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Abstract
Explainable AI (XAI) aims to provide insights001
into decisions made by deep neural networks.002
To date, most XAI approaches provide only003
one-time, static explanations, which cannot004
cater to users’ diverse knowledge levels and in-005
formation needs. Conversational explanations006
have been proposed as an effective method to007
customize XAI explanations. However, build-008
ing conversational explanation systems is hin-009
dered by the scarcity of training data. Training010
with synthetic data faces two main challenges:011
lack of data diversity and hallucination in the012
generated data. To alleviate these issues, we013
introduce a repetition penalty to promote data014
diversity and exploit a hallucination detector015
to filter out untruthful synthetic conversation016
turns. The proposed system, fEw-shot Multi-017
round ConvErsational Explanation (EMCEE),018
achieves relative improvements of 81.6% in019
BLEU and 80.5% in ROUGE compared to the020
baselines. EMCEE also mitigates the degenera-021
tion of data quality caused by training on syn-022
thetic data. In human evaluations, EMCEE out-023
performs baseline models in improving users’024
comprehension, acceptance, trust, and collabo-025
ration with static explanations by large margins.026
To the best of our knowledge, this is the first027
conversational explanation method that can an-028
swer arbitrary user questions that follow from029
static explanations.030

1 Introduction031

Despite the high accuracy of deep neural networks032

(DNNs), in high-stake and mission-critical applica-033

tions like healthcare, finance, and law enforcement,034

it remains necessary for human domain experts to035

verify the DNN decisions and examine the reason-036

ing process in order to prevent catastrophic failures037

(Caruana et al., 2015; Powles and Hodson, 2017).038

To this end, in recent years, much research has been039

devoted to eXplainable Artificial Intelligence, or040

XAI (e.g., Selvaraju et al. 2017; Lundberg and Lee041

2017; Chen et al. 2021).042

However, most current XAI techniques provide 043

one-off, static explanations that are not customized 044

to the user. As users differ in their knowledge 045

levels as well as tasks or goals that they try to ac- 046

complish, they will inherently have different infor- 047

mation needs, which are not met by existing XAI 048

techniques (Liao et al., 2020; Liao and Varshney, 049

2021; Zhang et al., 2023). The lack of customiza- 050

tion causes insufficient understanding of model 051

behavior and undermines human-AI collaboration 052

(Zhang et al., 2023). Indeed, recent studies found 053

that the end users and domain experts with limited 054

machine learning knowledge still struggle to under- 055

stand and use the XAI explanations (Ehsan et al., 056

2021; Wang and Yin, 2021). 057

Conversational explanations have been sug- 058

gested as a suitable solution for providing cus- 059

tomized explanations to users (Liao et al., 2020; 060

Feldhus et al., 2022; Lakkaraju et al., 2022; Zhang 061

et al., 2023), as they allow XAI systems to answer 062

arbitrary follow-up questions from the user after 063

they see the static explanation. Lakkaraju et al. 064

(2022) discover that human decision makers have 065

a strong preference for explanations in the form of 066

natural language dialogue. They argue that con- 067

versational explanations can provide personalized 068

responses and information based on users’ conver- 069

sational histories. Zhang et al. (2023) show that 070

answering user questions following the static ex- 071

planations can significantly improve participants’ 072

comprehension, acceptance, trust, and collabora- 073

tive decision making with AI. 074

While the need for conversational XAI has been 075

recognized, building such systems is hindered by 076

data scarcity, partially due to the difficulty of col- 077

lecting high-quality conversations about AI expla- 078

nations. As far as we are aware, there is only one 079

dataset of 60 conversations on two types of static 080

explanations (Zhang et al., 2023). To date, existing 081

conversational explanations are based on human- 082

authored templates, which can cope only with a lim- 083
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ited and predefined range of user questions (Slack084

