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Abstract

Explainable Al (XAI) aims to provide insights
into decisions made by deep neural networks.
To date, most XAI approaches provide only
one-time, static explanations, which cannot
cater to users’ diverse knowledge levels and in-
formation needs. Conversational explanations
have been proposed as an effective method to
customize XAl explanations. However, build-
ing conversational explanation systems is hin-
dered by the scarcity of training data. Training
with synthetic data faces two main challenges:
lack of data diversity and hallucination in the
generated data. To alleviate these issues, we
introduce a repetition penalty to promote data
diversity and exploit a hallucination detector
to filter out untruthful synthetic conversation
turns. The proposed system, fEw-shot Multi-
round ConvErsational Explanation (EMCEE),
achieves relative improvements of 81.6% in
BLEU and 80.5% in ROUGE compared to the
baselines. EMCEE also mitigates the degenera-
tion of data quality caused by training on syn-
thetic data. In human evaluations, EMCEE out-
performs baseline models in improving users’
comprehension, acceptance, trust, and collabo-
ration with static explanations by large margins.
To the best of our knowledge, this is the first
conversational explanation method that can an-
swer arbitrary user questions that follow from
static explanations.

1 Introduction

Despite the high accuracy of deep neural networks
(DNNSs), in high-stake and mission-critical applica-
tions like healthcare, finance, and law enforcement,
it remains necessary for human domain experts to
verify the DNN decisions and examine the reason-
ing process in order to prevent catastrophic failures
(Caruana et al., 2015; Powles and Hodson, 2017).
To this end, in recent years, much research has been
devoted to eXplainable Artificial Intelligence, or
XAl (e.g., Selvaraju et al. 2017; Lundberg and Lee
2017; Chen et al. 2021).

However, most current XAl techniques provide
one-off, static explanations that are not customized
to the user. As users differ in their knowledge
levels as well as tasks or goals that they try to ac-
complish, they will inherently have different infor-
mation needs, which are not met by existing XAl
techniques (Liao et al., 2020; Liao and Varshney,
2021; Zhang et al., 2023). The lack of customiza-
tion causes insufficient understanding of model
behavior and undermines human-AlI collaboration
(Zhang et al., 2023). Indeed, recent studies found
that the end users and domain experts with limited
machine learning knowledge still struggle to under-
stand and use the XAI explanations (Ehsan et al.,
2021; Wang and Yin, 2021).

Conversational explanations have been sug-
gested as a suitable solution for providing cus-
tomized explanations to users (Liao et al., 2020;
Feldhus et al., 2022; Lakkaraju et al., 2022; Zhang
et al., 2023), as they allow XAI systems to answer
arbitrary follow-up questions from the user after
they see the static explanation. Lakkaraju et al.
(2022) discover that human decision makers have
a strong preference for explanations in the form of
natural language dialogue. They argue that con-
versational explanations can provide personalized
responses and information based on users’ conver-
sational histories. Zhang et al. (2023) show that
answering user questions following the static ex-
planations can significantly improve participants’
comprehension, acceptance, trust, and collabora-
tive decision making with Al

While the need for conversational XAl has been
recognized, building such systems is hindered by
data scarcity, partially due to the difficulty of col-
lecting high-quality conversations about Al expla-
nations. As far as we are aware, there is only one
dataset of 60 conversations on two types of static
explanations (Zhang et al., 2023). To date, existing
conversational explanations are based on human-
authored templates, which can cope only with a lim-



ited and predefined range of user questions (Slack
et al., 2023; Shen et al., 2023).

To handle data scarcity, a natural thought is to
generate synthetic conversations using large vision
language models (VLMs), which may answer tech-
nical questions to a degree (Hellas et al., 2023).
However, training with synthetic data encounters
two primary challenges: the lack of data diversity
and model hallucination.

The first challenge, the lack of data diversity,
arises as generative models tend to overrepresent
high-frequency content (Schwarz et al., 2021; Shu-
mailov et al., 2024; Briesch et al., 2023) and sup-
press the tails of the data distribution. To alleviate
this issue, we introduce a repetition penalty that
reduces the frequency of tokens existing in previ-
ously generated conversations.

The other obstacle is the hallucination in gener-
ated conversations. VLMs often suffer from gener-
ating untruthful information, referred to as halluci-
nation (Lee et al., 2022; Ji et al., 2023; Dai et al.,
2023; Zheng et al., 2023; Berglund et al., 2024).
To mitigate the hallucinated, factually incorrect an-
swers, we train a hallucination detector to filter
out such conversation turns after data generation.
To train the detector, we collected a hallucination
dataset of 750 factual and 750 incorrect statements
about basic machine learning and XAl methods.

We conduct both automatic and human evalu-
ations on the proposed system, fEw-shot Multi-
round ConvErsational Explanation (EMCEE). The
automatic evaluation is conducted on the only ex-
isting conversational explanation dataset (Zhang
et al., 2023). For the human evaluation, we eval-
uate user comprehension, acceptance and trust in
XA, and user’s ability to choose the best Al models
using only the explanations. Empirical results show
that EMCEE outperforms the baseline LLaVa-1.5
model in both automatic and human evaluations.
Repeated training on self-generated data leads to
data degeneration in diversity and quality (Briesch
et al., 2023). We demonstrate that the proposed
repetition penalty and hallucination detection can
slow down the data degeneracy in training with
synthetic data. In practice, our model significantly
improves participant’s comprehension, acceptance,
trust, and collaborative performance.

Our contributions can be summarized as follows.
* To the best of our knowledge, we propose the

first conversational explanation that can answer
free-form follow-up questions after providing

static explanations to the user.

* We propose a repetition penalty to enhance data
diversity and a hallucination detector to reduce
erroneous information in synthetic data.

* The proposed method EMCEE outperforms the
baseline model in both automatic and human
evaluation by large margins.

2 Methodology

The overall workflow of EMCEE is illustrated as
Figure 1 and outlined in Algorithm 1. Starting
from a pretrained VLM V7, we generate a set of
synthetic conversations D;, while using the rep-
etition penalty to encourage data diversity. Each
conversation may contain multiple turns, denoted
as ((x1,v1), (x2,Y2), . . .), where the human turn
is x; and the machine response is y;. Then, we
apply a hallucination detector f5, which filters out
hallucinated conversation turns. That is, if we de-
tect hallucination from the machine response (i.e.,
fn(ys) = 1), (xi, y;) is removed from the conver-
sation. This process yields cleaned data Dflean.
Afterwards, we finetune the VLM on Dflea“, lead-
ing to the next VLM V5, from which we start an-
other round of generation-filter-finetuning. This
process is repeated multiple times. We do not reuse
synthetic data from previous rounds.

