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Abstract

Advances in the general capabilities of large001
language models (LLMs) have led to the pos-002
sibility of incorporating them into automated003
decision systems. A faithful representation of004
probabilistic reasoning in these models can be005
essential to ensure the reasoning of the auto-006
mated decision systems incorporating them is007
trustworthy and explainable. Despite previous008
work suggesting that LLMs can perform com-009
plex reasoning and well-calibrated uncertainty010
quantification, we find that current versions of011
this class of model lack the ability to provide012
consistent and coherent probability estimates.013
We then suggest possible directions that future014
research can take to alleviate this weakness.015

1 Introduction016

In order for an agent to be an effective probabilistic017
reasoner, it must not violate the axioms of probability018
(Bas, 2019). If an agent violates any of these axioms, it019
implies that it lacks the capacity to perform robust prob-020
abilistic reasoning, including uncertainty quantification.021
Two of the most fundamental properties of probabilistic022
reasoning (both corollaries of Kolmogorov’s original023
three axioms (Kolmogorov, 1963)) are:024

• Consistency. A probability measure P on a sample025
space Ω assigns to every event A a unique proba-026
bility P (A), where 0 ≤ P (A) ≤ 1.027

• Complementarity. For any event A, with comple-028
ment Ac, P (A) + P (Ac) = 1.029

Generative LLMs have demonstrated impressive per-030
formance in many reasoning tasks - including tasks031
which they have not been specifically trained for (Brown032
et al., 2020; Bubeck et al., 2023). This has led to the033
incorporation of LLMs into automated decision sys-034
tems (ADSs) (Zhang et al., 2023; Ouyang and Li, 2023;035
Wang et al., 2023). In order for ADSs to be trustwor-036
thy and contestable (Henin and Métayer, 2021; Lyons037
et al., 2021), they should be accompanied by a faithful038
representation of their reasoning. In the majority of039
real-world settings, in order for this to be an effective040
representation, it would need to include probabilistic041
uncertainty estimates.042

Unlike some previous work, we are attempting to 043
measure something distinct from ‘subjective’ uncer- 044
tainty estimates (Geng et al., 2023), which attempt to 045
assess the uncertainty intrinsic to the model. It is mea- 046
sured by comparing the uncertainty estimate with the 047
veracity of the model’s output. Instead, we are inter- 048
ested in what may be called ‘objective’ uncertainty: 049

“The objective probability of A at time t is the subjec- 050
tive probability that a perfectly rational agent would 051
assign to A, if she had perfect information about the 052
world at times ≤ t and no information about the world 053
at times > t.” (Rayo, 2019). Thus, this is concerning 054
the probability of a state of the world, regardless of the 055
knowledge, or lack thereof, of the agent assigning the 056
probability. This class of statements are at the core of 057
academic disciplines and event forecasting. 058

An example of a decision which requires ‘objective’ 059
uncertainty estimations is determining the diets of the 060
first inhabitants of America. The main sources of un- 061
certainty in this inference come from imprecision in 062
the measurement of carbon isotope levels in bone sam- 063
ples, as well as in auxiliary evidence about the climate 064
(Booker and Ross, 2011). Having a consistent and ratio- 065
nal model of the uncertainties involved in this scenario 066
allows for the effective integration of any new evidence 067
or theories that come to light, and the possibility of 068
overhauling existing conclusions. 069

In this paper we demonstrate that the current gen- 070
eration of LLMs, including the GPT-3.5 and GPT-4 071
(Achiam et al., 2023) family of models, frequently vio- 072
late the basic principles of probabilistic reasoning. This 073
undermines a corpus of existing work that argues that 074
LLMs exhibit sophisticated decision-making capabili- 075
ties (Bubeck et al., 2023), including the ability to ef- 076
fectively quantify uncertainty (Lin et al., 2023; Tian 077
et al., 2023; Hou et al., 2023). In Section 2 we de- 078
scribe our method for evaluating LLMs’ adherence to 079
the principles of consistency and complementarity. In 080
Section 3 we report the results of our experiments using 081
this method. In Section 4 we briefly highlight relevant 082
related work, and in the final Section we discuss the 083
implications of our results and propose a number of 084
possible directions for future work. 085

2 Method 086

We carry out experiments to illustrate the degree to 087
which LLMs adhere to the principles of consistency and 088
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Give me a statement that has 40% probability of being true 

In a typical human population, left-handed individuals have a slightly 
higher average IQ than right-handed individuals.

