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ABSTRACT

Training LLMs presents significant memory challenges due to growing size of
data, weights, and optimizer states. Techniques such as data and model paral-
lelism, gradient checkpointing, and offloading strategies address this issue but are
often infeasible due to hardware constraints. To mitigate memory usage, alterna-
tive methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approxi-
mate weights or optimizer states. PEFT methods, such as LoRA, have gained pop-
ularity for fine-tuning LLMs, though they require a full-rank warm start. In con-
trast, GaLore allows full-parameter learning while being more memory-efficient.
This work introduces Natural GaLore, a simple drop in replacement for AdamW,
which efficiently applies the inverse Empirical Fisher Information Matrix to low-
rank gradients using Woodbury’s Identity. We demonstrate that incorporating
second-order information speeds up optimization significantly, especially when
the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and
1.1B parameter Llama models on C4 data demonstrate significantly lower perplex-
ity over GaLore without additional memory overhead. By fine-tuning RoBERTa
on the GLUE benchmark using Natural GaLore, we demonstrate significant re-
duction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning
the TinyLlama 1.1B model for function calling using the TinyAgent framework
shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset,
significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo
by 4%, all while using 30% less memory.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance across various disciplines,
including conversational AI and language translation. However, training and fine-tuning these mod-
els demand enormous computational resources and are highly memory-intensive. This substantial
memory requirement arises from storing billions of trainable parameters along with associated gra-
dients and optimizer states.

To quantify this, consider a model with Ψ parameters which is being trained using the Adam opti-
mizer. In this case, storing parameters and their gradients in 16-bit precision formats like FP16 or
BF16 requires 2Ψ bytes each. The associated optimizer states are typically stored in 32-bit precision
(FP32) for numerical stability, necessitating an additional 4Ψ bytes for each parameter, gradient mo-
mentum, and variance, amounting to 12Ψ bytes. Therefore, the total memory requirement sums up
to 16Ψ bytes. When accounting for model-dependent memory, such as activations during forward
and backward passes, and residual memory, like temporary buffers and memory fragmentation, the
overall memory footprint can easily exceed 18Ψ bytes (Raffel et al., 2020; Touvron et al., 2023;
Chowdhery et al., 2022).

This enormous memory demand poses significant challenges, especially when training LLMs on
hardware with limited memory capacity. As models continue to scale, efficient memory utilization
becomes critical for making training feasible and accessible. In this work, we develop an efficient
adaptation to the GaLore algorithm (Zhao et al., 2024a), which significantly reduces the memory
footprint during training and fine-tuning of LLMs by approximating the optimizer state. Our ap-
proach, Natural GaLore, leverages the low-rank structure of gradients and incorporates second-order
information to achieve faster convergence and higher performance without additional memory over-
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head and can be used as a drop in replacement 1 to standard optimization algorithms like Adam and
AdamW.

Parallel and Distributed Training Techniques Researchers have developed various distributed
computing techniques that leverage system-level optimizations and hardware resources to mitigate
the substantial memory requirements in training LLMs.

One prominent framework is Distributed Data-Parallel (DDP) that combines data parallelism where
the training dataset is partitioned across multiple devices or nodes, with efficient gradient synchro-
nization mechanisms, minimizing communication overhead. While data parallelism efficiently uti-
lizes multiple GPUs, it can still face memory bottlenecks when model sizes exceed the memory
capacity of a single device.

Model parallelism addresses this limitation by partitioning the model across multiple devices, allow-
ing for the training of models that are too large to fit into the memory of a single GPU. Techniques
like pipeline parallelism (Huang et al., 2019) and tensor parallelism (Shoeybi et al., 2019) enables
the distribution of different layers or partitions of layers across devices. However, model parallelism
introduces communication overhead and can be complex to implement effectively.

Another effective technique is gradient checkpointing (Chen et al., 2016), which reduces memory
usage by selectively storing only a subset of activations during the forward pass and recomputing
them during the backward pass as needed. This approach trades increased computational overhead
for reduced memory consumption, enabling the training of deeper models without exceeding mem-
ory constraints.

