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ABSTRACT

Compositional generative tasks, despite being important and having potential
applications, have not been thoroughly addressed due to the unclear formulation and
the challenges associated with selecting composition strategies. In this paper, we
propose a probabilistic graphical approach to tackle the problem of compositional
generative tasks and alleviate these challenges. Our approach formulates the
problem as a Bayesian inference problem using a representative bipartite Bayesian
network. In this network, one set of random variables represents the generation
targets, while the other set represents observable variables with explicit or implicit
distribution information. To solve this problem, we employ variational inference on
the marginal distribution of observable variables. We approximate this distribution
using diffusion models. We view the diffusion models as approximate Markov
Chain Monte Carlo (MCMC) samplers for the marginals. Based on this perspective,
we introduce a novel MCMC-based inference algorithm that incorporates per-
step optimization using aggregated objectives from the diffusion models. We
demonstrate the generality of our method and conduct experiments to validate its
applicability to various compositional generation tasks.

1 INTRODUCTION

We understand nature in a highly compositional manner. One good example is our visual memo-
rization Luck & Hollingworth (2008); we decompose the visual scene into small components (e.g.,
to objects and background) and remember those entities with relation, where we later composite
them back when bringing the memory out. The compositional nature of human behavior, while it
does affect all aspects of parts of our lives, is especially significant in generative tasks that require
creativity. Most of the creative generations involve compositing immanent concepts and ideas.

The need for compositional understanding applies the same to the field of generative AI. Generative
AI models have shown remarkable strides in recent advancements for fields requiring creativity,
such as text-to-image synthesis Rombach et al. (2022); Kumari et al. (2023); Kawar et al. (2023);
Melas-Kyriazi et al. (2023); Nichol et al. (2021), text-to-video synthesis Ho et al. (2022); Blattmann
et al. (2023), human motion generation Tevet et al. (2022), and so on. Such advancements are
driven by diffusion models: a likelihood-based method that generates plausible samples by iterative
denoising any random samples, which have shown astonishing improvements in terms of quality,
plausibility, and coherency with given input conditions.

However, there has not been adequate discussion under the perspective of compositionality for
generative models, and currently, the models cannot be actively applied to compositional generative
tasks as they do not guarantee synergy when composited naively. The lack of compositional ability
ultimately results in limitations for alternations in generative tasks, including even the slightest
differences. This is because when the compositional ability is not provided, generative models
(especially diffusion models) need to be trained on an extensive dataset of conditions and sample pairs
for every specific generation task. As there exists a large obstacle to training due to the exhaustive
data-collection procedure and costly training procedure, only a few models can be trained under large
capital for the limited scope of tasks. This limitation poses a significant obstacle and hinders the
exploration of various potential applications.

There do exist prior works that address the compositional generation problem (Refer to Sec. 2).
However, these works only suggest a methodology or justification for limited types of data or ways of
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composition. This is due to challenges within the problem itself: (1) the formulation for the problem
of compositing multiple generative models is ambiguous, unclear, and not mathematically formulated;
(2) for selecting optimal composition strategies, what objectives should aim for are unclear; (3) efforts
must be made to develop generalized formulations that are applicable to a wide range of tasks. In
this paper, we present a probabilistic graphical approach for formulating the problem as a Bayesian
inference problem. We model the situation as a bipartite Bayesian network, consisting of “control
variables” which we can alter directly but do not have distribution information, and “observable
variables” with explicit/implicit distribution information provided but mathematically dependent on
control variables. Under this formulation, we aim to sample the mode of the joint probability, which
is an inference problem.

Nonetheless, there exist several obstacles when devising a composition strategy, other than the
challenges of defining the composition problem itself: (1) the inference problem can be notoriously
difficult to solve when the distribution information is not provided for generation targets (i.e., control
variables) or is only provided for partial observations of the targets (i.e., observable variables) as there
are countless ways of compositing information; (2) it is challenging to use the raw explicit/implicit
distribution information directly. To mitigate these challenges, we present an optimization-based
sampling method that resembles Markov Chain Monte Carlo (MCMC) method under the provided
formulation. We suggest a method to utilize diffusion models as approximate MCMC samplers,
which are used to process the information from the raw distribution of observable variables into
feasible score information. We then propose a method to aggregate such information from multiple
diffusion models, to set an optimization objective for control variables. We propose that by adopting
these methods, we can iteratively sample control variables via per-step optimization. This allows us
to sample control variables from the mode effectively.