We design a prompt that is used across all stages,
i.e., data generation, model fine-tuning, and model
inference. The prompt includes an instruction,
background information about the Al model and
XAI method, and a number of demonstration con-
versations. The instruction specifies the purpose
of the conversation, which is to enhance user com-
prehension of static explanations. The background
information includes details about the prediction
task, the machine learning model, the XAI tech-
nique, and an example explanation. Details of the
prompts are in Appendix A.

The number of demonstration conversations uti-
lized varies in different stages. During synthetic
data generation and mode finetuning, we randomly
choose 0 or 1 demonstration and keep it consistent
for each mini-batch. During model inference and
evaluation, the number of demonstrations ranges
between zero and three.

2.1 Repetition Penalty

The repetition penalty encourages the VLM to gen-
erate more diverse conversations by discounting the
logits of tokens seen in previous conversation turns.
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Figure 1: The Overall Workflow of EMCEE. V; denotes the VLM and D; denotes the synthetic conversation data in
the 4-th iteration. Starting from a pretrained VLM V7, we first generate diverse synthetic conversations Dy with the
repetition penalty. Next, we use a hallucination detector to clean synthetic data, producing cleaned data D{1*", We
then finetune the VLM on Dflea“, which creates V5, and this process repeats.

Algorithm 1 EMCEE

Input: a pretrained VLM V7; a hallucination de-
tector fp,, fr(y) = 1if y is deemed hallucination;
number of conversations to generate per round V;
maximum number of rounds R.

Output: a finetuned model Vi

: forrinl...R do
D, <+ generate N conversations from V/.;

1
2.
32 Dfean e {(z y)e D, | fuly) # 1}
4
5

V41 < finetune V; on Dglean;
. end for

Specifically, given the logits z; for each token ¢
in the vocabulary, the probability p; of predicting
token 7 is computed as,

pi = exp(z /(T +60-1(: € Q))) 0

Y exp(z/(T+0-1( € G)))’

where T is the temperature. 6 is the ratio of the
repetition penalty. G is the set of words existing in
generated conversations in the current round, and
1 is an indicator function. When the token 7 exists
inG, 1(: € G) is 1, otherwise, 1(i € G) is 0.

2.2 Hallucination Detection and Filtering

VLMs often generate convincing but factually
incorrect statements, especially when answering
questions that require reasoning and logical deduc-
tion (Lee et al., 2022; Jiet al., 2023; Dai et al., 2023;
Zheng et al., 2023; Berglund et al., 2024). Conver-
sational explanations are mainly about explaining
the causal relationship between static explanations
and Al predictions, which involves significant rea-
soning. Therefore, hallucination is a major concern
in this use case.

To reduce hallucination, we integrate a hallucina-
tion detector into the training process, which iden-

tifies and removes hallucinated conversation turns.
To train the hallucination detector, we constructed a
dataset comprising 1,500 sentences about machine
learning and XAI methods. The dataset is balanced,
containing 750 factually correct sentences and 750
factually incorrect ones. It includes 500 sentences
on general machine learning knowledge, sourced
from a number of students studying machine learn-
ing. The remaining 1,000 sentences are about XAI
knowledge; we use GPT-4-turbo-2024-04-09 to
generate 500 factually correct sentences about XAI
and subsequently altered them be incorrect. All
generated sentences have been rigorously validated
by XAI experts. Examples of sentences included
in the dataset are displayed in Appendix E. 80%
of the collected data are used for training, whereas
20% data are reserved for validation and testing.

3 Experiment

3.1 Experimental Protocol

We used LLaVa-1.5 (Liu et al., 2023b,a) as our
base vision language model. LLaVa-1.5 is an end-
to-end trained large multimodal model that com-
bines a vision encoder and an LL.M for general-
purpose visual and language understanding. We
chose LLaVa-1.5 for its high performance in an-
swering scientific questions and proficiency in vi-
sual chat scenarios (Liu et al., 2023b,a).

We focus on the image classification task on
the ImageNet dataset and train three classification
models with different top-1 classification accura-
cies: Swin Transformer (84.1%), VGG-16 (71.6%),
and AlexNet (56.5%). To generate explanations
for model predictions, we adopt four explanation
techniques from feature attribution methods: LIME
(Ribeiro et al., 2016), Grad-CAM (Selvaraju et al.,



2017), Integrated Gradients (Sundararajan et al.,
2017), and SHAP (Lundberg and Lee, 2017). The
focus is on feature attribution as we believe the
relationship between input features and model pre-
dictions is more intuitive to understand for laypeo-
ple than, for example, data attribution (Kim et al.,
2023).

For the data generation process, the number of
generated conversations N at each round is set
to 2000, with 500 conversations for each static
explanation method. The temperature is set to 1.2
and the repetition penalty ratio is set to 1.1.

For finetuning LLaVa-1.5, we use LoRA (Hu
et al., 2021) to only finetune the language model
with the vision encoder and the projector frozen.
The rank of the LoRA parameter is set to 128, the
batch size is 32, and the learning rate is 2 x 10~*
with cosine annealing.

For the hallucination detector, we train a Bert-
base model (Devlin et al., 2019) using the SGD
optimizer with a learning rate of 0.01, batch size
of 16, and weight decay for 100 epochs. The hallu-
cination detector received 79.5% accuracy on the
held-out test set.

3.2 Evaluation

We conduct both automatic and human evaluations
to demonstrate the effectiveness of the proposed
model. For automatic evaluations, we conduct
few-shot evaluations with 0 to 3 demonstrations.
We leverage BLEU (Papineni et al., 2002) and
ROUGE (Lin and Och, 2004) scores to measure
word overlaps between the generated response text
and ground truth text.

For human evaluations, we evaluate the practi-
cal effects of different conversational explanation
models in improving participants’ comprehension
(Cheng et al., 2019), acceptance (Davis, 1989), and
trust (Yang et al., 2017b) in static explanations.
Based on the results of automatic evaluations, we
use 2 demonstrations for conversational explana-
tions on Grad-CAM and LIME. Due to the lack of
real human conversations, we do not use demon-
strations for Integrated Gradients and SHAP. We
recruited N = 40 participants from 14 majors.
Each participant engaged in the study only once.
We first presented them with the static explanations
for the image classification task and measure their
objective understanding and subjective perceptions
of static explanations. After that, half of the partic-
ipants went through an online textual conversation
with the pretrained LLaVa-1.5 model, during which

they could seek to clarify any doubts. The other
half interacted with our models. Details of the on-
line textual conversation platform are in Appendix
B.