et al., 2023; Shen et al., 2023).085

To handle data scarcity, a natural thought is to086

generate synthetic conversations using large vision087

language models (VLMs), which may answer tech-088

nical questions to a degree (Hellas et al., 2023).089

However, training with synthetic data encounters090

two primary challenges: the lack of data diversity091

and model hallucination.092

The first challenge, the lack of data diversity,093

arises as generative models tend to overrepresent094

high-frequency content (Schwarz et al., 2021; Shu-095

mailov et al., 2024; Briesch et al., 2023) and sup-096

press the tails of the data distribution. To alleviate097

this issue, we introduce a repetition penalty that098

reduces the frequency of tokens existing in previ-099

ously generated conversations.100

The other obstacle is the hallucination in gener-101

ated conversations. VLMs often suffer from gener-102

ating untruthful information, referred to as halluci-103

nation (Lee et al., 2022; Ji et al., 2023; Dai et al.,104

2023; Zheng et al., 2023; Berglund et al., 2024).105

To mitigate the hallucinated, factually incorrect an-106

swers, we train a hallucination detector to filter107

out such conversation turns after data generation.108

To train the detector, we collected a hallucination109

dataset of 750 factual and 750 incorrect statements110

about basic machine learning and XAI methods.111

We conduct both automatic and human evalu-112

ations on the proposed system, fEw-shot Multi-113

round ConvErsational Explanation (EMCEE). The114

automatic evaluation is conducted on the only ex-115

isting conversational explanation dataset (Zhang116

et al., 2023). For the human evaluation, we eval-117

uate user comprehension, acceptance and trust in118

XAI, and user’s ability to choose the best AI models119

using only the explanations. Empirical results show120

that EMCEE outperforms the baseline LLaVa-1.5121

model in both automatic and human evaluations.122

Repeated training on self-generated data leads to123

data degeneration in diversity and quality (Briesch124

et al., 2023). We demonstrate that the proposed125

repetition penalty and hallucination detection can126

slow down the data degeneracy in training with127

synthetic data. In practice, our model significantly128

improves participant’s comprehension, acceptance,129

trust, and collaborative performance.130

Our contributions can be summarized as follows.131

• To the best of our knowledge, we propose the132

first conversational explanation that can answer133

free-form follow-up questions after providing134

static explanations to the user. 135

• We propose a repetition penalty to enhance data 136

diversity and a hallucination detector to reduce 137

erroneous information in synthetic data. 138

• The proposed method EMCEE outperforms the 139

baseline model in both automatic and human 140

evaluation by large margins. 141

2 Methodology 142

The overall workflow of EMCEE is illustrated as 143

Figure 1 and outlined in Algorithm 1. Starting 144

from a pretrained VLM V1, we generate a set of 145

synthetic conversations D1, while using the rep- 146

etition penalty to encourage data diversity. Each 147

conversation may contain multiple turns, denoted 148

as ⟨(x1,y1), (x2,y2), . . .⟩, where the human turn 149

is xi and the machine response is yi. Then, we 150

apply a hallucination detector fh, which filters out 151

hallucinated conversation turns. That is, if we de- 152

tect hallucination from the machine response (i.e., 153

fh(yi) = 1), (xi,yi) is removed from the conver- 154

sation. This process yields cleaned data D clean
1 . 155

Afterwards, we finetune the VLM on D clean
1 , lead- 156

ing to the next VLM V2, from which we start an- 157

other round of generation-filter-finetuning. This 158

process is repeated multiple times. We do not reuse 159

synthetic data from previous rounds. 160

We design a prompt that is used across all stages, 161

i.e., data generation, model fine-tuning, and model 162

inference. The prompt includes an instruction, 163

background information about the AI model and 164

XAI method, and a number of demonstration con- 165

versations. The instruction specifies the purpose 166

of the conversation, which is to enhance user com- 167

prehension of static explanations. The background 168

information includes details about the prediction 169

task, the machine learning model, the XAI tech- 170

nique, and an example explanation. Details of the 171

prompts are in Appendix A. 172

The number of demonstration conversations uti- 173

lized varies in different stages. During synthetic 174

data generation and mode finetuning, we randomly 175

choose 0 or 1 demonstration and keep it consistent 176

for each mini-batch. During model inference and 177

evaluation, the number of demonstrations ranges 178

between zero and three. 179

2.1 Repetition Penalty 180

The repetition penalty encourages the VLM to gen- 181

erate more diverse conversations by discounting the 182

logits of tokens seen in previous conversation turns. 183
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Figure 1: The Overall Workflow of EMCEE. Vi denotes the VLM and Di denotes the synthetic conversation data in
the i-th iteration. Starting from a pretrained VLM V1, we first generate diverse synthetic conversations D1 with the
repetition penalty. Next, we use a hallucination detector to clean synthetic data, producing cleaned data D clean

1 . We
then finetune the VLM on D clean

1 , which creates V2, and this process repeats.

Algorithm 1 EMCEE
Input: a pretrained VLM V1; a hallucination de-
tector fh, fh(y) = 1 if y is deemed hallucination;
number of conversations to generate per round N ;
maximum number of rounds R.
Output: a finetuned model VR

1: for r in 1...R do
2: Dr ← generate N conversations from Vr;
3: D clean

i ← {(x,y) ∈ Dr | fh(y) ̸= 1};
4: Vr+1← finetune Vr on D clean

i ;
5: end for

Specifically, given the logits zi for each token i184

in the vocabulary, the probability pi of predicting185

token i is computed as,186

pi =
exp(zi/(T + θ · 1(i ∈ G)))∑
j exp(zj/(T + θ · 1(j ∈ G)))

, (1)187

where T is the temperature. θ is the ratio of the188

repetition penalty. G is the set of words existing in189

generated conversations in the current round, and190

1 is an indicator function. When the token i exists191

in G, 1(i ∈ G) is 1, otherwise, 1(i ∈ G) is 0.192

2.2 Hallucination Detection and Filtering193

VLMs often generate convincing but factually194

incorrect statements, especially when answering195

questions that require reasoning and logical deduc-196

tion (Lee et al., 2022; Ji et al., 2023; Dai et al., 2023;197

Zheng et al., 2023; Berglund et al., 2024). Conver-198

sational explanations are mainly about explaining199

the causal relationship between static explanations200

and AI predictions, which involves significant rea-201

soning. Therefore, hallucination is a major concern202

in this use case.203

To reduce hallucination, we integrate a hallucina-204

tion detector into the training process, which iden-205

tifies and removes hallucinated conversation turns. 206

To train the hallucination detector, we constructed a 207

dataset comprising 1,500 sentences about machine 208

learning and XAI methods. The dataset is balanced, 209

containing 750 factually correct sentences and 750 210

factually incorrect ones. It includes 500 sentences 211

on general machine learning knowledge, sourced 212

from a number of students studying machine learn- 213

ing. The remaining 1,000 sentences are about XAI 214

knowledge; we use GPT-4-turbo-2024-04-09 to 215

generate 500 factually correct sentences about XAI 216

and subsequently altered them be incorrect. All 217

generated sentences have been rigorously validated 218

by XAI experts. Examples of sentences included 219

in the dataset are displayed in Appendix E. 80% 220

of the collected data are used for training, whereas 221

20% data are reserved for validation and testing. 222

3 Experiment 223

3.1 Experimental Protocol 224

We used LLaVa-1.5 (Liu et al., 2023b,a) as our 225

base vision language model. LLaVa-1.5 is an end- 226

to-end trained large multimodal model that com- 227

bines a vision encoder and an LLM for general- 228

purpose visual and language understanding. We 229

chose LLaVa-1.5 for its high performance in an- 230

swering scientific questions and proficiency in vi- 231

sual chat scenarios (Liu et al., 2023b,a). 232

We focus on the image classification task on 233

the ImageNet dataset and train three classification 234

models with different top-1 classification accura- 235

cies: Swin Transformer (84.1%), VGG-16 (71.6%), 236

and AlexNet (56.5%). To generate explanations 237

for model predictions, we adopt four explanation 238

techniques from feature attribution methods: LIME 239

(Ribeiro et al., 2016), Grad-CAM (Selvaraju et al., 240
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2017), Integrated Gradients (Sundararajan et al.,241

