best performance respectively.

Natural Specialized Structured

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

G
ro

up
M

ea
n

Pa
ra

m
s.

(M
)

FL
O

Ps
(G

)

Traditional methods
Full tuning 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.96 85.80 17.58

Frozen 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.64 0.00 17.58

Parameter-efficient tuning methods
Adapter [33] 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.85 0.16 17.61
BitFit [87] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.21 0.10 17.58
LoRA [34] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.60 0.29 17.58
VPT [36] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 71.96 0.53 18.30
SSF [38] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.69 0.20 17.58

NOAH [91] 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.48 0.36 17.58*

ConvPass [38] 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 76.56 0.33 17.64
AdaptFormer [12] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.75 0.16 17.61

FacT-TT [39] 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4 75.30 0.04 17.58
Res-Tuning [37] 75.2 92.7 71.9 99.3 91.9 86.7 58.5 86.7 95.6 85.0 74.6 80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0 76.32 0.51 17.67

The proposed Dynamic Tuning
DyT r = 0.5 73.6 94.8 73.0 99.1 91.4 87.0 56.4 87.3 96.1 85.6 76.7 82.8 63.8 52.7 83.7 83.6 57.3 34.6 44.3 77.14 0.16 12.54
DyT r = 0.7 74.4 95.5 73.6 99.2 91.7 87.5 57.4 88.3 96.1 86.7 76.7 83.5 63.8 52.9 83.1 85.7 54.9 34.3 45.9 77.57 0.16 14.92
DyT r = 0.9 74.3 94.9 73.1 99.2 91.4 87.8 57.1 87.9 96.1 85.9 76.0 83.3 64.8 51.5 83.4 84.0 54.8 35.1 46.4 77.30 0.16 17.07
* NOAH cost larger than 17.58 FLOPS since it combines PEFT methods via neural architecture search.

Table 4: Comparison of throughput. “VTAB-1K Accuracy ↑” denotes the averaged accuracy of
three dataset groups in VTAB-1K [89] benchmark.

Method VTAB-1K FLOPs (G) ↓ V100 T4 Xeon(R) 8163
Accuracy ↑ Throughput (img/s) ↑ Throughput (img/s)↑ Throughput (img/s) ↑

Full tuning 68.96 17.58 806.24 435.41 2.12
LoRA [34] 74.60 17.58 806.24 435.41 2.12

AdaptFormer [12] 74.75 17.61 767.30 400.42 1.97
VPT [36] 71.96 18.30 762.55 392.13 1.95

DyT r = 0.5 77.14 12.54 912.30 524.93 3.89

Comparison and compatibility with methods for efficient transformers. We first investigate
the domain adaptation performance of two representative methods DynamicViT [67] and EViT [48].
These methods are designed for efficient vision transformers. We adopt the optimal configurations
outlined in their original papers and conduct experiments on VTAB-1K [89] benchmark. The results,
as summarized in Table 5, reveal that both methods achieve high throughput e.g. > 1000 (img/s),
while the performance is unsatisfying. Combining DynamicViT and EViT with AdaptFormer [12]
results in performance improvements, validating the importance of exploring both parameter and
inference efficiency for vision transformers. Despite these gains, DyT obviously surpasses them,
highlighting the superiority of our approach.

Then, we explore the compatibility of our method with token pruning methods. Specifically, we
combine DyT with ToMe [5], a training-free technique that progressively prunes tokens through token
merging. From the results in Table 5, we find that ToMe can further enhance the throughput of DyT
while maintaining accuracy. This proves the potential of our methods to be combined with existing
token pruning methods e.g. [5, 11, 48]. Additionally, we apply ToMe to full tuning and AdaptFormer
[12] in Table 3 and observe sub-optimal accuracy and throughput. These findings highlight that
directly applying ToMe after fine-tuning or parameter-efficient fine-tuning is less effective compared
to the proposed approach.

4.4 Further Exploration

Effectiveness on image datasets with sufficient training data. Although the results from VTAB-
1K benchmark have proven the superiority of our approach, we extend our investigation to complete
image datasets, to evaluate the adaptation performance with sufficient training data. We conduct
experiments on 6 datasets including CIFAR-100 [41], SVHN [24], Food-101 [6], Air [56], Pet [61],

9

Table 5: Comparison with efficient transformers. The throughput is measured on a Tesla V100
GPU. “Params. (M) ↓ ” denotes the number of trainable parameters in backbones.

Method VTAB-1K FLOPs (G) ↓ Param. (M) ↓ Throughput (img/s) ↑Accuracy ↑
DynamicViT [67] 60.10 14.05 88.70 1010.40

DynamicViT+AdaptFormer[12] 75.48 14.23 3.10 954.82
EViT [48] 67.42 11.62 85.80 1233.45

EViT+AdaptFormer[12] 74.63 11.77 0.16 1152.38
Full tuning + ToMe [5] 68.68 13.12 85.80 989.29

AdaptFormer [12] + ToMe [5] 74.30 13.29 0.16 941.70
DyT r = 0.5 77.14 12.54 0.16 912.39

DyT r = 0.5 + ToMe [5] 76.60 9.85 0.16 1114.70

and Car [22]. The results are demonstrated in Table 6. We further explore a straightforward approach,
“Dynamic-Full”, which has a token dispatcher as the same in DyT and is fine-tuned with all parameters.
We observe that its performance becomes unstable and drops significantly on some datasets e.g.
CIFAR-100 and Food-101. This phenomenon may arise due to the potential adverse impact of
dynamic dispatch on the pre-trained parameters during full-tuning adaptation, thereby validating
the importance of DyT. In this data-sufficient scenario, although our method achieves performance
slightly below that of full tuning and AdaptFormer, it brings a significant reduction in FLOPs.

Scaling token counts from images to videos. We conduct experiments on video datasets to show
the performance when the number of tokens scaled up. The number of input frames is set to 8. For
video tasks, similar to [85, 13], we employ a cross-attention layer and a query token to aggregate
features from different frames. The video classification is conducted on the query token. Additional
implementation details are provided in the Appendix A.8. We demonstrate the results in Table 6.
Although DyT achieves slightly lower performance than AdaptFormer and LoRA, it costs obviously
fewer FLOPs. DyT† containing four experts can achieve the best average accuracy with only cost
12.29 GFLOPs, which further verifies the superiority of our design.

