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Abstract

Masked Diffusion Models (MDMs), which generate multiple tokens at a time,
hold the promise of accelerating text generation. However, the performance of
MDMs is sensitive to the order in which the tokens are generated. We observe
that the MDMs are overconfident about the masked positions on the extreme ends
of the output sequence. MDMs also express uncertainty by producing similar
probability scores for tokens regardless of the query position. Utilizing these in-
sights, we propose Position Contrastive Guidance (PCG), which has two com-
ponents, a soft order bias that favors left-to-right decoding, and a classifier free
guidance that renormalizes the probabilities using position uncertainty to generate
more informative tokens earlier in the generation. PCG can be easily plugged into
any existing uncertainty-guided sampling strategy. Our experiments on GSM8k,
MATH500, and HumanEval show that PCG improves both accuracy as well as
throughput for the base as well as instruct version of DREAM-7B and LLaDA-8B
models. We also present ablations to identify the contribution of each of proposed
components.

1 Introduction

Masked diffusion models (MDMs) [1, 2] have shown performance on par with autoregressive models
(ARMs). One key advantage of MDMs is their ability to generate multiple tokens in a single forward
pass. However, eliciting accurate predictions while maintaining the throughput requires careful
design of the sampling strategy. A typical approach for sampling multiple tokens per step is to use
the so called “sort and select” approach, wherein the masked positions are first sorted according to a
heuristic ordering function, and then a subset of positions is selected for unmasking using a selection
criterion [3, 4]. Both the sort as well as the select steps utilize the model’s own uncertainty estimate.

We analyze the sampling trajectories of two MDMs, LLaDA-8B [1] and DREAM-7B [2], and make
two observations. First, we observe that the model is overconfident about the masked positions on
the extreme left and right ends of the output sequence. Second, the model expresses uncertainty by
producing position agnostic probabilities for tokens, i.e., a token gets similar probabilities regardless
of which masked position one queries. Based on these observations, we propose Position Contrastive
Guidance (PCG), a position reweighting method that that impacts both the sorting as well as the
selection step. PCG has two components: (1) a soft left-to-right bias (SLR) that modifies the sorting
heuristic to suppress overconfident positions on the extreme right of the masked sequence, and (2)
classifier-free guidance utilizing position uncertainty, which discounts the probabilities of tokens
that have high probability regardless of the query position.
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Through experiments on GSM8K, MATH500, and HumanEval, using LLaDA-8B and DREAM-7B,
we show that PCG improves both the accuracy as well as the throughput of the state-of-the-art “sort
and select” style sampling algorithm [3]. We also analyze the contribution of each of the components
of PCG to the overall performance and discuss how it varies with the task and the model.

2 Related Work

The performance of MDMs is quite sensitive to the generation order [5], which has resulted in a rich
line of work aiming to improve the sampling from MDMs. There have been several recent works that
propose utilizing model’s own uncertainty estimate to guide the selection of positions to unmask.
Kim et al. [5], Zheng et al. [6] experiment with greedy position selection using top probability and
top probability margin, respectively, focusing mainly on improving the accuracy. There are works
that aim to improve the throughput of MDMs, again by utilizing uncertainty estimates from the
model. Ben-Hamu et al. [3] proposes a “sort and select” style sampling algorithm that dynamically
decides the number of positions to unmask at each step based on a threshold. The positions are first
sorted using the top-probability score, and then a subset of positions is selected until an error budget
is exceeded. Wu et al. [4] also proposes a similar approach but using a different error metric, and
further augment it with the use of KV-cache. Our work, which focuses on using position uncertainty
as a guidance signal can be seen as complementary to these works and can be used in conjunction
with them to improve the throughput and accuracy even further.

