
Published as a conference paper at ICLR 2025

CONVEX FORMULATIONS FOR TRAINING
TWO-LAYER RELU NEURAL NETWORKS

Karthik Prakhya*, Tolga Birdal† & Alp Yurtsever*

* Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
† Department of Computing, Imperial College London, United Kingdom

ABSTRACT

Solving non-convex, NP-hard optimization problems is crucial for training machine
learning models, including neural networks. However, non-convexity often leads to
black-box machine learning models with unclear inner workings. While convex for-
mulations have been used for verifying neural network robustness, their application
to training neural networks remains less explored. In response to this challenge, we
reformulate the problem of training infinite-width two-layer ReLU networks as a
convex completely positive program in a finite-dimensional (lifted) space. Despite
the convexity, solving this problem remains NP-hard due to the complete positivity
constraint. To overcome this challenge, we introduce a semidefinite relaxation that
can be solved in polynomial time. We then experimentally evaluate the tightness of
this relaxation, demonstrating its competitive performance in test accuracy across a
range of classification tasks.

1 INTRODUCTION

The outstanding performance of deep neural networks has driven significant changes in the research
directions of optimization for machine learning over the past decade, replacing traditional convex
optimization techniques with non-convex methods. Nonetheless, non-convexity introduces significant
challenges to the analysis, resulting in the use of models that lack a comprehensive explanation of
their inner workings. While convex formulations have been studied for enhancing reliability through
applications like estimating the Lipschitz constant of neural networks (Fazlyab et al., 2019; Chen
et al., 2020; Latorre et al., 2020; Pauli et al., 2023) or verifying their robustness (Raghunathan et al.,
2018; Fazlyab et al., 2020; Zhang, 2020; Lan et al., 2022; Chiu & Zhang, 2023), their application to
the training of neural networks remains less explored.

In this paper, we study convex optimization representations for training a two-layer neural network
with rectifier linear unit (ReLU) activations and a sufficiently wide hidden layer. While the rela-
tionships between classical matrix factorization problems and two-layer linear neural networks, as
well as those between matrix factorization and semidefinite programming, are well-established, our
understanding of the connections between neural networks and convex optimization becomes less
clear when non-linear activation functions are involved. Our paper advances these connections by
establishing links between convex optimization and neural networks with ReLU activations.

In light of this brief introduction, we summarize our key contributions:
■ We present a novel copositive program for training a two-layer ReLU neural network, pro-

viding an exact reformulation of the training problem when the network is sufficiently wide.
Specifically, for fixed input and output dimensions and a given number of datapoints, there
exists a finite critical width beyond which the network’s expressivity saturates, making the
training problem equivalent to the proposed copositive formulation. We further extend this
equivalence to the more general infinite-width regime, where the neural network is represented
as a Lebesgue integral over a probability measure on the weights.

■ Although copositive programs are convex, solving them is NP-hard (Bomze et al., 2000).
To mitigate this obstacle, we propose a semidefinite programming relaxation of the original
formulation. We then numerically evaluate its tightness on two synthetic examples. We also
assess its performance on real-data classification tasks, where, combined with a rounding
heuristic, our approach achieves competitive test accuracy compared to Neural Network

1



Published as a conference paper at ICLR 2025

Gaussian Process (NNGP) (Lee et al., 2018) and Neural Tangent Kernel (NTK) (Jacot et al.,
2018) methods.

We make our implementation available under https://github.com/KarthikPrakhya/SDPNN-IW.

2 BACKGROUND

Definition 1 (Positive semidefinite cone). A symmetric matrix W ∈ Rn×n is said to be positive
semidefinite if u⊤Wu ≥ 0 for all u ∈ Rn. The set of all positive semidefinite matrices forms a
self-dual convex cone, known as the positive semidefinite cone, which can be defined by

PSDn := conv{ww⊤ : w ∈ Rn}, (1)

where conv represents the convex hull. We omit the subscript when the size is clear from the context.

Semidefinite programming. (SDP) is a powerful framework in convex optimization focused on
minimization of a convex objective over the positive semidefinite cone. SDPs can be solved in
polynomial time under mild technical assumptions using interior-point methods (Vandenberghe &
Boyd, 1996). We refer to (Majumdar et al., 2020; Yurtsever et al., 2021b) for an overview of recent
advances in more scalable SDP solvers.

SDPs have been applied in neural networks for various tasks (often as a convex relaxation), including
the estimation of Lipschitz constant (Chen et al., 2020; Fazlyab et al., 2019; Latorre et al., 2020;
Pauli et al., 2023), verification of neural networks (Raghunathan et al., 2018; Zhang, 2020; Chiu &
Zhang, 2023; Lan et al., 2022; Fazlyab et al., 2020), and for stability guarantees (Pauli et al., 2022;
2021; Revay et al., 2020; Yin et al., 2021). A recent line of work, initiated by Pilanci & Ergen (2020),
investigates the use of SDPs for training neural networks. We provide a detailed discussion and
comparison with these approaches in Section 6.

Definition 2 (Copositive cone). A matrix W ∈ Rn×n is said to be copositive if u⊤Wu ≥ 0 for all
u ∈ Rn

+. The cone of copositive matrices is called the copositive cone (COP).

Definition 3 (Completely positive cone). The dual of copositive cone is known as the completely
positive cone, defined as

CPn := conv{ww⊤ : w ∈ Rn
+}. (2)

It is easy to see that completely positive cone is a subset of positive semidefinite cone, and positive
semidefinite cone is a subset of copositive cone, as shown in Figure 1.

Figure 1: Cones.

Copositive programming (CP) is a subfield of convex optimization con-
cerned with minimization of a convex objective function over copositive
or completely positive matrices. Despite its convexity, solving a CP is
NP-Hard (Bomze et al., 2000). Numerous NP-Hard problems are for-
mulated as a CP, including the binary quadratic problems (Burer, 2009),
problems of finding stability and chromatic numbers of a graph (De Klerk
& Pasechnik, 2002; Dukanovic & Rendl, 2010), 3-partitioning problem
(Povh & Rendl, 2007), and the quadratic assignment problem (Povh &
Rendl, 2009). We refer to the excellent surveys (Dür, 2010; Dür & Rendl,
2021) and references therein for more examples.

Recent research has broadened the scope of CP into data science. For example, CP formulations
have been utilized in machine learning for verifying neural networks (Brown et al., 2022), and
problems such as graph matching and permutation synchronization in computer vision (Yurtsever
et al., 2022). CP formulations have also been proposed for training two-layer ReLU networks, though
under specific data-related assumptions (Sahiner et al., 2021).

Definition 4 (Non-negative cone). The non-negative cone N comprises of entry-wise non-negative
matrices.

Definition 5 (Doubly non-negative cone). The doubly non-negative cone is the set of matrices that
are both positive semidefinite and elementwise non-negative, defined by DNN := PSD ∩N . It is
an important subset of the positive semidefinite cone that contains the cone of completely positive
matrices and is frequently used in relaxations of CP formulations.

2

https://github.com/KarthikPrakhya/SDPNN-IW


Published as a conference paper at ICLR 2025

Definition 6 (Rank). For a matrix W ∈ PSDn, the rank is the minimum number of vectors wi ∈ Rn

required to express W as a convex combination of wiw
⊤
i .

Definition 7 (CP-rank). We refer to the rank restricted to decompositions involving non-negative
vectors as the CP-rank: The CP-rank of a matrix W ∈ CPn is the minimum number of non-negative
vectors wi ∈ Rn

+ that are needed to express W as a convex combination of wiw
⊤
i .

It is well known that the rank of any n× n matrix W cannot exceed n. The following result from
(Barioli & Berman, 2003, Theorem 3.1) characterizes the maximal CP-rank.
Lemma 1. Let W be a completely positive matrix of rank r ≥ 2. Then, the CP-rank of W cannot
exceed r(r + 1)/2− 1. As an immediate corollary, the CP-rank of any n× n completely positive
matrix for n ≥ 2 is bounded above by n(n+ 1)/2− 1, which we denote as the maximal CP-rank.

3 CP FORMULATION FOR TRAINING TWO-LAYER RELU NETWORKS

We now present our CP formulation for training two-layer ReLU networks. We start by the wide
regime with finite width before moving onto the infinite case that carries theoretical importance.
Definition 8 (Two-Layer ReLU Network). A two layer neural network ψ : Rd → Rc with m hidden
neurons and ReLU activations is given by

ψ(x) =

m∑
j=1

(x⊤uj)+v
⊤
j , (NN)

where the function (·)+ = max(0, ·) denotes the ReLU activation, {uj ∈ Rd}mj=1 are the weights
for the first layer and {vj ∈ Rc}mj=1 are the second layer weights.

Assuming that the data matrix X ∈ Rn×d and labels Y ∈ Rn×c are given, and using the mean
squared error loss and Tikhonov regularization (also known as weight-decay), the problem for training
this neural network can be formulated as follows:

min
uj∈Rd

vj∈Rc

∥∥∥ m∑
j=1

(Xuj)+v
⊤
j − Y

∥∥∥2
F
+
γ

2

m∑
j=1

(∥uj∥22 + ∥vj∥22), (NN-Train)

where γ ≥ 0 is the regularization parameter.

In the following, our main result is an equivalence between the above training problem and the
following convex optimization problem with PSD and CP constraints when m is sufficiently large:
Theorem 1 (CP Formulation). Consider the two-layer ReLU neural network in Eq. (NN). For any
fixed input dimension d, output dimension c, and number of data points n, there exists a finite critical
width R ≤ max{p, 2n2 + n− 1}, where p = c+ d+ 2n, such that, for m ≥ R hidden neurons, the
training problem (NN-Train) is equivalent to the convex optimization problem (CP-NN), meaning
that they have identical optimal values:

min
Λ∈Rp×p

∥∥PαΛP⊤
v − Y

∥∥2
F
+
γ

2

(
trace(PuΛP⊤

u ) + trace(PvΛP⊤
v )
)

s.t. trace(PαΛP⊤
β ) + trace(MΛM⊤) = 0

Λ ∈ PSD
PαβΛP⊤

αβ ∈ CP,

(CP-NN)

where M = −Pα + Pβ +XPu and the selection matrices are defined as follows:

Pu = [0d×n 0d×n Id×d 0d×c] Pα = [In×n 0n×n 0n×d 0n×c]

Pv = [0c×n 0c×n 0c×d Ic×c] Pβ = [0n×n In×n 0n×d 0n×c]
and Pαβ =

[
Pα

Pβ

]
It is noteworthy that this formulation is independent of m and hence does not scale in size with the
number of hidden neurons. Our analysis is also independent of the loss. Hence, we can get the same
guarantees for any convex loss function as long as we use the corresponding loss function in (CP-NN)
as well. Additional bias terms can be incorporated into this formulation by augmenting the input data
with a column of ones.