Table 6: Results on image and video tasks. “Avg.” denotes the average results from the correspond-
ing task. The FLOPs are evaluated on CIFAR-100 and K400.

Method Params. ↓ Image Datasets Video Datasets
FLOPs ↓ Image Accuracy (%) FLOPs ↓ Video Accuracy (%)

(M) (G) CIFAR-100 SVHN Food-101 Air Pet Car Avg. (G) K400 SSv2 Avg.
Traditional methods

Full tuning 85.80 17.58 90.91 97.29 90.69 80.53 93.11 88.71 90.21 142.53 75.48 45.22 60.35
Linear 0 17.58 85.87 56.29 88.07 40.51 92.78 52.85 69.40 142.53 69.04 27.64 48.34

Dynamic-Full 85.80 12.24 83.43 96.90 84.46 62.50 75.16 70.48 78.82 107.67 74.63 44.94 59.79

Parameter-efficient tuning methods
AdaptFormer [12] 1.19 17.81 92.03 97.23 90.84 78.23 94.46 87.33 90.02 144.39 75.53 45.36 60.45

LoRA [34] 1.19 17.58 91.42 97.36 90.48 76.32 93.62 87.00 89.36 142.53 75.48 45.62 60.55
VPT [36] 0.07 18.32 91.46 95.72 90.41 68.91 93.92 80.72 86.88 148.44 73.46 38.17 55.82

The proposed Dynamic Tuning
DyT 1.19 12.21 91.37 97.08 90.32 78.92 94.45 87.80 89.99 108.31 75.28 45.43 60.36

DyT† N = 4 4.80 12.29 91.01 96.90 89.77 78.27 93.85 87.61 89.56 105.45 75.43 46.56 60.98

5 Discussion and Conclusion

Previous methods for ViT adaptation primarily focus on improving the efficiency during the adap-
tation, thus aiming to reduce additional parameters. However, with the increasing size and com-
putational cost of ViT models, the inference cost after the adaptation is becoming a heavy burden.
In this paper, we unify both of these two problems into the efficiency problem for ViT adaptation
and propose dynamic tuning (DyT) to tackle them simultaneously. We validate its performance and
generalization across various tasks and datasets.

Limitations and future works. DyT is currently designed for vision tasks. We believe it would be
interesting to combine vision backbones with large language models e.g. [72] to build efficient large
multi-modal models e.g. [50, 97]. DyT could be further developed to be compatible with multi-modal
models, which would be our future direction.

10

Acknowledgements

This work was supported by Damo Academy through Damo Academy Research Intern Program. Yang
You’s research group is being sponsored by NUS startup grant (Presidential Young Professorship),
Singapore MOE Tier-1 grant, ByteDance grant, ARCTIC grant, SMI grant (WBS number: A-
8001104-00-00), Alibaba grant, and Google grant for TPU usage.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts for
adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022.

[3] H Bao, L Dong, and F Wei. Beit: Bert pre-training of image transformers. arxiv 2021. arXiv preprint
arXiv:2106.08254.

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for
efficient inference. In ICML, pages 527–536. PMLR, 2017.

[5] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman.
Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components
with random forests. In ECCV, pages 446–461. Springer, 2014.

[7] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In
CVPR, pages 1209–1218, 2018.

[8] Qinglong Cao, Zhengqin Xu, Yuantian Chen, Chao Ma, and Xiaokang Yang. Domain-controlled prompt
learning. arXiv preprint arXiv:2310.07730, 2023.

[9] Qinglong Cao, Zhengqin Xu, Yuntian Chen, Chao Ma, and Xiaokang Yang. Domain prompt learning with
quaternion networks. arXiv preprint arXiv:2312.08878, 2023.

[10] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In CVPR, pages 6299–6308, 2017.

[11] Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji, Yu Qiao,
and Ping Luo. Diffrate: Differentiable compression rate for efficient vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 17164–17174, 2023.

[12] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo. Adapt-
former: Adapting vision transformers for scalable visual recognition. NeurIPS, 35:16664–16678, 2022.

[13] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han, Ping
Luo, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representation learning.
IJCV, 132(1):208–223, 2024.

[14] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision transformer
adapter for dense predictions. arXiv preprint arXiv:2205.08534, 2022.

[15] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In CVPR workshops, pages 702–703, 2020.

[16] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In ICML, pages 7480–7512. PMLR, 2023.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, pages 248–255. Ieee, 2009.

[18] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[19] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang
Wen, and Nenghai Yu. Bootstrapped masked autoencoders for vision bert pretraining. In ECCV, pages
247–264. Springer, 2022.

11

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[21] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi Rezagholizadeh.
Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint arXiv:2212.10650, 2022.

[22] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-grained car
detection for visual census estimation. In AAAI, volume 31, 2017.

[23] Xinwei Geng, Longyue Wang, Xing Wang, Bing Qin, Ting Liu, and Zhaopeng Tu. How does selective
mechanism improve self-attention networks? arXiv preprint arXiv:2005.00979, 2020.

[24] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number recog-
nition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082,
2013.

[25] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something
something" video database for learning and evaluating visual common sense. In ICCV, pages 5842–5850,
2017.

[26] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. TPAMI, 45(1):87–110, 2022.

[27] Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang, Xuran Pan, Yifan Pu, Chao Deng, Junlan Feng, Shiji
Song, and Gao Huang. Dynamic perceiver for efficient visual recognition. In ICCV, 2023.

[28] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural networks:
A survey. TPAMI, 44(11):7436–7456, 2021.

[29] Yizeng Han, Zeyu Liu, Zhihang Yuan, Yifan Pu, Chaofei Wang, Shiji Song, and Gao Huang. Latency-aware
unified dynamic networks for efficient image recognition. TPAMI, 2024.

[30] Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui Huang, Chao Deng,
and Gao Huang. Learning to weight samples for dynamic early-exiting networks. In ECCV, pages 362–378.
Springer, 2022.

[31] Chunming He, Kai Li, Yachao Zhang, Guoxia Xu, Longxiang Tang, Yulun Zhang, Zhenhua Guo, and Xiu
Li. Weakly-supervised concealed object segmentation with sam-based pseudo labeling and multi-scale
feature grouping. In NeurIPS, 2024.