2017), and SHAP (Lundberg and Lee, 2017). The242

focus is on feature attribution as we believe the243

relationship between input features and model pre-244

dictions is more intuitive to understand for laypeo-245

ple than, for example, data attribution (Kim et al.,246

2023).247

For the data generation process, the number of248

generated conversations N at each round is set249

to 2000, with 500 conversations for each static250

explanation method. The temperature is set to 1.2251

and the repetition penalty ratio is set to 1.1.252

For finetuning LLaVa-1.5, we use LoRA (Hu253

et al., 2021) to only finetune the language model254

with the vision encoder and the projector frozen.255

The rank of the LoRA parameter is set to 128, the256

batch size is 32, and the learning rate is 2× 10−4257

with cosine annealing.258

For the hallucination detector, we train a Bert-259

base model (Devlin et al., 2019) using the SGD260

optimizer with a learning rate of 0.01, batch size261

of 16, and weight decay for 100 epochs. The hallu-262

cination detector received 79.5% accuracy on the263

held-out test set.264

3.2 Evaluation265

We conduct both automatic and human evaluations266

to demonstrate the effectiveness of the proposed267

model. For automatic evaluations, we conduct268

few-shot evaluations with 0 to 3 demonstrations.269

We leverage BLEU (Papineni et al., 2002) and270

ROUGE (Lin and Och, 2004) scores to measure271

word overlaps between the generated response text272

and ground truth text.273

For human evaluations, we evaluate the practi-274

cal effects of different conversational explanation275

models in improving participants’ comprehension276

(Cheng et al., 2019), acceptance (Davis, 1989), and277

trust (Yang et al., 2017b) in static explanations.278

Based on the results of automatic evaluations, we279

use 2 demonstrations for conversational explana-280

tions on Grad-CAM and LIME. Due to the lack of281

real human conversations, we do not use demon-282

strations for Integrated Gradients and SHAP. We283

recruited N = 40 participants from 14 majors.284

Each participant engaged in the study only once.285

We first presented them with the static explanations286

for the image classification task and measure their287

objective understanding and subjective perceptions288

of static explanations. After that, half of the partic-289

ipants went through an online textual conversation290

with the pretrained LLaVa-1.5 model, during which291

they could seek to clarify any doubts. The other 292

half interacted with our models. Details of the on- 293

line textual conversation platform are in Appendix 294

B. 295

We asked the participants to choose one model 296

from three candidate classification models that 297

would be the most accurate on unobserved test 298

data and use the selection accuracy as a measure- 299

ment of their objective understanding of the static 300

explanations. The three classification models made 301

identical decisions on 5 images. The only differ- 302

ences between the three networks lay in their ex- 303

planations. Hence, to select the best model, the 304

participants must rely on the explanations. The 305

details of how the explanation images are selected 306

and the full set of images are in Appendix C. 307

To measure participants’ subjective percep- 308

tion of static explanations, we use the same set 309

of 13 self-reporting questions in the previous 310

study (Zhang et al., 2023). These self-reporting 311

questions probe participants’ comprehension, ac- 312

ceptance, and trust in explanations. All questions 313

utilize a 7-point Likert scale for responses. The full 314

list of the questions is in Appendix D. 315

3.3 Dataset 316

We conducted our automatic evaluation using the 317

only existing dataset from human-human conver- 318

sational XAI (Zhang et al., 2023), gathered in a 319

Wizard-of-Oz (WoZ) setting (Kelley, 1984). Par- 320

ticipants interacted with what they believed was an 321

autonomous dialogue system, which was actually 322

operated by a human expert of machine learning 323

and XAI. Participants were recruited from 19 dif- 324

ferent disciplines. The dataset includes 30 conver- 325

sations on the LIME method and another 30 on the 326

Grad-CAM method. On average, each conversa- 327

tion contains 27.4 utterances, with each utterance 328

averaging 14.4 words. Due to its small size, we do 329

not use this dataset for training. We employ one 330

conversation per static explanation method (LIME 331

and Grad-CAM) as a demonstration in the data gen- 332

eration prompt and six conversations for demon- 333

strations in the few-shot evaluation. The rest 52 334

conversations are used for testing. 335

3.4 Results of Automatic Evaluation 336

Table 1 presents the automatic evaluation results 337

of both the pretrained LLaVa-1.5 model and our 338

EMCEE model when we prompt them with 0 to 3 339

example conversations. Our method exhibits sub- 340

stantial improvements over the pretrained LLaVa- 341
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Table 1: Automatic Evaluation of pretrained LLaVa-1.5 and our model. We prompt models with 0 to 3 example
conversations.