3



Published as a conference paper at ICLR 2025

Proof sketch. The first challenge in (NN-Train) problem arises from the non-linear ReLU activation
function, which we address by decomposing Xu into its positive and negative parts, inspired by
(Brown et al., 2022). Specifically, for non-negative vectors α and β such that trace(αβ⊤) = 0,
we have Xu = α − β if and only if α = (Xu)+ and β = (Xu)+ −Xu, corresponding to the
positive and negative components, respectively.

Introducing the variable λj = [α⊤
j β⊤

j u⊤
j v⊤

j ]
⊤ ∈ Rp, we can reformulate (NN-Train) as:

min
λj∈Rp

∥∥∥ m∑
j=1

Pαλjλ
⊤
j P

⊤
v − Y

∥∥∥2
F
+
γ

2

m∑
j=1

(
∥Puλj∥22 + ∥Pvλj∥22

)
,

s.t. Pαβλj ≥ 02n×1, trace(Pαλjλ
⊤
j P

⊤
β ) = 0, Mλj = 0n×1.

(3)

Our goal is to show that the problem (CP-NN) is equivalent to problem (3) when m is sufficiently
large. To this end, we establish that any matrix Λ ∈ PSD satisfying PαβΛP⊤

αβ ∈ CP can
be factorized as Λ =

∑R
j=1 λjλ

⊤
j , where Pαβλj ≥ 0, and R is a finite number bounded by

R ≤ max{p, 2n2 + n− 1} (see Lemma 2 in the supplementary material). Here, the first term (p)
represents the maximal rank of Λ, and the second term (2n2 + n − 1) is the maximal CP-rank of
PαβΛP⊤

αβ .

Thus, for any m ≥ R, we can reformulate (CP-NN) by expressing Λ as
∑m

i=1 λjλ
⊤
j , with the

constraint Pαβλj ≥ 02n×1, without changing the global solution:

min
λj∈Rp

∥∥∥ m∑
j=1

Pαλjλ
⊤
j P

⊤
v − Y

∥∥∥2
F
+
γ

2

m∑
j=1

(
∥Puλj∥22 + ∥Pvλj∥22

)
,

s.t. Pαβλj ≥ 02n×1,

m∑
j=1

(
trace(Pαλjλ

⊤
j P

⊤
β ) + ∥Mλj∥22

)
= 0,

(4)

where we used the fact that trace(ab⊤) = trace(b⊤a), which further simplifies to ∥a∥22 when a = b.
We have omitted the PSD and CP constraints since they are inherently satisfied by the factorization.

Problems (3) and (4) share the same objective function. Next, we show that their feasible sets are also
identical. Note that since each term in the summation constraint of problem (4) is non-negative, the
sum can be zero only if each individual term is zero. We complete the proof by noting ∥Mλj∥22 = 0
if and only if Mλj = 0n×1. For more details on the proof, we refer the reader to Appendix B.

Remark 1. Although we focused on the MSE loss for simplicity, our results extend to any convex
loss function ℓ : Rd × Rc → R.

3.1 THE INFINITE WIDTH REGIME

Definition 9 (Infinite-width Two Layer RELU Networks). An infinite-width fully connected two-layer
ReLU network can be expressed as a Lebesgue integral over a signed measure ν(u,v) defined on the
weights u and v, subject to the condition that (x⊤u)+v is integrable w.r.t. ν for any x ∈ Rd:

ψ(x) =

∫
Rd×Rc

(x⊤u)+v
⊤dν(u,v). (NN∫ )

A similar characterization of infinite-width neural networks can be found in (Mhaskar, 2004; Bach,
2017). For our analysis, we restrict ν(u,v) to be a probability measure induced over the product
space, ν : Bd+c → [0, 1], where Bn is the Borel σ-algebra over Rn.

While the case of countably infinite number of hidden neurons, which is represented by an infinite
sum in Eq. (NN), is captured as a special case of Eq. (NN∫ ) with a discrete probability measure,
Eq. (NN∫ ) also accommodates other notions of infinite-width networks, as the underlying probability
measure can be continuous or a combination of discrete and continuous components.

The training of an infinite-width ReLU neural network given in Eq. (NN∫ ) with the mean squared
error loss can be expressed as follows:

min
ν:Bd+c→[0,1]

∥∥∥∥∫
Rd×Rc

(Xu)+vdν(u,v)− Y

∥∥∥∥2
F

+
γ

2

∫
Rd×Rc

(
∥u∥22 + ∥v∥22

)
dν(u,v), (NN∫ -Train)

4



Published as a conference paper at ICLR 2025

where optional Tikhonov regularization is controlled by the parameter γ ≥ 0. The following theorem
presents our second main result, which shows that the training problem (NN∫ -Train) is also equivalent
to our CP formulation.
Theorem 2. Consider the two-layer infinite-width ReLU neural network defined in Eq. (NN∫ ). For
any input dimension d and output dimension c, the training problem (NN∫ -Train) is equivalent to the
convex optimization problem (CP-NN), implying that they share the same optimal values.

We refer the reader to Appendix C for the proof. This result implies that the infinite-width ReLU
network training problem (NN∫ -Train) can be solved to global optimality by training a finite-width
ReLU network with a width exceeding the critical threshold defined in Theorem 1. The resulting
solution can then be represented as a discrete probability measure with finite support.

4 SDP RELAXATION FOR TRAINING TWO-LAYER RELU NETWORKS

Despite its convexity, solving (CP-NN) remains intractable due to the complete positivity constraint.
To tackle this challenge, we propose an SDP relaxation.
Proposition 1 (SDP-NN). The following SDP is a relaxation of the (CP-NN) problem, obtained by
replacing the completely positive cone with the doubly non-negative cone, resulting in the constraints
PαβΛP⊤

αβ ∈ N and PαβΛP⊤
αβ ∈ PSD. The latter is omitted as it is inherently satisfied for all

Λ ∈ PSD:

min
Λ∈Rp×p

∥∥PαΛP⊤
v − Y

∥∥2
F
+
γ

2

(
trace(PuΛP⊤

u ) + trace(PvΛP⊤
v )
)

s.t. trace(PαΛP⊤
β ) + trace(MΛM⊤) = 0

Λ ∈ PSD
PαβΛP⊤

αβ ∈ N .

(SDP-NN)

Remark 2. This is essentially the zeroth-order Sum-of-Squares (SoS) relaxation of (CP-NN). While
tighter relaxations could be constructed using the SoS hierarchy (Parrilo, 2000), the computational
requirements often make these higher-order formulations impractical.

After solving (SDP-NN), a rounding procedure is required to extract the weights of the trained neural
network from the lifted solution Λ⋆.
Proposition 2 (Rounding). Selecting the rounding width R as the critical width of the network, we
can formulate the rounding problem as follows:

min
λ∈Rp×R

ϕ(λ) :=
∥∥Λ⋆ − λλ⊤∥∥2

F

s.t. Mλ = 0n×R, Pαλ⊙ Pβλ = 0n×R, Pαβλ ≥ 02n×R,
(5)

where ⊙ denotes the Hadamard product. The first and second layer weights can be recovered from
the rounded solution as Puλ and Pvλ, respectively.

It is straightforward to verify that the feasible set of problem (5) coincides with that of problem
(3), which is, in turn, equivalent to the feasible set of the (CP-NN) problem. Consequently, this
formulation aims to identify the closest point λλ⊤ to the SDP solution Λ⋆ within the feasible set
of (CP-NN). While finding a global solution is intractable due to the non-convexity of the objective
function and constraints, we propose an effective heuristic based on the three-operator splitting (TOS)
method (Davis & Yin, 2017). We define the two sets comprising the constraints as:

D1 := {λ ∈ Rp×R : Pαλ⊙ Pβλ = 0n×R, Pαβλ ≥ 02n×R}
D2 := {λ ∈ Rp×R : Mλ = 0n×R}

Then, we can apply TOS for the rounding, starting from an initial estimate λ̄0 ∈ Rp×R and iteratively
updating it by the following formula:

λk = projD1

(
λ̄k
)

λ̂k = projD2

(
2λk − λ̄k − η∇ϕ(λk)

)
λ̄k+1 = λ̄k − λk + λ̂k

(TOS)

5



Published as a conference paper at ICLR 2025

Table 1: Summary of datasets, their sizes, and dimensions of the corresponding SDP relaxations.

Dataset # Instances # Inp. Feat # Out. Feat # Variables # Constraints
Random 25 2 5 3249 8999
Spiral 60 2 3 15625 45651
Iris 75 4 3 24649 71799
Ionosphere 175 34 2 148996 420493
Pima Indians 383 8 2 602176 1791109
Bank Notes 685 4 2 1893376 5663653
MNIST 1000 20 10 4120900 12743300

Note: The # Instances column shows the number of training samples.
All real datasets are split into 50% train and 50% test sets.

where η > 0 is the step-size parameter. We can compute the gradient by ∇ϕ(λ) = 4(λλ⊤ −Λ⋆)λ.
projD2

(λ) = (I −M †M)λ projects λ onto the nullspace of M . And projD1
can be computed as

projD1
(λ)i,j =


0 1 ≤ i ≤ 2n, λi,j < 0

0 1 ≤ i ≤ n, λi+n,j > λi,j

0 n+ 1 ≤ i ≤ 2n, λi−n,j > λi,j

λi,j otherwise

(6)

Remark 3. We employ the rounding step primarily to demonstrate that the solution obtained from the
SDP relaxation is reasonable. Our main objective is to assess the quality of the SDP relaxation, not
to guarantee convergence in the rounding phase. To the best of our knowledge, there are no known
convergence guarantees for TOS in our setting, as existing results for TOS in non-convex optimization
apply only to smooth non-convex terms (Bian & Zhang, 2021; Yurtsever et al., 2021a) and do not
extend to non-convex constraint sets. Nonetheless, TOS has proven to be an effective heuristic in
our experiments, validating the (SDP-NN) relaxation. The ability to extract trained neural network
weights confirms that the (SDP-NN) solution encodes the necessary information. Importantly, the
rounding step is not integral to our theoretical contributions and is used only for empirical evaluation.

