
Under review as a conference paper at ICLR 2024

A-LOC: EFFICIENT ALTERNATING ITERATIVE METH-
ODS FOR LOCATING THE k LARGEST/SMALLEST ELE-
MENTS IN A FACTORIZED TENSOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensors, especially higher-order tensors, are typically represented in low-rank
formats to preserve the main information of the high-dimensional data while saving
memory space. Locating the largest/smallest elements in a tensor with the low-rank
format is a fundamental task in a large variety of applications. However, existing
algorithms often suffer from low computational efficiency or poor accuracy. In this
work, we propose a general continuous optimization model for this task, on top of
which an alternating iterative method combined with the maximum block increasing
(MBI) approach is presented. Then we develop a novel block-search strategy to
further improve the accuracy. The theoretical analysis of the convergence behavior
of the alternating iterative algorithm is also provided. Numerical experiments with
tensors from synthetic and real-world applications demonstrate that our proposed
algorithms achieve significant improvements in both accuracy and efficiency over
the existing works.

1 INTRODUCTION

Large volumes of high-dimensional data, such as simulation data, video, and hyperspectral images,
have sprung up in scientific computing, machine learning, and many other applications. These
high-dimensional data can be naturally represented by tensors, and are usually stored in the lossy
compressed format based on tensor decomposition to alleviate the curse of dimensionality Kolda &
Bader (2009); Cong et al. (2015); Sidiropoulos et al. (2017); Cichocki et al. (2016; 2017). In most
scenarios, only a few elements of the tensor are of interest. For example, in recommendation systems,
the k largest elements correspond to the most meaningful concerns for personalized recommendations
Symeonidis (2016); Frolov & Oseledets (2017); Zhang et al. (2021). For quantum simulations, the
compressed format of the tensor is usually used to represent the quantum state to reduce memory
usage, and we can get the maximum likelihood or maximum a-posteriori estimation to measure
the quantum state by locating the largest elements in the compressed tensors. Furthermore, we
could solve the top-k elephant network flows problem in the network management field by locating
the largest k elements of the low-rank tensor recovered from the observed data Xie et al. (2019).
Therefore, it is a crucial problem to find the k largest elements in the compressed format of the tensor
in practical applications. Many methods have been proposed to solve this problem Higham & Relton
(2016); Grasedyck et al. (2019); Chertkov et al. (2022); Sidiropoulos et al. (2022).

CANDECOMP/PARAFAC (CP) format Hitchcock (1927) is one of the most popular tensor decom-
position models for dimensionality reduction and data mining Papalexakis et al. (2016); Tang & Liao
(2020). Specifically, given an N th-order tensor A ∈ RI1×I2···×IN , its CP decomposition represents
it by a sum of R rank-one tensors, namely

A =

R∑
r=1

U (1)
:,r ◦U (2)

:,r · · · ◦U (N)
:,r , (1.1)

where "◦" represents the vector outer product, {U (n) ∈ RIn×R}Nn=1 are factor matrices, and R is
called the CP-rank of A. In this work, we focus on locating the largest/smallest elements for an
N th-order tensor A given in CP format. The proposed algorithms could naturally apply to other
tensor formats such as Tucker, tensor-train (TT), and quantized TT (QTT).

1

Under review as a conference paper at ICLR 2024

Prior work. For this task, Lu et al. proposed a sampling method, namely star sampling Lu et al.
(2017), which is a generalization of the randomized diamond sampling method in the matrix case
proposed in Ballard et al. (2015). It is well known that the accuracy of the sampling method
strongly depends on the quality of the samples. Since the samples are only determined by factors
of the CP format in star sampling, it suffers from low accuracy and instability. A more accurate
approach is to convert the task of locating the largest/smallest elements in a factorized tensor to a
symmetric eigenvalue problem, which was first proposed by Espig et al. Espig et al. (2013). Then
the classical power iteration method can be used to find the largest element, see Espig et al. (2013;
2020); Soley et al. (2021). However, it is only suitable for finding the largest element, and cannot
directly obtain the corresponding location due to errors in the iterative process. In addition, the
Hadamard product in the iterative process will lead to the growth of the CP-rank, which needs to be
suppressed by introducing the recompression operation and requires high time and memory costs in
practice. Recently, Sidiropoulos et al. considered the tensor given in CP format, and proposed an
equivalent optimization model Sidiropoulos et al. (2022). The optimization problem is then solved
by the proximal gradient descent (PGD) method, but its accuracy highly depends on the choice of
hyperparameters such as step size, which is not general in practical applications.