We asked the participants to choose one model
from three candidate classification models that
would be the most accurate on unobserved test
data and use the selection accuracy as a measure-
ment of their objective understanding of the static
explanations. The three classification models made
identical decisions on 5 images. The only differ-
ences between the three networks lay in their ex-
planations. Hence, to select the best model, the
participants must rely on the explanations. The
details of how the explanation images are selected
and the full set of images are in Appendix C.

To measure participants’ subjective percep-
tion of static explanations, we use the same set
of 13 self-reporting questions in the previous
study (Zhang et al., 2023). These self-reporting
questions probe participants’ comprehension, ac-
ceptance, and trust in explanations. All questions
utilize a 7-point Likert scale for responses. The full
list of the questions is in Appendix D.

3.3 Dataset

We conducted our automatic evaluation using the
only existing dataset from human-human conver-
sational XAl (Zhang et al., 2023), gathered in a
Wizard-of-Oz (WoZ) setting (Kelley, 1984). Par-
ticipants interacted with what they believed was an
autonomous dialogue system, which was actually
operated by a human expert of machine learning
and XAI. Participants were recruited from 19 dif-
ferent disciplines. The dataset includes 30 conver-
sations on the LIME method and another 30 on the
Grad-CAM method. On average, each conversa-
tion contains 27.4 utterances, with each utterance
averaging 14.4 words. Due to its small size, we do
not use this dataset for training. We employ one
conversation per static explanation method (LIME
and Grad-CAM) as a demonstration in the data gen-
eration prompt and six conversations for demon-
strations in the few-shot evaluation. The rest 52
conversations are used for testing.

3.4 Results of Automatic Evaluation

Table 1 presents the automatic evaluation results
of both the pretrained LLaVa-1.5 model and our
EMCEE model when we prompt them with O to 3
example conversations. Our method exhibits sub-
stantial improvements over the pretrained LLaVa-



Table 1: Automatic Evaluation of pretrained LLaVa-1.5 and our model. We prompt models with O to 3 example

conversations.

Methods  Shot Num BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L

0 0.1328 0.0534 0.0235 0.0103 0.3150 0.0595 0.0179 0.2507

LLaVa-15 1 0.1447 0.0680 0.0361 0.0196 0.2823 0.0823 0.0374 0.2324

2 0.2160 0.1329 0.0985 0.0813 0.3365 0.1469 0.1014 0.2883

3 0.1979 0.1265 0.0854 0.0687 0.3153 0.1339 0.0839 0.2709

0 0.2394 0.1659 0.1270 0.1055 0.3918 0.2295 0.1794 0.3418

EMCEE 1 0.2895 0.2186 0.1826 0.1618 0.4513 0.2854 0.2391 0.4006

(Ours) 2 0.3056 0.2336 0.1945 0.1721 0.4629 0.2964 0.2454 0.4054

3 0.2786 0.2100 0.1769 0.1571 0.4380 0.2798 0.2339 0.3881

1.5 in terms of both BLEU and ROUGE scores.
Specifically, our model shows an increase of 81.6%
in BLEU scores and 80.5% in ROUGE scores com-
pared to the pretrained LLaVa-1.5. These results
suggest that our model, which has been trained on
self-generated synthetic conversations in a multi-
round setting, can better explain static XAl and
produce responses more aligned with human an-
swers to users’ inquiries.

3.5 Results of Human Evaluation

Table 2 presents human evaluation results, com-
paring the pretrained LLaVa-1.5 model and EM-
CEE across four static explanation methods, LIME,
Grad-CAM, Integrated Gradients, and SHAP.

Participants’ objective understanding improves
with both LLaVa-1.5 and EMCEE on all static ex-
planation; however, participants interacting with
our model consistently demonstrate greater in-
crease in the model selection accuracy post-
conversation, demonstrating strong positive effects
of training on synthetic data in assisting partici-
pants collaborating with static explanations.

We observe varied objective performance among
LIME, Grad-CAM, Integrated Gradients, and
SHAP. Grad-CAM has the highest accuracy of ob-
jective decision accuracy and Integrated Gradients
has the lowest accuracy. A potential reason might
be the inherently intuitive nature of the explana-
tions produced by Grad-CAM compared to others.

In terms of participants’ subjective understand-
ing, participants who receive conversational ex-
planations from EMCEE report a significantly
greater improvement than those who interacted
with LLaVa-1.5, across all four static explanation
methods. Initially, there is no notable difference
in the participants’ self-reported understanding of
static explanations. Participants using the EMCEE
model report a higher level of understanding than

those who interacted with the LLaVa-1.5 model.

For acceptance of explanations, we observed
similar patterns in participants’ subjective under-
standing. Participants’ perceived usefulness, per-
ceived ease of use, and behavioral intention all
increase after interacting with LLaVa-1.5 or EM-
CEE, but the improvements brought by LLaVa-1.5
are much smaller than EMCEE. We hypothesize
that the ability to resolve confusion with EMCEE
partially causes the participants to perceive greater
usefulness, ease of use, and tendency to use the
static explanations.

For the trust measurement, we observed a
marked rise in participants’ trust levels across all
four static explanation methods after interaction
with our model. According to theories of trust
(McKnight et al., 1998; Lim et al., 2009; Hoffman
et al., 2018), the ability to build a mental model
of Al systems is the key to user trust in Al. The
improvements in trust may be a result of improved
understanding of static explanations, as indicated
by earlier results.

3.6 Ablation Study with Automatic
Evaluation

We create the following ablated versions of EM-
CEE: (1) No multi-round training, which performs
one round of synthetic generation, filtering, and
model finetuning. (2) No repetition penalty, which
removes the repetition penalty. (3) No hallucina-
tion detection, which does not detect and remove
hallucinated conversation turns.

Table 3 summarizes the results of different ab-
lated versions of EMCEE. We make the follow-
ing observations. First, the absence of multi-
round training significantly reduces the perfor-
mance across all BLEU and ROUGE metrics. This
demonstrates that generating synthetic conversa-
tions and filtering out hallucination conversations



Table 2: Results of human evaluations before and after conversations. Each score is presented as mean =+ standard
deviation and the change § = after — before. * indicates that change § caused by our model is statistically higher
than that from the baseline model, LLaVa-1.5, with p < 0.05 using the Student’s t-test.