[32] Charles Herrmann, Richard Strong Bowen, and Ramin Zabih. Channel selection using gumbel softmax. In
ECCV, pages 241–257. Springer, 2020.

[33] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In ICML,
pages 2790–2799. PMLR, 2019.

[34] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[35] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[36] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, pages 709–727. Springer, 2022.

[37] Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Ao Ma, Yiliang Lv, Yujun Shen, Deli Zhao, and Jingren Zhou.
Res-tuning: A flexible and efficient tuning paradigm via unbinding tuner from backbone. arXiv preprint
arXiv:2310.19859, 2023.

[38] Shibo Jie and Zhi-Hong Deng. Convolutional bypasses are better vision transformer adapters. arXiv
preprint arXiv:2207.07039, 2022.

[39] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer. In
AAAI, volume 37, pages 1060–1068, 2023.

12

[40] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models for
efficient video understanding. In ECCV, pages 105–124. Springer, 2022.

[41] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[42] Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent Zhao,
Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with fast inference.
Advances in Neural Information Processing Systems, 36:8152–8172, 2023.

[43] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In CVPR, pages 8607–8617, 2021.

[44] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones
for object detection. In European conference on computer vision, pages 280–296. Springer, 2022.

[45] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu Zhang, Xingang Wang, and Jian Sun. Learning
dynamic routing for semantic segmentation. In CVPR, pages 8553–8562, 2020.

[46] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

[47] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A new
baseline for efficient model tuning. NeurIPS, 35:109–123, 2022.

[48] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches are
what you need: Expediting vision transformers via token reorganizations. arXiv preprint arXiv:2202.07800,
2022.

[49] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages
740–755. Springer, 2014.

[50] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS, 36, 2024.

[51] Pengbo Liu, Hailong Cao, and Tiejun Zhao. Gumbel-attention for multi-modal machine translation. arXiv
preprint arXiv:2103.08862, 2021.

[52] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In CVPR, pages 12009–12019,
2022.

[53] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, pages 10012–10022, 2021.

[54] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[55] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[56] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[57] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim.
Adavit: Adaptive vision transformers for efficient image recognition. In CVPR, pages 12309–12318, 2022.

[58] Zanlin Ni, Yulin Wang, Renping Zhou, Yizeng Han, Jiayi Guo, Zhiyuan Liu, Yuan Yao, and Gao Huang.
Enat: Rethinking spatial-temporal interactions in token-based image synthesis. In NeurIPS, 2024.

[59] Zanlin Ni, Yulin Wang, Renping Zhou, Rui Lu, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Yuan Yao, and Gao
Huang. Adanat: Exploring adaptive policy for token-based image generation. In ECCV, 2024.

[60] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-efficient
image-to-video transfer learning. NeurIPS, 35:26462–26477, 2022.

[61] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR, pages
3498–3505. IEEE, 2012.

13

[62] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

[63] Yifan Pu, Yiru Wang, Zhuofan Xia, Yizeng Han, Yulin Wang, Weihao Gan, Zidong Wang, Shiji Song, and
Gao Huang. Adaptive rotated convolution for rotated object detection. In ICCV, 2023.

[64] Yifan Pu, Zhuofan Xia, Jiayi Guo, Dongchen Han, Qixiu Li, Duo Li, Yuhui Yuan, Ji Li, Yizeng Han, Shiji
Song, et al. Efficient diffusion transformer with step-wise dynamic attention mediators. In ECCV, 2024.

[65] Pytorch. Gumbel-softmax. https://pytorch.org/docs/stable/generated/torch.nn.
functional.gumbel_softmax.html. Pytorch.

[66] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

[67] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient
vision transformers with dynamic token sparsification. NeurIPS, 34:13937–13949, 2021.

[68] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[69] Lin Song, Songyang Zhang, Songtao Liu, Zeming Li, Xuming He, Hongbin Sun, Jian Sun, and Nanning
Zheng. Dynamic grained encoder for vision transformers. NeurIPS, 34:5770–5783, 2021.

[70] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[71] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In ICPR, pages 2464–2469. IEEE, 2016.

[72] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[73] Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah,
and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model tuning. arXiv preprint
arXiv:2205.12410, 2022.

[74] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng Han, and Gao Huang. Adaptive focus for
efficient video recognition. In ICCV, October 2021.

[75] Yulin Wang, Yizeng Han, Chaofei Wang, Shiji Song, Qi Tian, and Gao Huang. Computation-efficient deep
learning for computer vision: A survey. Cybernetics and Intelligence, 2023.

[76] Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16 words:
Dynamic transformers for efficient image recognition. NeurIPS, 34:11960–11973, 2021.

[77] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus: a dynamic
approach to reducing spatial redundancy in image classification. In NeurIPS, 2020.

[78] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene
understanding. In ECCV, pages 418–434, 2018.

[79] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. NeurIPS, 34:12077–12090,
2021.

[80] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parameterized
convolutions for efficient inference. NeurIPS, 32, 2019.

[81] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks for
efficient inference. In CVPR, pages 2369–2378, 2020.

[82] Le Yang, Haojun Jiang, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang, and Qi Tian. Condensenet v2:
Sparse feature reactivation for deep networks. In CVPR, pages 3569–3578, 2021.

14

https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html

[83] Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. Adavit: Adaptive
tokens for efficient vision transformer. arXiv preprint arXiv:2112.07658, 2021.

[84] Bruce XB Yu, Jianlong Chang, Haixin Wang, Lingbo Liu, Shijie Wang, Zhiyu Wang, Junfan Lin, Lingxi
Xie, Haojie Li, Zhouchen Lin, et al. Visual tuning. arXiv preprint arXiv:2305.06061, 2023.

[85] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

[86] Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao Huang.
Dynamic inference of multimodal large language models for efficient robot execution. In NeurIPS, 2024.

[87] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

[88] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
CVPR, pages 12104–12113, 2022.

[89] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic,
Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of
representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[90] Aston Zhang, Zachary Lipton, Mu Li, and Alexander Smola. Dive into deep learning. arXiv preprint
arXiv:2106.11342, 2023.

[91] Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint arXiv:2206.04673,
2022.