Our method is general and can be applied to arbitrary compositional generative tasks. We validate its
applicability by experiments and empirically show that our method returns trustworthy generation
results.

2 RELATED WORK

Diffusion Model Diffusion model Ho et al. (2020); Song et al. (2020a) is a class of methods
generating sample data, generally images, by denoising latent starting from random initial noise. To
guide the diffusion model for image synthesis and editing method work, SDEdit Meng et al. (2021)
introduces a novel method by interpreting the diffusion process as a stochastic differential equation
problem Song et al. (2020b), which is the generalized representation of an ordinary differential
equation. Latent Diffusion Model(LDM) Rombach et al. (2022) improved the quality and efficiency
by performing diffusion in reduced latent space and larger dataset Schuhmann et al. (2021). Classifier-
Free Guidance(CFG) Ho & Salimans (2022) is an approach that combines score estimation Hyvärinen
& Dayan (2005) of condition and unconditional diffusion models to obtain a similar quality of
classifier guidance Dhariwal & Nichol (2021) result.

Text-guided Diffusion Models Most of the recent diffusion-based work is strongly correlated to
text-guided image synthesis Rombach et al. (2022); Kumari et al. (2023); Kawar et al. (2023); Melas-
Kyriazi et al. (2023); Nichol et al. (2021); Blattmann et al. (2022) with the help of text embedding
networks Radford et al. (2021b;a) for latent spaces. For text and image guiding for Diffusion models,
Instruct-Pix2Pix-based recent works Brooks et al. (2023); Kamata et al. (2023); Haque et al. (2023)
suggests the fine-tuned Stable Diffusion Rombach et al. (2022) in a supervised manner with custom
datasets automatically leveraging Prompt-to-Prompt and GPT-3 Hertz et al. (2022); Brown et al.
(2020). Also, ControlNet Zhang & Agrawala (2023) suggests guidance using various methods, such
as Canny Edge Canny (1986), OpenPose Cao et al. (2019), user scribe, or text prompt.

Compositional GAN GIRAFFE Niemeyer & Geiger (2021) is a compositional GAN model gener-
ating scenes together with objects, i.e., a street with cars. To enable us to arrange objects freely, it
models a scene in 3D and asks us to locate 3D objects in the scene, where each of them is represented
implicitly. GIRAFFE generates composited images by rendering all entities together using NeRF
pipeline Mildenhall et al. (2021), and it’s trained with GAN loss Goodfellow et al. (2014); Mescheder
et al. (2018). Though GIRAFFE can generate controllable high-quality 3D scenes, it has limitations
on image resolution and scene scale.
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Large Image Synthesis with Diffusion Though most diffusion models have translational equivari-
ance, which allows us to generate an arbitrary-sized image, they are failed to produce plausible large
images without additional fine-tuning Rombach et al. (2022); Avrahami et al. (2022).

Compositional Generation Using Composable Diffusion MultiDiffusion and DiffCollage Bar-Tal
et al. (2023); Zhang et al. (2023) are the works to address the composition strategy for multiple
diffusion. Two works have the purpose of compositing multiple text-to-image diffusion models to
generate holistic images for images of local regions.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

In this paper, we follow the formulation of Denoising Diffusion Implicit Models (DDIM) Song et al.
(2020a) to derive the training process and inference process. In a nutshell, diffusion models sample
start from the initial random sample yT from the prior distribution N (0, I) and generate samples
iteratively (yT−1, ...,y0) by removing the noise from the sample, which can be viewed as MCMC
sampling process for y0’s.

Training To train diffusion models, we first sample a data y0 from the dataset and sample the noisy
latents yt (t = 1, ..., T ) from y0 via non-Markovian forward kernel:

q(y1:T | y0) = q(yT | y0)