Conversational Objective Acceptance
Explanation . Evaluation Understanding Subjective P
Explanation .. . . _ _ _ Trust
Methods method Timing (Model Selection | Understanding Perceived Perceived Behavioral
Accuracy) Usefulness | Ease of Use Intention
before 0.36 +0.17 4.00 +1.58 520+ 1.02 | 440 £1.62 | 490 +1.02 | 4.10+£0.22
LLaVa-1.5 after 0.44 +0.17 4.80 + 1.30 5.60 +0.60 | 5.20 + 0.60 | 5.20 +0.82 | 4.30 +0.52
1 0.08 0.80 0.40 0.80 0.30 0.20
LIME
EMCEE before 0.36 £ 0.09 4.20 + 1.30 5.33+£0.80 | 453 +0.92 | 5.00 £ 0.65 | 4.20 4+ 0.45
(Ours) after 0.52 +£0.11 5.20 £0.55 5.93+0.87 | 5.60 +£0.68 | 5.60 +0.76 | 4.80 + 0.42
urs 5 0.16* 1.00 0.60* 1.07* 0.60* 0.60*
before 0.76 +0.17 4.00 + 1.41 533 +0.41 | 4.87 £0.60 | 5.50 +0.35 | 4.40 +0.29
LLaVa-1.5 after 0.84 +0.09 4.80 +0.45 5.60 £0.44 | 5.13 +£0.38 | 5.80 +0.27 | 5.00 +0.47
1 0.08 0.80 0.27 0.26 0.30 0.60
Grad-CAM
EMCEE before 0.80 £ 0.20 4.00 +1.22 513+£1.07 | 480+ 1.09 | 530 £0.69 | 4.15+0.72 h
(Ours) after 0.92 +£0.11 5.40 £+ 0.89 6.13 +£0.61 | 540 +£0.93 | 6.10 £ 0.45 | 5.25+0.90
urs 5 0.12 1.40 1.00* 0.60* 0.80* 1.10*
before 0.24 4+ 0.09 3.80 + 0.45 4734028 | 3.87+0.77 | 440+ 1.08 | 3.85 +£0.42
LLaVa-1.5 after 0.28 £0.18 4.00 £ 1.10 5.00+0.84 | 440+ 1.60 | 470 + 1.20 | 3.85 +0.38
Integrated 5 0.04 0.20 0.27 0.53 0.30 0.00
Gradients EMCEE before 0.20 £ 0.14 3.80£0.55 | 4.87+0.89 | 3.60 +0.64 | 450 +0.79 | 3.85 + 0.55
(Ours) after 0.44 +0.09 4.60 + 0.45 5.204+0.61 | 473 +£0.60 | 5.50 + 0.67 | 4.40 + 0.80
urs 5 0.24* 0.80* 0.33 1.13* 1.00* 0.55*
before 0.48 +0.11 3.80 + 1.79 540 +0.60 | 4.87 +£1.73 | 5.00 + 1.06 | 4.20 + 1.47
LLaVa-1.5 after 0.60 £ 0.14 5.40 £ 0.84 5.60 £0.55 | 5.67+0.78 | 520 £ 091 | 4.60 &+ 0.84
1 0.12 1.60 0.20 0.80 0.20 0.40
SHAP
EMCEE before 0.50 £ 0.48 3.75 £ 1.89 543 +£0.58 | 458 £1.77 | 5.00 £0.71 | 425+ 1.14
(Ours) after 0.80 +0.16 5.50 £ 1.29 6.13+£0.82 | 6.00+0.47 | 578 +0.48 | 5.31 £0.94
urs 0 0.30* 1.75 0.70* 1.42* 0.78* 1.06*

in an iterative way can gradually improve the qual-
ity of generated conversations and thus improve the
performance of our model. Second, the model’s
performance decreases when the repetition penalty
is removed. This result indicates that the diversity
of synthetic conversations plays a crucial role in
our model. Third, the most substantial performance
drop occurs when the hallucination detector is re-
moved, with a 10.7% decrease in BLEU scores and
a 15.3% decrease in ROUGE scores. This result
highlights the importance and necessity of filtering
hallucinated synthetic data after generation.

3.7 Effects of Multiple Generation-Training
Iterations

In the training of EMCEE, we repeat the generation-
training process multiple times. We investigate
how iterations affect the performance of EMCEE
and ablated versions of EMCEE in BLEU-4 and
ROUGE-L scores, as shown in Figure 2.

We observe that the ablated versions of EMCEE
improve in the first few iterations and decrease af-
terwards. This is similar to the findings of Briesch
et al. (2023), who show that repeatedly training

models with self-generated data initially causes
performance gains but, after a few iterations, re-
sults in degenerate synthetic data with low diversity
and eventual performance drop. This is especially
apparent when we remove the repetition penalty
or the hallucination filter, as both BLEU-4 and
ROUGE-L decrease drastically after the third and
fifth iteration, respectively.

However, with both the repetition penalty and
the hallucination filter of EMCEE, the performance
drops become substantially milder. For BLEU-4,
a small drop is observed after the fifth iteration.
For Rouge-L, the performance effectively plateaus
around the sixth and seventh iteration. We con-
clude that the proposed techniques, including the
repetition penalty and the hallucination filter suc-
cessfully slows down degeneracy in training with
synthetic data.

3.8 Examples of Identified Hallucinations in
Generated Conversations

To qualitatively assess the effectiveness of the hal-
lucination detector, we selected four conversation
turns identified as hallucinations by the detector, as



Table 3: An ablation study of the proposed EMCEE on the conversational explanation dataset

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L
EMCEE 0.3056 0.2336 0.1945 0.1721 0.4629 0.2964 0.2454 0.4054
No Multi-round Training 0.2808 0.2079 0.1685 0.1465 0.4198 0.2608 0.2162 0.3756
No Repetition Penalty 0.2824 0.2214 0.1854 0.1657 0.4219 0.2778 0.2329 0.3798
No Hallucination Detection  0.2730 0.1977 0.1631 0.1408 0.4161 0.2375 0.1950 0.3625
Type Utterance BLEU-4 over Number of Iterations
Q: Does the XAI provide explanations
about how the classification model 016
made the prediction? @
A: No, it only gives local explanations g o1
about what the model predicts. 2 012
Q: Are there any limitations to the Grad- T —e— LlaVa-15
om EMCEE
CAM? 010 —e— No repetition penalty
A: No, there are no limitations to the [*— Na hallucination détection
0.08 N
method.
- 0 1 2 3 4 5 6
Q: Is the process of SHAP complicated? Number of Iterations
A: No, SHAP is a relatively simple pro-
cess, even though it provides deeper Cer of
o . Rouge-L N Iterati
feature attribution insights than tradi- ouge- over TTumber of rerations
tional methods such as permutation im- 0.40
portance tests. 0.38
(%2}
Q: Does LIME produce probabilities or % 0.36
classifications? D s
A: LIME produces classifications, not ﬂgg . s
probabilities. e EMCEE |
—e— No repetition penalty
0.30 —e— No hallucination detection
Table 4: Examples of conversation turns that are identi- 028 N

ties as hallucinations by the detector.

presented in Table 4. These examples demonstrate
that LL.Ms tend to generate untruthful responses
about both fundamental machine learning concepts
and various XAI techniques. The hallucination de-
tector in our model can identify and exclude such
incorrect turns from the synthetic dataset. Con-
sequently, the hallucination detection and filtering
process diminishes the occurrence of hallucinations
in the synthetic data and enhances the performance
of models finetuned on this refined dataset.