5 NUMERICAL EXPERIMENTS

We conduct a series of experiments over synthetic and real datasets to investigate the empirical
tightness of our SDP relaxation.

Datasets. We use the following datasets in our experiments:

Random: A synthetic dataset with a data matrix X ∈ R25×2 and labels Y ∈ R25×5, generated using
a 2-layer neural network with 100 hidden neurons. We create 100 random datasets by initializing the
entries of X and the generator network’s weights using a standard normal distribution.

Spiral: An artificially-generated 3-class classification dataset, described by (Sahiner et al., 2021). It
includes 60 samples (20 per class), with a data matrix X ∈ R60×2 containing 2 input features and
one-hot encoded labels Y ∈ R60×3.

Iris (Fisher, 1936): The dataset consists of 150 samples of iris flowers from three different classes,
each sample is described by four features. The training partition includes a data matrix X ∈ R75×4

and one-hot encoded labels Y ∈ R75×3.

Ionosphere (Sigillito et al., 1989): A radar dataset with 351 instances and 34 input features for binary
classification, with class imbalance. The training partition includes a data matrix X ∈ R175×34 and
one-hot encoded labels Y ∈ R175×2.

Pima Indians Diabetes (Smith et al., 1988): A diabetes prediction dataset that consists of 768 patients,
with 8 medical predictors as features, and a binary classification task, with class imbalance. Out
of 768 instances, we have 268 positive instances. The training partition includes a data matrix
X ∈ R383×8 and one-hot encoded labels Y ∈ R383×2.

6



Published as a conference paper at ICLR 2025

Table 2: SGD Loss, Approximation Ratio (AR) (%), and Runtime (sec) of SDP-NN.

Dataset γ Training Objective AR Runtime
SGD-5 SGD-10 SGD-100 SGD-200 SGD-300 SDP-NN SDP-NN SDP-NN

Random 0.1 18.27 ±5.76 8.60 ±1.16 8.09 ±1.04 8.09 ±1.04 8.09 ±1.04 7.28 ±0.98 89.93 11.46
0.01 11.78 ±5.53 1.32 ±0.25 0.94 ±0.12 0.94 ±0.12 0.94 ±0.12 0.76 ±0.10 80.66 14.85

Spiral 0.1 16.64 16.59 16.59 16.59 16.59 16.24 97.84 1566.65
0.01 15.56 15.21 15.16 15.16 15.16 11.66 76.90 923.83

Bank Notes Authentication (Lohweg, 2012): A binary classification dataset with 1372 instances,
where features extracted using wavelet transforms are used to determine whether a banknote is
genuine or forged. The training data includes X ∈ R685×4 and one-hot encoded labels Y ∈ R685×2.

MNIST (LeCun et al., 2010): A down-sampled and dimensionally-reduced version of the popular
image classification dataset, consisting of 1000 instances with 20 features each obtained using
Principal Component Analysis (PCA). The training data includes X ∈ R1000×20 and one-hot
encoded labels Y ∈ R1000×10.

Table 1 provides an overview of the dataset sizes and the dimensionality of the corresponding problem
size of (SDP-NN). All real datasets were split 50-50 into train and test partitions.

Computational environment & complexity. The experiments were conducted on a Intel Xeon Gold
6132 with 192 GB of RAM and 2x14 cores. Solving CP-NN or the associated rounding problems
is NP-hard. The complexity of solving an SDP depends on the specific algorithm used. Our SDP
formulations were solved by CVXPY (Diamond & Boyd, 2016), employing either the interior point
method (IPM) solver by MOSEK (Andersen & Andersen, 2000), or the Splitting Cone Solver (SCS)
(O’donoghue et al., 2016), depending on the problem size. A typical interior point method for
solving an SDP problem with an n × n matrix variable and m constraints requires approximately
O(n3 +m2n2 +m3) arithmetic operations per iteration and about O(log(1/ϵ)) iterations to achieve
an ϵ-accurate solution. While the formulation scales with n2 (since the rank is absorbed), storing a
CP factorization of the decision variable (i.e., the neural network weights) requires O(n3) storage.

5.1 EMPIRICAL APPROXIMATION RATIO OF THE SDP RELAXATION

We evaluate the tightness of our SDP relaxation by comparing its optimal objective value to the
training loss obtained using Stochastic Gradient Descent (SGD) on (NN-Train). Due to the difficulty
of approximating the global optimum with SGD on real datasets, we conduct this experiment using
the synthetic Random and Spiral datasets.

The results are summarized in Table 2. For each dataset, we solve the training problem using
regularization parameters γ = 0.1 and γ = 0.01. The table columns show the training loss achieved
by SGD for various hidden layer sizes, ranging from m = 5 to m = 300, along with the training loss
achieved by the SDP-NN formulation. For the Random dataset, the results are averaged over 100
trials, with error bars indicating standard deviations.

The last column reports the approximation ratio (AR) of the SDP relaxation, computed as the ratio
of the loss obtained by SDP-NN to the loss achieved by SGD with 300 hidden neurons. Empirically,
we find that the approximation ratio is above 76.90% in these experiments. We also observe that the
ratio improves for higher regularization parameters, which is expected, as stronger regularization
tends to smooth the optimization landscape and reduces the impact of non-convexity.
Remark 4. Ratio reported in Table 2 represents only a lower bound on the actual approximation
ratio; since, (i) SGD may converge to a local solution, and (ii) 300 hidden neurons used in this
experiment is smaller than the actual critical width, which scales quadratically with the number of
data points, and quickly exceeds practical limits.

To partially address these challenges, we ran SGD five times with different random initializations for
each configuration and selected the best outcome. Even so, there is no guarantee of reaching a global
optimum. Similarly, although m = 300 is below the critical width, we observe that the results tend to
saturate, and increasing m further does not lead to any significant improvements for SGD. Despite
these limitations, SGD training can provide an upper bound on the optimal value for infinite-width
neural network training. To complement this, we compute a lower bound on the optimal values of

7



Published as a conference paper at ICLR 2025

Table 3: Evaluating prediction quality (F1 Score & Accuracy) and runtime (seconds).

Method Iris Ionosphere Pima Indians Bank Notes MNIST

γ = 0.1 γ = 0.01 γ = 0.1 γ = 0.01 γ = 0.1 γ = 0.01 γ = 0.1 γ = 0.01 γ = 0.1 γ = 0.01

Weighted Average F1 Score
SGD 0.96 0.987 0.915 0.898 0.626 0.594 0.993 0.992 0.880 0.863
NNGP 0.866 0.975 0.919 0.928 0.690 0.683 0.978 0.993 0.903 0.919
NTK 0.993 0.993 0.924 0.920 0.668 0.672 0.991 0.993 0.907 0.915
SDP-NN 0.987 0.987 0.924 0.927 0.679 0.703 0.930 0.893 0.862 0.849
SDP-NN-bias 0.946 1.000 0.912 0.921 0.714 0.744 0.991 0.985 0.858 0.838

Overall Test Accuracy
SGD 0.960 0.987 0.891 0.88 0.583 0.557 0.988 0.985 0.818 0.796
NNGP 0.827 0.973 0.886 0.886 0.534 0.602 0.966 0.983 0.858 0.879
NTK 0.987 0.987 0.886 0.897 0.586 0.620 0.983 0.985 0.863 0.876
SDP-NN 0.987 0.987 0.920 0.909 0.646 0.625 0.860 0.767 0.794 0.778
SDP-NN-bias 0.947 1.000 0.909 0.914 0.672 0.703 0.991 0.980 0.791 0.76

Runtime (sec)
SDP-NN 39 171 4416 8150 12256 13564 102919 101952 66157 155810

the SDP formulations using the dual objectives in CVXPY, utilizing the interior-point solver from
MOSEK. Together, these bounds allow us to establish a reliable approximation lower-bound for the
relaxation.

The training loss curves of SGD for each experiment, along with implementation details such as
learning rate and number of epochs, are provided in Appendix E.

5.2 PREDICTION PERFORMANCE OF THE SDP RELAXATION

We assess the prediction quality of our SDP relaxation combined with the TOS-based rounding
procedure on real datasets using regularization parameters γ = 0.1 and γ = 0.01. Due to computa-
tional constraints, we set the rank R in the rounding procedure to 300, which is lower than the actual
critical width. The rounding procedure is initialized using the square root of the SDP-NN solution,
obtained via SVD decomposition. We then adjust the resulting factor matrices by either truncating or
expanding them to dimensions Rp×300. The TOS step size is set as η = 1/∥Λ⋆∥2, where Λ⋆ denotes
the solution to the SDP-NN, and the algorithm is run for 1000 iterations.

We benchmark our test accuracy against the NNGP and NTK kernel methods and include results
from SGD with 300 hidden neurons as a baseline. The results of this experiment are summarized in
Table 3, where the weighted average F1 score and test accuracy are used as the performance metrics.
For classification, the threshold was varied from 0 to 1 in increments of 0.01, and the threshold that
maximized the overall test accuracy was selected. Overall, the predictions obtained from the SDP
relaxation are competitive across most settings.
Effect of bias. We also experimented with incorporating a bias term to the first layer. As expected,
Table 3 (SDP-NN-bias) shows a general increase in terms of the weighted average F1 score and
overall test accuracy.

6 RELATED WORKS

We now review the literature on (in)finite width neural networks as well as convex optimization
techniques for training them.

Convex optimization for neural network training. Early discussions of convex neural nets can be
found in (Bengio et al., 2005; Bach, 2017; Fang et al., 2022). These initial studies primarily focus on
networks with infinite width, which leads to optimization problems in an infinite-dimensional space.