Memory offloading strategies, such as those implemented in ZeRO-Offload (Rajbhandari et al.,
2020), move optimizer states and gradients to CPU memory when not actively in use, freeing up
GPU memory for other operations. ZERO can also partition optimizer states and gradients across
DDP processes, eliminating redundancy and significantly reducing memory footprint. Fully Sharded
Data Parallel (Zhao et al., 2020) extends this concept by sharding model parameters in addition to
optimizer states and gradients.

These system-level optimizations have been instrumental in training state-of-the-art LLMs such as
LLaMA3 (Touvron et al., 2023), GPT-3 (Brown et al., 2020), Mistral (Jiang et al., 2023), and Gopher
(Rae et al., 2021) on multi-node, multi-GPU clusters.

While these distributed computing solutions enable the training of large models by leveraging exten-
sive hardware resources, they come with increased system complexity and operational costs. There-
fore, there is a pressing need for alternative approaches that reduce memory consumption without
relying solely on distributed computing resources. Optimization techniques that approximate pa-
rameters or optimizer states offer a promising direction for making LLM training more accessible
and efficient.

Parameter-Efficient Fine-Tuning PEFT techniques efficiently adapt pre-trained language mod-
els to various downstream applications without fine-tuning all the model’s parameters (Ding et al.,
2022), significantly reducing the computational and memory overhead.

Among these techniques, the popular LoRA (Hu et al., 2022) parametrizes a weight matrix W ∈
Rn×m as:

W = W0 +BA, (1)

where W0 is a frozen full-rank pre-trained weight matrix, and B ∈ Rn×r and A ∈ Rr×m are
trainable low-rank adapters to be learned during fine-tuning. Since the rank r ≪ min(m,n), the
adapters B and A contain significantly fewer trainable parameters, reducing memory requirements
for both parameter and optimizer states.

LoRA has been extensively used to reduce memory usage during fine-tuning, effectively enabling
large models to be adapted to new tasks with minimal additional memory overhead. There are a few
variants of LoRA proposed to enhance its performance (Renduchintala et al., 2023; Sheng et al.,
2023; Zhang et al., 2023; Xia et al., 2024), supporting multi-task learning (Wang et al., 2023), and

1All code to reproduce the results are provided in the supplementary
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further reducing the memory footprint (Dettmers et al., 2023). Its variant, ReLoRA (Lialin & Schatz,
2023), extends LoRA’s approach to pre-training by periodically updating the frozen weight matrix
W0 using the previously learned low-rank adapters. This incremental updating allows for continual
learning without storing entire optimizer states for all parameters, leading to faster training times
and lower computational costs. Furthermore, this allows for rapid adaptation of large models to
multiple downstream tasks without storing separate copies of the entire model for each task.

Despite their benefits, recent works have highlighted several limitations of low-rank reparameteri-
zation approaches. LoRA does not consistently achieve performance comparable to full-rank fine-
tuning, particularly in complex tasks (Xia et al., 2024). In pre-training from scratch, methods like
ReLoRA require an initial phase of full-rank model training as a warmup before optimizing in the
low-rank subspace (Lialin & Schatz, 2023). The shortcomings of low-rank parameter reparameter-
ization suggest that alternative strategies are needed to achieve both memory efficiency and high
performance.

Gradient Low-Rank Projection (GaLore) An alternative to parameter approximation is the ap-
proximation of the optimizer states. By reducing the memory footprint associated with optimizer
states, it is possible to maintain full-parameter learning—thus preserving model capacity and per-
formance—while achieving significant memory savings.

The core idea behind GaLore (Zhao et al., 2024a) is to exploit the slowly changing low-rank structure
of the gradient matrix g ∈ Rn×m, rather than approximating the weights. During neural network
training, gradients naturally exhibit low-rank properties, a phenomenon studied extensively in both
theoretical and practical settings (Zhao et al., 2022; Cosson et al., 2023; Yang et al., 2023). This
intrinsic low-rank structure of gradients has been applied to reduce communication costs (Wang
et al., 2018; Vogels et al., 2020) and to decrease memory footprints during training (Gooneratne
et al., 2020; Zhao et al., 2024b).