Contributions. To solve this problem, inspired by Espig et al. (2013; 2020), we provide a continuous
optimization model combined with the rank-one structure of the tensor, which corresponds to the
eigenvector. And several algorithms are proposed based on the optimization model. First, we
present an alternating iterative method combined with the maximum block increasing (MBI) strategy
Chen et al. (2012), and establish its convergence theory. On top of that, we also develop a novel
block-search strategy to further improve accuracy. The proposed algorithms have some advantages.
On the one hand, our proposed algorithms can obtain the largest/smallest elements and its location
simultaneously, and due to the use of rank-one structure, they have a significant improvement in
computational efficiency and memory cost compared with power iteration. On the other hand, since
the proposed model is more general than the optimization model proposed in Sidiropoulos et al.
(2022), our proposed algorithms can be naturally applied to various low-rank representations, such as
CP, Tucker, and TT formats, and reduce the dependence on hyperparameters. Numerical experiments
demonstrate that our proposed algorithms can achieve significant improvements in both accuracy and
efficiency over the existing works.

Notations. In this paper, we use boldface lowercase and capital letters (e.g., a and A) to denote
vectors and matrices. The boldface Euler script letter is used to denote higher-order tensors, e.g., an
N th-order tensor can be expressed as A ∈ RI1×I2···×IN , where In denotes the dimension of mode-n,
and the (i1, i2, · · · , iN)-th element of it is represented by Ai1,i2,··· ,iN .

2 PERSPECTIVE OF CONTINUOUS OPTIMIZATION MODEL

As already mentioned in Espig et al. (2013), locating the largest/smallest elements of A is equivalent
to solving the corresponding symmetric eigenvalue problem. Further, we propose a general continuous
optimization model based on the rank-one structure of the tensor corresponding to the eigenvector. Let
A ∈ RI1×I2···×IN be an N th-order tensor in the CP format 1.1. Without loss of generality, we assume
that the tensor A is non-negative. If not, non-negativity can be satisfied by shift transformation, that
is, A+ sE , where s > 0 is large enough such as s = ∥A∥F , and E is a tensor whose elements are all
1. Due to the rank-one structure of E , the CP-rank of the transformed tensor A+ sE is at most R+1.
Our work is to find the largest and smallest elements in A, along with their locations. Take locating
the largest element as an example, and a similar result can be derived for the smallest element. We
first define a diagonal matrix A ∈ RI1I2···IN×I1I2···IN such that

Ai,i = Ai1,i2,··· ,iN with i = i1 +

N−1∑
j=1

(ij+1 − 1)I1:j ,

where I1:j =
j∏

k=1

Ik. Then the largest eigenpair of A corresponds to the largest element of A and its

location, which can be obtained by solving the following spherical constrained optimization problem
max

x∈RI1I2···IN
xTAx subject to ∥x∥2 = 1. (2.1)

In tensor notations, problem 2.1 can be rewritten as
max

X∈RI1×I2···×IN

⟨X ,A ∗X ⟩ subject to ∥X∥F = 1, (2.2)

2

Under review as a conference paper at ICLR 2024

where "∗" represents the Hadamard product of tensors. Due to the diagonal structure of the symmetric
matrix A, we know that the N th-order tensor X corresponding to the solution of problem 2.2 has a
rank-one structure. Therefore, combined with the CP representation of A, problem 2.2 can be further
simplified, see Theorem 1.
Theorem 1. Let A be an N th-order tensor, and its CP format be described in 1.1, then locating
the largest element of A is equivalent to solving the following spherical constrained optimization
problem

max
x(1),··· ,x(N)

R∑
r=1

(x(1)T (U (1)
:,r ∗ x(1))) · · · (x(N)T (U (N)

:,r ∗ x(N)))

s.t. ∥x(n)∥2 = 1 for all n = 1, · · · , N.