Methods Shot Num BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L

LLaVa-1.5

0 0.1328 0.0534 0.0235 0.0103 0.3150 0.0595 0.0179 0.2507
1 0.1447 0.0680 0.0361 0.0196 0.2823 0.0823 0.0374 0.2324
2 0.2160 0.1329 0.0985 0.0813 0.3365 0.1469 0.1014 0.2883
3 0.1979 0.1265 0.0854 0.0687 0.3153 0.1339 0.0839 0.2709

EMCEE
(Ours)

0 0.2394 0.1659 0.1270 0.1055 0.3918 0.2295 0.1794 0.3418
1 0.2895 0.2186 0.1826 0.1618 0.4513 0.2854 0.2391 0.4006
2 0.3056 0.2336 0.1945 0.1721 0.4629 0.2964 0.2454 0.4054
3 0.2786 0.2100 0.1769 0.1571 0.4380 0.2798 0.2339 0.3881

1.5 in terms of both BLEU and ROUGE scores.342

Specifically, our model shows an increase of 81.6%343

in BLEU scores and 80.5% in ROUGE scores com-344

pared to the pretrained LLaVa-1.5. These results345

suggest that our model, which has been trained on346

self-generated synthetic conversations in a multi-347

round setting, can better explain static XAI and348

produce responses more aligned with human an-349

swers to users’ inquiries.350

3.5 Results of Human Evaluation351

Table 2 presents human evaluation results, com-352

paring the pretrained LLaVa-1.5 model and EM-353

CEE across four static explanation methods, LIME,354

Grad-CAM, Integrated Gradients, and SHAP.355

Participants’ objective understanding improves356

with both LLaVa-1.5 and EMCEE on all static ex-357

planation; however, participants interacting with358

our model consistently demonstrate greater in-359

crease in the model selection accuracy post-360

conversation, demonstrating strong positive effects361

of training on synthetic data in assisting partici-362

pants collaborating with static explanations.363

We observe varied objective performance among364

LIME, Grad-CAM, Integrated Gradients, and365

SHAP. Grad-CAM has the highest accuracy of ob-366

jective decision accuracy and Integrated Gradients367

has the lowest accuracy. A potential reason might368

be the inherently intuitive nature of the explana-369

tions produced by Grad-CAM compared to others.370

In terms of participants’ subjective understand-371

ing, participants who receive conversational ex-372

planations from EMCEE report a significantly373

greater improvement than those who interacted374

with LLaVa-1.5, across all four static explanation375

methods. Initially, there is no notable difference376

in the participants’ self-reported understanding of377

static explanations. Participants using the EMCEE378

model report a higher level of understanding than379

those who interacted with the LLaVa-1.5 model. 380

For acceptance of explanations, we observed 381

similar patterns in participants’ subjective under- 382

standing. Participants’ perceived usefulness, per- 383

ceived ease of use, and behavioral intention all 384

increase after interacting with LLaVa-1.5 or EM- 385

CEE, but the improvements brought by LLaVa-1.5 386

are much smaller than EMCEE. We hypothesize 387

that the ability to resolve confusion with EMCEE 388

partially causes the participants to perceive greater 389

usefulness, ease of use, and tendency to use the 390

static explanations. 391

For the trust measurement, we observed a 392

marked rise in participants’ trust levels across all 393

four static explanation methods after interaction 394

with our model. According to theories of trust 395

(McKnight et al., 1998; Lim et al., 2009; Hoffman 396

et al., 2018), the ability to build a mental model 397

of AI systems is the key to user trust in AI. The 398

improvements in trust may be a result of improved 399

understanding of static explanations, as indicated 400

by earlier results. 401

3.6 Ablation Study with Automatic 402

Evaluation 403

We create the following ablated versions of EM- 404

CEE: (1) No multi-round training, which performs 405

one round of synthetic generation, filtering, and 406

model finetuning. (2) No repetition penalty, which 407

removes the repetition penalty. (3) No hallucina- 408

tion detection, which does not detect and remove 409

hallucinated conversation turns. 410

Table 3 summarizes the results of different ab- 411

lated versions of EMCEE. We make the follow- 412

ing observations. First, the absence of multi- 413

round training significantly reduces the perfor- 414

mance across all BLEU and ROUGE metrics. This 415

demonstrates that generating synthetic conversa- 416

tions and filtering out hallucination conversations 417
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Table 2: Results of human evaluations before and after conversations. Each score is presented as mean ± standard
deviation and the change δ = after− before. ∗ indicates that change δ caused by our model is statistically higher
than that from the baseline model, LLaVa-1.5, with p < 0.05 using the Student’s t-test.

Explanation
Methods

Conversational
Explanation

method

Evaluation
Timing

Objective
Understanding

(Model Selection
Accuracy)

Subjective
Understanding

Acceptance
Trust

Perceived
Usefulness

Perceived
Ease of Use

Behavioral
Intention

LIME

LLaVa-1.5
before 0.36 ± 0.17 4.00 ± 1.58 5.20 ± 1.02 4.40 ± 1.62 4.90 ± 1.02 4.10 ± 0.22
after 0.44 ± 0.17 4.80 ± 1.30 5.60 ± 0.60 5.20 ± 0.60 5.20 ± 0.82 4.30 ± 0.52
δ 0.08 0.80 0.40 0.80 0.30 0.20

EMCEE
(Ours)

before 0.36 ± 0.09 4.20 ± 1.30 5.33 ± 0.80 4.53 ± 0.92 5.00 ± 0.65 4.20 ± 0.45
after 0.52 ± 0.11 5.20 ± 0.55 5.93 ± 0.87 5.60 ± 0.68 5.60 ± 0.76 4.80 ± 0.42
δ 0.16∗ 1.00∗ 0.60∗ 1.07∗ 0.60∗ 0.60∗

Grad-CAM

LLaVa-1.5
before 0.76 ± 0.17 4.00 ± 1.41 5.33 ± 0.41 4.87 ± 0.60 5.50 ± 0.35 4.40 ± 0.29
after 0.84 ± 0.09 4.80 ± 0.45 5.60 ± 0.44 5.13 ± 0.38 5.80 ± 0.27 5.00 ± 0.47
δ 0.08 0.80 0.27 0.26 0.30 0.60

EMCEE
(Ours)

before 0.80 ± 0.20 4.00 ± 1.22 5.13 ± 1.07 4.80 ± 1.09 5.30 ± 0.69 4.15 ± 0.72
after 0.92 ± 0.11 5.40 ± 0.89 6.13 ± 0.61 5.40 ± 0.93 6.10 ± 0.45 5.25 ± 0.90
δ 0.12 1.40∗ 1.00∗ 0.60∗ 0.80∗ 1.10∗

