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Abstract

Advances in the general capabilities of large
language models (LLMs) have led to the pos-
sibility of incorporating them into automated
decision systems. A faithful representation of
probabilistic reasoning in these models can be
essential to ensure the reasoning of the auto-
mated decision systems incorporating them is
trustworthy and explainable. Despite previous
work suggesting that LLMs can perform com-
plex reasoning and well-calibrated uncertainty
quantification, we find that current versions of
this class of model lack the ability to provide
consistent and coherent probability estimates.
We then suggest possible directions that future
research can take to alleviate this weakness.

1 Introduction

In order for an agent to be an effective probabilistic
reasoner, it must not violate the axioms of probability
(Bas, 2019). If an agent violates any of these axioms, it
implies that it lacks the capacity to perform robust prob-
abilistic reasoning, including uncertainty quantification.
Two of the most fundamental properties of probabilistic
reasoning (both corollaries of Kolmogorov’s original
three axioms (Kolmogorov, 1963)) are:

 Consistency. A probability measure P on a sample
space € assigns to every event A a unique proba-
bility P(A), where 0 < P(A4) < 1.

» Complementarity. For any event A, with comple-
ment A¢, P(A) + P(A°) = 1.

Generative LLMs have demonstrated impressive per-
formance in many reasoning tasks - including tasks
which they have not been specifically trained for (Brown
et al., 2020; Bubeck et al., 2023). This has led to the
incorporation of LLMs into automated decision sys-
tems (ADSs) (Zhang et al., 2023; Ouyang and Li, 2023;
Wang et al., 2023). In order for ADSs to be trustwor-
thy and contestable (Henin and Métayer, 2021; Lyons
et al., 2021), they should be accompanied by a faithful
representation of their reasoning. In the majority of
real-world settings, in order for this to be an effective
representation, it would need to include probabilistic
uncertainty estimates.

Unlike some previous work, we are attempting to

measure something distinct from ‘subjective’ uncer-
tainty estimates (Geng et al., 2023), which attempt to
assess the uncertainty intrinsic to the model. It is mea-
sured by comparing the uncertainty estimate with the
veracity of the model’s output. Instead, we are inter-
ested in what may be called ‘objective’ uncertainty:
“The objective probability of A at time t is the subjec-
tive probability that a perfectly rational agent would
assign to A, if she had perfect information about the
world at times < t and no information about the world
at times > t.” (Rayo, 2019). Thus, this is concerning
the probability of a state of the world, regardless of the
knowledge, or lack thereof, of the agent assigning the
probability. This class of statements are at the core of
academic disciplines and event forecasting.

An example of a decision which requires ‘objective’
uncertainty estimations is determining the diets of the
first inhabitants of America. The main sources of un-
certainty in this inference come from imprecision in
the measurement of carbon isotope levels in bone sam-
ples, as well as in auxiliary evidence about the climate
(Booker and Ross, 2011). Having a consistent and ratio-
nal model of the uncertainties involved in this scenario
allows for the effective integration of any new evidence
or theories that come to light, and the possibility of
overhauling existing conclusions.

In this paper we demonstrate that the current gen-
eration of LLMs, including the GPT-3.5 and GPT-4
(Achiam et al., 2023) family of models, frequently vio-
late the basic principles of probabilistic reasoning. This
undermines a corpus of existing work that argues that
LLMs exhibit sophisticated decision-making capabili-
ties (Bubeck et al., 2023), including the ability to ef-
fectively quantify uncertainty (Lin et al., 2023; Tian
et al., 2023; Hou et al., 2023). In Section 2 we de-
scribe our method for evaluating LLMs’ adherence to
the principles of consistency and complementarity. In
Section 3 we report the results of our experiments using
this method. In Section 4 we briefly highlight relevant
related work, and in the final Section we discuss the
implications of our results and propose a number of
possible directions for future work.

2 Method

We carry out experiments to illustrate the degree to
which LLMs adhere to the principles of consistency and
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Figure 1: Examples of LLMs violating the principles of
consistency (top) and complementarity (bottom).

complementarity. For the former we use two separate
methods to elicit the models’ degree of confidence about
particular statements. We then measure the discrepancy
between the values produced by the different methods.
For the latter, we compare the models’ degree of confi-
dence in a statement, with the degree of confidence in
the negated statement (the complement of the statement).
We provide details below.