3 Masked Diffusion Models

Notation The vocabulary, denoted as V, represents the set of all possible tokens except for a
special mask token, which is written as vmask. A sequence of tokens of length n is denoted as
x ∈ Vn. A bit vector b ∈ {0, 1}n is used to indicate which positions in a sequence are unknown
(masked); specifically, if the i-th entry of b is 0, then the corresponding token in the sequence is
masked. A Masked sequence, with masked positions specified by zeros in b is denoted as xb. When
needed we will use z to denote a masked sequence, without explicitly specifying b and x. The
notation b̄ refers to the bitwise complement of b, flipping all bits. Ib ⊆ [[n]] (resp. Iz) is the set of
indices of the positions where b is 1 (resp. z is not vmask). Similarly we will use Ob = [[n]]\ Ib (resp.
Oz = [[n]] \ Iz) to denote the set of indices of the positions where b is 0 (resp. z is vmask). A table
of notations can be found in Appendix A.1 for quick reference.

3.1 Time Agnostic Masked Diffusion Models

Masked diffusion models can be categorized into two broad categories. The first category, which in-
spired the use of the word diffusion in the name includes the models wherein the generative process
is formulated as the reversal of a stochastic (noising) process that independently converts any token
into the mask token. There are sub-variants in this category depending on the use of discrete time
[7, 8] vs continuous time [9–11], or probability parameterization [10, 12] vs marginal ratio param-
eterization [11]. The defining characteristic of this class of models is that the generative network
takes in a time parameter as input. Follow-up works [13, 14] show that the time parameter can be
seen as a proxy for the number of mask tokens left to fill, and therefore can be removed from the
input without losing performance, which brings us to the second class of diffusion models, Time
Agnostic Masked Diffusion Models (TAMDMs). Removing the time dependence decouples the in-
ference process from the noising process opening up a whole design space for improving inference
accuracy as well as speed. In this work, we will focus solely on the TAMDMs (from hereon simply
called MDMs). Next we provide a brief overview of training and inference for MDMs.

3.1.1 Training

For i ∈ Ob, let pθ(v | xb, i) denote the marginal probability given by the model to token v ∈ V at
position i given the masked sequence xb. The training objective is to minimize

L(θ) = − E
x∼pdata

E
b∼B

∑

i∈Ob

w(b) log pθ(xi | xb, i), (1)
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where pdata is the data distribution on the space V̄n and w(b) is a weight assigned to the sampled
mask pattern b and it depends on the mask generating distribution B.

3.1.2 Inference

For time agnostic MDMs, the problem of inference is simple; the goal is to sample from the condi-
tional joint distribution P (X = x | Z = xb), where the conditioning event is the partially masked
sequence xb. If the masking distribution during training is uniform [14], and the training loss (Equa-
tion (1)) is close to zero, then one can decode in any order using the learned marginals. This gives
the uniform unmasking strategy, where given the pre-determined number of decoding steps n, and
maximum output sequence length L, a subset of positions J ⊆ Ob is selected uniformly at random
such that |J| = ⌈L

n ⌉, and the tokens are sampled from pθ(v | xb, i) for i ∈ J. However, it has
been shown that if the training uses uniform masking, the model cannot be learned well due to the
presence of hard subproblems [5]. Therefore, in practice using some known order or a heuristic
based decoding order works much better than random order decoding [5, 15], which brings us to the
sort and select style sampling algorithms.

Algorithm 1 One step of order and select un-
masking algorithm
Require: Masked sequence xb, model pθ , heuristic
O, selection algorithm A

1: Initialize z ← xb

2: Forward pass to compute pθ(· | z)
3: Produce heuristic order o← O(z, pθ)
4: Choose a subset of masked positions J ←
A(xb, pθ,o)

5: for each i ∈ J do
6: Sample x̂i ∼ pθ(v | xb, i)
7: Set zi ← x̂i

8: end for
9: return Updated sequence z (with fewer masked

positions)
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Figure 1: Accuracy vs. Number of function
evals (NFEs) for LLaDA-8B-Base on GSM8K.
Comparison of different position selection crite-
ria.