Integrated
Gradients

LLaVa-1.5
before 0.24 ± 0.09 3.80 ± 0.45 4.73 ± 0.28 3.87 ± 0.77 4.40 ± 1.08 3.85 ± 0.42
after 0.28 ± 0.18 4.00 ± 1.10 5.00 ± 0.84 4.40 ± 1.60 4.70 ± 1.20 3.85 ± 0.38
δ 0.04 0.20 0.27 0.53 0.30 0.00

EMCEE
(Ours)

before 0.20 ± 0.14 3.80 ± 0.55 4.87 ± 0.89 3.60 ± 0.64 4.50 ± 0.79 3.85 ± 0.55
after 0.44 ± 0.09 4.60 ± 0.45 5.20 ± 0.61 4.73 ± 0.60 5.50 ± 0.67 4.40 ± 0.80
δ 0.24∗ 0.80∗ 0.33 1.13∗ 1.00∗ 0.55∗

SHAP

LLaVa-1.5
before 0.48 ± 0.11 3.80 ± 1.79 5.40 ± 0.60 4.87 ± 1.73 5.00 ± 1.06 4.20 ± 1.47
after 0.60 ± 0.14 5.40 ± 0.84 5.60 ± 0.55 5.67 ± 0.78 5.20 ± 0.91 4.60 ± 0.84
δ 0.12 1.60 0.20 0.80 0.20 0.40

EMCEE
(Ours)

before 0.50 ± 0.48 3.75 ± 1.89 5.43 ± 0.58 4.58 ± 1.77 5.00 ± 0.71 4.25 ± 1.14
after 0.80 ± 0.16 5.50 ± 1.29 6.13 ± 0.82 6.00 ± 0.47 5.78 ± 0.48 5.31 ± 0.94
δ 0.30∗ 1.75 0.70∗ 1.42∗ 0.78∗ 1.06∗

h

in an iterative way can gradually improve the qual-418

ity of generated conversations and thus improve the419

performance of our model. Second, the model’s420

performance decreases when the repetition penalty421

is removed. This result indicates that the diversity422

of synthetic conversations plays a crucial role in423

our model. Third, the most substantial performance424

drop occurs when the hallucination detector is re-425

moved, with a 10.7% decrease in BLEU scores and426

a 15.3% decrease in ROUGE scores. This result427

highlights the importance and necessity of filtering428

hallucinated synthetic data after generation.429

3.7 Effects of Multiple Generation-Training430

Iterations431

In the training of EMCEE, we repeat the generation-432

training process multiple times. We investigate433

how iterations affect the performance of EMCEE434

and ablated versions of EMCEE in BLEU-4 and435

ROUGE-L scores, as shown in Figure 2.436

We observe that the ablated versions of EMCEE437

improve in the first few iterations and decrease af-438

terwards. This is similar to the findings of Briesch439

et al. (2023), who show that repeatedly training440

models with self-generated data initially causes 441

performance gains but, after a few iterations, re- 442

sults in degenerate synthetic data with low diversity 443

and eventual performance drop. This is especially 444

apparent when we remove the repetition penalty 445

or the hallucination filter, as both BLEU-4 and 446

ROUGE-L decrease drastically after the third and 447

fifth iteration, respectively. 448

However, with both the repetition penalty and 449

the hallucination filter of EMCEE, the performance 450

drops become substantially milder. For BLEU-4, 451

a small drop is observed after the fifth iteration. 452

For Rouge-L, the performance effectively plateaus 453

around the sixth and seventh iteration. We con- 454

clude that the proposed techniques, including the 455

repetition penalty and the hallucination filter suc- 456

cessfully slows down degeneracy in training with 457

synthetic data. 458

3.8 Examples of Identified Hallucinations in 459

Generated Conversations 460

To qualitatively assess the effectiveness of the hal- 461

lucination detector, we selected four conversation 462

turns identified as hallucinations by the detector, as 463
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Table 3: An ablation study of the proposed EMCEE on the conversational explanation dataset

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L

EMCEE 0.3056 0.2336 0.1945 0.1721 0.4629 0.2964 0.2454 0.4054
No Multi-round Training 0.2808 0.2079 0.1685 0.1465 0.4198 0.2608 0.2162 0.3756

No Repetition Penalty 0.2824 0.2214 0.1854 0.1657 0.4219 0.2778 0.2329 0.3798
No Hallucination Detection 0.2730 0.1977 0.1631 0.1408 0.4161 0.2375 0.1950 0.3625

Type Utterance
Q: Does the XAI provide explanations

about how the classification model
made the prediction?

A: No, it only gives local explanations
about what the model predicts.

Q: Are there any limitations to the Grad-
CAM?

A: No, there are no limitations to the
method.

Q: Is the process of SHAP complicated?
A: No, SHAP is a relatively simple pro-

cess, even though it provides deeper
feature attribution insights than tradi-
tional methods such as permutation im-
portance tests.

Q: Does LIME produce probabilities or
classifications?

A: LIME produces classifications, not
probabilities.