T∏
t=2

q(yt−1 | yt,y0) (1)

where the forward kernel for each step is provided as:

q(yt−1 | yt,y0) = N (
√
ᾱty

0 +
√
1− ᾱt−1 − σ2

t ·
yt −

√
ᾱty

0

√
1− ᾱt

, σ2
t I) (2)

q(yT | y0) = N (
√
ᾱTy

0, (1− ᾱT )I) (3)
Note that ᾱt, σt are hyperparameter constants where ᾱT ≈ 0, and σt is the scale for Langevin noise
term Song et al. (2020a). We then approximate the distribution of latents q(y0:T | y0) with the reverse
process of diffusion model: pθ(y0:T ) where the design choice of approximate distribution pθ is set as
Markovian:

pθ(y
t−1 | yt) =

{
N (f

(1)
θ (y1), σ2

1I) if t = 1

q(yt−1 | yt, f
(t)
θ (yt)) otherwise

(4)

f
(t)
θ (yt) = (yt −

√
1− ᾱt · ϵ(t)θ (yt))/

√
ᾱt (5)

here ϵ(t)θ is known as “score predictor” Song & Ermon (2019); Song et al. (2020a), where the “score”
is the gradient of log-probability distribution. We can obtain optimal θ by minimizing the following
variational inference objective:

J(θ) = Ey0:T∼q(y0:T )[log q(y
0:T | y0)− log pθ(y

0:T )] (6)

According to Song et al. Song et al. (2020a), minimizing this objective is equivalent to minimizing a
surrogate objective:

Jsurr(θ) =

T∑
t=1

Ey0∼q(y0),ϵt∼N (0,I)[∥ϵ
(t)
θ (

√
ᾱty

0 +
√
1− ᾱtϵt)− ϵt∥2] (7)

This process can be viewed as variational inference for the distribution of y0:T , and the approximated
reverse process pθ can be viewed as an MCMC sampler. Also, the surrogate objective in Eq. 7 is
equivalent to the surrogate objective for Denoising Diffusion Probabilistic Models (DDPM) Ho et al.
(2020), which enables us to use the pretrained DDPM model for DDIM inference.

Inference After training, we can sample plausible y0 by sampling initial latent yT ∼ N (0, I) and
sequentially sampling the previous timestep latent given the current timestep latent: pθ(yt−1 | yt).
Hence, the inference procedure for the diffusion model can be viewed as an approximate MCMC
sampling for distribution q(y0).
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Figure 1: (left) Bipartite Bayesian network introduced in Formulation. (right) Graphical model for
MCMC Sampling at timestep t.

3.2 LATENT DIFFUSION MODELS

In Sec. 5.2, we use publicly available Latent Diffusion Models Rombach et al. (2022) for approximat-
ing the distribution of observable variables via variational inference. Latent Diffusion Model (LDM)
is a diffusion model that operates on the latent space of an image, where the images are encoded into
latents and decoded back to the image via pretrained VAE Rombach et al. (2022); Kingma & Welling
(2013); Van Den Oord et al. (2017). Specifically, when given pretrained VAE encoder E and decoder
D, the relation between the latent and image satisfies:

z = E(x), x ≈ D(z) (8)

LDMs generate the latents z from initial random noise latent, which can be transformed to an image
using the decoder as in Eq. 8. On account of this, we represent the image and image latent with
the same notation (a y-notation, i.e., yt or yt

i) for brevity. It is noteworthy that LDMs are trained
following the DDPM training procedure Ho et al. (2020). Since the training procedure of DDPM and
DDIM are equivalent, as we have mentioned earlier in Sec. 3.1, it is fine to use DDIM’s inference
procedure for approximate MCMC sampling, as we have done in our research.

4 FORMULATION

In this section, we will provide a general mathematical formulation for the compositional generation
problem. Consider the following Bayesian inference problem. Given the bipartite Bayesian graphical
model GB(V,E), where vertices can be decomposed into two mutually exclusive sets V = {X,Y }.
We denote X = {x1,x2, ...,xn} as a set of “control variables” and Y = {y1,y2, ...,ym} as a
set of “observable variables”. Refer to Fig. 1-(left) for the visualization of the graphical model.
Control variables are the target variables we aim to generate or possibly alter to have a higher
probability. Observable variables are the variables we can “observe”, which means that we can obtain
the distribution information p(Y ):

p(Y ) =

m∏
i=1

p(yi) (9)

which suffices for each observable variable, obtaining distribution information p(yi) either explicitly
or implicitly. We may consider variables “containing explicit distribution information” if the exact
marginal probability value p(yi) can be evaluated and variables “containing implicit distribution
information” (1) if the information is obtained from the generative models for the marginal distribution
p(yi); (2) if we can sample from the distribution; or so on.