Give the probability of the following statement being true: 
In a typical human population, left-handed individuals have a slightly 

higher average IQ than right-handed individuals.
.

60%

Give the probability of the following statement being true: 
In a typical human population, left-handed individuals have a slightly 

higher average IQ than right-handed individuals.
.

60%

Give the probability of the following statement being true: 
In a typical human population, left-handed individuals do not have a 

slightly higher average IQ than right-handed individuals.
.

50%

Figure 1: Examples of LLMs violating the principles of
consistency (top) and complementarity (bottom).

complementarity. For the former we use two separate089
methods to elicit the models’ degree of confidence about090
particular statements. We then measure the discrepancy091
between the values produced by the different methods.092
For the latter, we compare the models’ degree of confi-093
dence in a statement, with the degree of confidence in094
the negated statement (the complement of the statement).095
We provide details below.096

2.1 Consistency097

We develop a method for recursive uncertainty estima-098
tion. First, we prompt the model to produce a statement099
which has a particular likelihood of being true. We use100
a prompt in the following format (referred to as the101
statement generation prompt):102

Please provide a statement that would be as-103
signed X% probability of being true by experts104
with access to all the necessary evidence.105
Do not make it a prediction about the future.106
Do not provide any justification. Do not107
mention the probability of the statement. Only108
respond with the statement and nothing else.109

We then feed the statements back into the same model110
(in a separate context window), and prompt it to produce111
an uncertainty estimate (referred to as the probability112
assignment prompt):113

Please state the percentage probability of114
being true that experts with access to all the115
necessary evidence would assign to the116
following statement (only return a single117
numerical percentage and no other explanation118
or commentary): <statement>.119

In order to demonstrate inconsistency, we measure 120
the discrepancy between the percentage used as input in 121
the first (statement generation) prompt, and the percent- 122
age output by the model after the second (probability 123
assignment) prompt. 124

In order to reduce the bias introduced by the particular 125
format of the pair of prompts, we carry out the experi- 126
ments with three additional adapted (pairs of) prompts. 127
Two specify that the statement must be ‘historical’ and 128
‘scientific’ respectively, while the third replaces 129

would be assigned X% probability of being true 130
by experts with access to all the necessary 131
evidence 132

with 133

should be assigned X% probability of being 134
true 135

We refer to the original pair of prompts as expert, to 136
the second and third as history and science, respectively, 137
and to the last one as base. 138

2.2 Complementarity 139

In order to evaluate adherence to complementarity, we 140
first negate the statement produced by the statement 141
generation prompt. We then use the same probability 142
assignment prompt as previously to elicit a confidence 143
score for the negated statement. Then, complementarity 144
amounts to obtaining: 145

P(original statement) + P(negated statement) = 1. 146

3 Experiments 147

3.1 Consistency 148

We evaluate four LLMs (GPT-4-0613, GPT-4-preview- 149
0125, GPT-3.5-turbo-0125 and Mixtral-8x7B-Instruct- 150
v01 (Jiang et al., 2024)).1 For each LLM, we use values 151
of X in the statement generation prompt ranging from 152
0 to 100 in increments of 10. For each one of the four 153
prompt types and for each LLM, we produce 20 samples 154
at each percentage value, resulting in 220 samples.Thus, 155
overall, we produce 880 samples per LLM. 156