(2.3)

The proof of Theorem 1 can be found in the Appendix.

From Theorem 1, we know that locating the largest element of the factorized tensor A can be
converted to a continuous optimization problem with spherical constraints, and the calculation of
the objective function in problem 2.3 only involves vector-vector multiplications of size In for all
n = 1, 2, · · · , N , which opens the door to developing algorithms from an optimization perspective.
It is clear that the largest element and its location can be directly obtained by the optimal solution
of 2.3. In addition, if the smallest element is required, we just replace the maximization in problem
2.3 with the minimization. We remark that Theorem 1 also applies to other tensor formats such as
Tucker, TT, and QTT, whose corresponding continuous optimization models can be similarly given.
We leave them for future work.

3 COMPONENTS OF A-LOC

m
ode-1

mode-2

1 2

3

< <

1

m
ode-1

mode-2 mo
de
-3

m
ode-1

mode-2 mo
de
-3

mo
de
-3

Value:

(b) + MBI Approach

2

3

(c) + Block-Search (b=2)

1

2
3

Steps: 1 2 3

(a) Alternating Iterative Method

Figure 1: Illustration of the iterative process of A-Loc for locating the largest element in a third-order
tensor. Subfigures (a), (b), and (c) depict the steps of the plain alternating iterative algorithm, the

incorporation of the MBI approach (named +MBI Approach), as well as the addition of a
block-search strategy (named +Block-Search), respectively. The dark cube represents the maximum

value on the current mode and the red cube represents the target value.

A straightforward approach to problem 2.3 is the alternating iterative method, which is parameter-free,
easy to implement, and high performance. During the iterations of the alternating iterative method,
only one variable is updated at once instead of all of them. For example, all variables are fixed except
x(n), then its corresponding subproblem is as follows

max
x(n)

R∑
r=1

αrx
(n)T (U (n)

:,r ∗ x(n)) subject to ∥x(n)∥2 = 1, (3.1)

where αr =
∏

m ̸=n

x(m)T (U
(m)
:,r ∗ x(m)). Obviously, solving subproblem 3.1 is equivalent to locating

the largest element of the vector y =
R∑

r=1
αrU

(n)
:,r ∈ RIn , only requires O(RIn) time cost.

To further enhance the convergence and accuracy of the plain alternating iterative algorithm, we
proposed the incorporation of two techniques: the MBI (Maximal Block Improvement) approach
and the block-search strategy. Fig. 1 outlines the iterative process that involves these algorithms

3

Under review as a conference paper at ICLR 2024

using a third-order tensor as an example. As shown in Fig. 1(a), when the predetermined order
x(1) → x(2) → x(3) is used to update variables in the plain alternating iterative algorithm, the largest
element (i.e., the red cube) may not be detected. In contrast, the MBI approach updates the variable
corresponding to the current optimal mode, as illustrated in Fig. 1(b), resulting in the detection of the
largest element. Furthermore, as depicted in Fig. 1(c), the block-search strategy stores the b largest
elements along the optimal mode, enabling it to detect the largest element. In Sec. 3.3, we will also
demonstrate how these proposed algorithms can be extended to locate k largest elements when k > 1.

3.1 MBI APPROACH FOR CONVERGENCE

In the one-loop iteration of the plain alternating iterative method, there are N ! selections for the
updated order of variables {x(n)}Nn=1, and how to select an appropriate order for this method is a
crucial issue in practice. As referred in Chen et al. (2012), if the updated order is predetermined and
then we adhere to it, the alternating iterative method may fail to converge at all. To address this issue,
we introduce an ordering-free approach proposed by Chen et al. (2012), namely MBI, to ensure the
convergence of the alternating iterative method. The main idea is to select the variable to be updated
so that its corresponding eigenvalue is the largest. Algorithm 1 describes the detailed procedure of
the alternating iterative method with the MBI approach.