This formulation represents the composition problem well, as we need to composite the information
from observable variables in order to achieve meaningful updates for the compositions (which are
represented as control variables). Under the intuition that the compositions we try to generate will
likely have a mathematical relationship with each separate component in the direction starting from
composition to the component (i.e., the component is dependent on composition), we formulate the
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dependency between control variables and observable variables as a conditional distribution:

p(Y | X) =

m∏
i=1

p(yi | PA(yi)) (10)

where PA(·) denotes the parents of a given random variable. Note that such composition is assured
since the graphical model is bipartite and the parents of yi is a subset of X . Given the distribution
information for observable variables Y and stochastic dependency between X and Y , the problem’s
goal is to find all realizations of control variables X that maximize the marginal probability of X:

X∗ = argmax
X

p(X) (11)

This is a general formulation encompassing a wide range of compositional generation tasks, where
the definition of tasks varies by the type of information provided for the marginal distribution of
observable variables (i.e., p(Y )) or type of stochastic dependency between control variables and
observable variables (i.e., p(Y | X)).

In this work, we focus on the case where we can sample from the marginal distribution of observable
variable p(yi) and no other distribution information is provided. We formulate the stochastic
dependency p(Y | X), as a deterministic observation with “observation noise” Ψi (for i = 1, ..,m):

p(Y | X) =

m∏
i=1

N (yi | fi(PA(yi)),Ψi) (12)

where observation functions fi and observation noise Ψi, vary by the characteristics specific to the
task. For brevity, we will denote fi(PA(yi)) as fi(X), considering the function to be constant for
inputs other than PA(yi). In this work, we formulate Ψi to be scaled identity, i.e., Ψi = ψ2

i I.

5 METHOD

5.1 OVERVIEW

We now discuss our method under the provided formulation. Our method mitigates the aforementioned
challenges by introducing various strategies. The method starts by training diffusion models on the
marginal distribution of observable variables p(yi) for ∀i = 1, ...,m, where the dataset is sampled
from p(yi)’s. This procedure can be viewed as variational inference, and the trained diffusion model
can be viewed as an approximate MCMC sampler, in which the resulting distribution information
(for our method, score function value) is easier to use than just direct sampling. We then aggregate
the score function values for yi’s to create an optimization objective with respect to control variables
X , which resembles the objectives in Expectation-Maximization (EM) algorithm Moon (1996). We
optimize X according to the objective, which can be viewed as sampling from an adaptive proposal.
The method repeats the aforementioned process, finally giving optimal X .

5.2 DIFFUSION AS APPROXIMATE MCMC

The method trains diffusion models, with different parameters θi for each observable variable yi to
approximate the marginal distribution p(yi). The training procedure starts by sampling y0

i ’s from
each marginal distribution p(yi). Then, following the provided forward kernel represented in Eq. 1,
we sample the sequence of noisy latents y0:T

i from each sample y0
i . Using the collected dataset,

we minimize the surrogate objective Jsurr(θi) from Eq. 7 for each i, resulting m different diffusion
models:

θ∗i = argmin
θi

Jsurr(θi) for ∀i = 1, ...,m (13)

As mentioned in Sec. 3.1, this process can be viewed as variational inference. After training, the
method utilizes trained diffusion models as approximate MCMC sampler, in which the adaptive
proposal can be derived from Eq. 2∼5 as:

yt−1
i =

√
ᾱt−1(

yt
i −

√
1− ᾱtϵ

(t)
θi
(yt

i)√
ᾱt

) +
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ∗
i
(yt

i) + σtzt, zt ∼ N (0, I) (14)
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In this work, we use the deterministic sampling process with zero Langevin noise, i.e., σt = 0 (Note
that σt is a hyperparameter):

yt−1
i =

√
ᾱt−1(

yt
i −

√
1− ᾱtϵ

(t)
θi
(yt

i)√
ᾱt

) +
√

1− ᾱt−1 · ϵ(t)θ∗
i
(yt

i) (15)

5.3 OPTIMIZATION-BASED ADAPTIVE PROPOSAL

Now that we have a diffusion-based approximate MCMC sampler for the marginal distribution
p(yi)’s, we aim to sample X concurrent to the MCMC sampling process of yi’s. Specifically, when
given control variables at timestep t (Xt = {xt

i}ni=1), we aim to sample the updated control variables
Xt−1 to eventually reach X0, which is what we aim to generate. This process resembles sampling
from an adaptive proposal, which is optimization-based. Such a sub-problem can be formulated
again as an inference problem for the graphical model consisting of Xt, Y t, Xt−1, Y t−1. Refer to
Fig. 1-(right)-(a) for visualization of the graphical model at timestep t.