Sort and select unmasking. As we increase the number of positions to decode in each step, we
naturally incur increasing error by ignoring the dependencies between the selected positions. The
total prediction error can be broken down into modeling error and jointness error [3, 4]. Using
KL divergence as the divergence measure, the error incurred by ignoring the dependencies between
positions while unmasking is simply the mutual information between the joint and margins under
the model. The error of selecting a subset J of masked positions to unmask in one step using the
marginals of the model is

ferr(z, J) = E
v∼Pθ

log
Pθ(v | z, J)∏
i∈J pθ(vi | z, i)

where Pθ(v | z, J) denotes the joint distribution of the selected positions J given the masked se-
quence z and

∏
i∈J pθ(v | z, i) the product of the marginals. Computing an estimate of this error

requires multiple forward passes, but as shown in [3], we can get an upper bound on the error in
terms of marginal entropies, which can be computed using a single forward pass (see Section A.2):

ferr(z, J) ≤
∑

i∈J
Hi −max

i∈J
Hi (2)

where, Hi is the marginal entropy of the i-th position, i.e., −∑
v∈V pθ(v | z, i) log pθ(v | z, i), and

the inequality follows from Proposition 1 in Appendix A.2. Using this bound, we can select a subset
of masked positions J in each step [3]:

J∗ = argmax
J⊆Oz

|J|, such that ferr(z, J) ≤ ϵ. (3)

A tractable greedy embodiment of the above objective is a two step order and select approach: (1)
produce a heuristic order of the positions to update, and (2) select a subset of positions to update
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by adding one element at a time to the subset according to the provided order. Ordering of the
positions implicitly produces an order of the subsets of Oz , wherein each subsequent subset has
one more position than the previous subset. Ordering the subsets of Oz allows us to avoid trying
all possible subsets of Oz . Let O(z, pθ) denote the ordering function that returns an ordered list of
positions with elements from Oz , and A(z, pθ,o), the selection criterion that takes in the order and
produces the subset of positions to unmask. One step of the decoding using these two functions is
shown in Algorithm 1. This approach, which we refer to as “sort and select” style unmasking, can
be generalized by replacing ferr(z, J) with other error estimates.

The sort and select is a smooth way to trade off accuracy and throughput. While the error bound
Equation (2), which we call MI-bound, is quite natural, one could device other similar position
selection criteria. Therefore, before moving further, we perform such a comparison. Specifically,
we compare Equation (2) with similar criteria, namely, SumEnt, SumMinusMin, and MaxEnt. We
also include SumMinusMaxConf, which in spirit is similar to MI-bound, but instead of marginal
entropies, it uses the complement of the confidence, i.e., 1 − p(x̂i | z, i). The last criteria in the
ablation is MaxEnt, which uses a direct threshold on the marginal entropies, instead of using any
accumulation. As seen in Figure 1, which shows the accuracy vs number of function evaluations
(NFEs) for LLaDA-8B-Base on GSM8K, the key attribute essential for a good selection criterion is
accumulation of uncertainty. The exact form of accumulation does not make a substantial difference.
Specifically, MI, SumEnt and SumMinusMin, all perform similarly, whereas direct thresholding
using MaxEnt has lower rate of increase in accuracy. We use the MI in the rest of our experiments,
but one could potentially use any other criteria that accumulates uncertainty information.

4 Position Contrastive Guidance

We will use a concrete example to motivate the proposed approach of Position Contrastive Guidance.
The dark brown bars in the first part of Figure 2 show the probabilities of the top scoring tokens at
various masked positions during the first decoding step for LLaDA-8B-Base on an example from
GSM8K, i.e., it shows pθ(x̂i | z, i), where x̂i = argmaxv∈V pθ(v | z, i), with the token x̂i labeled
on the x-axis.
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Figure 3: Accuracy vs. SLR bias. Algorithm 1 is
executed w and w/o the SLR bias σ (c.f. Equa-
tion (4)) in the ordering function O. The SLR
bias is varied by changing how far the center of
the logistic function is from the leftmost masked
position. The x-axis is normalized by the max-
imum generation length, which varies across the
datasets.

We can see that the probability of the space to-
ken is quite high at positions on the right end,
almost as high as some of the content tokens at
earlier positions. We can be certain that pre-
dicting all the consecutive space tokens is er-
roneous. This problem only gets worse as we
go further right. In order to avoid selecting
the overconfident positions from the extreme
right end, we propose soft left-to-right order-
ing heuristic (SLR). If Oz denotes the ordered
sequence of masked positions, then let ki be the
index of position i in Oz . The SLR bias is in-
corporated into the ordering function O as:

O(z, p) := arg sort
i∈Oz

σc(i, z) max
v

p(v | z, i),

where σc(i, z) =
1

(1+e−(c−ki)/τ )
is the inverted

logistic function centered at c that starts at 1 and
decays to 0 as i increases. The σ acts like a
soft sliding window that biases the ordering to
be left-to-right. Note that ki only increments at
masked positions.