Sahiner et al. (2021) developed convex equivalents for the non-convex NN training problem with
ReLU activations, based on a theory of convex semi-infinite duality. Different than ours, their
approach involves an explicit summation over all possible sign patterns in the ReLU layer. Since the
number of distinct sign patterns grows exponentially with the rank of the data matrix, their analysis
is primarily focused on data matrices of fixed small rank or the spike-free structures. Building on

8



Published as a conference paper at ICLR 2025

this duality theory, Ergen & Pilanci (2021a) derived convex optimization formulations for two- or
three-layer convolutional neural networks (CNNs) with ReLU activations. Bartan & Pilanci (2021a)
explored semidefinite lifting for training neural networks with polynomial activations, which is further
extended to quantized neural networks with polynomial activations in (Bartan & Pilanci, 2021b), and
to deep neural networks with polynomial and ReLU activations in (Bartan & Pilanci, 2023). Ergen &
Pilanci (2021c) demonstrated that training multiple three-layer ReLU regularized sub-networks can
be equivalently cast as a convex optimization problem in a higher-dimensional space. Ergen & Pilanci
(2021b;d) showed that optimal hidden-layer weights for two-layer and deep ReLU neural networks
are the extreme points of a convex set. They further applied these methods in transfer learning tasks
with large language models. Sahiner et al. (2022) developed convex optimization problems for vision
transformers, focusing on a single self-attention block with ReLU activation. Finally, Wang et al.
(2024) introduced randomized algorithms from a geometric algebra perspective to efficiently address
the enumeration of sign patterns. Sahiner et al. (2024) applied the Burer-Monteiro factorization
(Burer & Monteiro, 2003) to efficiently solve these formulations at a larger scale.

Our mathematical techniques differ from prior work. Unlike (Sahiner et al., 2021), we do not require
enumeration or sampling of sign patterns, nor do we rely on the aforementioned duality theory.
Unlike (Fang et al., 2022), we do not assume activation functions with continuously differentiable
gradients, and formulate the training of finite- and infinite-width ReLU neural networks as a finite-
dimensional convex optimization problem, assuming fixed input/output dimensions and a set number
of data points, characterizing a finite critical width. Since our CP formulation is exact yet intractable,
we propose SDP relaxations that can be solved in polynomial time.

Infinite-Width Neural Networks (IWNNs). Investigations of IWNNs address fundamental questions
about the limits of their learning ability and the types of functions they can approximate. This focus is
also relevant as overparameterized networks, which are commonly used in practice, often demonstrate
strong generalization to unseen data (Zhang et al., 2021). Another motivation for studying IWNNs is
their connection to other areas of machine learning, such as Gaussian processes (Neal, 2012). There
are two main approaches for training infinite-width fully connected neural networks in the literature:
weakly-trained networks and fully-trained networks.
Weakly-trained networks are those where only the top classification layer is trained, while all
other layers remain randomly initialized. Lee et al. (2018); Matthews et al. (2018) studied fully-
connected weakly-trained IWNNs, while Novak et al. (2019); Garriga-Alonso et al. (2019) focused
on convolutional variants. Yang (2019) extended this analysis to other weakly-trained infinite-width
architectures. All these works adopt a Gaussian process (GP) perspective of weakly-trained IWNNs.

In contrast, fully-trained networks are those in which all the layers are trained, using variations of
gradient descent. Jacot et al. (2018) introduced Neural Tangent Kernel (NTK), which captures the
behavior of fully-connected deep neural networks in the infinite-width limit, trained using gradient
descent. The NTK is different from the GP kernels: it is defined by the gradient of a fully connected
network’s output with respect to its weights, based on random initialization. Arora et al. (2019) gave
a rigorous, non-asymptotic proof that the NTK captures the behavior of a fully-trained wide neural
network under weaker conditions and introduced the concept of convolutional neural tangent kernel
(CNTK). They also developed an exact and efficient dynamic programming algorithm to compute
CNTKs for ReLU activation. Lee et al. (2020) conducted an empirical study comparing the Neural
Network Gaussian Process (NNGP) kernel (Lee et al., 2018) and the NTK in both finite-width and
IWNNs. Unlike these, we do not adopt a GP-based view or kernel methods. Instead, we model
fully-trained fully-connected IWNNs using a CP formulation and corresponding computationally
tractable SDP relaxations.

Another line of work focuses on the learning theory of infinite-width neural networks, including
universal approximation bounds (e.g., (Barron, 1993; Mhaskar, 2004; Klusowski & Barron, 2018)),
representer theorems (e.g., (Parhi & Nowak, 2021; Bartolucci et al., 2023; Shenouda et al., 2024)),
and capacity control results (e.g., (Ongie et al., 2019; Savarese et al., 2019)). Of particular relevance,
in their recent work, Shenouda et al. (2024) showed that an infinite dimensional learning problem in
variation spaces (a special class of reproducing kernel Banach spaces) can be solved by training a
finite-width neural network with width greater than the square of the number of training data points.
Intriguingly, this result draws parallels with our critical width R, which also scales quadratically with
the number of training data points, although the underlying assumptions and analytical techniques in
the two works are significantly different.

9



Published as a conference paper at ICLR 2025

Other related works. We address the non-convex problem of training two-layer ReLU neural
networks by transforming it into a convex optimization problem in a higher-dimensional space. This
approach belongs to a class of techniques known as lifting, where the decision variable w is replaced
with a quadratic term W = ww⊤, enabling the convex reformulation or relaxation of an otherwise
non-convex problem, see (Bomze et al., 2000; Burer, 2009; Bao et al., 2011; Anstreicher, 2012)
and references therein. In the context of neural networks, Brown et al. (2022) applied lifting for the
verification of neural network outputs. A key distinction between our formulation and the prior work
in (Burer, 2009; Brown et al., 2022) lies in the structure of the objective function. In previous work,
the objective function is quadratic in the original space and simplifies to a linear objective in the lifted
space, which plays a crucial role in the analysis, as solutions to linear minimization problems always
appear at extreme points of the feasible set. In our problem, the objective function is convex in the
lifted space (rather than linear), and we establish an exact correspondence between the feasible sets
in the original and lifted spaces for both wide and infinite-width networks.

Our work should not be confused with the line of research introduced by Askari et al. (2018) known
as lifted neural networks, as the notion of lifting in our work differs from theirs. Both the goals
and approaches are distinct. They reformulate the problem as a biconvex optimization, enabling
layer-wise training via block coordinate descent. They do not introduce the quadratic terms that are
central to our approach, and their resulting problem formulation remains non-convex.

7 CONCLUSIONS AND FUTURE DIRECTIONS

We derived a convex optimization formulation for the training problem of a two-layer ReLU neural
network with a sufficiently wide hidden layer. Despite its convexity, the problem is intractable using
classical computational methods due to the completely positive cone constraints. To address this, we
proposed an SDP relaxation that can be solved in polynomial time using off-the-shelf SDP solvers,
combined with a rounding heuristic. Notably, the size of our formulation is independent of the
network width. While previous work has established the critical width for universal approximation of
continuous functions with neural networks (Cai, 2022), we established limits on the expressivity of
wide-width neural networks in terms of the data size as our critical width R is based on the size of
the data. These type of findings can help advance theoretical understanding of neural networks.

Limitations. An obvious limitation of the proposed framework is its lack of scalability, a common
issue for many SDP formulations in machine learning applications. Since the problem size scales
quadratically with the number of data points, solving these formulations at the scale required for
real-world neural network applications poses a significant computational challenge. Nevertheless, our
findings offer valuable theoretical insights into ReLU networks, for instance, allowing us to interpret
the network width as the (CP-)rank of the corresponding completely positive program.

Future work. We proposed an exact CP formulation, which is computationally intractable for
classical computers. However, rapid progress in quantum computing poses a promising alterna-
tive (Birdal et al., 2021a). In particular, hybrid classical-quantum algorithms have demonstrated
potential for solving specific classes of copositive programs (Yurtsever et al., 2022; Brown et al.,
2024) as well as training binary versions of neural networks (Krahn et al., 2024). Developing and
implementing algorithms—even as proof-of-concept experiments—to train general ReLU networks
on these platforms represents a compelling research direction.

Over-parameterized networks are often easier to optimize using traditional methods such as SGD
(Livni et al., 2014). Although it is possible to construct compact networks with fewer parameters
that generalize comparably, compressed models are significantly more challenging to optimize in
the reduced-dimensional space (Arora et al., 2018). A similar phenomenon is observed in the SDP
literature: Waldspurger & Waters (2020) showed that even when an SDP has a unique rank-1 solution,
factorizing the variable with a rank below a certain threshold may introduce spurious local minima.
Given these parallels, a natural question arises: is there a corresponding bound for completely positive
programs, and could this provide insights into the required width of ReLU networks?

10



Published as a conference paper at ICLR 2025

ETHICS & REPRODUCIBILITY

Ethics. This work adheres to the ICLR Code of Ethics, ensuring responsible use of publicly available
datasets and maintaining full transparency in experimental design and reporting. The study complies
with ethical guidelines on research integrity and considers potential societal impacts. Since the
contributions are primarily theoretical, the focus is on advancing our understanding of the theory of
artificial intelligence rather than targeting specific applications that may have direct societal impacts.

Reproducibility statement. All datasets used in this work are referenced and publicly ac-
cessible. The experimental configurations and computational environment are outlined in de-
tail within the main text and the appendix. We make our implementation available under
https://github.com/KarthikPrakhya/SDPNN-IW. Furthermore, all random seeds are provided to
facilitate precise reproducibility.

ACKNOWLEDGMENTS

AY and KP were supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. We thank the High Performance
Computing Center North (HPC2N) at Umeå University for providing computational resources and
valuable support during test and performance runs. The computations were enabled by resources
provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS), partially
funded by the Swedish Research Council through grant agreement no. 2022-06725. TB was supported
by a UKRI Future Leaders Fellowship [grant number MR/Y018818/1]. We acknowledge the use of
OpenAI’s ChatGPT for editorial assistance in preparing this manuscript.