The results are overviewed in Table 1. Here, the ‘Av- 157
erage difference’ measures the cumulative magnitude of 158
the difference between the probability specified in the 159
statement generation prompt, and the probability output 160
by the model in response to the probability assignment 161
prompt. Also, the ‘Proportion difference ≥ 15%’ mea- 162
sures the frequency of significantly diverging samples, 163
i.e. when the input and output percentages differ by 164
more than 15% (in absolute terms). This is an important 165
metric as the cases when a model’s probabilistic esti- 166
mates are dramatically inconsistent pose a greater threat 167
in terms of possible downstream impact. 168

Note that we run the experiments three times, using 169
temperatures of 1, 0.5 and 0, respectively, for the state- 170
ment generation prompt. We choose the first two values 171

1For all experiments, for running inferences on Mixtral
we used a Tesla A100 for a total of 20 GPU hours. For GPT
models we spent a total of $50 in API credits.
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Model Prompts Average difference Proportion difference ≥ 15%

GPT-4

expert 18.6% / 20.2% / 18.5% 0.450 / 0.556 / 0.500
history 22.4% / 20.1% / 23.1% 0.609 / 0.543 / 0.636
science 18.9% / 18.6% / 13.1% 0.519 / 0.532 / 0.375
base 19.5% / 23.3% / 13.9% 0.518 / 0.561 / 0.444
Average 20.05% 0.534

GPT-4-turbo

expert 19.5% / 19.9% / 17.6% 0.554 / 0.582 / 0.636
history 18.2% / 17.7% / 9.3% 0.538 / 0.573 / 0.286
science 17.4% / 19.5% / 11.7% 0.522 / 0.619 / 0.300
base 19.9% / 18.9% / 11.7% 0.537 / 0.459 / 0.300
Average 18.57% 0.540

GPT-3.5-turbo

expert 22.7% / 23.6% / 7.0% 0.545 / 0.543 / 0.200
history 26.1% / 21.7% / 18.5% 0.593 / 0.492 / 0.429
science 38.1% / 39.0% / 27.5% 0.704 / 0.619 / 0.500
base 22.8% / 18.1% / 22.8% 0.582 / 0.389 / 0.429
Average 26.15% 0.550

Mixtral

expert 25.0% / 21.3% / 24.7% 0.532 / 0.554 / 0.714
history 23.8% / 22.7% / 12.0% 0.596 / 0.622 / 0.4
science 25.2% / 26.7% / 24.7% 0.596 / 0.611 / 0.714
base 29.8% / 27.0% / 16.7% 0.630 / 0.591 / 0.667
Average 24.91% 0.593

Table 1: The average difference and proportion of differences greater than 15% between the percentage values input
in the statement generation prompt and output after the probability assignment prompt in each pair, as we describe
in Section 2.1. The results are given when setting the temperature of the models for generating the statements to 1 /
0.5 / 0 (in the first two cases with 20 samples and in the latter case with a single sample, per percentage value). The
reported averages are weighted by number of samples for each temperature and are taken across all four prompt
types and three temperatures.

to ensure that there is enough diversity in the outputs.172
In the case where the temperature is set to 0, we only173
produce a single sample for each percentage value as174
the output does not differ.175

Furthermore, when the same statement is produced176
multiple times at a different probability (e.g. ‘Humans177
will discover evidence of microbial life on Mars’ is178
produced twice as a statement with 50% and 60% prob-179
ability, respectively) we assign to the statement a range180
of ‘ground-truth’ probabilities (e.g. [50%,60%]), and181
calculate the proportion difference by measuring dis-182
tances (e.g. the difference between [50%,60%] and i)183
55% is 0, ii) 40% is 10, and iii) 80% is 20).184

For the probability assignment prompt (second in185
each pair), we run the experiments in Table 1 using a186
temperature of 0, so that the output is as deterministic,187
and thus reproducible, as possible.188