Algorithm 1 Alternating iterative method with the MBI approach.

Input: Tensor given in the CP format A =
R∑

r=1
U

(1)
:,r ◦U (2)

:,r · · ·◦U (N)
:,r , and initial vectors {x(n)}Nn=1

satisfy ∥x(n)∥2 = 1 for all n = 1, 2, · · · , N .
Output: The largest element of A and its corresponding location: a and {x(n)}Nn=1.

1: while not convergent do
2: a, i← []
3: for n = 1 to N do

4: q ←
R∑

r=1
αrU

(n)
:,r where αr =

∏
m̸=n

(x(m)T (U
(m)
:,r ∗ x(m)))

5: a, ia ← the largest element in q and its corresponding location
6: a← [a, a], i← [i, ia]
7: end for
8: Find the largest element in a and its corresponding location in i: a and ia
9: x(n∗) ← eia where n∗ corresponds to the location of a in a, and eia is the ia-th column of

In × In identity matrix
10: end while

In each loop, the determination of the optimal variable to be updated only depends on factor vectors
of the previous iteration step, which is equivalent to the one-loop of Jacobi iteration whose complexity

is O(
N∑

n=1
InR). Due to the dependency-free technique in Jacobi iteration, the for loop in Algorithm 1

can be further accelerated in parallel.

In addition, the iterative procedure of Algorithm 1 is essentially equivalent to alternatively searching
for the largest element from the fibers of A along different modes, which is also equivalent to the
power iteration proposed in Higham & Relton (2016) for the case of second-order tensors, i.e.,
matrices. A counterexample is given in Higham & Relton (2016) illustrates that Algorithm 1 may fall
into local optima so that the largest element cannot be found, which is the main reason for the low
accuracy of the method in some cases.

3.2 BLOCK-SEARCH STRATEGY FOR BETTER ACCURACY

Further, we develop a novel block-search strategy to improve the accuracy of Algorithm 1, which
searches for the largest element from multiple fibers of A instead of one during the iterations. The
detailed computational procedure is described in Algorithm 2.

The first iteration of Algorithm 2 is the same as Algorithm 1, the difference is that we retain the
locations corresponding to the b largest elements in q, i.e., line 4 of Algorithm 2. Then we search for

4

Under review as a conference paper at ICLR 2024

Algorithm 2 Algorithm 1 with the block-search strategy.

Input: Tensor given in the CP format A =
R∑

r=1
U

(1)
:,r ◦ U (2)

:,r · · · ◦ U (N)
:,r , block size b, and initial

factors {x(n)}Nn=1 satisfy ∥x(n)∥2 = 1 for all n = 1, 2, · · · , N .
Output: The largest element of A and its corresponding location: a and {x(n)}Nn=1.

1: x(n∗) ← the optimal update variable obtained by the MBI strategy

2: q ←
R∑

r=1
αrU

(n∗)
:,r where αr =

∏
m ̸=n∗

x(m)T (U
(m)
:,r ∗ x(m))

3: a← the largest element in q
4: i← locations corresponding to the b largest elements in q
5: X(n∗) ← [ei1 , · · · , eib] where eij is the ij-th column of In∗ × In∗ identity matrix
6: while not convergent do
7: for n = 1 to N do
8: if n ̸= n∗ then
9: for j = 1 to b do

10: qj ←
R∑

r=1
αj
rU

(n)
:,r where αj

r = (X
(n∗)T
:,j (U

(n∗)
:,r ∗ X(n∗)

:,j))
∏

m̸=n∗,n

x(m)T (U
(m)
:,r ∗

x(m))
11: aj ← the largest elements in qj

12: end for
13: a, j ← the largest element in {aj}bj=1 and its corresponding location in {j}bj=1

14: a← [a, a], j ← [j, j]
15: end if
16: end for
17: m∗, j∗ ← the mode and index corresponding to the largest element in a

18: x(n∗) ←X
(n∗)
:,j∗

19: n∗ ← m∗

20: q ←
R∑

r=1
αrU

(n∗)
:,r where αr =

∏
m ̸=n∗

x(m)T (U
(m)
:,r ∗ x(m))