[92] Ziwei Zheng, Le Yang, Yulin Wang, Miao Zhang, Lijun He, Gao Huang, and Fan Li. Dynamic spatial
focus for efficient compressed video action recognition. TCSVT, 2024.

[93] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ade20k dataset. In CVPR, pages 633–641, 2017.

[94] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In CVPR, pages 16816–16825, 2022.

[95] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. IJCV, 130(9):2337–2348, 2022.

[96] Xin Zhou, Dingkang Liang, Wei Xu, Xingkui Zhu, Yihan Xu, Zhikang Zou, and Xiang Bai. Dynamic
adapter meets prompt tuning: Parameter-efficient transfer learning for point cloud analysis. In CVPR,
pages 14707–14717, 2024.

[97] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592,
2023.

15

A Appendix

We organize our appendix as follows.

• In Section A.1, we present frequently asked questions along with their corresponding
answers.

• In Section A.2, we detail the difference between our method and other previous works.

• In Section A.3, we present more analysis on the proposed method.

• In Section A.4, we report the results on semantic segmentation datasets.

• In Section A.5, we report the performance on object detection and instance segmentation.

• In Section A.6, we verify the effectiveness of complete model and distillation during
adaption.

• In Section A.7, we provide the details and a formal proof related to the Gumbel-Sigmoid
mechanism.

• In Section A.8, we presents the implementation details for each experiment.

• In Section A.9, we demonstrate the generalization capability of our method with Swin
Transformer [53].

• In Section A.10, we investigate the impact of scaling up the model size to ViT-L [20].

• In Section A.11, we provide additional visualizations of activated tokens in our appraoch.

A.1 Frequent Questions

Why the proposed method outperforms traditional adapters? We list the explanations below:

• The dynamic architecture in DyT enhances generalization. It introduces a form of distur-
bance in the input data, akin to Dropout [70]. This mechanism is particularly crucial when
training data is limited e.g. VTAB-1K.

• The distillation loss in DyT. We adopt the complete model as the teacher of the dynamic
model, significantly enhancing performance. Such a self-distillation mechanism is only
available in the dynamic architecture.

• Previous work [29] and DynamicViT also show dynamic architectures outperforming static
models with fewer FLOPs.

Why Table 6 shows that using MoE-adapter results in fewer FLOPs? It is possible that
MoE-adapter results in slight fewer FLOPs. We list the explanations below:

• The FLOPs of DyT depend on learned token dispatcher during fine-tuning and may slightly
fluctuate around the target FLOPs (controlled by Lrate).

• The extra computational cost of the adapters and the MoE adapters is nearly equivalent.

Thus, a DyT model with the MoE-adapter may activate fewer tokens in the learned token dispatcher,
resulting in slightly reduced FLOPs.

Why the FLOPs of N = 12 are paradoxically lower than that of N = 8 in Table 2? Theo-
retically, the MoE-adapter with any number of experts should have similar FLOPs to the standard
adapter. Meanwhile, the actual activation rate of DiT during inference depends on the learned token
dispatcher after fine-tuning, resulting in slight fluctuations in FLOPs between different models. These
explain why DyT N = 12 may have slight lower FLOPs than DyT N = 8.

A.2 Difference with previous Works

We compare DyT with more previous works and demonstrate the differences between our approach
and these methods.

16

Difference with DynamicViT and EViT. Both DynamicViT [67] and EViT [48] are token pruning
methods, whereas DyT is a token skipping method. DynamicViT learns to retain P% tokens at
certain layers e.g. 3th,6th 9th layers in ViT-B. EViT only keeps top-K attentive tokens and fuses the
inattentive tokens at certain layers e.g. 4th,7th, and 10th layer in ViT-B. These methods primarily
focuses on accelerating the model within the same dataset used for pre-training, whereas DyT aims
to improve efficiency during cross-domain adaptation.

Difference with DiffRate. DiffRate [11] is a token compression method that performs token
pruning and merging simultaneously.

• In the DiffRate [11], token pruning and merging is inherently data-independent. After
training, a transformer layer prunes or merges the same number of tokens across all input
data. In contrast, DyT is a data-dependent approach. The router in DyT learns to skip
varying numbers of tokens before each MLP block based on the input data.

• The prune and merge operations in DiffRate do not preserve complete feature maps, pre-
senting challenges for dense prediction tasks. Thus, DiffRate requires modifications to
address these tasks. Conversely, with only performing token skipping, DyT maintains
complete feature maps, allowing it to effectively handle dense prediction tasks without any
modifications.

Difference with ToMe. ToMe [5] is a training-free technique that enhances inference efficiency by
merging tokens based on similarity at each layer. DyT employs token skipping instead of merging
and can be seamlessly integrated with ToMe to further improve efficiency.

Difference with CoDA. CoDA [42] is a PEFT method that can also improve the inference efficiency.

• The token selection strategy in the token dispatcher is different. CoDA selects top-K tokens
in each layer to pass through while DyT adopt learnable dispatchers to select an appropriate
number of tokens for each input.

• The target model is different. Although CoDA [42] also improve both the parameter and
inference during adaptation, CoDA primarily focus on the language model e.g. T5 [66],
while DyT is specifically designed for vision transformers.

• The block to conduct token skipping is different. In CoDA, tokens directly skip the whole
layer. In DyT, we propose four model variants, explore their effectiveness, and find that
skipping the MLP block is the most suitable for vision transformer.

Difference with AdaMix. AdaMix [73] also leverage a mixture of adapters, but it fuses all experts
by weight averaging after training, resulting in an standard adapter akin to AdaptFormer [12]. In
contrast, the proposed MoE-adapter employs a learning-based router to generate scalar weights for
the experts based on input features, allowing features from different images to yield distinct expert
weights.

A.3 More Analysis

A.3.1 Investigations of dispatch level and dispatch strategy

The proposed DyT performs dynamic dispatch at the token level using the token dispatcher (TD). In
addition to token-level dispatch, we also investigate a sample-level dispatch, where all tokens within
the selected samples are activated, while all tokens will be deactivated for other samples. To verify
the importance of TD, we compare it against random dispatch, which randomly activates tokens or
samples during both fine-tuning and inference. The experimental results are presented in Table 7.