Specifically, consider the compact SVD decomposition of the gradient matrix g = PΣQT , where
P ∈ Rn×r and Q ∈ Rm×r are the associated semi-orthognal matrices. Then, GaLore projects the
gradient matrix g into a low-rank form:

glow-rank = PTg. (2)
Here, r ≪ min(n,m) is the target rank, n is the parameter count, m is the batch size and glow-rank
serves as an efficient approximation of the original gradient. The projection matrix P is updated
periodically (e.g., every 200 iterations), which incurs minimal amortized computational cost.

By operating on low-rank approximations of the gradients, GaLore significantly reduces the memory
footprint, leading to up to 30% memory reduction compared LoRA (Zhao et al., 2024a). Moreover,
GaLore maintains full-parameter learning, allowing updates to all model parameters, leading to bet-
ter generalization and performance than low-rank adaptation methods. Further, GaLore is agnostic
to the choice of optimizer and can be easily integrated into existing optimization algorithms with
minimal code modifications.

While GaLore offers significant memory savings and enables full-parameter learning, its perfor-
mance has yet to match that of optimizers in full optimizer state space. Reliance on low-rank gradi-
ent approximations may not fully capture the rich optimization dynamics. These limitations suggest
that while GaLore is a valuable step toward memory-efficient training, further enhancements are
necessary to bridge the performance gap with standard optimizers.

Our Approach In this work, we propose to bridge the gap by incorporating a second-order regu-
larizer into the low-rank gradient estimate, which adjusts parameter updates more effectively, lead-
ing to faster convergence. We show that applying the inverse of the empirical Fisher Information
Matrix (FIM) to the low-rank gradients leads to variance reduction of the gradient estimate, incorpo-
rates information about the curvature of the loss landscape, and reduces dependence on the starting
point. All of these lead to significantly faster convergence, especially in a limited iteration regime.

We introduce the Natural GaLore algorithm, a matrix-free algorithm for efficiently applying the
inverse FIM to the low-rank gradients, using Woodbury Identity, Cholesky Decomposition, and
Matrix-Vector Products, all of which can be efficiently implemented on the GPU. Further, our ap-
proach does not require any explicit layer-wise information or significant computational overhead,
as is seen in existing approaches like K-Fac (Martens & Grosse, 2015).
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We validate the effectiveness of Natural GaLore through extensive empirical evaluations. Pre-
training experiments on LLaMA models with 60M, 300M, and 1.1B parameters using the C4 dataset
demonstrate that Natural GaLore achieves significantly lower perplexity than GaLore without addi-
tional memory overhead, indicating faster convergence within the same computational budget.

Furthermore, we showcase the practical benefits of Natural GaLore in fine-tuning tasks. We fine-
tune the TinyLlama 1.1B model for function calling using the TinyAgent framework. Our results
show that Natural GaLore significantly outperforms LoRA in this setting, achieving an accuracy
of 83.09% on the TinyAgent dataset. This performance significantly surpasses 16-bit LoRA and
exceeds that of GPT-4-turbo by 4%, all while using 30% less memory.

2 ACCELERATING GALORE WITH NATURAL GRADIENTS

2.1 NEXT TOKEN PREDICTION

Generative LLMs are trained to predict the next token in a sequence based solely on the previously
observed tokens. This ”causal” approach respects the temporal order of language, ensuring that the
model’s predictions at any point depend only on past and not future inputs.

Given a sequence of tokens x = (x1, x2, . . . , xT ), the objective is to maximize the likelihood of a
sequence by decomposing it into a product of conditional probabilities:

Probθ(x) =
T∏

t=1

Probθ(xt | x<t) (3)

where x<t = (x1, x2, . . . , xt−1) represents all tokens before position t and Probθ(xt | x<t) is the
probability of the next token given all previous tokens and the parameter θ ∈ Rn×m.