We sample Xt−1(∗) when Xt is given via optimization:

Xt−1(∗) = argmax
Xt−1

Q(Xt−1 | Xt) (16)

where Q is an optimization objective which resembles the EM algorithm Moon (1996):

Q(Xt−1 | Xt) := EY t,Y t−1 [log p(Xt−1, Y t−1, Y t | Xt)] (17)

From the graphical model provided in Fig. 1-(right)-(a), we can derive that pairs (yt
i ,y

t−1
i )’s for all

i’s are mutually independent when given X . Hence, we can decompose the log-probability term as
below:

log p(Xt−1, Y t−1, Y t | Xt) =

m∑
i=1

log p(Xt−1,yt−1
i ,yt

i | Xt) (18)

We can further factorize the log-probability term as:

log p(Xt−1, Y t−1, Y t | Xt) =

m∑
i=1

[log p(yt−1
i , Xt−1 | yt

i) + log p(yt
i | Xt)] (19)

Using Eq. 19, we can also decompose the optimization objective as below:

Q(Xt−1 | Xt) =

m∑
i=1

Eyt
i ,y

t−1
i

[log p(yt−1
i , Xt−1 | yt

i) + log p(yt
i | Xt)] (20)

Inspired by the Hard EM algorithm Ruggieri et al. (2020), we approximate the expectation term w.r.t.
yt
i into a maximization term to approximate the optimization objective:

Q(Xt−1 | Xt) ≈
m∑
i=1

Eyt−1
i

[log p(yt−1
i , Xt−1 | ỹt

i) + log p(ỹt
i | Xt)] (21)

where ỹt
i = argmax

yt
i

p(yt
i |Xt). Recall from Eq. 12 that ỹt−1

i ∼ N (fi(X
t−1), ψ2

i I). From this, we

can easily derive that ỹt
i = fi(X

t). We now argue that:

log p(yt−1
i , Xt−1 | ỹt

i) =

{
log p(Xt−1 | ỹt−1

i , ỹt
i) if yt−1

i = ỹt−1
i

0 otherwise
(22)

where ỹt−1
i is obtained via deterministic sampling described in Eq. 15 using ỹt

i , since for any
yt−1
i ̸= ỹt−1

i : ∫
p(yt−1

i , Xt−1 | ỹt
i)dX

t−1 = p(yt−1
i | ỹt

i) = 0 (23)

hence for ∀Xt−1:
p(yt−1

i , Xt−1 | ỹt
i) = 0 (24)
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and for the case of yt−1
i = ỹt−1

i :

p(ỹt−1
i , Xt−1 | ỹt

i) = p(Xt−1 | ỹt−1
i , ỹt

i)p(ỹ
t−1
i | ỹt

i) = p(Xt−1 | ỹt−1
i , ỹt

i) (25)

since sampling for ỹt−1
i is a deterministic procedure. Using Eq. 22, the optimization objectives can

be reduced to:

Q(Xt−1 | Xt) ≈
m∑
i=1

[log p(Xt−1 | ỹt−1
i , ỹt

i) + log p(ỹt
i | Xt)] (26)

Applying Bayes’ rule, we get:

Q(Xt−1 | Xt) ≈
m∑
i=1

[log
p(ỹt−1

i | Xt−1)p(Xt−1)

p(ỹt−1
i , ỹt

i)
+ log p(ỹt

i | Xt)] (27)

From ỹt−1
i ∼ N (fi(X

t−1), ψ2
i I), if the magnitude of observation noise ψi is small, we can assume

that marginal distribution p(Xt−1) is “locally constant” compared to p(ỹt−1
i | Xt−1) within the

region around optimal Xt−1. The underlying idea behind this assumption is that the conditional
distribution p(ỹt−1

i | Xt−1) will undergo significant changes when Xt−1 deviates from the optimal
point, particularly when the magnitude of Ψi is small. In contrast, the marginal distribution p(Xt−1),
which represents the true probability value as an expectation considering numerous possible values
of yt−1

i , will exhibit smoother behavior compared to the prior distribution. Using this assumption,
the optimization problem suffices to:

Xt−1(∗) ≈ argmax
Xt−1

m∑
i=1

log p(ỹt−1
i | Xt−1) (28)

where we have also neglected all constant terms w.r.t. Xt−1. Using ỹt−1
i ∼ N (fi(X

t−1), ψ2
i I), the

problem becomes:

Xt−1(∗) ≈ argmin
Xt−1

m∑
i=1

1

2ψ2
i

∥ỹt−1
i − fi(X

t−1)∥2 (29)

We apply a gradient descent approach for optimizing Xt−1.