Our observations reveal that token-level dispatch with TD consistently achieves superior performance
across all datasets, except for a slight decrease compared to sample-level dispatch on the SVHN
dataset. Notably, TD can achieve much better performance than the random dispatch strategy on
both token-level and sample-level dispatch, particularly on video datasets K400 and SSv2, thereby
validating the dispatch strategy learned in TD. Furthermore, the token-level dispatch surpasses the
sample-level dispatch by a significant margin on most datasets, which demonstrates the importance
of the finer-grained activation.

17

Table 7: Investigations of dispatch level and dispatch strategy. Combining the token-level
dispatch and TD strategy results in the best performance. We consider two dispatch levels: “Token”
(where dispatch is performed at the token-level) and “Sample” (where dispatch is conducted at the
sample-level). “TD” and “Random” represent the learned dispatcher and random dispatch strategy,
respectively.

Dispatch Level Dispatch Strategy Image Accuracy (%) ↑ Video Accuracy (%) ↑
Token Sample TD Random CIFAR-100 SVHN Food-101 K400 SSv2

✓ ✓ 91.37 97.08 90.32 75.28 45.43
✓ ✓ 90.70 97.29 89.8 71.14 44.09

✓ ✓ 89.38 96.79 86.39 68.27 40.13
✓ ✓ 87.15 97.07 85.26 68.18 39.79

A.3.2 FLOPs-Accuracy curves of model variants.

In Figure 7, we further visualize the FLOPs-Accuracy curves of four model variants. We control the
FLOPs by changing the activation rate r for the fine-tuning stage. For “Attention Dispatch” and “MLP
Dispatch”, we explore the activation rate in the range [0.1, 0.3, 0.5, 0.7, 0.9]. To maintain similar
FLOPs as “Attention Dispatch” and “MLP Dispatch”, we adjust the activation rate for “Attention-MLP
Dispatch” and “Layer Dispatch” within the range [0.5, 0.6, 0.7, 0.8, 0.9]. Across all datasets, “MLP
Dispatch” consistently outperforms other variants. The performance of “Attn Dispatch” experiences
a significant drop when the activation rate is lower than 0.9, which also indicates that skipping tokens
for self-attention blocks in ViT is not a suitable way, due to the importance of the token mixing
function of self-attention. Remarkably, “MLP Dispatch” can surpass full tuning with obviously fewer
FLOPs on both CIFAR-100 and Food-101, further validating the effectiveness of our approach.

9 10 11 12 13 14 15 16 17
FLOPs (G)

84

86

88

90

92

A
cc

ur
ac

y
(%

)

(a) CIFAR-100

9 10 11 12 13 14 15 16 17
FLOPs (G)

96.0

96.2

96.4

96.6

96.8

97.0

97.2

97.4

A
cc

ur
ac

y
(%

)

(b) SVHN

9 10 11 12 13 14 15 16 17
FLOPs (G)

84

85

86

87

88

89

90

91
A

cc
ur

ac
y

(%
)

MLP (Default)
Layer
Attention-MLP
Attention
Full tuning

(c) Food-101

Figure 7: FLOPs-Accuracy curves of model variants on CIFAR100, SVHN, and Food-101
datasets. “MLP Dispatch” achieve the best FLOPs-Accuracy trade-off. We explore the activation
rate r within [0.1, 0.3, 0.5, 0.7, 0.9] for “Attention Dispatch” and “MLP Dispatch”. For “Attention-
MLP Dispatch” and “Layer Dispatch” models, r is adjusted within the range [0.5, 0.6, 0.7, 0.8, 0.9].
“Full tuning” denotes the traditional full fine-tuning approach. To conserve space, we use simplified
names for the variants.

A.3.3 Different bottleneck dimensions

We investigate the impact of the bottleneck dimensions of the adapter in DyT and the results are
summarized in Table 8, revealing that different datasets prefer different configurations. When the
dataset is easy to adapt, such as CIFAR-100, a bottleneck dimension of d = 4 is sufficient to achieve
satisfactory performance. Conversely, video datasets require larger adapter dimensions e.g. d = 256
to attain better performance. We set the default bottleneck dimension to 64, which achieves a balance
between performance and cost, such as the number of additional parameters and FLOPs. It is worth
noting that the relationship between FLOPs and bottleneck dimension is not strictly monotonic due to
the existence of token dispatcher. For instance, when d = 16, the FLOPs are lower than when d = 1,
since the training may converge at activating fewer tokens as the number of adapter’s parameters
increases.

18

Table 8: Different bottleneck dimensions. Different datasets prefer different bottleneck dimensions.
d = 64 strikes a balance between accuracy and cost, such as extra parameters and FLOPs. “FLOPs
(G)” denotes the average FLOPs on CIFAR-100.

Dimension Params. (M) ↓ FLOPs (G) ↓ Image Accuracy (%) ↑ Video Accuracy (%) ↑
CIFAR-100 SVHN Food-101 K400 SSv2

1 0.03 12.11 91.46 95.5 89.65 71.78 36.22
4 0.08 11.89 91.57 96.61 89.99 73.16 39.24

16 0.30 12.06 91.46 96.98 90.24 73.65 42.49
64 1.19 12.21 91.37 97.08 90.32 75.28 45.43

256 4.73 13.32 91.18 97.03 90.42 75.33 46.73

A.3.4 Investigation on the Temperature

We explore the temporal τ of the proposed dynamic tuning. The results are demonstrated in Table 9.
When the temperature is smaller e.g. 0.1, the Gumbel Sigmoid tends to produce binary outputs close
to 0 or 1. Conversely, larger temperatures lead to more uniform outputs, approaching 0.5. Results
demonstrate that the performance is not too sensitive to the temperature and our model can achieve
reasonable performance with all temperatures in the table. We also observe that the model with τ = 1
achieves the best performance on CIFAR-100, SVHN, and SSv2, while decaying the temperature
with a schedule leads to the best result on Food-101, which shows that adjusting the temperature can
help the model to achieve better performance. Since identifying the optimal temperature is not the
primary focus of this paper, we directly set the temperature to 5 by default.

Table 9: Different temperature τ in dynamic tuning. “Schedule” denotes that the temperature
gradually decays from 5 to 0.1 during fine-tuning. The default setting is marked in color .