Table 4: Examples of conversation turns that are identi-
ties as hallucinations by the detector.

presented in Table 4. These examples demonstrate464

that LLMs tend to generate untruthful responses465

about both fundamental machine learning concepts466

and various XAI techniques. The hallucination de-467

tector in our model can identify and exclude such468

incorrect turns from the synthetic dataset. Con-469

sequently, the hallucination detection and filtering470

process diminishes the occurrence of hallucinations471

in the synthetic data and enhances the performance472

of models finetuned on this refined dataset.473

4 Related Work474

4.1 Static XAI475

Explainable Artificial Intelligence (XAI) refers to476

techniques that explain the learning process or the477

predictions of AI (Yang et al., 2019). Most ex-478

isting techniques are static XAI, which provides479

a one-time explanation with no capability for fur-480

ther user interaction. Two groups of static XAI481

include self-explanatory models and post-hoc meth-482

Figure 2: BLEU-4 and Rouge-L scores over the number
of training iterations for LLaVa-1.5, EMCEE and differ-
ent ablated version of EMCEE.

ods. Self-explanatory models are inherently trans- 483

parent, offering clarity in their decision-making 484

processes (Lakkaraju et al., 2016; Rudziński, 2016; 485

Yang et al., 2017a; Jain and Wallace, 2019; Wiegr- 486

effe and Pinter, 2019). The majority of recent XAI 487

methods are post-hoc XAI methods, applied to al- 488

ready developed models that lack inherent trans- 489

parency (Selvaraju et al., 2017; Ribeiro et al., 2016; 490

Chen et al., 2021; Adadi and Berrada, 2018; Bo- 491

dria et al., 2023). There are two main groups of 492

methods in post-hoc XAI, i.e., feature attribution 493

methods and example-based methods. 494

Feature Attribution. Feature attribution meth- 495

ods explain model predictions by investigating the 496

importance of input features to final predictions 497

7



(Adadi and Berrada, 2018; Danilevsky et al., 2020).498

There are two main types of feature attribution499

methods, gradient-based methods (Cortez and Em-500

brechts, 2013; Sundararajan et al., 2017; Selvaraju501

et al., 2017; Simonyan et al., 2013; Lundberg and502

Lee, 2017; Wang et al., 2024; Kokalj et al., 2021; Li503

et al., 2016) and surrogate methods (Ribeiro et al.,504

2016; Hu et al., 2018; Alvarez-Melis and Jaakkola,505

2017; Liu et al., 2018; Shih et al., 2018; Ignatiev506

et al., 2019). Gradient-based methods employ gra-507

dients to evaluate the contribution of a model input508

on the model output. Surrogate methods leverage a509

simple and inherently interpretable model, such as510

linear model, to locally approximate the complex511

neural network.512

Example-based Methods. Example-based meth-513

ods explain AI predictions by identifying a selec-514

tion of data instances (Adadi and Berrada, 2018;515

Danilevsky et al., 2020; Nguyen et al., 2024).516

These instances may be training data points the517

most influential to the parameters of a predic-518

tion model (Chen et al., 2021; Guo et al., 2021),519

counterfactual examples that alter predictions with520

minimal changes to inputs (Wachter et al., 2017;521

Mothilal et al., 2020; Yin and Neubig, 2022; Ye522

et al., 2021; Ross et al., 2021; Wu et al., 2021), or523

prototypes that contain semantically similar parts524

to input instances (Croce et al., 2019; Jeyakumar525

et al., 2020; Kim et al., 2016).526

4.2 Conversational XAI527

Research into Conversational XAI is still at an early528

stage with limited methods being developed so far.529

Shen et al. (2023) apply conversational explana-530

tions to scientific writing tasks, observing improve-531

ments in productivity and sentence quality. Slack532

et al. (2023) design dialogue systems to help users533

better understand machine learning models on di-534

abetes prediction, rearrest prediction, and loan de-535

fault prediction tasks. Despite these advances, the536

conversations in these studies are generated based537

on templates and can only cope with limited pre-538

defined user queries. Our work represents the first539

system that can deliver free-form explanatory con-540

versations with users about static explanations.541

4.3 Training with Synthetic Data542

The exceptional performance of Large Language543

Models (LLMs) and Vision Language Models544

(VLMs) in generating human-like text has led re-545

searchers to explore their use as training data gener-546

ators (Meng et al., 2022; Ye et al., 2022a; Guo and547

Chen, 2024; Gao et al., 2023; Meng et al., 2023; Ye 548

et al., 2022b). For example, SuperGen (Meng et al., 549

2022) uses LLMs conditioned on label-descriptive 550

prompts to generate training data for text classifica- 551

tion tasks. FewGen (Meng et al., 2023) fine-tune 552

an LLM on few-shot samples and use it to generate 553

synthetic data for seven classification tasks in the 554

GLUE benchmark. 555

To mitigate the detrimental effects of noisy and 556

low-quality synthetic data from LLMs and VLMs 557

(Schwarz et al., 2021; Zhang et al., 2024; Kirk 558

et al., 2021; Esiobu et al., 2023; Lee et al., 2022; Ji 559

et al., 2023), several methods have been proposed 560

(Gao et al., 2023; Guo and Chen, 2024; Meng et al., 561

2023; Ye et al., 2022b). For example, ProGen (Ye 562

et al., 2022b) adjusts the importance of generated 563

data points with regard to the validation loss, using 564

influence function (Koh and Liang, 2017). How- 565

ever, these strategies have primarily focused on 566

generating data for classification tasks and on train- 567

ing small-scale task-specific models. Techniques 568

such as applying the influence function to weigh 569

data points are effective for smaller models. They 570

present challenges and require a special design 571

when adapted to LLMs (Grosse et al., 2023). 572

In our work, we apply data generation to con- 573

versational explanations and utilize generated data 574

to train the original VLM. We improve the quality 575

of the generated data and significantly slow down 576

model degeneracy after many generation-training 577

iterations (see §3.7). 578

4.4 Conclusion 579

This paper proposes the fEw-shot Multi-round Con- 580

vErsational Explanation (EMCEE) to provide cus- 581

tomized explanations to users from diverse do- 582

mains. To deal with data security, we train the EM- 583

CEE with synthetic data. We first use a vision lan- 584

guage model (VLM) to generate synthetic conver- 585

sations with the repetition penalty to promote the 586

diversity of generated data. Then, to reduce halluci- 587

nations in generated data, we apply a hallucination 588

detector to filter hallucinated conversation turns 589

after the data generation. To iteratively improve 590

the performance, we recycle the generation-filter- 591

finetuning process multiple times. Both automatic 592

and human evaluation demonstrated that EMCEE 593

outperforms baseline models by a large margin. 594

In practice, EMCEE significantly improved users’ 595

comprehension, acceptance, trust, and collabora- 596

tion with static explanations. 597
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4.5 Limitations598