4 Related Work

4.1 Static XAI

Explainable Artificial Intelligence (XAI) refers to
techniques that explain the learning process or the
predictions of Al (Yang et al., 2019). Most ex-
isting techniques are static XA, which provides
a one-time explanation with no capability for fur-
ther user interaction. Two groups of static XAl
include self-explanatory models and post-hoc meth-

0 1 2 3 4 5 6 7
Number of Iterations

Figure 2: BLEU-4 and Rouge-L scores over the number
of training iterations for LLaVa-1.5, EMCEE and differ-
ent ablated version of EMCEE.

ods. Self-explanatory models are inherently trans-
parent, offering clarity in their decision-making
processes (Lakkaraju et al., 2016; Rudzinski, 2016;
Yang et al., 2017a; Jain and Wallace, 2019; Wiegr-
effe and Pinter, 2019). The majority of recent XAl
methods are post-hoc XAI methods, applied to al-
ready developed models that lack inherent trans-
parency (Selvaraju et al., 2017; Ribeiro et al., 2016;
Chen et al., 2021; Adadi and Berrada, 2018; Bo-
dria et al., 2023). There are two main groups of
methods in post-hoc XAl i.e., feature attribution
methods and example-based methods.

Feature Attribution. Feature attribution meth-
ods explain model predictions by investigating the
importance of input features to final predictions



(Adadi and Berrada, 2018; Danilevsky et al., 2020).
There are two main types of feature attribution
methods, gradient-based methods (Cortez and Em-
brechts, 2013; Sundararajan et al., 2017; Selvaraju
et al., 2017; Simonyan et al., 2013; Lundberg and
Lee, 2017; Wang et al., 2024; Kokalj et al., 2021; Li
et al., 2016) and surrogate methods (Ribeiro et al.,
2016; Hu et al., 2018; Alvarez-Melis and Jaakkola,
2017; Liu et al., 2018; Shih et al., 2018; Ignatiev
et al., 2019). Gradient-based methods employ gra-
dients to evaluate the contribution of a model input
on the model output. Surrogate methods leverage a
simple and inherently interpretable model, such as
linear model, to locally approximate the complex
neural network.

Example-based Methods. Example-based meth-
ods explain Al predictions by identifying a selec-
tion of data instances (Adadi and Berrada, 2018;
Danilevsky et al., 2020; Nguyen et al., 2024).
These instances may be training data points the
most influential to the parameters of a predic-
tion model (Chen et al., 2021; Guo et al., 2021),
counterfactual examples that alter predictions with
minimal changes to inputs (Wachter et al., 2017;
Mothilal et al., 2020; Yin and Neubig, 2022; Ye
et al., 2021; Ross et al., 2021; Wu et al., 2021), or
prototypes that contain semantically similar parts
to input instances (Croce et al., 2019; Jeyakumar
et al., 2020; Kim et al., 2016).

4.2 Conversational XAI

Research into Conversational XAl is still at an early
stage with limited methods being developed so far.
Shen et al. (2023) apply conversational explana-
tions to scientific writing tasks, observing improve-
ments in productivity and sentence quality. Slack
et al. (2023) design dialogue systems to help users
better understand machine learning models on di-
abetes prediction, rearrest prediction, and loan de-
fault prediction tasks. Despite these advances, the
conversations in these studies are generated based
on templates and can only cope with limited pre-
defined user queries. Our work represents the first
system that can deliver free-form explanatory con-
versations with users about static explanations.

4.3 Training with Synthetic Data

The exceptional performance of Large Language
Models (LLMs) and Vision Language Models
(VLMs) in generating human-like text has led re-
searchers to explore their use as training data gener-
ators (Meng et al., 2022; Ye et al., 2022a; Guo and

Chen, 2024; Gao et al., 2023; Meng et al., 2023; Ye
et al., 2022b). For example, SuperGen (Meng et al.,
2022) uses LLMs conditioned on label-descriptive
prompts to generate training data for text classifica-
tion tasks. FewGen (Meng et al., 2023) fine-tune
an LLM on few-shot samples and use it to generate
synthetic data for seven classification tasks in the
GLUE benchmark.

To mitigate the detrimental effects of noisy and
low-quality synthetic data from LL.Ms and VLMs
(Schwarz et al., 2021; Zhang et al., 2024; Kirk
et al., 2021; Esiobu et al., 2023; Lee et al., 2022; Ji
et al., 2023), several methods have been proposed
(Gao et al., 2023; Guo and Chen, 2024; Meng et al.,
2023; Ye et al., 2022b). For example, ProGen (Ye
et al., 2022b) adjusts the importance of generated
data points with regard to the validation loss, using
influence function (Koh and Liang, 2017). How-
ever, these strategies have primarily focused on
generating data for classification tasks and on train-
ing small-scale task-specific models. Techniques
such as applying the influence function to weigh
data points are effective for smaller models. They
present challenges and require a special design
when adapted to LLMs (Grosse et al., 2023).

In our work, we apply data generation to con-
versational explanations and utilize generated data
to train the original VLM. We improve the quality
of the generated data and significantly slow down
model degeneracy after many generation-training
iterations (see §3.7).

4.4 Conclusion

This paper proposes the fEw-shot Multi-round Con-
vErsational Explanation (EMCEE) to provide cus-
tomized explanations to users from diverse do-
mains. To deal with data security, we train the EM-
CEE with synthetic data. We first use a vision lan-
guage model (VLM) to generate synthetic conver-
sations with the repetition penalty to promote the
diversity of generated data. Then, to reduce halluci-
nations in generated data, we apply a hallucination
detector to filter hallucinated conversation turns
after the data generation. To iteratively improve
the performance, we recycle the generation-filter-
finetuning process multiple times. Both automatic
and human evaluation demonstrated that EMCEE
outperforms baseline models by a large margin.
In practice, EMCEE significantly improved users’
comprehension, acceptance, trust, and collabora-
tion with static explanations.



4.5 Limitations

We identify three limitations of the current work.
First, the static explanations used in our study are
limited. Our experiments focused on feature attri-
bution explanation methods on image classification.
Even though our method is applicable to any static
explanation method, the performance of our model
on other types of static explanation methods, such
as example-based explanation methods, or NLP
tasks, is yet to be explored.