This is equivalent to minimizing the Negative Log-Likelihood (NLL) of the observed sequences,
which is the cross-entropy loss between the predicted probability distribution and the actual next
token:

Φ(θ) = −
T∑

t=1

log Probθ(xt | x<t) (4)

This loss penalizes the model more when it assigns lower probabilities to the correct next token. By
minimizing this loss, the model learns to assign higher probabilities to appropriate continuations of
text. However, the loss is non-convex and high-dimensional, for LLMs the dataset is also massive,
making the optimization problem very challenging.

2.2 LOW-RANK GRADIENT DESCENT

Stochastic gradient descent algorithms are iterative, where each step aims to find the optimal update
direction that minimizes the loss function locally. Now in the case of GaLore, the update direction is
restricted to the affine subspace uk ∈ θk + Range (Pk). Here Pk ∈ Rn×r is the left projection ma-
trix, calculated using the compact SVD decomposition of the gradient matrix ∇θΦ(θk) = PkΣQ

T
k .

Then, the local neighborhood around this update can be defined using the Taylor series expansion
(Lin et al., 2022):

Φ(θk +Pkuk) ≈ Φ(θk) + gT
k uk +

1

2
uT
kHkuk (5)

where gk = PT
k∇θΦ(θk) is the low rank projected gradient and Hk = PT

k∇2
θΦ(θ)Pk is the Hessian

matrix.

However, the Hessian matrix Hk is often computationally expensive to compute and store, especially
for large-scale language models (LLMs) with billions of parameters. Fortunately, precisely under
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the condition that the loss function can be represented in terms of KL divergence between the actual
and approximated distributions [4], then Hk can be approximated by the FIM. The FIM is defined
as the expectation of the Hessian of the negative log-likelihood w.r.t. the data distribution:

Fk = Ex∼pdata [Hk] (6)

The FIM captures the curvature of the loss landscape and provides a natural metric for the opti-
mization process. Hence, it can better adjust parameter updates according to the geometry of the
parameter space. However, as the theoretical data distribution is unknown, in practice, we need to
estimate it using the empirical FIM (Martens, 2014) defined by:

F̂k =
1

h

h∑
k=1

gkgk
T (7)

where h is the history of gradients from past batches we would like to consider. Then, the optimal
direction u∗

k, which minimizes the loss in this local neighborhood, is given by (cite Fuji et al. paper):

u∗
k = F̂−1

k gk (8)

This leads to the optimal gradient descent update step:

θk+1 = θk − ηPku
∗
k (9)

for some learning rate η.

Many popular stochastic optimization algorithms approximate the diagonal of the empirical FIM
using second-moment estimates of the gradient gk, which when added with Polyak style parameter
averaging (i.e., momentum), asymptotically achieve the optimal Fisher efficient convergence rate
(Martens, 2020).

For instance, in the case of Adam (Kingma & Ba, 2014), the optimal update step is approximated
by including the momentum term mk ∈ Rr×m and the learning rate η is scaled by the square root
of the second moment estimate vk ∈ Rr×m. With all operations being elementwise, the update
direction becomes:

mk = β1mk−1 + (1− β1)gk (10)

vk = β2vk−1 + (1− β2)g
2
k (11)

u∗
k = mk/

√
vk + ϵ (12)

This update, when applied to [9], gives the GaLore optimization algorithm, which is memory effi-
cient as it only requires storing the projection matrix and the costly optimizer states (gk,mk, vk) are
now significantly reduced by a factor of n

r , where the rank r, can be chosen based on the tradeoff
between memory limitations and performance requirements.

2.3 NATURAL GALORE AND FISHER EFFICIENCY

Despite clear advantages, the performance of GaLore is not on par with AdamW (Loshchilov & Hut-
ter, 2017) optimization on the original space. To bridge this gap, we propose Natural GaLore, which
uses the full empirical FIM, thereby incorporating the missing second-order interaction information
in the optimization process.

As we now argue, this leads to a much more favorable dependence on the starting point, which
means that the optimizer can make much more progress given a limited iteration budget. Further,
when using a decaying learning rate schedule like with AdamW (Loshchilov & Hutter, 2017), the
asymptotic convergence rate can be faster (Martens, 2020) by a significantly large constant factor.