2.1 Consistency

We develop a method for recursive uncertainty estima-
tion. First, we prompt the model to produce a statement
which has a particular likelihood of being true. We use
a prompt in the following format (referred to as the
Statement generation prompt):

Please provide a statement that would be as-
signed X% probability of being true by experts
with access to all the necessary evidence.
Do not make it a prediction about the future.
Do not provide any justification. Do not
mention the probability of the statement. Only
respond with the statement and nothing else.

We then feed the statements back into the same model
(in a separate context window), and prompt it to produce
an uncertainty estimate (referred to as the probability
assignment prompt):

Please state the percentage probability of
being true that experts with access to all the
necessary evidence would assign to the
following statement (only return a single
numerical percentage and no other explanation
or commentary): <statement>.

In order to demonstrate inconsistency, we measure
the discrepancy between the percentage used as input in
the first (statement generation) prompt, and the percent-
age output by the model after the second (probability
assignment) prompt.

In order to reduce the bias introduced by the particular
format of the pair of prompts, we carry out the experi-
ments with three additional adapted (pairs of) prompts.
Two specify that the statement must be ‘historical’ and
‘scientific’ respectively, while the third replaces

would be assigned X% probability of being true
by experts with access to all the necessary
evidence

with
should be assigned X% probability of being
true

We refer to the original pair of prompts as expert, to
the second and third as history and science, respectively,
and to the last one as base.

2.2 Complementarity

In order to evaluate adherence to complementarity, we
first negate the statement produced by the statement
generation prompt. We then use the same probability
assignment prompt as previously to elicit a confidence
score for the negated statement. Then, complementarity
amounts to obtaining:

P(original statement) + P(negated statement) = 1.

3 Experiments

3.1 Consistency

We evaluate four LLMs (GPT-4-0613, GPT-4-preview-
0125, GPT-3.5-turbo-0125 and Mixtral-8x7B-Instruct-
v01 (Jiang et al., 2024)).! For each LLM, we use values
of X in the statement generation prompt ranging from
0 to 100 in increments of 10. For each one of the four
prompt types and for each LLM, we produce 20 samples
at each percentage value, resulting in 220 samples.Thus,
overall, we produce 880 samples per LLM.

The results are overviewed in Table 1. Here, the ‘Av-
erage difference’ measures the cumulative magnitude of
the difference between the probability specified in the
statement generation prompt, and the probability output
by the model in response to the probability assignment
prompt. Also, the ‘Proportion difference > 15%’ mea-
sures the frequency of significantly diverging samples,
i.e. when the input and output percentages differ by
more than 15% (in absolute terms). This is an important
metric as the cases when a model’s probabilistic esti-
mates are dramatically inconsistent pose a greater threat
in terms of possible downstream impact.

Note that we run the experiments three times, using
temperatures of 1, 0.5 and 0, respectively, for the state-
ment generation prompt. We choose the first two values

'For all experiments, for running inferences on Mixtral
we used a Tesla A100 for a total of 20 GPU hours. For GPT
models we spent a total of $50 in API credits.



Model Prompts Average difference Proportion difference > 15%
expert 18.6% /20.2% / 18.5% 0.450/0.556/0.500
GPTA history 22.4% 120.1% /23.1% 0.609/0.543/0.636
science 18.9% /18.6% / 13.1% 0.519/0.532/0.375
base 19.5% /23.3% / 13.9% 0.518/0.561/0.444
Average 20.05% 0.534
expert 19.5% /19.9% / 17.6% 0.554/0.582/0.636
GPTA-turbo history 18.2% 1/ 17.7% / 9.3% 0.538/0.573/0.286
4 science 17.4% 1 19.5% / 11.7% 0.522/0.619/0.300
base 19.9% / 18.9% / 11.7% 0.537/0.459/0.300
Average 18.57 % 0.540
expert 22.7% 1 23.6% [ 7.0% 0.545/0.543/0.200
history 26.1% /21.7% / 18.5% 0.593/0.492/0.429
GPT-3.5-turbo science 38.1% /39.0% / 27.5% 0.704/0.619/0.500
base 22.8% / 18.1% / 22.8% 0.582/0.389/0.429
Average 26.15% 0.550
expert 25.0% /21.3% / 24.7% 0.532/0.554/0.714
Mixtral history 23.8% 122.7% 1 12.0% 0.596/0.622/0.4
science 25.2% 126.7% | 24.7% 0.596/0.611/0.714
base 29.8% /27.0% / 16.7% 0.630/0.591/0.667
Average 24.91% 0.593