Second, we mainly focus on removing factuality
hallucinations, while not considering faithfulness
hallucinations (Huang et al., 2023). Factuality hal-
lucinations refer to statements that are factually in-
correct or fabricated. Faithfulness hallucinations re-
fer to statements that are not related to instructions
and contextual information. In data generation, our
model also may generate unrelated conversations to
the static explanations. We leave building a detec-
tor or using other methods to filter these unrelated
conversations for future work.

Finally, our research is confined to one geograph-
ical region. Factors such as cultural backgrounds
could potentially affect how users interact with
XAI and how they seek to clarify confusion. Fu-
ture studies could involve recruiting participants
from diverse countries and regions.
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A VLM Prompts

The prompt contains an instruction to generate a
conversation, the background information about
the conversation, and a number of demonstration
conversations. Example prompts for LIME, Grad-
CAM, Integrated Gradients, and SHAP are shown
in Figure 3, 4, 5, and 6 respectively. The input im-
ages are randomly selected from ImageNet and the
explanations are generated by the corresponding
XAI method.

B Oneline Textual Conversation Platform

Our study is conducted on a web-based platform
where participants can remotely finish the whole
procedure of the experiment. The web-based plat-
form will ensure that all communications between
users and conversational agents are text-based and
recorded. Figure 7 displays an example screen-
shot of the web page where participants discuss
static explanations with different conversational
agents. There are two sections on the page. On the
left, the user sees a task description, a description
of the prediction model, a model input, a model
output, an explanation generated by the explana-
tion model, and a description of the explanation.
Within the chatbox on the right, the user can con-
verse with the conversational agent to clarify the
explanation. Through a conversation, a user can
ask any questions or provide any comments related
to the explanation on the left side.

C Objective Evaluation

The objective evaluation aims to evaluate users’ ob-
jective understanding of static explanations. Partic-
ipants are presented with 5 input images, on which
the three classification models make the same de-
cisions. The only differences between the three
models lie in their explanations. Participants need
to choose the one that would be the most accurate
on unobserved test data. Hence, to make the cor-
rect selection, the participants must understand the
explanations. We use the accuracy of selecting the
correct model to measure participants’ objective un-
derstanding of static explanations. The full set of
images listed in the objective evaluation for LIME,
Grad-CAM, Integrated Gradients, and SHAP are
shown in Figure 8, 9, 10, and 11 respectively.

We observe that static explanations do not al-
ways faithfully reflect the actual workings of classi-
fication models (Adebayo et al., 2018; Kindermans
et al., 2019; Jacovi and Goldberg, 2020) and do not
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always contain actionable information for model
selection. In our study, model selection is used
to determine whether users can comprehend static
explanations when the explanations do have action-
able information for selection, rather than assessing
the explanations themselves. For this, we chose im-
ages that models with high accuracy indeed have
more reasonable explanations. This approach al-
lows users to easily pick the best classification mod-
els if they understand the static explanations well.
We deem an explanation more reasonable when it
focuses more on discriminative features that are
unique to the predicted class and less on spurious
features that are irrelevant to the class. A good
model should have explanations that rely on multi-
ple types of discriminative features. This is because
a model relying on multiple features is robust and
makes the correct decision even if some discrimi-
native features are absent or occluded.

D Subjective Evaluation

The subjective evaluation measures participants’
self-reported perception of the static explanations,
including their comprehension, acceptance, and
trust. We use the same 13 questions as the previous
study (Zhang et al., 2023). All questions utilize a
7-point Likert scale for responses. The full list of
the questions is in Figure 12.

E Examples of Sentences in our
Hallucination Dataset

To train the hallucination detector in MGCEE, we
have collected a hallucination dataset about ma-
chine learning and XAI techniques. Table 5 dis-
plays 12 example sentences with labels in our
dataset.



Sentence Label

When the amount of data stays the same, the more parameters, the more difficult 0
to estimate the parameters accurately.

When the amount of data stays the same, increasing the number of parameters 1
can improve the accuracy of their estimates.

XAl is less important in systems where decisions are not critical. 0
XAl is only relevant in non-critical systems. 1
Grad-CAM can be applied to any convolutional layer of a network, not just the 0
final layer.

Grad-CAM is restricted to analyzing the input and output layers of a network. 1
LIME can explain any machine learning model as long as it can probe the model 0

with perturbed inputs.
LIME can only explain models that are specifically designed to work with its 1
framework.

The path taken from baseline to input in Integrated Gradients is typically linear. 0
The path taken is randomly generated in each run of Integrated Gradients. 1
SHAP values can be computed for any data point in the dataset, providing 0
versatile insights.

SHAP values can only be computed for a limited set of predefined data points. 1

Table 5: Examples of sentences with labels in our hallucination dataset. Label O means the sentence is factually
correct; label 1 means the sentence is factually incorrect.
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Instruction: A chat about explainable AI (XAI)
between a curious human USER and an Al
ASSISTANT. The human USER is well educated but
may need help understanding how Al and XAI work.
The USER asks questions to understand Al's
decision-making process better. The USER's question
should be diverse and related to Al and XAI The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:

Task: Image classification

Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.

Image classification model: swin transformer
Model’s input: 5

Model’s prediction: Leopard
Explanation for the prediction:

-
Explanation method: LIME
Description of LIME:

LIME  (Local Interpretable = Model-Agnostic
Explanations) is a technique used in machine
learning to help explain the predictions made by
complex Al models.

LIME works by creating a simpler, more
interpretable model that approximates the behavior
of the complex model in a small region around a
particular data point. This simpler model is then used
to explain why the complex model made a certain
prediction for that data point. Regions of the image
that are most important for the model's prediction are
highlighted.

<Demonstrations>

The conversation starts:

USER:

Figure 3: The VLM prompt about LIME.
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Instruction: A chat about explainable AI (XAI)
between a curious human USER and an Al
ASSISTANT. The human USER is well educated but
may need help understanding how Al and XAI work.
The USER asks questions to understand Al's
decision-making process better. The USER's question
should be diverse and related to Al and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:

Task: Image classification

Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.

Image classification model: swin transformer
Model’s input: '

Model’s prediction: Leopard
Explanation for the prediction:

<

v

Explanation method: Grad-CAM

Description of Grad-CAM:

The Grad-CAM method is a technique used in
computer vision to understand which parts of an
image a deep learning model focuses on to make its
prediction. It generates a heatmap that highlights the
regions of the image that are most important for the
prediction.