Natural gradient descent is known (Martens, 2020) to be Fisher efficient, precisely for our loss
function [4]. Fisher efficiency means that the natural gradient estimator asymptotically achieves the
lowest possible variance among all unbiased gradient estimators.
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For Natural GaLore, the gradient descent update [9] leads to a sequence of estimates θk whose
variance satisfies (Amari, 1998):

Var[θk] =
1

mk
F−1

k (θ∗k) +O
(

1

k2

)
(13)

which is asymptotically the smallest possible variance matrix satisfying the Cramér-Rao lower
bound, that any unbiased estimator computed from mk training samples can have, with m being
the batch size.

Here, θ∗k is the local optimum in the neighborhood defined by the Taylor series expansion [5] around
the update direction. This is an important caveat, as the guarantee is only for local convergence in a
convex neighborhood. The loss function is non-convex, so the property can not be stated to hold for
the global optimum.

The result also relies on the computation of the exact FIM Fk(θk) using the entire data distribution,
which is not practical. The Fisher efficiency guarantee is, however, only approximately satisfied
when using the empirical FIM F̂k instead. Nevertheless, we still get a variance reduction in the
gradient estimates, leading to faster convergence and better optimization performance in the early
stages of training large-scale models, making it especially valuable for training with a limited itera-
tion budget.

Further, incorporating second-order information through the empirical FIM allows the optimizer
to account for the curvature of the loss landscape, enabling natural gradient descent to take more
informed steps than standard gradient descent, potentially escaping flat regions or navigating steep
ravines more effectively.

In (Martens, 2020), it was shown that the expected update direction can be expressed as a sum of
two terms, one that scales as O(1/k), which is independent of the starting point and another that
scales as O(1/k2), which is dependent on the starting point. If momentum is applied to the gradient
estimator, the first term becomes independent of the choice of FIM estimator, thereby not leading
to any asymptotic improvements. However, regularizing with the empirical FIM estimate can sig-
nificantly reduce the constant factor associated with the starting-point-dependent second term. This
leads to practical performance gains in finite iteration regimes (although negligible for large k).

Finally, the Fisher efficiency result also assumes that the model can perfectly capture the data distri-
bution, a condition known as realizability. However, with the growing size of LLMs, this assumption
is likely to hold, thereby satisfying the conditions for the guarantee. Therefore, especially in low-
resource settings, Natural GaLore can be a promising approach for training LLMs under memory
constraints.

2.4 NATURAL GRADIENT TRANSFORM

Our Natural GaLore algorithm is designed to efficiently apply the inverse empirical FIM to low-rank
gradients using Woodbury’s Identity. Most of the steps in the algorithm are similar to GaLore (Zhao
et al., 2024a), with the critical difference being the incorporation of the natural gradient transform.

In order to implement the natural gradient transform, we compute the inverse of the empirical FIM
and apply it to the gradient gk using Woodbury’s Identity, which allows us to efficiently compute
the inverse of a matrix of the form A+ UBUT . Woodbury’s Identity states that:

(A+ UBUT )−1 = A−1 −A−1U(B−1 + UTA−1U)−1UTA−1 (14)

Now, if we choose F̂k = λI + GGT , A = λI , U = G, and B = I , where G =
[vec(gk), vec(gk−1), . . . , vec(gk−s)] is the stacked gradient matrix over the past s gradients and
λ is a small constant for Tikhonov regularization, then, the inverse of the empirical FIM applied to
the gradient gk i.e. the natural gradient g̃k = F̂−1

k gk can be calculated as:

g̃k =
1

λ
gk − 1

λ
G
(
λI +GTG

)−1
GTgk (15)
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To compute the above formula efficiently, let S = I + 1
λG

TG ∈ Rs×s and y = GTgk. Cholesky
decomposition is used to solve for z in

Sz = y (16)

which requires only O(s2) time. Then, the final natural gradient estimate can be computed using
only matrix-vector products, which is very memory efficient:

g̃k =
1

λ
gk − 1

λ2
Gz (17)

This natural gradient estimate g̃k can then be sent to the Adam optimizer [12], and the model pa-
rameters the same way as in GaLore.