Table 1: The average difference and proportion of differences greater than 15% between the percentage values input
in the statement generation prompt and output after the probability assignment prompt in each pair, as we describe
in Section 2.1. The results are given when setting the temperature of the models for generating the statements to 1 /
0.5 /0 (in the first two cases with 20 samples and in the latter case with a single sample, per percentage value). The
reported averages are weighted by number of samples for each temperature and are taken across all four prompt

types and three temperatures.

to ensure that there is enough diversity in the outputs.
In the case where the temperature is set to 0, we only
produce a single sample for each percentage value as
the output does not differ.

Furthermore, when the same statement is produced
multiple times at a different probability (e.g. ‘Humans
will discover evidence of microbial life on Mars’ is
produced twice as a statement with 50% and 60% prob-
ability, respectively) we assign to the statement a range
of ‘ground-truth’ probabilities (e.g. [50%,60%]), and
calculate the proportion difference by measuring dis-
tances (e.g. the difference between [50%,60%] and 1)
55% is 0, ii) 40% is 10, and iii) 80% is 20).

For the probability assignment prompt (second in
each pair), we run the experiments in Table 1 using a
temperature of 0, so that the output is as deterministic,
and thus reproducible, as possible.

We also run two further experiments where we in-
crease the temperature for assigning probabilities (sec-
ond prompt). This allows us to sample from the outputs.
We set the temperature to 0.5 and take 10 samples of the
probability for each statement. For this experiment we
use the best performing model (on average difference in
the consistency experiment), GPT-4-turbo, with the ‘ex-
pert’ prompt. We run the experiment with the samples
produced at temperature 1 and 0.5. For the temperature
1 samples, we get an average difference of 18.3%, and a

proportion of samples with difference > 15% of 0.547.
This is compared to 19.5% and 0.554 when using one
probability produced with temperature set to 0. Like-
wise, for the temperature 0.5 samples, we observe a
marginal improvement of 17.7% and 0.532, compared
to 19.9% and 0.582. This suggests our approach of set-
ting temperature to 0 offers a reliable approximation of
a more thorough sampling-based approach.

Discussion The results in Table 1 demonstrate the
systemic inconsistency in LLM outputs. GPT-4 and
GPT-4-turbo perform the best on both metrics (average
difference and proportion difference > 15%), with the
latter exhibiting an average difference of around 18.5%
between confidence extraction methods. The smaller
models both average roughly 25%. This confirms the
well-established relationship between model size and
performance (Liang et al., 2022).

Figure 2 gives a breakdown of the inconsistencies by
input percentage value (X in the statement generation
prompt). We observe that all models perform almost
perfectly at 0% input probabilities and all models apart
from Mixtral perform almost perfectly at 100% input
probabilities. This suggests that the LLMs we evaluate
have learnt robust ‘concepts’ of necessity and impossi-
bility. This is an important aspect of reasoning and may
offer an explanation for the impressive performance
these models have demonstrated on binary reasoning



tasks (Bubeck et al., 2023; Liang et al., 2022). However,
as demonstrated, this does not necessarily generalise to
the ability to reason with other input probabilities, which
is necessary for more complicated reasoning tasks.
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Figure 2: Breakdown of model inconsistency by in-
put percentage value (x-axis gives the input probability
value; y-axis gives the output probability value).

3.2 Complementarity

To measure adherence to complementarity we measure
the deviation of P(original statement) + P(negated state-
ment) from the expected value of 1. We evaluate the
adherence of the two models which demonstrate the
smallest proportion of significant inconsistencies and
lowest average inconsistency: GPT-4 (GPT-4-0613) and
GPT-4-turbo (GPT-4-preview-0125). To do so, we use
a subset of the samples produced in the consistency ex-
periment in order to limit cost (this subset amounts to
under 200 samples obtained using the initial (‘expert’)
variant of the prompts, after removing duplicates).

We automate the negation process by using GPT-4-
turbo. However, we verify that it has correctly negated
the statements before performing the evaluation. The
results are overviewed in Table 2.