REFERENCES

Erling D Andersen and Knud D Andersen. The mosek interior point optimizer for linear programming:
an implementation of the homogeneous algorithm. In High Performance Optimization, pp. 197–232.
Springer, 2000.

Rayna Andreeva, Benjamin Dupuis, Rik Sarkar, Tolga Birdal, and Umut Simsekli. Topological
generalization bounds for discrete-time stochastic optimization algorithms. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Kurt M Anstreicher. On convex relaxations for quadratically constrained quadratic programming.
Mathematical Programming, 136(2):233–251, 2012.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In International Conference on Machine Learning. PMLR, 2018.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems, 32, 2019.

Armin Askari, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. Lifted neural networks.
arXiv preprint arXiv:1805.01532, 2018.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawarmalani. Semidefinite relaxations for quadrati-
cally constrained quadratic programming: A review and comparisons. Mathematical Programming,
129:129–157, 2011.

Francesco Barioli and Abraham Berman. The maximal cp-rank of rank k completely positive matrices.
Linear Algebra and its Applications, 363, 2003.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

Burak Bartan and Mert Pilanci. Neural spectrahedra and semidefinite lifts: Global convex op-
timization of polynomial activation neural networks in fully polynomial-time. arXiv preprint
arXiv:2101.02429, 2021a.

11

https://github.com/KarthikPrakhya/SDPNN-IW


Published as a conference paper at ICLR 2025

Burak Bartan and Mert Pilanci. Training quantized neural networks to global optimality via semidefi-
nite programming. In International Conference on Machine Learning. PMLR, 2021b.

Burak Bartan and Mert Pilanci. Convex optimization of deep polynomial and relu activation neural
networks. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2023.

Francesca Bartolucci, Ernesto De Vito, Lorenzo Rosasco, and Stefano Vigogna. Understanding
neural networks with reproducing kernel banach spaces. Applied and Computational Harmonic
Analysis, 62:194–236, 2023.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex
neural networks. Advances in Neural Information Processing Systems, 18, 2005.

Fengmiao Bian and Xiaoqun Zhang. A three-operator splitting algorithm for nonconvex sparsity
regularization. SIAM Journal on Scientific Computing, 43(4):A2809–A2839, 2021.

Tolga Birdal, Vladislav Golyanik, Christian Theobalt, and Leonidas J Guibas. Quantum permutation
synchronization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13122–13133, 2021a.

Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
homology and generalization in neural networks. Advances in Neural Information Processing
Systems, 34:6776–6789, 2021b.

Immanuel M Bomze, Mirjam Dür, Etienne De Klerk, Cornelis Roos, Arie J Quist, and Tamás Terlaky.
On copositive programming and standard quadratic optimization problems. Journal of Global
Optimization, 18(4):301–320, 2000.

Robin Brown, David E Bernal Neira, Davide Venturelli, and Marco Pavone. A copositive framework
for analysis of hybrid ising-classical algorithms. SIAM Journal on Optimization, 34(2), 2024.

Robin A Brown, Edward Schmerling, Navid Azizan, and Marco Pavone. A unified view of sdp-based
neural network verification through completely positive programming. In International Conference
on Artificial Intelligence and Statistics, pp. 9334–9355. PMLR, 2022.

Samuel Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming, 120(2):479–495, 2009.

Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2), 2003.

Yongqiang Cai. Achieve the minimum width of neural networks for universal approximation. arXiv
preprint arXiv:2209.11395, 2022.

Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic optimization
for lipschitz constants of relu networks. Advances in Neural Information Processing Systems, 33:
19189–19200, 2020.

Hong-Ming Chiu and Richard Y Zhang. Tight certification of adverfsarially trained neural net-
works via nonconvex low-rank semidefinite relaxations. In International Conference on Machine
Learning, pp. 5631–5660. PMLR, 2023.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications.
Set-valued and Variational Analysis, 25:829–858, 2017.

Etienne De Klerk and Dmitrii V Pasechnik. Approximation of the stability number of a graph via
copositive programming. SIAM Journal on Optimization, 12(4):875–892, 2002.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Igor Dukanovic and Franz Rendl. Copositive programming motivated bounds on the stability and the
chromatic numbers. Mathematical Programming, 121(2):249–268, 2010.

12



Published as a conference paper at ICLR 2025

Mirjam Dür. Copositive programming–a survey. In Recent Advances in Optimization and its
Applications in Engineering, pp. 3–20. Springer, 2010.

Mirjam Dür and Franz Rendl. Conic optimization: A survey with special focus on copositive
optimization and binary quadratic problems. EURO Journal on Computational Optimization, 9:
100021, 2021.

Faniriana Rakoto Endor and Irene Waldspurger. Benign landscape for burer-monteiro factorizations
of maxcut-type semidefinite programs. arXiv preprint arXiv:2411.03103, 2024.

Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Convex optimization
of two-and three-layer networks in polynomial time. In International Conference on Learning
Representations, 2021a.

Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of Machine Learning Research, 22(212):1–63, 2021b.

Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu networks via
convex programs. In International Conference on Machine Learning. PMLR, 2021c.

Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality. In
International Conference on Machine Learning, pp. 3004–3014. PMLR, 2021d.

Cong Fang, Yihong Gu, Weizhong Zhang, and Tong Zhang. Convex formulation of overparameterized
deep neural networks. IEEE Transactions on Information Theory, 68(8):5340–5352, 2022.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions on
Automatic Control, 67(1):1–15, 2020.

Ronald Aylmer Fisher. Iris [Dataset]. UCI Machine Learning Repository, 1936. DOI:
https://doi.org/10.24432/C56C76.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional
networks as shallow gaussian processes. In International Conference on Learning Representations,
2019.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Jason M. Klusowski and Andrew R. Barron. Approximation by combinations of relu and squared
relu ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on Information Theory, 64(12):
7649–7656, 2018.

Maximilian Krahn, Michele Sasdelli, Fengyi Yang, Vladislav Golyanik, Juho Kannala, Tat-Jun Chin,
and Tolga Birdal. Projected stochastic gradient descent with quantum annealed binary gradients.
In 35th British Machine Vision Conference, pp. 1–13. BMVA Press, 2024.

Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Tight neural network verification via semidefinite
relaxations and linear reformulations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 7272–7280, 2022.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

13



Published as a conference paper at ICLR 2025

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in
Neural Information Processing Systems, 33:15156–15172, 2020.

Eitan Levin, Joe Kileel, and Nicolas Boumal. The effect of smooth parametrizations on nonconvex
optimization landscapes. Mathematical Programming, pp. 1–49, 2024.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training neural
networks. Advances in Neural Information Processing Systems, 27, 2014.

Volker Lohweg. Banknote Authentication [Dataset]. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C55P57.

Anirudha Majumdar, Georgina Hall, and Amir Ali Ahmadi. Recent scalability improvements for
semidefinite programming with applications in machine learning, control, and robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 3:331–360, 2020.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International Conference on Learning
Representations, 2018.

Hrushikesh Narhar Mhaskar. On the tractability of multivariate integration and approximation by
neural networks. Journal of Complexity, 20(4):561–590, 2004.

Radford M Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business
Media, 2012.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia,
Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many
channels are gaussian processes. In International Conference on Learning Representations, 2019.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. arXiv preprint arXiv:1910.01635, 2019.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169:1042–1068, 2016.

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. Journal of Machine Learning Research, 22(43):1–40, 2021.

Pablo A Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robust-
ness and Optimization. California Institute of Technology, 2000.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

Patricia Pauli, Niklas Funcke, Dennis Gramlich, Mohamed Amine Msalmi, and Frank Allgöwer.
Neural network training under semidefinite constraints. In 2022 IEEE 61st Conference on Decision
and Control (CDC), pp. 2731–2736. IEEE, 2022.

Patricia Pauli, Dennis Gramlich, and Frank Allgöwer. Lipschitz constant estimation for 1d convolu-
tional neural networks. In Learning for Dynamics and Control Conference. PMLR, 2023.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020.

Janez Povh and Franz Rendl. A copositive programming approach to graph partitioning. SIAM
Journal on Optimization, 18(1):223–241, 2007.

14



Published as a conference paper at ICLR 2025

Janez Povh and Franz Rendl. Copositive and semidefinite relaxations of the quadratic assignment
problem. Discrete Optimization, 6(3):231–241, 2009.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in Neural Information Processing Systems, 31, 2018.

Max Revay, Ruigang Wang, and Ian R Manchester. A convex parameterization of robust recurrent
neural networks. IEEE Control Systems Letters, 5(4):1363–1368, 2020.

Arda Sahiner, Tolga Ergen, John Pauly, and Mert Pilanci. Vector-output relu neural network problems
are copositive programs: Convex analysis of two layer networks and polynomial-time algorithms.
In International Conference on Learning Representations, 2021.

Arda Sahiner, Tolga Ergen, Batu Ozturkler, John Pauly, Morteza Mardani, and Mert Pilanci. Un-
raveling attention via convex duality: Analysis and interpretations of vision transformers. In
International Conference on Machine Learning, pp. 19050–19088. PMLR, 2022.

Arda Sahiner, Tolga Ergen, Batu Ozturkler, John M Pauly, Morteza Mardani, and Mert Pilanci.
Scaling convex neural networks with burer-monteiro factorization. In International Conference on
Learning Representations, 2024.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm
networks look in function space? In Conference on Learning Theory, pp. 2667–2690. PMLR,
2019.

Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D Nowak. Variation spaces for multi-
output neural networks: Insights on multi-task learning and network compression. Journal of
Machine Learning Research, 25(231):1–40, 2024.

Vincent G Sigillito, Simon P Wing, Larrie V Hutton, and Kile B Baker. Ionosphere [Dataset]. UCI
Machine Learning Repository, 1989. DOI: https://doi.org/10.24432/C5W01B.

Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of
the Annual Symposium on Computer Application in Medical Care, pp. 261. American Medical
Informatics Association, 1988.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Review, 38(1), 1996.

Irene Waldspurger and Alden Waters. Rank optimality for the burer–monteiro factorization. SIAM
Journal on Optimization, 30(3):2577–2602, 2020.

Yifei Wang, Sungyoon Kim, Paul Chu, Indu Subramaniam, and Mert Pilanci. Randomized geometric
algebra methods for convex neural networks. arXiv preprint arXiv:2406.02806, 2024.