3 EXPERIMENTS

We evaluate Natural GaLore on pre-training and fine-tuning tasks for LLMs. All experiments are
conducted on a single node with 8 NVIDIA A100 GPUs to leverage high-performance computing
capabilities, yet stay within reasonable limits.

3.1 PRE-TRAINING ON THE C4 DATASET

To assess the effectiveness of Natural GaLore, we apply it to pre-train LLaMA-based language
models of sizes ranging from 60 million to 1.1 billion parameters, on the C4 dataset. The C4 dataset
is a colossal, cleaned version of the Common Crawl Corpus, primarily intended for pre-training
language models and word representations (Raffel et al., 2020). It provides a diverse and extensive
corpus, making it suitable for evaluating pre-training methods in realistic scenarios.

We adopt the experimental setup from Lialin & Schatz (2023), utilizing a LLaMA-based2 architec-
ture with RMSNorm and SwiGLU activations (Shazeer, 2020; Touvron et al., 2023). We maintain
the same set of hyperparameters for each model size across all methods, except for the learning rate,
which is tuned individually to ensure optimal performance. All experiments use the BF16 format
to reduce memory usage without compromising computational efficiency, the same computational
budget and the best validation perplexity is reported.
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Figure 1: Training and Validation log Perplexity for Llama 1.1B
Table 1 presents the validation perplexity and memory consumption for models trained with differ-
ent methods and Figure 1 shows the training run for the Llama 1.1B model. Our proposed Natural
GaLore consistently outperforms GaLore (Zhao et al., 2024a) across all model sizes, achieving val-
idation perplexities closer to the full-rank baseline while maintaining significant memory savings.
Furthermore, Natural GaLore exhibits lower perplexities and greater memory consumption com-
pared to other low-rank adaptation methods like LoRA and ReLoRA, due to their less efficient use
of low-rank structures and the need for additional optimizer states.

3.2 FINE-TUNING ROBERTA-BASE ON THE GLUE BENCHMARK

To further evaluate the effectiveness of Natural GaLore, we conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE) benchmark using the pre-trained RoBERTa-Base

2LLaMA materials in our paper are subject to the LLaMA community license.
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60M 130M 350M 1.1B
Full-Rank 3.52 (0.36G) 3.22 (0.76G) 2.93 (2.06G) 2.72 (7.80G)

Natural GaLore 3.53 (0.24G) 3.22 (0.52G) 2.93 (1.22G) 2.80 (4.38G)
GaLore 3.56 (0.24G) 3.24 (0.52G) 2.95 (1.22G) 2.90 (4.38G)
Low-Rank 4.35 (0.26G) 3.82 (0.54G) 3.62 (1.08G) 4.96 (3.57G)
LoRA 3.55 (0.36G) 3.52 (0.80G) 3.24 (1.76G) 2.96 (6.17G)
ReLoRA 3.61 (0.36G) 3.38 (0.80G) 3.37 (1.76G) 2.91 (6.17G)
Rank r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Table 1: Comparison of Natural GaLore with other low-rank algorithms on pre-training various sizes of
LLaMA models on the C4 dataset. Validation log perplexity is reported (averaged over 5 runs), along with a
memory estimate (in gigabytes) of the total parameters and optimizer states based on BF16 format.

model. The GLUE benchmark is a collection of nine natural language understanding tasks, including
single-sentence tasks like CoLA (Warstadt et al., 2019), similarity and paraphrase tasks like MRPC
(Dolan & Brockett, 2005) and STS-B (Cer et al., 2017), and inference tasks like RTE (Dagan et al.,
2006), MNLI (Williams et al., 2018), and QNLI (Rajpurkar et al., 2016). This benchmark is widely
used to assess the performance of language models on diverse linguistic phenomena.

In our experiments, we fine-tune the RoBERTa-Base model using Natural GaLore and compare its
performance with full fine-tuning and LoRA (Hu et al., 2022). We focus on memory-efficient fine-
tuning methods to reduce the computational footprint while maintaining high performance. For each
method, we report the average score across all GLUE tasks and individual task scores.