Just biasing the decoding order to be left-to-right is not enough. In Figure 2, we can also see that
the probability of the space token at positions 7 or 8 is as high as some of the content tokens
at earlier positions like x4 =6. Since the score of a correct token is close to that of a potentially
incorrect token at another position, a sort and select approach would either lead to poor predictions,
or would require overly conservative selection threshold. In this specific example, the result of a
naive application of the sort and select approach from Algorithm 1 is depicted in the bottom part of
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Figure 2: z is the tokenized input sequence “Q: Janet’s ducks lay 16 eggs per day .....
How much in dollars does she make every day at the farmers’ market? A:”, fol-
lowed by all masks. [Top] x̂i = argmaxv∈V pθ(v | z, i), i ∈ [[10]] is the top scoring token at
position i, for the positions that follow the prompt. The dark brown bars in the first plot (top) show
the probabilities pθ(x̂i | z, i), with the token x̂i labeled on the x-axis. The light brown bars show
the probabilities pθ(x̂i | z, j), for j ∈ {i − 1, i + 1}, i.e., the probability of the same token but at
a neighboring position. The blue bars show the probabilities of the top token after applying PCG:
pλ,wθ (x̂i | z, i), for λ = 1, w = 1. The points ■, ■, denote the marginal entropies Hi and Hλ,w

i ,
respectively. Observe that that the confidence for numerical tokens, like 6, is lower than some of the

tokens on the right. However, after applying PCG, the confidence for token 6 is higher. [Bottom]
The plot at the bottom displays the positions after sorting w.r.t the top token probability pθ(x̂i | z, i),
and pλ,Uθ (x̂i | z, i). The respective tokens are displayed on the x-axis labels below and above the
plot, and the points , , are the cumulative entropies. With a threshold ϵ = 10.0 shown as the hori-
zontal line, the resulting decoding step is Janet [m] 1 [m] [m] [m]... and Janet eats
1 6 [m]..., respectively.

Figure 2 wherein we get Janet [m] 1 [m] [m] [m]... as the output of the decoding step.
Now observe the light brown bars in Figure 2. They depict pθ(x̂i | z, i − 1) and pθ(x̂i | z, i + 1),
i.e., the probability of the top scoring token x̂i in its neighboring positions. We can see that the
model expresses uncertainty by giving similar probabilities to the same token at different positions.
For example, the space token x̂8 = also has a high probability at i = 7 and i = 9, but the same is
not true for the number token x̂4 = 6. Based on the previous observation, we use a guidance signal
that utilizes position uncertainty to construct the reference distribution

p̃Uθ (v | z, i) = E
i∼U(i)

pθ(v | z, i).

We experiment with two different choices of U :

1. Local average: U(i) = Uniform{j ∈ [[n]] | |i − j| ≤ w, j ̸∈ Ob}, i.e., the average of the
probabilities of the token v at positions in the window w around i that are masked.
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2. Global average: U(i) ∝ (1 − δI(i))Hi, where the set I is the set of positions that were left as
masked in the previous decoding step. The idea here is to construct a reference distribution using
all the masked positions.

The modified distribution is given as

pλ,Uθ (v | z, i) ∝ (pθ(v | z, i))1+λ

(p̃Uθ (v | z))λ . (4)

Overall, PCG can be added to any sort and select unmasking algorithm by adding SLR to O and
using pλ,Uθ instead of pθ in the selection step A.