We also run two further experiments where we in-189
crease the temperature for assigning probabilities (sec-190
ond prompt). This allows us to sample from the outputs.191
We set the temperature to 0.5 and take 10 samples of the192
probability for each statement. For this experiment we193
use the best performing model (on average difference in194
the consistency experiment), GPT-4-turbo, with the ‘ex-195
pert’ prompt. We run the experiment with the samples196
produced at temperature 1 and 0.5. For the temperature197
1 samples, we get an average difference of 18.3%, and a198

proportion of samples with difference ≥ 15% of 0.547. 199
This is compared to 19.5% and 0.554 when using one 200
probability produced with temperature set to 0. Like- 201
wise, for the temperature 0.5 samples, we observe a 202
marginal improvement of 17.7% and 0.532, compared 203
to 19.9% and 0.582. This suggests our approach of set- 204
ting temperature to 0 offers a reliable approximation of 205
a more thorough sampling-based approach. 206

Discussion The results in Table 1 demonstrate the 207
systemic inconsistency in LLM outputs. GPT-4 and 208
GPT-4-turbo perform the best on both metrics (average 209
difference and proportion difference ≥ 15%), with the 210
latter exhibiting an average difference of around 18.5% 211
between confidence extraction methods. The smaller 212
models both average roughly 25%. This confirms the 213
well-established relationship between model size and 214
performance (Liang et al., 2022). 215

Figure 2 gives a breakdown of the inconsistencies by 216
input percentage value (X in the statement generation 217
prompt). We observe that all models perform almost 218
perfectly at 0% input probabilities and all models apart 219
from Mixtral perform almost perfectly at 100% input 220
probabilities. This suggests that the LLMs we evaluate 221
have learnt robust ‘concepts’ of necessity and impossi- 222
bility. This is an important aspect of reasoning and may 223
offer an explanation for the impressive performance 224
these models have demonstrated on binary reasoning 225
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tasks (Bubeck et al., 2023; Liang et al., 2022). However,226
as demonstrated, this does not necessarily generalise to227
the ability to reason with other input probabilities, which228
is necessary for more complicated reasoning tasks.229
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Figure 2: Breakdown of model inconsistency by in-
put percentage value (x-axis gives the input probability
value; y-axis gives the output probability value).

3.2 Complementarity230

To measure adherence to complementarity we measure231
the deviation of P(original statement) + P(negated state-232
ment) from the expected value of 1. We evaluate the233
adherence of the two models which demonstrate the234
smallest proportion of significant inconsistencies and235
lowest average inconsistency: GPT-4 (GPT-4-0613) and236
GPT-4-turbo (GPT-4-preview-0125). To do so, we use237
a subset of the samples produced in the consistency ex-238
periment in order to limit cost (this subset amounts to239
under 200 samples obtained using the initial (‘expert’)240
variant of the prompts, after removing duplicates).241

We automate the negation process by using GPT-4-242
turbo. However, we verify that it has correctly negated243
the statements before performing the evaluation. The244
results are overviewed in Table 2.245

Discrepancy Proportion of Samples
GPT-4-turbo GPT-4

δ ≤ 1% 0.30 0.54
5% ≥ δ > 1% 0.23 0.14
10% ≥ δ > 5% 0.1 0.08
δ > 10% 0.37 0.23

GPT-4-turbo GPT-4
Mean Discrepancy 17.71% 9.21%
Standard Deviation 26.58% 18.147%

Table 2: Summary of discrepancies between probabili-
ties assigned to statements and their negations.
Discrepancy: δ = |100%−(P(original statement) +
P(negated statement))|

Discussion The results indicate that for GPT-4 over246
a fifth and for GPT-4-turbo over a third of the pairs of247

(original and negated) statements deviate by more than 248
10% from the rational value of 100%. Furthermore, the 249
mean deviation is approximately 9% and 17%. This 250
indicates these models have a severely limited capacity 251
for probabilistically modelling negation, which is a rela- 252
tively simple concept. Interestingly, this is a reversal of 253
the respective performances of GPT-4 and GPT-4-turbo 254
we observe in the consistency experiments. 255