We use the same training hyperparameters across all methods for a fair comparison. The batch size
is 32, and we fine-tuned each model for three epochs. The learning rate is selected from {1e-5, 2e-5,
3e-5} based on the best validation performance for each task. For Natural GaLore and LoRA, we
experiment with rank values of 4 and 8 to study the trade-off between performance and memory
efficiency.

Table 2 presents the results of our experiments. Natural GaLore consistently achieves comparable
or better performance than LoRA across most tasks while using less memory. Precisely, with a
rank of 4, Natural GaLore attains an average score of 86.05, closely matching the complete fine-
tuning baseline of 86.28 and outperforming LoRA’s average score of 85.61. This demonstrates that
Natural GaLore can effectively fine-tune large models with reduced memory consumption without
sacrificing performance.

Memory CoLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg
Full Fine-Tuning 747M 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28

Natural GaLore (rank=4) 253M 61.50 90.80 92.10 79.50 94.20 87.05 92.30 91.15 86.05
GaLore (rank=4) 253M 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
LoRA (rank=4) 257M 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61

Natural GaLore (rank=8) 257M 61.70 90.90 92.25 79.80 94.40 87.20 92.35 91.25 86.23
GaLore (rank=8) 257M 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
LoRA (rank=8) 264M 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93

Table 2: Evaluating Natural GaLore for memory-efficient fine-tuning on the GLUE benchmark using pre-
trained RoBERTa-Base. We report the average score of all tasks. Memory consumption is reported in millions
of parameters (M).

3.3 FINE-TUNING TINYLLAMA 1.1B FOR FUNCTION CALLING IN ADVANCED AGENTIC
SYSTEMS

Advanced Agentic Systems (AAS) require language models that can understand and generate code
snippets to integrate various tools and APIs, fulfilling user queries through function-calling. We
utilize the TinyAgent framework, which provides an end-to-end pipeline for training and deploying
task-specific LLM agents capable of efficient and accurate function-calling (Erdogan et al., 2024) to
drive agentic systems at the edge.
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Given a natural language query, the LLM agent must generate a sequence of pre-defined function-
calls that accomplish the desired tasks. The challenge lies in determining the appropriate arguments,
to call the correct functions, in the right order while respecting interdependencies among the func-
tions.

LLMCompiler Kim et al. (2023), is a framework that enables language models to perform function-
calling by first generating a function-calling plan, which includes the required functions and argu-
ments. The LLMCompiler then compiles this plan into an executable sequence of function-calls.
The critical aspect is training the model to produce a function-calling plan with the correct syntax
and dependencies.

The off-the-shelf pre-trained TinyLlama 1.1B (instruct-32k) model performs poorly on this task.
The model generates incorrect sets of functions, hallucinated function names, fails to respect depen-
dencies, and passes arguments incorrectly. This underperformance is expected, as the model was ini-
tially trained on datasets like SlimPajama and StarCoder, which are not specific to function-calling
tasks. To address this, we follow the TinyAgent framework (Erdogan et al., 2024) and fine-tune the
TinyLlama 1.1B model on a high-quality, curated dataset designed for function-calling.

TinyAgent Dataset The TinyAgent dataset (Erdogan et al., 2024) is a meticulously curated col-
lection aimed at building a local agentic system for function-calling on Apple MacBooks for day-to-
day tasks. It contains 40K examples of natural language queries and corresponding function-calling
plans. The dataset is divided into 38K training examples, 1K validation examples, and 1K test ex-
amples. It encompasses 16 tasks, including Email, Contacts, SMS, Calendar, Notes, Reminders,
File Management and Zoom Meetings. Each task has predefined scripts that the model needs to
generate. The dataset is intentionally challenging, requiring the model to understand dependencies
between function-calls and the arguments to be passed.

Fine-Tuning Procedure We fine-tune the TinyLlama 1.1B model on the TinyAgent dataset for
three epochs using a batch size of 32. The learning rate is set to 7 × 10−5. After each epoch,
the model is evaluated on the validation set, and the best-performing model is selected based on
validation performance to be evaluated on the test set.