Temperature Image Accuracy (%) ↑ Video Accuracy (%) ↑
CIFAR-100 SVHN Food-101 K400 SSv2

0.1 90.91 96.24 89.72 73.16 44.84
1 91.61 97.20 90.08 74.38 45.69
5 91.37 97.08 90.32 75.28 45.43

Schedule 91.58 97.13 90.39 74.57 45.51

A.4 Generalization in semantic segmentation

We also conduct experiments on two well-recognized semantic segmentation datasets ADE20K [93]
and COCO-stuff [7] to demonstrate the ability of DyT on dense prediction tasks. Results are presented
in Table 10. Following previous works [3, 19], we adopt the UperNet [78] as the segmentation head,
and all images are resized into 512 × 512. We observe that the computational cost of semantic
segmentation is much higher than the image and video discrimination tasks, primarily due to the
high-resolution feature maps. Both DyT and DyT† still can reduce the computational cost obviously
and achieve better performance than other PEFT methods, only slightly lower than full tuning on
COCO-Stuff dataset.

A.5 Generalization in Object Detection and Instance Segmentation

We conduct experiments on COCO [49] to explore the generalization of our method in object detection
and instance segmentation. We adopt ViTDet [44] as the detector and fine-tune it for 12 epochs on
the COCO dataset. The bottleneck dimension d in adapters is set to 128. As shown in Table 11,
DyT exhibits superior performance compared to AdapterFormer [12], with fewer FLOPs. Our MoE-
adapter further enhances DyT without additional computational cost, validating the effectiveness of
our design.

However, full tuning achieves the best performance, surpassing other methods significantly. This is
likely due to the gap between bounding box regression and the pre-training of the vision transformer,
necessitating more parameter updates in the backbone. This challenge motivates us to design more
powerful PEFT methods and integrate them with DyT to reduce the performance gap with full tuning.

19

Table 10: Results on semantic segmentation. “Avg.” denotes the average results from the corre-
sponding two datasets. The FLOPs is measured ADE20K.

Method Params. ↓ Semantic Segmentation Datasets
FLOPs ↓ mIOU

(M) (G) ADE20K COCO-stuff Avg.
Traditional methods

Full tuning 85.80 605.36 47.66 45.89 46.78
Linear 0 605.36 43.86 44.46 44.16

Dynamic-Full 85.80 582.46 45.74 45.20 45.47

Parameter-efficient tuning methods
AdaptFormer [12] 1.19 606.57 47.52 45.33 46.43

LoRA [34] 1.19 605.36 47.34 45.53 46.44
VPT [36] 0.07 606.36 46.38 44.87 45.63

The proposed Dynamic Tuning
DyT 1.19 584.57 46.90 45.63 46.27

DyT† N = 4 4.80 584.40 47.67 45.71 46.69

Table 11: Results on object detection and instance segmentation. We only measure the FLOPs in
backbone and feature pyramid module.

Method Params. ↓ COCO Datasets
FLOPs ↓ BBox mAP Seg mAP(M) (G)

Full tuning 85.80 554.86 44.67 39.78
AdaptFormer [12] 2.56 564.53 38.71 35.27

DyT 2.56 468.40 39.78 36.11
DyT† N = 4 10.24 466.32 40.97 37.11

A.6 Effectiveness of the Complete Model and Distillation

In the main paper, we adopt the complete model as our teacher, which does not employ a token
dispatcher to skip tokens. Our proposed dynamic tuning allows the model to act as its own teacher
during adaptation, a capability not achievable by other PEFT methods. We consider it to be a
significant advantage of our approach. Joint training of the dynamic and complete models mitigates
overfitting during adaptation, particularly with limited training data, such as VTAB-1K. Furthermore,
the complete model, acting as a teacher, enhances the dynamic model’s learning. These factors
contribute to DyT’s superior performance. Experimental results in Table 12 demonstrate that both
complete model loss and distillation loss are useful for improving the performance of DyT. We also
notice that introducing the complete model during training results 1.8 × longer training time. Given
that our primary contribution focuses on improving parameter and inference efficiency, the additional
training time introduced by the complete model would be acceptable.

In Table 13, we further present the results across all datasets in detail. We can find that, DyT without
L′
cls + Ldistill can still outperform most previous PEFT methods, further validating the superiority

of our method.

A.7 Details about Gumbel-Sigmoid

Gumbel-Softmax is proposed in [35] to conduct the differentiable sampling from a distribution. Given
an unnormalized log probability † {Ei}Ni=1, the Gumbel-Softmax can be formulated as:

pi =
exp ((Ei +Gi) /τ)∑N

n=1 exp ((En +Gn) /τ)
, (8)

†The original definition in [35] assumes the input {Ei}Ni=1 to be normalized log probability, while practical
implementations [65] demonstrate its effectiveness even with unnormalized inputs. We also follow [65] to
formulate and implement the Gumbel-Softmax.

20

Table 12: Effectiveness of loss functions The default loss function in DyT is L = Lcls + L′
cls +

Ldistill + αLrate. We gradually remove the complete model loss L′
cls and distillation loss Ldistill

from it, and find the performance drops.

Method VTAB-1K Training time
Accuracy ↑

DyT 77.14 1.8 ×
DyT w/o Ldistill 76.70 1.8 ×

DyT w/o L′
cls + Ldistill 75.73 1.0 ×

Table 13: Performance and efficiency comparison on VTAB-1K. “Group Mean” indicates the
averaged accuracy of three groups. “Params. (M)” denotes the number of trainable parameters in
backbones. “FLOPSs (G)” is the average FLOPs across all datasets. Bold font and underline denote
the best and the second-best performance respectively.

Natural Specialized Structured

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

G
ro

up
M

ea
n

Pa
ra

m
s.