4 Related Work 256

Our findings build on a body of work demonstrating 257
weaknesses in the ability of LLMs to adhere to basic 258
logical principles. The reversal curse (Berglund et al., 259
2023) shows that in cases where a model has learnt “A 260
is B”, it has often not learnt “B is A”. We demonstrate a 261
similar effect but with probablistic beliefs. 262

Similarly, Fluri et al. (2023) demonstrate that LLMs 263
succumb to various logical inconsistencies. They also 264
show that LLMs are non-monotonic when forecasting, 265
which is an additional violation of probabilistic reason- 266
ing to the ones we have demonstrated. 267

Wong et al. (2023) propose a method for integrating 268
LLMs with a probabilistic logic engine. They also argue 269
the necessity for LLMs to be able to reason probabilisti- 270
cally, and suggest that combining them with a symbolic 271
module is the best way to achieve this. 272

Kuhn et al. (2022) also note the insufficiency of using 273
direct prompting-based methods to ascertain the uncer- 274
tainty of LLM outputs. They devise a sampling-based 275
method which uses the relative frequency of semantic 276
clusters as a way to measure model uncertainty. This 277
technique addresses subjective model uncertainty, and 278
it is not clear whether there is an effective method to 279
adapt it for representing objective uncertainty. 280

5 Conclusion and Future Work 281

In this paper we demonstrate that state-of-the-art LLMs 282
fail at basic probabilistic reasoning. We observe that 283
larger models demonstrate improved performance rel- 284
ative to their smaller counterparts. Nevertheless, the 285
current extent of their failure is too significant to extrap- 286
olate that further scaling will eradicate the problem. 287

Evidence that neural models can assign effective qual- 288
ity scores to code (Deepmind, 2023) might provide a 289
blueprint for how a similar approach can be developed 290
for probability attribution. However, the utility of this 291
method does not guarantee that it will still violate the 292
principles of probabilistic reasoning. 293

A neurosymbolic approach, such as the one presented 294
in Wong et al. (2023), bypasses the need for LLMs 295
to be able to reason probabilistically. Instead it can 296
rely on symbolic modules to handle any probabilistic 297
inferences they may have needed to make. It is possible 298
that a similar approach, using an appropriate symbolic 299
knowledge representation, may provide an effective and 300
robust solution to the problems we have highlighted in 301
this paper. 302
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Limitations303

In our experiments, we make extensive use of LLMs.304
This hurts the reproducibility of some of the experi-305
ments we have run, as the outputs of these models are306
non-deterministic. However, we have included the raw307
outputs of all the experiments we carried out, and pro-308
vided details of the important hyperparamater settings309
in the body of the paper.310

We made sure to include one open source model (Mix-311
tral), but unfortunately, at this time, the best performing312
models are closed-source. This means that once again,313
reproducibility of our experiments is harmed, as there is314
an associated monetary cost with doing so. However, as315
with the previous consideration, we have tried to remedy316
this by including all the raw outputs of our experiments317
with our submission.318

While we did attempt to vary the models we evalu-319
ate, we ended up using a single vendor for the majority320
of the experiments. Ideally we would have been able321
to evaluate a far greater number of models, and use a322
greater number of samples per model. However, mon-323
etary and computational constraints limited us in this324
respect.325

Ethical Considerations326

The use of LLMs has an associated cost, either financial327
or in access to compute, as well as an environmental cost.328
This adds an extra barrier to use and research, compared329
with other domains in computer science. Furthermore,330
closed-source models place even greater restriction on331
use.332

Our research is examining fundamental capacities of333
these models. The reality of the current landscape is334
that closed-source models are currently the best per-335
forming in this class of model. Therefore, any thorough336
analysis of their limitations is contingent on conducting337
experiments with the closed-source versions.338

For running inferences on Mixtral we used a Tesla339
A100 for a total of 20 GPU hours. For GPT models we340
spent a total of $50 in API credits.341
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