During fine-tuning, the prompt includes descriptions of the ground truth functions and irrelevant
functions serving as negative samples. This strategy encourages the model to learn to select the
correct functions rather than merely memorizing the ground truth. Additionally, several in-context
examples demonstrate how queries are translated into function-calling plans. These examples are
selected using a Retrieval-Augmented Generation (RAG) process based on the user’s query from the
training data and a DeBERTa-v3-small model (He et al., 2021) fine-tuned for multi-label classifica-
tion for retrieval among the 16 tools.

The training objective is then to maximize the accuracy of the generated function-calling plans.
Success is defined by the model generating the correct plan with the proper set of function-calls,
correct arguments, and the appropriate order of function-calls. Verifying the selection of the correct
set of functions involves straightforward set comparison. However, ensuring the correctness of
arguments and the order of function-calls is more complex and requires constructing the associated
Directed Acyclic Graph to check for equality.

Model Weight Precision Latency (seconds) Model Size (GB) Success Rate (%)

GPT-3.5 Unknown 3.2 Unknown 65.04
GPT-4-Turbo Unknown 3.9 Unknown 79.08

TinyAgent-1.1B 16-bit (Natural GaLore) 3.9 2.2 83.09
16-bit (LoRA) 3.9 2.2 80.06

TinyAgent-7B 16-bit (Erdogan et al., 2024) 19.5 14.5 84.95

Table 3: Latency, size, and success rate of TinyAgent models before and after quantization. Latency
is the end-to-end latency of the function calling planner, including the prompt processing time and
generation.
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Results and Discussion After fine-tuning, the TinyLlama 1.1B model’s success rate on the test set
improved significantly. Table 3 presents the latency, model size, and success rate of various models
on the TinyAgent dataset. As shown, Natural GaLore improves the success rate of the 1.1B model
from 80.06% (16-bit LoRA) to 83.09%, also surpassing GPT-4-Turbo by 4% and approaching the
performance of the larger TinyAgent-7B model, which achieves 84.95%.

These results demonstrate that Natural GaLore not only enhances the performance of smaller mod-
els like the 1.1B parameter TinyLlama but also makes them competitive with significantly larger
models. By efficiently incorporating second-order information through low-rank natural gradient
updates, Natural GaLore enables smaller models to achieve higher accuracy without additional
memory overhead.

4 CONCLUSION

We have introduced Natural GaLore, a memory-efficient pre-training and fine-tuning strategy for
large language models. Natural GaLore significantly reduces memory usage—by up to 65.5% in op-
timizer states—while maintaining or even improving performance in large-scale LLM pre-training
and fine-tuning tasks. By incorporating second-order information through an efficient approxima-
tion of the inverse Empirical Fisher Information Matrix, Natural GaLore enhances convergence
rates, especially in regimes with a limited iteration budget.

Importantly, Natural GaLore can serve as a drop-in replacement for standard optimizers like
AdamW and integrates seamlessly into existing training pipelines. Our experimental results high-
light the reproducibility and effectiveness of Natural GaLore across various tasks, including pre-
training LLaMA models and fine-tuning on the GLUE benchmark, as well as the TinyAgent func-
tion calling tasks. This makes it a compelling choice for large-scale pre-training scenarios where
both memory efficiency and model performance are critical.

In the future we want to explore (1) further enhancing memory efficiency by employing low-memory
and structured projection matrices, and (2) more extensive empirical evaluation on fine-tuning AAS
on a wide variety of tasks. We also hope that our work will inspire future research on memory-
efficient training methods from the perspective of optimizer state approximation. We believe that
Natural GaLore will be a valuable tool for the community, enabling the training of large-scale mod-
els on consumer-grade hardware with limited resources.

IMPACT STATEMENT

This work aims to improve the memory efficiency of training LLMs, thereby reducing the envi-
ronmental impact of LLM pre-training and fine-tuning. By enabling the training of larger models
on hardware with lower memory requirements, our approach helps to minimize energy consump-
tion and carbon footprint associated with training LLMs. Furthermore, by making advanced model
training more accessible, we contribute to democratizing AI research and development, allowing a
broader community to engage with large-scale models without the need for expensive computational
resources.
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