The heatmap is generated by weighting the
activations of the final convolutional layer by their
corresponding gradients and averaging the resulting
weights spatially. The resulting heatmap is overlaid
on the original image to provide a visual
representation of the model's reasoning for its
prediction. The heatmap is generated using a color
gradient that ranges from blue to red. Bluer colors
are used to represent areas of low importance, while
redder colors indicate areas of high importance.
<Demonstrations>

The conversation starts:

USER:

Figure 4: The VLM prompt about Grad-CAM.




Instruction: A chat about explainable Al (XAI)
between a curious human USER and an Al
ASSISTANT. The human USER is well educated but
may need help understanding how Al and XAI work.
The USER asks questions to understand Al's
decision-making process better. The USER's question
should be diverse and related to Al and XAI The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:

Task: Image classification

Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.

Image classification model: swin transformer
Model’s input:

Model’s prediction: Leopard
Explanation for the prediction:

Explanation method: Integrated Gradients
Description of Integrated Gradients:

Integrated Gradients is a post-hoc technique used in
machine learning to explain the predictions of deep
learning models.

Integrated Gradients works by assigning a score to
each feature in the input, representing its importance
to the model's prediction. It calculates these scores
by looking at how much the model's output changes
when each part of the input changes. It does this by
comparing the actual input to a baseline input (like a
black image) and looking at all the intermediate
inputs in between. Pixels with dark colors indicate
greater importance for the model's prediction.
<Demonstrations>

The conversation starts:

USER:

Instruction: A chat about explainable AI (XAI)
between a curious human USER and an Al
ASSISTANT. The human USER is well educated but
may need help understanding how Al and XAI work.
The USER asks questions to understand Al's
decision-making process better. The USER's question
should be diverse and related to Al and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:

Task: Image classification

Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.

Image classification model: swin transformer
Model’s input: gl

Model’s prediction: Leopard
Explanation for the prediction:

N

-

Explanation method: Integrated Gradients
Description of Integrated Gradients:

SHAP (SHapley Additive exPlanations) is a post-hoc
explanation approach to explain the output of any
machine learning model.

SHAP works by highlighting the regions of the
image that are most important for the prediction.
Each pixel in the explanation image refers to the
importance value of pixels in the same location as
the input image. Red pixels indicate that the pixels
increase the probability of the particular class, truck.
Blue pixels, on the other hand, decrease the
probability of the class. Pixels with higher absolute
values have higher importance in the classification.
The conversation starts:

<Demonstrations>

USER:

Figure 5: The VLM prompt about Integrated Gradients.
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Figure 6: The VLM prompt about SHAP.




CHAT for XAl

History Logout

Things-To-Do

Start Chatting

Task:
Image Classification

Given an image and 1000 predefined categories (goldfish, dog, bird, cat,
etc), the algorithm identifies which category the image falls into.

Image Classification Model:
swin transformer
Model's Input:

Visual Input

Model's Output:

Leopard

Explanation Method:

LIME

Explanation for the model prediction:

Description:

LIME (Local Interpretable Model-Agnostic Explanations) is a technique used
in machine learning to help explain the predictions made by complex Al
models.

LIME works by creating a simpler, more interpretable model that
approximates the behavior of the complex model in a small region around a
particular data point. This simpler model is then used to explain why the
complex model made a certain prediction for that data point. Regions of the
image that are most important for the model's prediction are highlighted.

Hello, you can ask any questions to help you better Al
understand the explanation.

user
How does LIME work?

LIME works by creating a simpler, more interpretable model Al
that approximates the behavior of the complex model in a small region
around a particular data point. This simpler model is then used to
explain why the complex model made a certain prediction for that data
point. The parts in the picture are chosen to represent the regions of
the image that are most important for the classification model's
prediction.

user
Why is the edge of the highlighted image not in regularity?

That's because when training the simpler model, image is Al
first grouped into superpixels. It is based on the similarity between
closed pixels. So the edge of superpixel is not very smooth.

user
Is there any other explanation models?

Yes. There are other explanation models, like Grad-CAM, Al
Integrated Gradients, and SHAP, that can be used to explain the
classification model's prediction. These models can highlight different
regions of the image that are important for the classification model's
prediction.

Figure 7: The web page where users can discuss static explanations with a conversational agent.
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Questionnaire Description

The questionnaire consists of questions that each offer three choices. Each choice contains an input image, the prediction from a
deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is
designed to classify images into specific categories, such as Goldfish or Siberian Husky.

Itis important to note that while the deep learning models in different choices have differing levels of accuracy, the explanation

method remains consistent.

Your responsibility is to assess and compare the explanations provided for different deep learning models and choose the deep
learning model that you believe best explains its prediction.

We greatly value your participation, and please rest assured that all responses will be kept anonymous and confidential.

Question 1
Choice A
Model's input

Model's output
Goldfish
Explanation for the model prediction

Answer
Choice A

Question 2
Choice A
Model's input

Model's output
Siberian husky
Explanation for the model prediction

Question 4
Choice B Choice C Choice A
Model's input Model's input Model's input
N .

Model's output
Goldfish
Explanation for the model prediction

Model's output
Goldfish
Explanation for the model prediction

S

v

Leopard
Explanation for the model prediction

Choice A

Question 5
Choice B Choice C Choice A
Model's input Model's input Model's input

Model's output
Siberian husky

Model's output Model's output
Siberian husky Bee
Explanation for the model prediction

Explanation for the model prediction Explanation for the model prediction

Choice B
Model's input

Model's output
Leopard
Explanation for the model prediction

Choice B
Model's input

Model's output
Bee
Explanation for the model prediction

Choice A

Question 3
Choice A
Model's input

& o
Model's output
Siamese cat

Explanation for the model prediction

Answer
Choice A

Choice B Choice C

Model's input

Model's input

L 22
Model's output Model's output

Siamese cat Siamese cat

Explanation for the model prediction Explanation for the model prediction

Answer
Choice A

Figure 8: Objective evaluation questions used for LIME.
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Choice C

Model's input

Leopard
Explanation for the model prediction

Choice C

Model's input

Model's output

Bee
Explanation for the model prediction




Questionnaire Description

The questionnaire consists of questions that each offer three choices. Each choice contains an input image, the prediction from a

deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is
designed to classify images into specific categories, such as Goldfish or Siberian Husky.

Itis important to note that while the deep learning models in different choices have differing levels of accuracy, the explanation
method remains consistent.

Your responsibility is to assess and compare the explanations provided for different deep learning models and choose the deep
learning model that you believe best explains its prediiction.

We greatly value your participation, and please rest assured that all responses will be kept anonymous and confidential.