Discrepancy Proportion of Samples
GPT-4-turbo  GPT-4
0 < 1% 0.30 0.54
5% >6 > 1% 0.23 0.14
10% > 6 > 5% 0.1 0.08
5> 10% 0.37 0.23
GPT-4-turbo  GPT4
Mean Discrepancy 17.71% 9.21%
Standard Deviation 26.58% 18.147%

Table 2: Summary of discrepancies between probabili-
ties assigned to statements and their negations.
Discrepancy: § = [100%—(P(original statement) +
P(negated statement))|

Discussion The results indicate that for GPT-4 over
a fifth and for GPT-4-turbo over a third of the pairs of

(original and negated) statements deviate by more than
10% from the rational value of 100%. Furthermore, the
mean deviation is approximately 9% and 17%. This
indicates these models have a severely limited capacity
for probabilistically modelling negation, which is a rela-
tively simple concept. Interestingly, this is a reversal of
the respective performances of GPT-4 and GPT-4-turbo
we observe in the consistency experiments.

4 Related Work

Our findings build on a body of work demonstrating
weaknesses in the ability of LLMs to adhere to basic
logical principles. The reversal curse (Berglund et al.,
2023) shows that in cases where a model has learnt “A
is B”, it has often not learnt “B is A”. We demonstrate a
similar effect but with probablistic beliefs.

Similarly, Fluri et al. (2023) demonstrate that LLMs
succumb to various logical inconsistencies. They also
show that LLMs are non-monotonic when forecasting,
which is an additional violation of probabilistic reason-
ing to the ones we have demonstrated.

Wong et al. (2023) propose a method for integrating
LLMs with a probabilistic logic engine. They also argue
the necessity for LLMs to be able to reason probabilisti-
cally, and suggest that combining them with a symbolic
module is the best way to achieve this.

Kuhn et al. (2022) also note the insufficiency of using
direct prompting-based methods to ascertain the uncer-
tainty of LLM outputs. They devise a sampling-based
method which uses the relative frequency of semantic
clusters as a way to measure model uncertainty. This
technique addresses subjective model uncertainty, and
it is not clear whether there is an effective method to
adapt it for representing objective uncertainty.

5 Conclusion and Future Work

In this paper we demonstrate that state-of-the-art LLMs
fail at basic probabilistic reasoning. We observe that
larger models demonstrate improved performance rel-
ative to their smaller counterparts. Nevertheless, the
current extent of their failure is too significant to extrap-
olate that further scaling will eradicate the problem.

Evidence that neural models can assign effective qual-
ity scores to code (Deepmind, 2023) might provide a
blueprint for how a similar approach can be developed
for probability attribution. However, the utility of this
method does not guarantee that it will still violate the
principles of probabilistic reasoning.

A neurosymbolic approach, such as the one presented
in Wong et al. (2023), bypasses the need for LLMs
to be able to reason probabilistically. Instead it can
rely on symbolic modules to handle any probabilistic
inferences they may have needed to make. It is possible
that a similar approach, using an appropriate symbolic
knowledge representation, may provide an effective and
robust solution to the problems we have highlighted in
this paper.



Limitations

In our experiments, we make extensive use of LLMs.
This hurts the reproducibility of some of the experi-
ments we have run, as the outputs of these models are
non-deterministic. However, we have included the raw
outputs of all the experiments we carried out, and pro-
vided details of the important hyperparamater settings
in the body of the paper.

We made sure to include one open source model (Mix-
tral), but unfortunately, at this time, the best performing
models are closed-source. This means that once again,
reproducibility of our experiments is harmed, as there is
an associated monetary cost with doing so. However, as
with the previous consideration, we have tried to remedy
this by including all the raw outputs of our experiments
with our submission.

While we did attempt to vary the models we evalu-
ate, we ended up using a single vendor for the majority
of the experiments. Ideally we would have been able
to evaluate a far greater number of models, and use a
greater number of samples per model. However, mon-
etary and computational constraints limited us in this
respect.

Ethical Considerations

The use of LLMs has an associated cost, either financial
or in access to compute, as well as an environmental cost.
This adds an extra barrier to use and research, compared
with other domains in computer science. Furthermore,
closed-source models place even greater restriction on
use.

Our research is examining fundamental capacities of
these models. The reality of the current landscape is
that closed-source models are currently the best per-
forming in this class of model. Therefore, any thorough
analysis of their limitations is contingent on conducting
experiments with the closed-source versions.

For running inferences on Mixtral we used a Tesla
A100 for a total of 20 GPU hours. For GPT models we
spent a total of $50 in API credits.
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