Changqing Xu. Completely positive matrices. Linear Algebra and its Applications, 379, 2004.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with stability and safety
guarantees. IEEE Control Systems Letters, 6:409–414, 2021.

Alp Yurtsever, Varun Mangalick, and Suvrit Sra. Three operator splitting with a nonconvex loss
function. In International Conference on Machine Learning, pp. 12267–12277. PMLR, 2021a.

Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021b.

Alp Yurtsever, Tolga Birdal, and Vladislav Golyanik. Q-fw: A hybrid classical-quantum frank-wolfe
for quadratic binary optimization. In European Conference on Computer Vision. Springer, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 2021.

Richard Zhang. On the tightness of semidefinite relaxations for certifying robustness to adversarial
examples. Advances in Neural Information Processing Systems, 33:3808–3820, 2020.

15



Published as a conference paper at ICLR 2025

APPENDIX

We will first provide additional discussions before moving onto the proofs and additional experiments.

A DISCUSSIONS

On the contributions to theoretical understanding of neural networks. Convex formulations of
neural networks can offer significant benefits in advancing our understanding of deep networks. We
now provide a brief exposition and perspective on this:

• Interpretability. Convex formulations are essential in converting pesky non-convex landscapes
into interpretable ones. By doing so, they provide a clearer view of the solution space, revealing its
geometric structure, and help identify properties of optimal solutions without getting trapped in
suboptimal configurations.

• Rigorous analysis. They pave the way for a rigorous theoretical analysis, including guarantees of
convergence, uniqueness, and stability of solutions. This is in contrast to traditional training where
guarantees are often limited or conditional on specific initialization schemes or overparameteriza-
tion. We leave such analysis for a future work.

• Lifting. Thanks to our exact co-positive formulation, studying how high-dimensional lifting of
data affects separability and decision boundaries can offer insights into how neural networks learn
representations and resolve ambiguities in the data.

• A holistic learning theory. Bridging the gaps between optimization, geometry, and learning theory
is fundamental to develop a modern theory for deep networks. This is what we precisely contribute
towards with our theoretical formulation.

In the light of these, one particularly compelling avenue for future work involves leveraging our
convex formulation to study generalization. Let us elaborate on this. Characterizing the loss
landscape of neural networks is crucial to understanding the capacity and limitations of deep learning.
Generalizing solutions are known to reside in the wide minima of the loss landscape (Hochreiter &
Schmidhuber, 1997). This gives a relationship between the generalization error and the location of
critical points. For our lifted convex formulations, the critical points are readily identifiable and can be
mapped back to the non-convex landscape of the original problem through smooth parameterizations,
as demonstrated by (Levin et al., 2024). By characterizing the local convexity of these points, we
can potentially determine which solutions generalize better. While we have not yet investigated this,
we plan to make such connections clearer in the future, where we further like to investigate the link
between our formulation and the training dynamics (Andreeva et al., 2024; Birdal et al., 2021b).
On another frontier, the exact CP-NN formulation, combined with an analog of the results by
Waldspurger and Waters on the tightness of the Pataki-Barvinok (PB) bound for factorization rank
in CP-NN formulations, could provide insights into the minimal width required for ReLU neural
networks to succeed (Waldspurger & Waters, 2020; Endor & Waldspurger, 2024). Specifically, these
works studied the MaxCut SDP and its factorized (non-convex) formulation. It is well-established that
the factorized (non-convex) problem does not exhibit spurious local minima when the factorization
rank exceeds the PB bound, which scales as O(

√
n), where n is the number of vertices (number

of constraints, for a more general SDP template). Recently, same authors demonstrated that the
PB bound is tight, meaning that even if the original SDP problem has a unique rank-1 solution, the
factorized (non-convex) problem can fail unless the factorization rank is greater than the PB bound.
This result provides critical guidance for selecting the rank in matrix factorization problems.
On NTK, NNGP and SGD. NNGP models the prior predictive distribution of an untrained neural
network in the infinite-width limit, while NTK captures the training dynamics of gradient descent
under similar assumptions. Our formulation differs significantly from NTK and NNGP, and does not
share the same constraints. Unlike NTK and NNGP, our convex formulation is exact and applies to
both finite and infinite-width regimes as long as the critical-width threshold is satisfied. Additionally,
our method is not dependent on initialization. Any empirical inexactness arises solely from the
relaxation and rounding processes, which do not undermine the theoretical validity of what we
present, even if the computation is NP-hard.
Neither NTK, NNGP or our work is equivalent to SGD. While NTK can approximate SGD dynamics
under specific overparameterized conditions, this correspondence is not universal and relies on several
assumptions. Importantly, as stated in the main paper, we use SGD with a hidden layer of 300 neurons
in our experiments. Under these conditions, we do not expect SGD to align with NTK.

16



Published as a conference paper at ICLR 2025

On the losses and the lower bounds. SDP-NN is a relaxation of the original problem, meaning
it provides a lower bound on the objective. Therefore, its loss value is not directly comparable
to SGD, which provides an upper bound by finding a feasible (but possibly suboptimal) solution.
The lower loss for SDP-NN does not mean it performs better in the traditional sense, but rather
indicates the quality of the relaxation. To evaluate the relationship between the two, we computed the
approximation ratio (AR) in the main paper, quantifying how close the solution obtained by SGD is to
the lower bound provided by SDP-NN. It is important to see that this is not a limitation of our method
but stems from the nature of the problem – the global solution of the training being unavailable.
Let us elaborate on that a little. Specifically, the exact approximation ratio is defined as: ARexact =
F ∗
relaxed/F

∗, where F ∗
relaxed denotes the relaxed solution. However, since we do not know the true

global minimum F ∗, we instead compute the empirical AR, which provides only a lower bound
on how well the SDP-NN relaxation captures the training problem: AR = F ∗

relaxed/F
∗
SGD. Here,

F ∗
SGD corresponds to the local minimum found by SGD, and because F ∗

SGD ≥ F ∗, we ensure
that AR ≤ ARexact. This guarantees that the reported AR provides a lower bound on the actual
approximation ratio.
On rounding. Although our rounding step lacks convergence guarantees, as noted in Remark 3,
it serves as a valuable tool for validating our SDP-NN relaxation. Despite the heuristic nature of
rounding, the ability to extract the trained weights of a successful neural network demonstrates
that the SDP-NN solution contains the necessary information. It is important to emphasize that the
rounding step is not integral to the theoretical contributions of the proposed framework and is used
solely for empirical evaluations. It is possible to leverage other rounding mechanisms and we leave it
as a future study to determine the optimal choice.

B PROOF OF THEOREM 1

Our formulation in Theorem 1 involves a (p× p) matrix decision variable Λ ∈ PSD, which contains
a (q × q) principal submatrix PΛP⊤ ∈ CP , where P =

[
Iq×q 0q×(p−q)

]
is the row-selection

operator. The following lemma plays a crucial role in our analysis, in showing that there exists a
finite critical width for a two-layer ReLU network, beyond which increasing the number of hidden
neurons does not improve the network’s expressive power.
Lemma 2. Let Λ ∈ Rp×p be a positive semidefinite matrix of rank k, with a completely positive
principal submatrix Λ̂ ∈ Rq×q of CP-rank K. Without loss of generality, we assume Λ̂ is the leading
principal submatrix of Λ given by Λ̂ = PΛP⊤ with P =

[
Iq×q 0q×(p−q)

]
. Then, Λ can be

decomposed as

Λ =

R∑
j=1

λjλ
⊤
j , such that λj ∈ Rp and Pλj ∈ Rq

+ (7)

for some R ≤ max{k,K}. As an immediate corollary, for any (p × p) PSD matrix with a (q ×
q) dimensional CP submatrix (without any restriction on their rank or CP-rank), we have R ≤
max{p,Rq}, where Rq is the maximal CP-rank Rq := q(q + 1)/2− 1.

We will use the following result (see Lemma 1 in (Xu, 2004)) in the proof of Lemma 2.
Fact 1. If a PSD matrix A ∈ Rn×n admits two distinct factorizations, A = CC⊤ and A = DD⊤,
where C,D ∈ Rn×N , then we can find an orthogonal matrix Q ∈ RN×N such that D = CQ.

Proof of Fact 1. Let ci ∈ RN and di ∈ RN be the ith rows of C and D, respectively. Since
{ci}ni=1 and {di}ni=1 span the same subspace, there exists a linear transformation Q mapping
span(c1, . . . , cn) to span(d1, . . . ,dn) such that di = ciQ for each i = 1, . . . , n. By construc-
tion, we have ⟨di,dj⟩ = ⟨ciQ, cjQ⟩ = ⟨ci, cj⟩, so Q preserves inner products on this subspace.
Therefore, by extending Q to all of RN , we obtain an orthogonal matrix.

Proof of Lemma 2. For the PSD matrix Λ and any non-negative integer R ≥ k, we have a factoriza-
tion of the form Λ = BB⊤, where B ∈ Rp×R. This factorization is not necessarily unique, and the
columns of B are not required to be linearly independent. Similarly, for the CP matrix Λ̂, we have
a factorization Λ̂ = DD⊤, where D ∈ Rq×R

+ for any R ≥ K. As before, this factorization is not
necessarily unique, and the columns of D need not be linearly independent.

17



Published as a conference paper at ICLR 2025

Consider these factorizations with R = max{k,K}. Define C as the first q rows of B, given by
C = PB. We have Λ̂ = CC⊤. Then, by Fact 1, since any CP matrix is also PSD, there exists an
orthogonal matrix Q ∈ RR×R such that D = CQ. Finally, let us define E = BQ. It is easy to
verify that EE⊤ = Λ, and PE = D is entrywise non-negative. Hence, if we set wj equal to the
jth column of E, we obtain the desired decomposition.

The following lemma will be used to handle the non-convexity introduced by ReLU activation:
Lemma 3. For real-valued vector α̂ ∈ Rn and non-negative real-valued vectors α,β ∈ Rn

+ with
α := (α̂)+ and β := α− α̂, the following conditions are equivalent:

α = (α̂)+ if and only if trace(αβ⊤) = 0. (8)

Proof of Lemma 3. First, observe that trace(αβ⊤) = trace(β⊤α) = β⊤α =
∑n

i=1 αiβi.