21: a← the largest element in q
22: i← locations corresponding to the b largest elements in q
23: X(n∗) ← [ei1 , · · · , eib] where eij is the ij-th column of In∗ × In∗ identity matrix
24: end while

the largest element from (N − 1)b fibers of A in the second iteration, i.e., lines 7-17 of Algorithm
2. Once it is determined, the variable to be updated is determined accordingly, and we also retain
the b largest elements. Simultaneously, in order to avoid the explosion of the search space during
the iterations, only the column of X(n∗) corresponding to the largest element is reserved as the
n∗-th factor vector x(n∗), i.e., line 18 of Algorithm 2, which ensures that in each iteration the largest
element is found from (N − 1)b fibers of A. Compared with Algorithm 1, Algorithm 2 searches
for the largest element from a larger space, which is intuitively more likely to obtain the largest
element, thereby improving accuracy. It is worth mentioning that although the time cost of Algorithm

2 increases from O(
N∑

n=1
InR) to O(

N∑
n=1

InRb) in one-loop iteration, which grows linearly with N , it

could still maintain high performance as shown in the Experiments.

3.3 FINDING THE k LARGEST ELEMENTS

In many scenarios, the k largest elements of the factorized tensor A are required, thus we present a
greedy strategy to find the k largest elements. Suppose that the largest element of A and its location
are obtained and denoted as a and i, the optimization problem corresponding to locating the second

5

Under review as a conference paper at ICLR 2024

largest element can be written as

max
x(1),··· ,x(N)

R∑
r=1

(x(1)T (U (1)
:,r ∗ x(1))) · · · (x(N)T (U (N)

:,r ∗ x(N)))

s.t. ∥x(n)∥2 = 1 for all n = 1, · · · , N,

N∏
n=1

⟨x(n), ein⟩ = 0,

(3.2)

where ein represents the in-th column of the In × In identity matrix. Compared to problem 2.3,
there is one more constraint in problem 3.2, which increases the difficulty of solving the subproblem
that appears in the alternating iterative algorithm. To this end, we apply a shift transformation to the
tensor A, i.e., A− aei1 ◦ ei2 · · · ◦ eiN , so that its largest element corresponds to the second largest
element of A, which can then be found by the proposed algorithms. Similarly, other elements can
also be sequentially obtained in this way. It is worth mentioning that the CP-rank will increase when
the shift transformation is performed, thus the proposed greedy strategy is only suitable for small k.
For the case of large k, it still remains a challenge to develop efficient algorithms.

4 CONVERGENCE ANALYSIS

A notable characteristic of alternating iterative algorithms is that the sequence of eigenvalues obtained
exhibits a monotonically increasing property, but it does not guarantee convergence to the value
corresponding to the stationary point when the update order of variables {x(n)}Nn=1 is predetermined.
Thanks to the MBI approach, it guarantees convergence of the alternating iterative algorithm by
selecting the optimal variable for updating. The global convergence of Algorithm 1 is illustrated by
Theorem 2.

Theorem 2. Let {(x(1)
k ,x

(2)
k , · · · ,x(N)

k)} be the sequence obtained by Algorithm 1 with a given
initial guess (x

(1)
0 ,x

(2)
0 , · · · ,x(N)

0), and its corresponding sequence of eigenvalues be {λk =
R∑

r=1
(x

(1)T
k (U

(1)
:,r ∗ x(1)

k)) · · · (x(N)T
k (U

(N)
:,r ∗ x(N)

k))}. Then the sequence {λk} converges to λ∗

that corresponds to a stationary point of the optimization problem 2.3.

From Theorem 2, we know that Algorithm 1 converges to the stationary point of the optimization
problem 2.3 for any initial guess, but the stationary point is not necessarily optimal. To this end,
we further provide a local convergence theory for Algorithm 1, which illustrates that Algorithm 1
converges to the optimal solution with a linear convergence rate when the initial guess is good enough,
see Theorem 3.