Question 1
Choice A Choice B Choice C

Model's input Model's input Model's input

Model's output
Goldfish

Explanation for the model prediction

Model's output
Goldfish

Explanation for the model prediction

Model's output
Goldfish

Explanation for the model prediction

Answer

Choice A

Question 2

Choice A Choice B Choice C
Model's input Model's input Model's input

i
B

Model's output Model's output Model's output
Siberian husky Siberian husky Siberian husky
for thy for the model prediction

Answer

Choice A

Question 3

Choice A Choice B Choice C
Model's input Model's input Model's input

Model's output Model's output Model's output

Siamese cat Siamese cat Siamese cat

Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction

-

A

Answer
Choice A

Question 4
Choice A
Model's input

Model's output
Leopard
Explanation for the model prediction

Answer
Choice A

Question 5
Choice A

Model's input

Model's output
Bee
Explanation for the model prediction

Choice A

Choice B
Model's input

Model's output
Leopard
Explanation for the model prediction

Choice B
Model's input

Model's output
Bee
Explanation for the model prediction

Figure 9: Objective evaluation questions used for Grad-CAM.
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Choice C
Model's input

Model's output
Leopard
Explanation for the model prediction

L

Choice C
Model's input

Model's output
Bee
Explanation for the model prediction




Questionnaire Description

‘The questionnaire consists of questions that each offer ices. Each choi input image, the prediction from a
deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is
designed to classify i i i es, such i y.

Itis important to note that while the deep learning models in different choices have differing levels of accuracy, the explanation
method remains consistent.

Your for different deep learning models and choose the deep

ity 9
learning model that you believe best explains its prediction.

We greatly value your and please that all respor ill be kept
Question 1
Choice A Choice B Choice C
Model's input Model's input Model's input

Model's output Model's output Model's output
Siberian husky Siberian husky Siberian husky
Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction

==

Choice A

Question 3
Choice A Choice B Choice C
Model's input Model's input Model's input

- - o
Model's output Model's output Model's output
Leopard Leopard Leopard

Explanation for the model prediction Explanation for the model prediction

Explanation for the model prediction

Answer
Choice A

Question 5
Choice A Choice B Choice C
Model's input Model's input Model's input

Choice A

Figure 10: Objective evaluation questions used for Integrated Gradients
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Questionnaire Description

The questionnaire consists of questions that each offer three choices. Each choice contains an input image, the prediction from a
deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is
designed to classify images into specific categories, such as Goldfish or Siberian Husky.

Itis important to note that while the deep learning models in different choices iiffering levels of accuracy, the
method remains consistent.
Your ility is to th for different deep learnir dels and choose the deep

learning model that you believe best explains its prediction.

We greatly value your participation, and please rest assured that all responses will be kept anonymous and confidential.

Question 1
Choice A Choice B Choice C
Model's input Model's input Model's input

Model's output Model's output Model's output
Goldfish Goldfish Goldfish
Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction
F
3 3
3 HJJ
Answer -
Choice A

Question 5
Choice A Choice B
Model's input Models input

Model's output Model's output
Leopard Leopard

Question 3
Choice A Choice B Choice C
Model's input Model's input Model's input

Model's output Model's output Model's output
Siamese cat Siamese cat Siamese cat

Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction

o 8 -1

Figure 11: Objective evaluation questions used for SHAP.
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Explanation for the model prediction Explanation for the model prediction

Choice C
Model's input

Model's output
Leopard
Explanation for the model prediction




Questionnaire Description

Welcome to the second questionnaire! This questionnaire consists of 13 questions and aims to record your subjective feelings about the explanation
methods presented in the previous questionnaire.

1. How much do you think you understand the explanations provided for predictions of deep learning models?
O Very poor O Poor O Below average O Average O Above average O Good O Excellent

Rate your degree of agreement with statements 2-9.

2. Using explanations would improve my understanding of deep learning models’ predictions.
Strongly O Disagree Somewhat O Neutral Somewhat O Agree O Strongly agree
disagree disagree agree

3. Using explanations would enhance my effectiveness in understanding predictions of deep learning models.
Strongly O Disagree Somewhat O Neutral o Somewhat O Agree O Strongly agree
disagree disagree agree

4. | would find explanations useful in understanding predictions of deep learning models.
Strongly O Disagree Somewhat O Neutral o Somewhat O Agree O Strongly agree
disagree disagree agree

5. 1 become confused when | use the explanation information.
Strongly O Disagree Somewhat O Neutral o Somewhat O Agree O Strongly agree
disagree disagree agree

6. It is easy to use explanation information to understand predictions of deep learning models.
Strongly O Disagree Somewhat O Neutral Somewhat O Agree O Strongly agree
disagree disagree agree

7. Overall, | would find explanation information easy to use.
Strongly O Disagree Somewhat O Neutral Somewhat O Agree O Strongly agree

disagree disagree agree

8. 1 would prefer getting explanation information as long as it is available when getting predictions from deep learning

models.
Strongly O Disagree Somewhat O Neutral o Somewhat O Agree O Strongly agree
disagree disagree agree

9. | would recommend others use explanation information to understand predictions of deep learning models.

Strongly O Disagree Somewhat O Neutral o Somewhat O Agree O Strongly agree
disagree disagree agree

10. How would you rate the competence of the explanation method?

- i.e. to what extent does the explanation method perform its function properly?
- i.e. to what extent does it explain predictions of deep learning models?

O Not at all O Very low O Low O Moderate O High O Very high O Extremely high

11. How would you rate the dependability of the explanation method?
- i.e. to what extent can you count on the explanation method to explain predictions of deep learning models?
O Not at all O Very low O Low O Moderate O High O Very high O Extremely high

12. How would you rate your degree of faith that the explanation method will be able to explain predictions of deep
learning models in the future?

O Not at all O Very low O Low O Moderate O High O Very high O Extremely high

13. How would you rate your overall trust in the explanation method and its ability to explain predictions of deep learning
models?

O Not at all O Very low O Low O Moderate O High O Very high O Extremely high

Figure 12: Questions in the subjective evaluation. The user will respond to each question using a 7-point Likert
scale.
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LIME Results
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Figure 13: Results of human evaluation of LIME. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in
static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from O to 1 and the rest scores are from 1 to 7.

Grad-CAM Results
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Figure 14: Results of human evaluation of Grad-CAM. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in
static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from O to 1 and the rest scores are from 1 to 7.
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Integrated Gradients Results
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Figure 15: Results of human evaluation of Integrated Gradients. We report the participants’ objective understanding
(decision-making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and
trust in static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-
making accuracy is ranged from O to 1 and the rest scores are from 1 to 7.

SHAP Results
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Figure 16: Results of human evaluation of SHAP. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in

static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from O to 1 and the rest scores are from 1 to 7.
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