Assume that the left-hand side in Eq. (8) holds. Note that if α represents the positive part of α̂, then
β is the negative part. Consequently, for each index i, either αi or βi is zero, hence trace(αβ⊤) = 0.

Now, suppose that the right-hand side in Eq. (8) holds. Given that the elements of α and β are
non-negative, we have trace(αβ⊤) = 0 if and only if αiβi = αi(αi − α̂i) = 0 for all i = 1, . . . , n.
This implies that if αi > 0, then α̂i = αi. Otherwise, if αi = 0, we have α̂i = αi − βi ≤ 0. Thus,
we conclude that α = (α̂)+.

Proof of Theorem 1. We start by rewriting (NN-Train) in the constrained form as

min
uj∈Rd,vj∈Rc

αj∈Rn,α̂j∈Rn

∥∥∥ m∑
j=1

αjv
⊤
j − Y

∥∥∥2
F
+
γ

2

m∑
j=1

(∥uj∥22 + ∥vj∥22)

s.t. α̂j = Xuj and αj = (α̂j)+, for j = 1, . . . ,m.

(9)

We introduce non-negative variables βj := αj − α̂j . As both αj and βj are non-negative valued,
it can be shown that αj = (α̂j)+ if and only if trace(αjβ

⊤
j ) = 0, see Lemma 3. As a result, the

constraints in Eq. (9) can be equivalently rewritten in terms of αj and βj as:

αj ,βj ∈ Rn
+, trace(αjβ

⊤
j ) = 0, and Xuj −αj +βj = 0n×1, for j = 1, . . . ,m. (10)

The quadratic terms in the objective function in Eq. (9) and the trace constraint in Eq. (10) introduce
challenges due to non-convexity. We address this by lifting the problem into a higher-dimensional
space, introducing new variables λj ∈ Rp and Λj ∈ Rp×p, where p = 2n+ c+ d:

λj :=


αj

βj

uj

vj

 and Λj :=


Λαjα⊤

j
Λαjβ⊤

j
Λαju⊤

j
Λαjv⊤

j

Λβjα⊤
j

Λβjβ⊤
j

Λβju⊤
j

Λβjv⊤
j

Λujα⊤
j

Λujβ⊤
j

Λuju⊤
j

Λujv⊤
j

Λvjα⊤
j

Λvjβ⊤
j

Λvju⊤
j

Λvjv⊤
j

 such that Λj = λjλ
⊤
j .

(11)
This allows us to express the objective as a convex function of Λj :∥∥∥ m∑

j=1

PαΛjP
⊤
v − Y

∥∥∥2
F
+
γ

2

m∑
j=1

⟨P⊤
u Pu + P⊤

v Pv,Λj⟩. (12)

Similarly, we can reformulate the constraints in Eq. (10) as
Pαβλj ≥ 0, trace(PαΛjP

⊤
β ) = 0, and Mλj = 0n×1, for j = 1, . . . ,m. (13)

So far, we have shown that (NN-Train) is equivalent to the following problem:

min
λj∈Rp

∥∥∥ m∑
j=1

PαΛjP
⊤
v − Y

∥∥∥2
F
+
γ

2

m∑
j=1

⟨P⊤
u Pu + P⊤

v Pv,Λj⟩

s.t. for j = 1, . . . ,m :

Mλj = 0n×1

trace(PαΛjP
⊤
β ) = 0

Λj = λjλ
⊤
j and Pαβλj ≥ 02n×1.

(NN-Train-Lifted)

18



Published as a conference paper at ICLR 2025

Next, we will show that (CP-NN) is also equivalent to (NN-Train-Lifted) when m is sufficiently large.
Since Λ ∈ PSD, it follows that trace(MΛM⊤) = 0 and trace(PαΛP⊤

β ) = 0 is equivalent to
trace(PαΛP⊤

β ) + trace(MΛM⊤) = 0. By Lemma 2, we can find a positive integer R such that
any matrix Λ ∈ PSD such that PαβΛP⊤

αβ ∈ CP can be factorized as

Λ =

R∑
j=1

λjλ
⊤
j for some λj ∈ Rp such that Pαβλj ≥ 02n×1. (14)

Given this decomposition, we can write

trace(MΛM⊤) =

R∑
j=1

trace
(
Mλjλ

⊤
j M

⊤) =

R∑
j=1

∥Mλj∥2. (15)

Therefore, trace(MΛM⊤) = 0 if and only if Mλj = 0n×1 for all r = 1, . . . , R. Similarly,

trace(PαΛP⊤
β ) =

R∑
j=1

trace
(
Pαλjλ

⊤
j P

⊤
β

)
=

R∑
j=1

⟨Pαλj ,Pβλj⟩. (16)

Note that ⟨Pαλj ,Pβλj⟩ ≥ 0 for all j since both Pαλj and Pβλj are non-negative valued. As

a result, trace(PαΛP⊤
β ) = 0 if and only if trace

(
Pαλjλ

⊤
j P

⊤
β

)
= ⟨Pαλj ,Pβλj⟩ = 0 for all

j = 1, . . . , R. Therefore, the formulation in (CP-NN) is equivalent to the following:

min
λj∈Rp

∥∥∥ R∑
j=1

PαΛjP
⊤
v − Y

∥∥∥2
F
+
γ

2

R∑
j=1

⟨P⊤
u Pu + P⊤

v Pv,Λj⟩

s.t. for j = 1, . . . , R :

Mλj = 0n×1

trace(PαΛjP
⊤
β ) = 0

Λj = λjλ
⊤
j and Pαβλj ≥ 02n×1.

(17)

This concludes the proof.

C PROOF OF THEOREM 2

We first introduce the following lemmas that will be required for stating the proof of Theorem 2.

Lemma 4. Let Λ ∈ Rp×p be a positive semidefinite matrix of rank k, with a completely positive
principal submatrix Λ̂ ∈ Rq×q of CP-rank K. Without loss of generality, we assume Λ̂ is the leading
principal submatrix of Λ given by Λ̂ = PΛP⊤ with P =

[
Iq×q 0q×(p−q)

]
. Then, there exists a

probability measure ν and a corresponding random variable λ such that Λ can be decomposed as

Λ = Eν [λλ
⊤] =

∫
Rp

λλ⊤dν(λ), (18)

such that λ ∈ Rp and Pλ ≥ 0 a.s. with respect to ν.

Proof of Lemma 4. Let us define the set Θ as follows:

Θ := {Λ ∈ Rp×p : Λ ∈ PSD, PΛP⊤∈ CP}. (19)

By Lemma 2, we can find a positive integer R such that any matrix W ∈ Θ can be factorized as

Λ =

R∑
j=1

λjλ
⊤
j for some λj ∈ Rp such that Pλj ≥ 0. (20)

19



Published as a conference paper at ICLR 2025

Thus, by performing a scaling: λj → σjλj for some σj ∈ [0, 1] such that
∑R

j=1 σ
2
j = 1, we can

equivalently express Θ as follows:

Θ :=

{
R∑

j=1

σ2
jλjλ

⊤
j : λj ∈ Rp, Pλj ≥ 0, σj ∈ [0, 1], ∀j = 1, . . . , R, and

R∑
j=1

σ2
j = 1

}
.

(21)
We also define the set Γ as follows:

Γ =

{∫
Rp

λλ⊤dν(λ) : ν is a probability measure over λ, Pλ ≥ 0 a.s. with respect to ν
}
.

(22)
It is clear that Θ ⊆ Γ, because any element of Θ, expressed as

∑R
j=1 σ

2
jλjλ

⊤
j , can be represented

by the measure
∑R

j=1 σ
2
j δλjλ⊤

j
, where δλjλ⊤

j
is the Dirac delta measure centered at λjλ

⊤
j . The

Dirac delta measure δx has support at the point x, assigning probability 1 to sets containing x and 0
otherwise.

To prove the opposite direction, that Γ ⊆ Θ, we define an indicator function IΘ(·) given by

IΘ(Λ) =

{
0 if Λ ∈ Θ

+∞ if Λ ̸∈ Θ
(23)

Since Θ is a closed convex set, it is clear that IΘ is a closed convex function.

Let Λ =
∫
Rp

λλ⊤dν(λ) ∈ Γ for some probability measure ν. Applying Jensen’s inequality gives
the following:

IΘ(Λ) = IΘ

(∫
Rp

λλ⊤dν(λ)

)
≤
∫
Rp

IΘ(λλ
⊤)dν(λ) = 0, (24)

so Λ ∈ Θ. This completes the proof.

We recall the following standard result from measure theory without proof, as it will be used in the
subsequent analysis:
Fact 2. Let f be an absolutely integrable function and ν be a measure defined on the measure space
(Rp,Bp). If f ≥ 0 almost surely, then

∫
Rp f(x)dν(x) = 0 if and only if f = 0 almost surely.

Proof of Theorem 2. We begin by rewriting (NN∫ -Train) in constrained form:

min
ν:Bd+c→[0,1]

∥∥∥∥∫
Rd×Rc

sv⊤dν(u,v)− Y

∥∥∥∥2
F

+
γ

2

∫
Rd×Rc

(∥u∥22 + ∥v∥22)dν(u,v)

s.t. ŝ(u,v) = Xu

s(u,v) = (ŝ(u,v))+.

(25)

We introduce non-negative variables α(u,v),β(u,v) ∈ Rn
+ that splits s and ŝ as follows:

α(u,v) = s(u,v) and β(u,v) = s(u,v)− ŝ(u,v). (26)

For the sake of brevity, we will use the following shorthand notation: α := α(u,v) and β := β(u,v).
Using the equivalence described in Lemma 3, we can reformulate Eq. (25) as follows:

min
ν:Bd+c→[0,1]

∥∥∥∥∫
Rd×Rc

αv⊤dν(u,v)− Y

∥∥∥∥2
F

+
γ

2

∫
Rd×Rc

(∥u∥22 + ∥v∥22)dν(u,v)

s.t. Xu−α+ β = 0n×1

diag(αβ⊤) = 0n×1.