5.4 AUXILIARY VARIABLE Λ FOR ADDITIONAL FLEXIBILITY

During experiments, we noticed some failure cases. We conjectured that the failure can be attributed
to the excessive restriction imposed by the deterministic procedure described in Equation 15, which
severely limits the flexibility in sampling. To mitigate this issue, we introduce auxiliary random
variables Λt = {λti}mi=1 to the graphical model, as shown in Fig. 1-(right)-(b). λti replaces the
deterministic procedure from Eq. 15 to:

yt−1
i (λti) =

√
ᾱt−1(

yt
i −

√
1− ᾱt · λti · ϵ

(t)
θ∗
i
(yt

i)√
ᾱt

) +
√

1− ᾱt−1 · λti · ϵ
(t)
θ∗
i
(yt

i) (30)

This is based on the intuition that predicted ϵ(t)θ∗
i
(yt

i) value is equivalent to a score Song & Ermon
(2019); Ho et al. (2020); Song et al. (2020a); the gradient of log-probability distribution pθ∗

i
(yi).

Hence, the procedure above can be viewed as pushing yt
i towards the direction of ϵ(t)θ∗

i
(yt

i) with
step-size λti, which increases the marginal probability of yi. Then, we can re-define the optimization
problem as below:

Xt−1(∗),Λt(∗) = argmax
Xt−1,Λt

Q′(Xt−1,Λt | Xt) (31)

where the optimization objective is defined as:

Q′(Xt−1,Λt | Xt) := EY t,Y t−1 [log p(Xt−1, Y t−1, Y t,Λt | Xt)] (32)

Following the similar way of Eq. 18∼21, the optimization objective is approximated as:

Q′(Xt−1,Λt | Xt) ≈
m∑
i=1

Eyt−1
i

[log p(yt−1
i , Xt−1 | λti, ỹt

i) + log p(λti) + log p(ỹt
i | Xt)] (33)
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where ỹt
i = argmax

yt
i

p(yt
i | Xt) = fi(X

t−1). We now argue that:

log p(yt−1
i , Xt−1 | λti, ỹt

i) =

{
log p(Xt−1 | ỹt−1

i (λti), ỹ
t
i) if yt−1

i = ỹt−1
i (λti)

0 otherwise
(34)

where ỹt−1
i (λti) is obtained via Eq. 30 using ỹt

i and λti, since for any yt−1
i ̸= ỹt−1

i (λti):∫
p(yt−1

i , Xt−1 | λti, ỹt
i)dX

t−1 = p(yt−1
i | λti, ỹt

i) = 0 (35)

hence for ∀Xt−1:
p(yt−1

i , Xt−1 | λti, ỹt
i) = 0 (36)

and for the case of yt−1
i = ỹt−1

i (λti):

p(ỹt−1
i (λti), X

t−1 | λti, ỹt
i) = p(Xt−1 | ỹt−1

i (λti), λ
t
i, ỹ

t
i)p(ỹ

t−1
i (λti) | λti, ỹt

i) = p(Xt−1 | ỹt−1
i (λti), ỹ

t
i)

(37)
since sampling for ỹt−1

i (λti) when λti, ỹ
t
i given is a deterministic procedure. Using Eq. 34, the

optimization objectives can be reduced to:

Q′(Xt−1,Λt | Xt) ≈
m∑
i=1

[log p(Xt−1 | ỹt−1
i (λti), ỹ

t
i) + log p(λti) + log p(ỹt

i | Xt)] (38)

Applying Bayes’ rule, we get:

Q′(Xt−1,Λt | Xt) ≈
m∑
i=1

[log
p(ỹt−1

i (λti) | Xt−1)p(Xt−1)

p(ỹt−1
i (λti), ỹ

t
i)

+ log p(λti) + log p(ỹt
i | Xt)] (39)