We identify three limitations of the current work.599

First, the static explanations used in our study are600

limited. Our experiments focused on feature attri-601

bution explanation methods on image classification.602

Even though our method is applicable to any static603

explanation method, the performance of our model604

on other types of static explanation methods, such605

as example-based explanation methods, or NLP606

tasks, is yet to be explored.607

Second, we mainly focus on removing factuality608

hallucinations, while not considering faithfulness609

hallucinations (Huang et al., 2023). Factuality hal-610

lucinations refer to statements that are factually in-611

correct or fabricated. Faithfulness hallucinations re-612

fer to statements that are not related to instructions613

and contextual information. In data generation, our614

model also may generate unrelated conversations to615

the static explanations. We leave building a detec-616

tor or using other methods to filter these unrelated617

conversations for future work.618

Finally, our research is confined to one geograph-619

ical region. Factors such as cultural backgrounds620

could potentially affect how users interact with621

XAI and how they seek to clarify confusion. Fu-622

ture studies could involve recruiting participants623

from diverse countries and regions.624
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A VLM Prompts1044

The prompt contains an instruction to generate a1045

conversation, the background information about1046

the conversation, and a number of demonstration1047

conversations. Example prompts for LIME, Grad-1048

CAM, Integrated Gradients, and SHAP are shown1049

in Figure 3, 4, 5, and 6 respectively. The input im-1050

ages are randomly selected from ImageNet and the1051

explanations are generated by the corresponding1052

XAI method.1053

B Oneline Textual Conversation Platform1054

Our study is conducted on a web-based platform1055

where participants can remotely finish the whole1056

procedure of the experiment. The web-based plat-1057

form will ensure that all communications between1058

users and conversational agents are text-based and1059

recorded. Figure 7 displays an example screen-1060

shot of the web page where participants discuss1061

static explanations with different conversational1062

agents. There are two sections on the page. On the1063

left, the user sees a task description, a description1064

of the prediction model, a model input, a model1065

output, an explanation generated by the explana-1066

tion model, and a description of the explanation.1067

Within the chatbox on the right, the user can con-1068

verse with the conversational agent to clarify the1069

explanation. Through a conversation, a user can1070

ask any questions or provide any comments related1071

to the explanation on the left side.1072

C Objective Evaluation1073

The objective evaluation aims to evaluate users’ ob-1074

jective understanding of static explanations. Partic-1075

ipants are presented with 5 input images, on which1076

the three classification models make the same de-1077

cisions. The only differences between the three1078

models lie in their explanations. Participants need1079

to choose the one that would be the most accurate1080

on unobserved test data. Hence, to make the cor-1081

rect selection, the participants must understand the1082

explanations. We use the accuracy of selecting the1083

correct model to measure participants’ objective un-1084

derstanding of static explanations. The full set of1085

images listed in the objective evaluation for LIME,1086

Grad-CAM, Integrated Gradients, and SHAP are1087

shown in Figure 8, 9, 10, and 11 respectively.1088

We observe that static explanations do not al-1089

ways faithfully reflect the actual workings of classi-1090

fication models (Adebayo et al., 2018; Kindermans1091

et al., 2019; Jacovi and Goldberg, 2020) and do not1092

always contain actionable information for model 1093

selection. In our study, model selection is used 1094

to determine whether users can comprehend static 1095

explanations when the explanations do have action- 1096

able information for selection, rather than assessing 1097

the explanations themselves. For this, we chose im- 1098

ages that models with high accuracy indeed have 1099

more reasonable explanations. This approach al- 1100

lows users to easily pick the best classification mod- 1101

els if they understand the static explanations well. 1102

We deem an explanation more reasonable when it 1103

focuses more on discriminative features that are 1104

unique to the predicted class and less on spurious 1105

features that are irrelevant to the class. A good 1106

model should have explanations that rely on multi- 1107

ple types of discriminative features. This is because 1108

a model relying on multiple features is robust and 1109

makes the correct decision even if some discrimi- 1110

native features are absent or occluded. 1111

D Subjective Evaluation 1112

The subjective evaluation measures participants’ 1113

self-reported perception of the static explanations, 1114

including their comprehension, acceptance, and 1115

trust. We use the same 13 questions as the previous 1116

study (Zhang et al., 2023). All questions utilize a 1117

7-point Likert scale for responses. The full list of 1118

the questions is in Figure 12. 1119

E Examples of Sentences in our 1120

Hallucination Dataset 1121

To train the hallucination detector in MGCEE, we 1122

have collected a hallucination dataset about ma- 1123

chine learning and XAI techniques. Table 5 dis- 1124

plays 12 example sentences with labels in our 1125

dataset. 1126
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Sentence Label
When the amount of data stays the same, the more parameters, the more difficult
to estimate the parameters accurately.

0

When the amount of data stays the same, increasing the number of parameters
can improve the accuracy of their estimates.

1

XAI is less important in systems where decisions are not critical. 0
XAI is only relevant in non-critical systems. 1
Grad-CAM can be applied to any convolutional layer of a network, not just the
final layer.

0

Grad-CAM is restricted to analyzing the input and output layers of a network. 1
LIME can explain any machine learning model as long as it can probe the model
with perturbed inputs.

0

LIME can only explain models that are specifically designed to work with its
framework.

1

The path taken from baseline to input in Integrated Gradients is typically linear. 0
The path taken is randomly generated in each run of Integrated Gradients. 1
SHAP values can be computed for any data point in the dataset, providing
versatile insights.