(27)

Let ν(u,v) be a probability measure defined on the support of the variables u and v. Then ν(u,v)
represents a feasible solution to (NN∫ -Train). Define the random vector λ := λ(u,v) ∈ Rp with
p = 2n + c + d as λ := λ(u,v) := [α⊤ β⊤ u⊤ v⊤]⊤. Also, let Λ := Eν [λλ

⊤], where

20



Published as a conference paper at ICLR 2025

the expectation is with respect to the probability measure ν(u,v). We can represent the objective
function in Eq. (27) as follows:∥∥Eν [αv⊤]− Y

∥∥2
F
+
γ

2
Eν [Tr(uu

⊤ + vv⊤)], (28)

or equivalently, in terms of Λ, as:∥∥PαΛP⊤
v − Y

∥∥2
F
+
γ

2
⟨P⊤

u Pu + P⊤
v Pv,Λ⟩, (29)

which is exactly the objective function in (CP-NN).

Then, similar to the proof of Theorem 1, we can reformulate the constraints in Eq. (27) as

Pαβλ ≥ 02n×1, ⟨Pαλ,Pβλ⟩ = 0, and Mλ = 0n×1. (30)

Next, we will show that we can replace these with

trace(MΛM⊤) = 0, trace(PαΛP⊤
β ) = 0, Λ ∈ PSD, and PαβΛP⊤

αβ ∈ CP, (31)

which is exactly the feasible set of (CP-NN).

By Lemma 4, we can find a probability measure ν and a corresponding random variable λ such that
any matrix Λ ∈ PSD such that PαβΛP⊤

αβ ∈ CP can be factorized as

Λ = Eν [λλ
⊤] =

∫
Rp

λλ⊤dν(λ), such that Pαβλ ≥ 02n×1 a.s. with respect to ν. (32)

Given this decomposition, we can show that trace(MΛM⊤) = 0 if and only if Mλ = 0n×1 a.s.,
by using Fact 2, since

trace(MΛM⊤) =

∫
Rp

trace(Mλλ⊤M⊤) dν(λ) =

∫
Rp

∥Mλ∥2 dν(λ). (33)

Similarly, we can show that trace(PαΛP⊤
β ) = 0 if and only if ⟨Pαλ,Pβλ⟩ = 0 a.s., since

trace(PαΛP⊤
β ) =

∫
Rp

trace(Pαλλ
⊤P⊤

β ) dν(λ) =

∫
Rp

⟨Pαλ,Pβλ⟩ dν(λ), (34)

and ⟨Pαλ,Pβλ⟩ ≥ 0 a.s. since Pαλ ≥ 0n×1 and Pβλ ≥ 0n×1 a.s. by Eq. (32). Therefore, the
constraints in Eq. (30) imply those in Eq. (31), and the constraints in Eq. (31) imply Eq. (30) almost
surely. However, since the objective in Eq. (29) depends only on Λ = Eν [λλ

⊤], and sets of measure
zero do not affect Λ, we can omit the almost surely condition on the constraints without affecting the
solution.

D INTERPRETATION OF THE SOLUTION TO CP-NN
The solution to (CP-NN) can be interpreted as a moment matrix over the weights and activations with
respect to the representing measure for the IWNN. Based on the factorization in Eq. (32), the solution
to (CP-NN) is Λ = Eν [λλ

⊤] for some measure ν and corresponding random variable λ:

Λ = Eν


αα⊤ αβ⊤ αu⊤ αv⊤

βα⊤ ββ⊤ βu⊤ βv⊤

uα⊤ uβ⊤ uu⊤ uv⊤

vα⊤ vβ⊤ vu⊤ vv⊤

 (35)

Suppose we solve (CP-NN) to obtain the solution Λ and consider the submatrix Eν [uu
⊤]. Using this,

we can compute the expected kernel matrix K[X0,X1] over the measure ν, where X0 ∈ Rn0×d

and X1 ∈ Rn1×d are two input datasets of size n0 and n1, as K[X0,X1] = X0Eν [uu
⊤]X⊤

1 =
Eν [(X0u)(X1u)

⊤]. It is thus possible to extract the expected kernel matrix of the infinite-width (or
wide) neural network from the solution of (CP-NN), which stores the learned features.

21



Published as a conference paper at ICLR 2025

E ADDITIONAL DETAILS ON NUMERICAL EXPERIMENTS

We used SGD with small step sizes and trained until convergence. We observed that this approach
provides a better approximation of the global solution. Based on this observation, we tuned the
learning rate (LR) and the number of iterations for each dataset as:

• Random: Initial LR = 10−5; # of iterations = 500K.
• Spiral: Initial LR = 10−3; # of iterations = 8K.
• Iris: Initial LR = 10−6; # of iterations = 2M.
• Ionosphere: Initial LR = 10−6; # of iterations = 2M for γ = 0.1 and 5M for γ = 0.01.
• Pima Indians Diabetes: Initial LR = 10−8; # of iterations = 5M for γ = 0.1 and 6M for γ = 0.01.
• Bank Notes Authentication: Initial LR = 10−6; # of iterations = 5M.
• MNIST: Initial LR = 10−7; # of iterations = 8M.

The SGD training curves for Random and Spiral with varying number of hidden neurons, ranging
from 5 to 300, are shown in Figure 2.

100 101 102 103 104 105

Iteration

10−3

10−2

10−1

100

101

102

103

104

O
bj

ec
tiv

e
L

os
s

SGD - 5 Hidden Neurons
SGD - 10 Hidden Neurons
SGD - 100 Hidden Neurons

SGD - 200 Hidden Neurons
SGD - 300 Hidden Neurons
SDP-NN

(a) Random Dataset, γ = 0.1.

100 101 102 103 104 105

Iteration

10−3

10−2

10−1

100

101

102

103

104

O
bj

ec
tiv

e
L

os
s

SGD - 5 Hidden Neurons
SGD - 10 Hidden Neurons
SGD - 100 Hidden Neurons

SGD - 200 Hidden Neurons
SGD - 300 Hidden Neurons
SDP-NN

(b) Random Dataset, γ = 0.01.

100 101 102 103 104

Iteration

101

6× 100

2× 101

3× 101

4× 101

O
bj

ec
tiv

e
L

os
s

SGD - 5 Hidden Neurons
SGD - 10 Hidden Neurons
SGD - 100 Hidden Neurons

SGD - 200 Hidden Neurons
SGD - 300 Hidden Neurons
SDP-NN

(c) Spiral Dataset, γ = 0.1.

100 101 102 103 104

Iteration

101

6× 100

2× 101

3× 101

O
bj

ec
tiv

e
L

os
s

SGD - 5 Hidden Neurons
SGD - 10 Hidden Neurons
SGD - 100 Hidden Neurons

SGD - 200 Hidden Neurons
SGD - 300 Hidden Neurons
SDP-NN

(d) Spiral Dataset, γ = 0.01.

Figure 2: Objective value (training loss) for Random and Spiral datasets trained with SGD using
different numbers of hidden neurons. The dashed line indicates the lower bound obtained from
solving SDP-NN with the interior point method as a reference.

22



Published as a conference paper at ICLR 2025

Comparison with other convex relaxations. We compared our SDP-NN approach against two
convex formulations proposed in (Sahiner et al., 2021). The first is the convex semi-infinite bi-dual
formulation (Equation (14) in their paper), solved using a Frank-Wolfe type algorithm, which we
refer to as ‘Sahiner FW.’ The second is their copositive relaxation of the problem (Equation (19) in
their paper), which we refer to as ‘Sahiner CP,’ solved with CVXPY. We used their publicly available
code for these methods. The comparison was conducted on the Random dataset for regression and
the Spiral dataset for classification. The results are shown in Table 4 for the regression and Table 5
for the classification. Since the provided implementation of ‘Sahiner CP’ was designed specifically
for classification, only ‘Sahiner FW’ is included in Table 4.

It is important to note that the training objectives obtained by these methods are not directly compara-
ble to SDP-NN. In particular, both ‘Sahiner FW’ and ‘Sahiner CP’ require enumerating all possible
sign patterns for a given network width (300 hidden neurons in this experiment) and training dataset.
As a result, they approximate the training solution with 300 hidden neurons accurately, as seen in
the tables, with slightly higher objective values than SGD. In contrast, SDP-NN is a relaxation for
an (in)finite-width network (and, as can be easily verified, the critical width R in these examples
can be larger than 300), hence provides a lower-bound on the global optimal value. It is also worth
noting that the epigraph level-set parameter t in Sahiner FW method, which theoretically should be
optimized using bisection, is instead directly set using the SGD solution for simplicity. Including
bisection would further increase the runtime for Sahiner FW.

Table 4: Comparison of convex formulations for regression with the Random dataset.

Algorithm γ = 0.1 γ = 0.01

Train Obj. Std Dev. Time (s) Train Obj. Std Dev. Time (s)

SDP-NN 7.275 0.976 11.35 0.755 0.099 12.47
Sahiner FW 8.213 1.083 1341.8 1.099 0.159 1024.8
SGD 8.090 1.041 - 0.936 0.116 -

*Sahiner FW and SGD are applied with 300 hidden neurons.
Train objective and time are averaged over 100 random dataset.

Table 5: Comparison of convex formulations for classification with the Spiral dataset.

Algorithm γ = 0.1 γ = 0.01

Train Obj. Time (s) Train Obj. Time (s)

SDP-NN 16.235 1724.05 11.658 1062.81
Sahiner FW 16.593 1885.60 15.184 1911.77
Sahiner CP 16.660 4.75 15.853 5.07
SGD 16.593 - 15.159 -

*Sahiner FW, Sahiner CP and SGD are applied with 300 hidden neurons.

23


	Introduction
	Background
	CP Formulation for Training Two-Layer ReLU Networks
	The Infinite Width Regime

	SDP Relaxation for Training Two-Layer ReLU Networks
	Numerical Experiments
	Empirical Approximation Ratio of the SDP Relaxation
	Prediction Performance of the SDP Relaxation

	Related Works
	Conclusions and Future Directions
	Discussions
	Proof of *thm:main-1
	Proof of *thm:main-2
	Interpretation of the Solution to CP-NN
	Additional Details on Numerical Experiments