Again, from ỹt−1
i (λti) ∼ N (fi(X

t−1), ψ2
i I), if the magnitude of observation noise ψi is small, we

can assume that marginal distribution p(Xt−1) is “locally constant” compared to p(ỹt−1
i (λti) |Xt−1)

within the region around optimal Xt−1, which reduces the optimization problem to:

Xt−1(∗),Λt(∗) ≈ argmax
Xt−1,Λt

m∑
i=1

[log p(ỹt−1
i (λti) | Xt−1) + log p(λti)] (40)

where we have also neglected all constant terms w.r.t. Xt−1 and Λt. Using ỹt−1
i (λti) ∼

N (fi(X
t−1), ψ2

i I), the problem becomes:

Xt−1(∗),Λt(∗) ≈ argmin
Xt−1,Λt

m∑
i=1

[
1

2ψ2
i

∥ỹt−1
i (λti)− fi(X

t−1)∥2 − log p(λti)] (41)

Intuitively, the above problem can be viewed as optimizing Xt−1 with flexibility on the step size for
an update in observable variables, and the negative-log-prior term (i.e., − log p(λti)) can be seen as a
regularization term for λti. In this work, we use L1-regularization for λti − 1; hence, Eq. 41 resembles
the LASSO regression Ranstam & Cook (2018). We apply a gradient descent approach, same as in
Sec. 5.3, for optimizing Xt−1 and Λt.

6 EXPERIMENTS

Our approach is a general solution for compositional generative tasks, providing broad applicability to
diverse scenarios. In this section, we present a series of experiments that we conducted to evaluate the
performance and effectiveness of our method. We provide detailed descriptions of these experiments
along with their corresponding results.

6.1 EXTENSIVE IMAGE GENERATION

Our method is capable of generating large images by generating local patches. such as panorama
images. We demonstrate our method in the task of generating a panorama image composed of three
consecutive local patches. In this case, the panorama image can be viewed as a control variable (i.e.,

8
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Figure 2: (left) Generated Panorama images using prompts with a shared prompt, ”a photo of the
grand canyon”. (right) Generated Panorama images using different prompts for each patch

Figure 3: (left) Pipeline for producing y latent values using x values. (right) Pipeline for producing
aligned face and body for Sec. 6.3.

x1), and the local patches as observable variables (i.e., y1 ∼ y3). Instead of training a diffusion
model as in Sec. 5.2, we leverage a publicly available pretrained latent diffusion model Rombach
et al. (2022) conditioned with the prompt we provide. We crop the control variable x1 to generate
observable variables y1 ∼ y3 along the wide panorama axis and force the patches to have consecutive,
overlapped latent values. Each stable diffusion model computes the score functions value for each
yi’s and optimizes control variable x1 to maximize our aggregated objective functions mentioned in
Eq. 32.

We refer the readers to Fig. 2 for results. We observe that our method creates continuous and seamless
panorama images. The generated local patches align with the provided prompt. We also provide
additional results using different prompts for each local patch in Fig. 2. The results show a smooth
transition between scenes, which demonstrates our method’s compositional ability.

6.2 COMPOSITIONAL SCENE GENERATION

In this section, we focus on the task of generating a background image and object simultaneously.
To be specific, the control variables x1,x2 each denote the background without/with an object.
The observable variables y1, y2 each are identical to x1, x2. Observable variable y3 is an image
composited of “background region” of x1 and “object region” of x2. We manually set the background
region of x1 and object region of x2 as partitions, where the object region is defined as an arbitrary
bounding box. Refer to Fig 3-(left) for more details.

Our aim is to generate realistic and plausible composition y3, maintaining the background from y1

and object from y2. We set the conditioning prompt for y1, y2, y3 each to represent the background
without an object, an object, and an overall scene with y1’s background and object from y2. For
y3’s conditioning prompt, we do not provide a detailed description of the object as we represent the
overall scene.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: (left) A result of the compositional scene generation in Sec. 6.2 with used target prompts.
(right) Generated body image with different prompt conditioning.

Results are shown in Fig. 4-(left). The first row of generated images aligns with the conditioning
prompt as well, and we observe that y3 blends naturally. From the second row, we observe that we
can generate an overall scene with the detailed object in y3 without directly inserting the detailed
explanation to y3.