5 Experiments

We perform few-shot evaluation on two reasoning datasets, GSM8K [16] and Math500 [17], and
a coding dataset, HumanEval [18]. We use the open weights masked diffusion LLMs LLaDA-
8B-Base, LLaDA-8B-Instruct [1], Dream-7B, and Dream-7B-Instruct [2] for our experiments. As
mentioned above, we use the MI (or the EB) sampler [3] as the base sort and select sampler (Algo-
rithm 1). Note that this base algorithm itself is quite strong and provides a 2-4x speedup over fixed
step-sized greedy decoding as noted in Ben-Hamu et al. [3]. Decoding algorithms for autoregres-
sive language models check for certain phrases to appear in order to terminate the generation. For
example, ‘‘<|endoftext|>’’ or ‘‘\n\nQ:\n’’, etc. We implement a similar logic for MDMs,
with an additional constraint that all the mask tokens appearing before the early exit phrase are all
also filled. To do this we implement a tensorized early exit check that can check all the sequences in
a batch against a set of tokenized early exit phrases without converting the token ids into text.
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Figure 4: Accuracy vs NFEs for the instruct models as we vary the the selection threshold ϵ. The
global PCG generally performs better than the local PCG and no PCG.
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Figure 5: Accuracy vs NFEs for the base model as we vary the the selection threshold ϵ. The global
PCG generally performs better than the local PCG and no PCG.

The impact of SLR bias. As showing Figure 3, the SLR bias has a significant impact on the
accuracy of both LLaDA-8B-Instruct and Dream-7B-Instruct, but not so much on the base models.
Specifically, as the center of the logistic SLR bias is moved to further right, the accuracy for LLaDA-
8B-Instruct and Dream-7B-Instruct drop from around 80% on GSM8K to 60% and 5% respectively.
While the base models are pre-trained on packed sequences, the instruct models are trained on
variable length sequences and are also trained to predict the PAD/EOS tokens. This makes the
instruct models overconfident on the positions on the extreme right, which necessitates the use of
SLR bias at inference time. Informed by these results, from here onwards we use light SLR bias
(equivalent to normalized c = 0.5) for the base models, and strong SLR bias (c = 0.1) for the
instruct models.

Impact of contrastive guidance. In order to get a complete picture of the impact of contrastive
guidance on the whole Pareto frontier of accuracy vs speed, we vary the selection threshold ϵ for the
MI sampler and ablate the two strategies (global and local). For this set of experiments, we keep the
SLR bias on as described above. As seen in Figure 4, the global average generally performs better
than the local average reference distribution as well as no guidance. We also observe higher variance
in the accuracy on HumanEval due to is small size (164 examples) as compared to GSM8K (1.32k
examples). Interestingly, the improvement due to PCG is much larger in the DREAM models, which
are trained by adapting an auto-regressive base model, compared LLaDA, which is trained from
scratch. Furthermore, as seen in Figure 5, the impact of PCG is smaller on the base models compared
to the instruct models in Figure 4. Table 1 reports the final results for the PCG with common
hyperparameter values (c and ϵ) for all models and datasets. We find that the PCG consistently
improves the accuracy as well as the speed across all the models and datasets, except for the base
models on Math500, were we observe a slight degradation in the accuracy.
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Table 1: Accuracy and number of forward passes (NFEs). The first row for each dataset reports the
results of the MI sort and select (Algorithm 1) with threshold ϵ = 0.01 and SLR bias (c = 0.1, 0.5

for instruct and base models, respectively) and the final row reports the results with the addition
of classifier-free contrastive guidance using the global average reference distribution. In the round
brackets, are the percentage changes in accuracy and NFEs compared to the first row. Entries for
which the NFE decreases (resp. increases) are highlighted in green (resp. red), and the same for
accuracy, but with the colors inverted.

σ λ A LLaDA-8B-Base Dream-7B LLaDA-8B-Instruct Dream-7B-Instruct
Acc(∆%) NFE(∆%) Acc(∆%) NFE(∆%) Acc(∆%) NFE(∆%) Acc(∆%) NFE(∆%)

GSM8K (4-shot, 256 max-length)
✓ MI 72.4 75 75.6 75 82.3 120 78.7 73
✓ ✓ MI 72.5 (↑0) 68 (↓9) 76.8 (↑2) 68 (↓9) 82.5 (↑0) 106 (↓12) 80.5 (↑2) 68 (↓6)

HumanEval (0-shot, 512 max-length)
✓ MI 32.3 72 56.1 96 40.2 76 55.5 64
✓ ✓ MI 32.9 (↑2) 55 (↓23) 60.4 (↑8) 87 (↓10) 40.9 (↑2) 70 (↓9) 62.2 (↑12) 56 (↓12)