(M
)

Traditional methods
Full tuning 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.96 85.8

Frozen 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.64 0
Parameter-efficient tuning methods

Adapter [33] 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.85 0.16
BitFit [87] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.21 0.10
LoRA [34] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.60 0.29
VPT [36] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 71.96 0.53
SSF [38] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.69 0.20

NOAH [91] 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.48 0.36
ConvPass [38] 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 76.56 0.33

AdaptFormer [12] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.75 0.16
FacT-TT [39] 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4 75.30 0.04

Res-Tuning [37] 75.2 92.7 71.9 99.3 91.9 86.7 58.5 86.7 95.6 85.0 74.6 80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0 76.32 0.51

The proposed Dynamic Tuning without L′
cls + Ldistill

DyT r = 0.5 70.4 94.2 71.1 99.1 91.7 88.0 51.5 87.1 95.3 84.2 75.8 79.2 61.8 51.0 82.4 79.7 52.3 35.3 44.5 75.73 0.16
DyT r = 0.7 73.9 94.9 72.1 99.4 91.8 88.4 55.5 87.2 95.6 86.2 75.9 80.3 61.8 51.7 83.1 81.6 53.7 35.3 45.2 76.69 0.16
DyT r = 0.9 74.0 95.1 72.9 99.3 91.7 87.6 56.9 87.7 95.7 85.4 76.1 81.6 63.2 50.1 83.0 83.3 52.0 34.5 44.5 76.74 0.16

The proposed Dynamic Tuning with distillation
DyT r = 0.5 73.6 94.8 73.0 99.1 91.4 87.0 56.4 87.3 96.1 85.6 76.7 82.8 63.8 52.7 83.7 83.6 57.3 34.6 44.3 77.14 0.16
DyT r = 0.7 74.4 95.5 73.6 99.2 91.7 87.5 57.4 88.3 96.1 86.7 76.7 83.5 63.8 52.9 83.1 85.7 54.9 34.3 45.9 77.57 0.16
DyT r = 0.9 74.3 94.9 73.1 99.2 91.4 87.8 57.1 87.9 96.1 85.9 76.0 83.3 64.8 51.5 83.4 84.0 54.8 35.1 46.4 77.30 0.16

where Gi denotes the Gumbel Noise sampled from a Gumbel distribution (Gi ∼ Gumbel(0, 1)).
We can consider the special case, where N = 2 and E2 = 0, then p1 can be defined as:

p1 =
exp

(
E1+G1

τ

)
exp

(
E1+G1

τ

)
+ exp

(
G2

τ

) (9)

=
1

1 + exp
(
−E1+G1−G2

τ

) (10)

= Sigmoid(
E1 +G1 −G2

τ
) (11)

= Gumbel-Sigmoid(E1), (12)
obtaining the formulation of Gumbel-Sigmoid. Researchers in previous works, such as [23, 51], have
also leveraged the Gumbel-Sigmoid formulation to facilitate end-to-end training of neural networks.

A.8 Implementation Details for each Task

Experimental settings on VTAB-1K. Following previous works [38, 39, 37], we fine-tune the
model for 100 epochs on each dataset in VTAB-1K [89]. We do not use any data augmentation
strategy in these experiments. We adopt the AdamW [55] optimizer. The learning rate is set to 1e-3
and gradually decays to 0 based on a cosine schedule [54].

21

Experimental settings on complete image datasets. We adopt the settings in Table 14 to fine-tune
the ViT with the proposed dynamic tuning. Experiments on other parameter-efficiency methods such
as AdaptFormer [12], LoRA [34], and VPT [36] also follow the settings in Table 14. When we train
a model with full tuning, we adopt a 1/10 base learning rate to make the training stable, otherwise,
the model can not achieve reasonable results.

Table 14: Experimental settings for complete image datasets. We present the hyperparameters in
DyT. Following previous methods, we train the model with a 1/10 base learning rate in the full tuning
setting. lr = base_lr × batch_size/256

Optimizer AdamW [55]
Base learning rate 1e-3
Weight decay 0.01
Batch size 1024
Training crop size 224
Learning rate schedule Cosine decay [54]
GPU numbers 8
Warmup epochs 20
Training epochs 100
Augmentation RandomResizedCrop

Experimental settings on video datasets. We adopt two video datasets, Kinetic-400 (K400) [10]
and Something-Something V2 (SSv2) [25], to evaluate the performance as the token count scales up.
The experimental settings are demonstrated in Table 15. Most of the settings are borrowed from [60].
The number of input frames is set to 8. We adopt multi-view during the test, which is a common
practice in video action recognition. However, the original ViT lacks temporal modeling capabilities.
To address this limitation, we draw inspiration from [85, 13]. By introducing a cross-attention layer
after the ViT, along with a query token, we effectively aggregate temporal information across different
frames. The final video action classification is performed based on this query token. Experiments on
parameter-efficient fine-tuning methods also follow these settings. We adopt a 1/10 base learning rate
for those experiments on full tuning.

Table 15: Experimental settings for video datasets. We follow most of settings in [60]. The number
of input frames is set to 8 in all experiments. lr = base_lr × batch_size/256

Configuration K400 [10] SSV2 [25]

Optimizer AdamW [55]
Base learning rate 1e-3
Weight decay 0.01
Batch size 128
Training Epochs 12 50

Training Resize ShortSideJitter
224 - 256 RandomResizedCrop

Training crop size 224
Learning rate schedule Cosine decay [54]

Frame sampling rate 16 dynamic, evenly covering
the whole video

Mirror ✓ ✗
RandAugment [15] ✗ ✓

Num. testing views 1 spatial × 3 temporal 3 spatial × 1 temporal

Experimental settings on semantic segmentation datasets. We conduct experiments on ADE20K
[93] and COCO-stuff [7] to demonstrate the ability of DyT on dense prediction tasks. ADE20K
contains 20,210 images from 150 fine-trained semantic concepts. COCO-Stuff consists of about
164k images with 172 semantic classes. The experimental settings are demonstrated in Table 16. All

22

experiments for parameter-efficient fine-tuning methods also follow these settings. For the experiment
on full tuning, we set adopt 1/10 learning rate for stable training and better performance.

Table 16: Experimental settings for semantic segmentation datasets. Following previous methods,
we train the model with a 1/10 learning rate in the full tuning setting.

Configuration ADE20K [93] COCO-stuff [7]
Optimizer AdamW [55]
Learning rate 1e-3
Weight decay 0.05
Batch size 16
Training crop size 512
Learning rate schedule cosine decay [54]
Training iterations 160K 80K

A.9 Generalization Capability of Transformer Architecture

To verify the generalization of the proposed dynamic tuning, we conduct experiments based on
Swin-B [53]. The dynamic tuning can be directly applied to MLP blocks in the swin transformer
without any modifications. The bottleneck dimension d of the adapter in dynamic tuning also is set to
64. The results are demonstrated in Table 17. We can observe that the dynamic tuning can reduce
both the tunable parameters and FLOPs while achieving comparable or even better performance
across three datasets. This verifies the generalization capability of the dynamic tuning.