6.3 COMPOSABLE BODY SYNTHESIS

Our method can be applied to generate a full body with detailed local parts by compositing multiple
diffusion models with diverse conditions. Compared to compositional scene generation in Sec. 6.2,
it requires accurate alignment between body and parts as plausible locations of parts are strongly
conditioned on body pose. Here we show a few examples of merging the full body and face as local
parts. In this task, we define single control variable x1 corresponding to 96× 96 dimension latent,
which encodes 768× 768 body image. Then set two observation variables corresponding to full body
y1 identical to x1 and y2 for closed-up face area, which is a crop of x1 with latent size 48 × 48.
Different from Sec. 6.2, instead of randomly placing cropping bounding box for y2, we place the
bounding box on a fixed point where the head locates. To adjust the head positioning of the generated
image, we used ControlNet Zhang & Agrawala (2023) to estimate the score for full body y1 with
OpenPose Cao et al. (2019) body keypoint conditioning as shown in Fig. 3-(right).

To check the composition of the head and body is successful, we gave a detailed prompt only on the
diffusion model for face y2. As shown in Fig. 4-(right), our method succeed in generating images
consistent with both of the prompts, even though the composed result is rare in the real world. When
comparing the generated results to a control group, where the influence of y2 has been eliminated,
we can observe that the desired property of the prompt is effectively injected into the outcome in a
compositional manner.

7 CONCLUSION

We have presented a novel approach to address the compositional generation problem by formulating
it as a Bayesian inference problem. Our formulation is versatile and applicable to a wide range of
tasks in different scenarios. Under the provided formulation, we propose an optimization-based
sampling method inspired by Markov Chain Monte Carlo (MCMC) techniques. The method leverages
variational inference with diffusion models and aggregates information from these models to devise
optimization-based adaptive proposals used for iterative sampling. Our method has demonstrated
high performance across various tasks, as evidenced by our qualitative results.

However, it is important to acknowledge the limitations of our method. Specifically, our approach is
currently only justified for scenarios with zero Langevin noise. It would be valuable for future work
to explore and address the case with non-zero Langevin noise, as this may potentially enhance the
performance of our method.

Furthermore, our provided formulation for the compositional generation problem offers flexibility
in terms of the choice of stochastic dependency (i.e., p(Y | X)) and the information types for
observables (i.e., p(Y )). This implies that there are numerous design choices available, which we
leave as avenues for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. arXiv preprint
arXiv:2206.02779, 2022.

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
controlled image generation. arXiv preprint arXiv:2302.08113, 2, 2023.

Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer. Retrieval-
augmented diffusion models. Advances in Neural Information Processing Systems, 35:15309–
15324, 2022.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563–22575, 2023.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

John Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-8(6):679–698, 1986. doi: 10.1109/TPAMI.1986.4767851.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person
2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. arXiv preprint arXiv:2303.12789, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Hiromichi Kamata, Yuiko Sakuma, Akio Hayakawa, Masato Ishii, and Takuya Narihira. Instruct
3d-to-3d: Text instruction guided 3d-to-3d conversion. arXiv preprint arXiv:2303.15780, 2023.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1931–1941, 2023.

Steven J Luck and Andrew Hollingworth. Visual memory. OUP USA, 2008.

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Realfusion: 360deg
reconstruction of any object from a single image. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8446–8455, 2023.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Image
synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? In International conference on machine learning, pp. 3481–3490. PMLR,
2018.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):
47–60, 1996.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11453–11464, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021b.

Jonas Ranstam and JA Cook. Lasso regression. Journal of British Surgery, 105(10):1348–1348,
2018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Andrea Ruggieri, Francesco Stranieri, Fabio Stella, and Marco Scutari. Hard and soft em in bayesian
network learning from incomplete data. Algorithms, 13(12):329, 2020.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
arXiv preprint arXiv:2302.05543, 2023.

Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu. Diffcollage: Parallel
generation of large content with diffusion models. arXiv preprint arXiv:2303.17076, 2023.

13


	Introduction
	Related Work
	Preliminaries
	Diffusion Models
	Latent Diffusion Models

	Formulation
	Method
	Overview
	Diffusion as Approximate MCMC
	Optimization-based Adaptive Proposal
	Auxiliary Variable  for Additional Flexibility

	Experiments
	Extensive Image Generation
	Compositional Scene Generation
	Composable Body Synthesis

	Conclusion