MATH500 (4-shot, 512 max-length)
✓ MI 32.6 153 38.8 141 42.0 264 42.4 311
✓ ✓ MI 32.2 (↓1) 136 (↓12) 37.2 (↓4) 129 (↓9) 43.6 (↑4) 229 (↓13) 42.0 (↓1) 269 (↓13)

6 Discussion

We proposed Position Contrastive Guidance (PCG), which uses positional uncertainty to improve
the sampling from MDMs. The empirical evaluation suggests that both the components, the soft left-
to-right bias and the classifier-free guidance, boost the performance of sort and select style sampling
algorithms in terms of accuracy and throughput. Our observations also raise some deeper concerns
about the training objectives for MDMs for variable length sequences. Specifically, naive finetun-
ing of MDMs on variable length sequences can lead to problems during inference that necessitate
heuristic based fixes like the SLR bias.

Limitations. The empirical evaluation is limited to reasoning and coding tasks. It will be interest-
ing future work to see the impact of PCG open ended generation tasks as well as to explore it use
alongside other base sampling algorithms.
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A Appendix

A.1 Summary of Notation

Notation Description
General

X , x Random variables (capital letters)
x, b, d Values of random variables (lowercase)
X, B Sets (blackboard font)
Bn Set of all bit vectors of length n, i.e. {0, 1}n
[[n]] Set of natural numbers {1, 2, . . . , n}
xi, Xi i-th component of x and X respectively

Specific variables
V Vocabulary of tokens excluding the mask token

Vn Set of token sequences of length n, i.e., Vn = V× n times· · · × V
vmask Mask token
b A bit vector of length n, i.e., an element of {0, 1}n. Used to identify

the positions of where the token is unknown (masked). bi = 0 implies
i-th token is unknown.

b̄ Flipped bit vector of b, i.e., b̄ = 1− b
xb Set of sequences whose entries match that of x at positions where b is 1.

This set can be compactly represented as a sequence in (V ∪ {vmask})n
by replacing the positions where b is 0 with vmask.

V̄n V̄n := (V ∪ {vmask})n
z Denotes a generic element of V̄n, without explicitly specifying b and x.

Table 2: Summary of notation used throughout the paper.

A.2 Sort and Select Sampling

Proposition 1 justifies the use of sort and select style sampling from MDMs. Specifically, it shows
that the mutual information is bounded by sum of entropies at various position minus the maximum
entropy.
Proposition 1. For random variables X,Y, Z with joint distribution PX,Y,Z and marginal distribu-
tions PX , PY , PZ , we have

I(X,Y, Z) ≤ H(X) +H(Y ) +H(Z)−max{H(X), H(Y ), H(Z)}.

Proof. The proof which is quite elementary and is similar to [3], is provided here for the sake of
completeness.

H(X,Y, Z) = −
∑

x,y,z

PX,Y,Z(x, y, z) logPX,Y,Z(x, y, z)

= −
∑

x,y,z

PX,Y,Z(x, y, z) logPX,Y |Z(x, y|z)−
∑

x,y,z

PX,Y,Z(x, y, z) logPZ(z)

= H(X,Y |Z) +H(Z)

≥ H(Z) because H(X,Y |Z) ≥ 0
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Same inequality holds for H(X) and H(Y ), mutatis mutandis. Therefore, we have H(X,Y, Z) ≥
max{H(X),H(Y ),H(Z)}. Now, by the definition of mutual information, we have

I(X,Y, Z) =
∑

x,y,z

PX,Y,Z(x, y, z) (logPX,Y,Z(x, y, z)− logPX(x)− logPY (y)− logPZ(z))

= H(X) +H(Y ) +H(Z)−H(X,Y, Z)

≤ H(X) +H(Y ) +H(Z)−max{H(X), H(Y ), H(Z)} by the inequality above

11


	Introduction
	Related Work
	Masked Diffusion Models
	Time Agnostic Masked Diffusion Models
	Training
	Inference


	Position Contrastive Guidance
	Experiments
	Discussion
	Appendix
	Summary of Notation
	Sort and Select Sampling