0

SHAP values can only be computed for a limited set of predefined data points. 1

Table 5: Examples of sentences with labels in our hallucination dataset. Label 0 means the sentence is factually
correct; label 1 means the sentence is factually incorrect.
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Instruction: A chat about explainable AI (XAI)
between a curious human USER and an AI
ASSISTANT. The human USER is well educated but
may need help understanding how AI and XAI work.
The USER asks questions to understand AI's
decision-making process better. The USER's question
should be diverse and related to AI and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:
Task: Image classification
Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.
Image classification model: swin transformer
Model’s input:

Model’s prediction: Leopard
Explanation for the prediction:

Explanation method: LIME
Description of LIME:
LIME (Local Interpretable Model-Agnostic
Explanations) is a technique used in machine
learning to help explain the predictions made by
complex AI models.
LIME works by creating a simpler, more
interpretable model that approximates the behavior
of the complex model in a small region around a
particular data point. This simpler model is then used
to explain why the complex model made a certain
prediction for that data point. Regions of the image
that are most important for the model's prediction are
highlighted.
<Demonstrations>
The conversation starts:
USER:

Figure 3: The VLM prompt about LIME.

Instruction: A chat about explainable AI (XAI)
between a curious human USER and an AI
ASSISTANT. The human USER is well educated but
may need help understanding how AI and XAI work.
The USER asks questions to understand AI's
decision-making process better. The USER's question
should be diverse and related to AI and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:
Task: Image classification
Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.
Image classification model: swin transformer
Model’s input:

Model’s prediction: Leopard
Explanation for the prediction:

Explanation method: Grad-CAM
Description of Grad-CAM:
The Grad-CAM method is a technique used in
computer vision to understand which parts of an
image a deep learning model focuses on to make its
prediction. It generates a heatmap that highlights the
regions of the image that are most important for the
prediction.
The heatmap is generated by weighting the
activations of the final convolutional layer by their
corresponding gradients and averaging the resulting
weights spatially. The resulting heatmap is overlaid
on the original image to provide a visual
representation of the model's reasoning for its
prediction. The heatmap is generated using a color
gradient that ranges from blue to red. Bluer colors
are used to represent areas of low importance, while
redder colors indicate areas of high importance.
<Demonstrations>
The conversation starts:
USER:

Figure 4: The VLM prompt about Grad-CAM.
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Instruction: A chat about explainable AI (XAI)
between a curious human USER and an AI
ASSISTANT. The human USER is well educated but
may need help understanding how AI and XAI work.
The USER asks questions to understand AI's
decision-making process better. The USER's question
should be diverse and related to AI and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:
Task: Image classification
Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.
Image classification model: swin transformer
Model’s input:

Model’s prediction: Leopard
Explanation for the prediction:

Explanation method: Integrated Gradients
Description of Integrated Gradients:
Integrated Gradients is a post-hoc technique used in
machine learning to explain the predictions of deep
learning models.
Integrated Gradients works by assigning a score to
each feature in the input, representing its importance
to the model's prediction. It calculates these scores
by looking at how much the model's output changes
when each part of the input changes. It does this by
comparing the actual input to a baseline input (like a
black image) and looking at all the intermediate
inputs in between. Pixels with dark colors indicate
greater importance for the model's prediction.
<Demonstrations>
The conversation starts:
USER:

Figure 5: The VLM prompt about Integrated Gradients.

Instruction: A chat about explainable AI (XAI)
between a curious human USER and an AI
ASSISTANT. The human USER is well educated but
may need help understanding how AI and XAI work.
The USER asks questions to understand AI's
decision-making process better. The USER's question
should be diverse and related to AI and XAI. The
ASSISTANT gives helpful, concise, detailed, and
polite answers to the human's questions. Here is the
background information for the conversation:
Task: Image classification
Given an image and 1000 predefined categories
(goldfish, dog, bird, cat, etc), the algorithm identifies
which category the image falls into.
Image classification model: swin transformer
Model’s input:

Model’s prediction: Leopard
Explanation for the prediction:

Explanation method: Integrated Gradients
Description of Integrated Gradients:
SHAP (SHapley Additive exPlanations) is a post-hoc
explanation approach to explain the output of any
machine learning model.
SHAP works by highlighting the regions of the
image that are most important for the prediction.
Each pixel in the explanation image refers to the
importance value of pixels in the same location as
the input image. Red pixels indicate that the pixels
increase the probability of the particular class, truck.
Blue pixels, on the other hand, decrease the
probability of the class. Pixels with higher absolute
values have higher importance in the classification.
The conversation starts:
<Demonstrations>
USER:

Figure 6: The VLM prompt about SHAP.
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Figure 7: The web page where users can discuss static explanations with a conversational agent.
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Figure 8: Objective evaluation questions used for LIME.
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Figure 9: Objective evaluation questions used for Grad-CAM.
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Figure 10: Objective evaluation questions used for Integrated Gradients
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Figure 11: Objective evaluation questions used for SHAP.
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Figure 12: Questions in the subjective evaluation. The user will respond to each question using a 7-point Likert
scale.
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Figure 13: Results of human evaluation of LIME. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in
static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from 0 to 1 and the rest scores are from 1 to 7.

Figure 14: Results of human evaluation of Grad-CAM. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in
static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from 0 to 1 and the rest scores are from 1 to 7.
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Figure 15: Results of human evaluation of Integrated Gradients. We report the participants’ objective understanding
(decision-making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and
trust in static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-
making accuracy is ranged from 0 to 1 and the rest scores are from 1 to 7.

Figure 16: Results of human evaluation of SHAP. We report the participants’ objective understanding (decision-
making accuracy), subjective understanding, perceived usefulness, ease of use, behavioral intention, and trust in
static explanations, before and after conversational explanations with LLaVa-1.5 and our model. Decision-making
accuracy is ranged from 0 to 1 and the rest scores are from 1 to 7.
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