Table 17: Generalization Capability on Swin Transformer [53]. The experiments are conducted
based on Swin-B. “Param. (M)” denotes the number of trainable parameters in backbones. “FLOPs
(G)” denotes the average FLOPs on CIFAR-100. The bottleneck dimension d is set to 64.

Method Params. (M) ↓ FLOPs (G) ↓ Image Accuracy (%) ↑
CIFAR-100 SVHN Food-101

Full tuning 86.74 15.40 91.82 97.66 93.05
DyT r = 0.1 1.55 10.72 90.55 97.43 89.84
DyT r = 0.3 1.55 12.07 91.26 97.38 90.66
DyT r = 0.5 1.55 13.25 91.62 97.40 91.30
DyT r = 0.7 1.55 14.05 92.14 97.21 91.96
DyT r = 0.9 1.55 15.23 92.31 97.37 92.21

A.10 Scaling-up Model Size

We verify the effectiveness of dynamic tuning when the model size is scaled up. We conduct
experiments on ViT-L [20] and compare dynamic tuning with full tuning. The bottleneck dimension
d of the adapter in dynamic tuning is also set to 64. The results are demonstrated in Table 18. We can
observe that with the activation rate set to 0.3, DyT has outperformed “full tuning” obviously on both
CIFAR-100 and Food-101, while resulting in significantly lower computational cost.

We further compare the proposed dynamic tuning with full tuning on the VTAB-1K benchmark
[89]. The results are demonstrated in Table 19. With only 0.44M tunable parameters and 43.52
GFLOPs, dynamic tuning surpasses full tuning across most datasets and achieves much better average
performance.

23

Table 18: Scale up the model size to ViT-L [20]. “Param. (M)” denotes the number of trainable
parameters in backbones. “FLOPs (G)” denotes the average FLOPs on CIFAR-100. The default
setting is marked in color . The bottleneck dimension d is set to 64.

Method Params. (M) ↓ FLOPs (G) ↓ Image Accuracy (%) ↑
CIFAR-100 SVHN Food-101

Full tuning 303.3 61.60 92.05 97.44 90.62
DyT r = 0.1 3.17 32.56 91.26 97.04 89.98
DyT r = 0.3 3.17 36.77 92.66 97.27 90.85
DyT r = 0.5 3.17 43.79 93.49 97.38 91.49
DyT r = 0.7 3.17 51.11 93.28 97.25 91.60
DyT r = 0.9 3.17 60.05 93.44 97.23 91.59

Table 19: Performance and efficiency comparison on VTAB-1K. “Group Mean” indicates the
averaged accuracy of three groups. “Full tuning” indicates fine-tuning all parameters. “Param. (M)”
denotes the number of trainable parameters in backbones. “FLOPSs (G)” is the average FLOPs
across all datasets. The bottleneck dimension is set to d = 8.

Natural Specialized Structured Structured

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

G
ro

up
M

ea
n

Pa
ra

m
.(

M
)

FL
O

Ps
(G

)

Full tuning 69.5 96.2 73.8 98.8 90.7 91.6 44.8 85.8 96.2 87.8 75.3 83.0 62.0 50.8 80.0 85.8 54.6 29.7 35.4 75.7 303.3 61.60
DyT r = 0.5 79.1 95.6 74.5 99.5 92.6 90.8 59.3 86.9 96.6 87.2 76.5 84.5 62.9 53.3 83.5 88.4 57.3 38.7 44.6 78.5 0.44 43.52

A.11 Additional Visualizations of Activated Tokens

We provide more visualizations of activated tokens from samples in K400 [10] and SSv2 [25] in
Figure 8 and Figure 9, respectively. Results demonstrate that most activated tokens in higher layers
e.g. Layer10 come from the primary objects. This proves that the proposed token dispatcher learns to
activate informative tokens.

24

Layer1 Layer4 Layer7 Layer10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Layer1 Layer4 Layer7 Layer10

(i)

(j)

(k)

(l)

(m)

(n)

(h)

(o)

(p)

(q)

(r)

Figure 8: Visualization of activated tokens. We present representative samples from the K400 [10]
dataset. Blue patches represent the tokens activated in token dispatcher. Results verify that the token
dispatcher has learned to identify informative tokens during fine-tuning. Zoom in for better view.

25

Layer1 Layer4 Layer7 Layer10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Layer1 Layer4 Layer7 Layer10

(i)

(j)

(k)

(l)

(m)

(n)

(h)

(o)

(p)

(q)

(r)

Figure 9: Visualization of activated tokens. We present representative samples from the SSv2 [25]
dataset. Blue patches represent the tokens activated in token dispatcher. Results verify that the token
dispatcher has learned to identify informative tokens during fine-tuning. Zoom in for better view.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Conclusion

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27

Justification: See Method
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [Yes]
Justification: We have released the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See the main paper
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No negative societal impacts. Our model is only designed for fine-tuning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

30

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not release of data or models that have a high risk
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we cite all related paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

31

paperswithcode.com/datasets

Answer: [NA]
Justification: See the main paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: See the main paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Works
	ViTs Adaptation with Dynamic Tuning
	Preliminary
	Dynamic Tuning
	Model Variants
	MoE-Adapter
	Loss Functions

	Experiments
	Experiment Settings
	Analysis
	VTAB-1K Results
	Further Exploration

	Discussion and Conclusion
	Appendix
	Frequent Questions
	Difference with previous Works
	More Analysis
	Investigations of dispatch level and dispatch strategy
	FLOPs-Accuracy curves of model variants.
	Different bottleneck dimensions
	Investigation on the Temperature

	Generalization in semantic segmentation
	Generalization in Object Detection and Instance Segmentation
	Effectiveness of the Complete Model and Distillation
	Details about Gumbel-Sigmoid
	Implementation Details for each Task
	Generalization Capability of Transformer Architecture
	Scaling-up Model Size
	Additional Visualizations of Activated Tokens