Theorem 3. Let (x(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) be the unique optimal solution of the optimization problem
2.3, and λ∗ be the corresponding eigenvalue. If the initial guess (x(1)

0 ,x
(2)
0 , · · · ,x(N)

0) is sufficiently
close to (x

(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗), then the sequence {(x(1)
k ,x

(2)
k , · · · ,x(N)

k)} obtained by Algorithm
1 is R-linearly convergent to (x

(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗).

The proofs of Theorem 2 and 3 are provided fully in the Appendix.

5 NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed algorithms, a series of numerical experiments using
both synthetic and real-world tensors are carried out in this section. The algorithms we proposed are
compared against several baseline methods, including power iteration Espig et al. (2013; 2020), star
sampling Lu et al. (2017), and MinCPD via Frank-Wolfe Sidiropoulos et al. (2022). During the power
iteration, if the CP-rank of the tensor corresponding to the eigenvector exceeds 10, a recompression
operation is performed to suppress rank growth. For the star sampling method, the number of nodes
and samples are set to 2 and min(105, ⌊20%×#P (A)⌋) respectively, following the guidelines in Lu
et al. (2017), where #P (A) represents the total number of parameters in tensor A. For the MinCPD
method, the curvature parameter is set to 5, following the configuration used in Sidiropoulos et al.

6

Under review as a conference paper at ICLR 2024

(2022). All tested iterative algorithms are terminated when the difference between the eigenvalues
from two consecutive iterations falls below a tolerance of 10−12 or the number of iterations exceeds
1000. Additionally, to minimize the impact of initialization, a restart strategy is utilized in MinCPD
and our proposed methods, where the number of restarts is set to 100. For each restart, the initial
value is set as the previous result with a random perturbation added. All experiments are conducted
on a laptop with an Intel Core i7-11390H CPU (3.40 GHz) and 16GB of memory, and the tensor
operations required for the implemented algorithms are coded using the TensorLy package, which
utilizes NumPy as the backend Kossaifi et al. (2016).

5.1 TESTS ON RANDOM TENSORS

In the first example, the accuracy of our proposed algorithms is compared to star sampling and
MinCPD methods on randomly generated tensors. Accuracy is defined as #hit

S , where #hit is the
number of times the largest/smallest elements are found, and S = 50 is the number of random
tensors. The factor matrices {U (n) ∈ RIn×R}Nn=1 of each tensor are randomly generated following
a Gaussian distribution. The dimensions In (n = 1, 2, · · · , N) and rank R are randomly chosen
integers between [10, 50] and [1, 10] respectively.

Table 1 and Fig. 2 depict the accuracy and running time of the tested algorithms. As can be seen from
Table 1, the accuracy of the proposed algorithms is significantly higher than MinCPD, especially when
using the block-search strategy. Specifically, accuracy improvements of up to 48.2% and 266.7%
are achieved in locating the largest and smallest elements, respectively. The results in this table
also demonstrate that Algorithm 2 is insensitive to block size b, as similar accuracy improvements
are achieved with different values of b (b = 3, 5, 7). Besides, while star sampling achieves higher
accuracy than the iterative methods in this example, Fig. 2 shows it requires 2.2× ∼ 86.4× more
time costs than the proposed algorithms. Another limitation of star sampling is that it is not suitable
for locating the smallest element.

Table 1: The obtained accuracy on random tensors for all tested algorithms.

Algorithms N = 3 N = 4 N = 5

Maximum

Star sampling 1.00 1.00 0.96
MinCPD 0.54 0.54 0.56

Our 0.62 0.64 0.60
Our (b = 3) 0.76 0.70 0.66
Our (b = 5) 0.80 0.68 0.72
Our (b = 7) 0.78 0.72 0.74

Minimum

MinCPD 0.50 0.54 0.18
Our 0.50 0.50 0.22

Our (b = 3) 0.90 0.86 0.66
Our (b = 5) 0.90 0.90 0.62
Our (b = 7) 0.84 0.82 0.46

5.2 TESTS ON TENSORS FROM MULTIVARIATE FUNCTIONS

In the second example, we examine the efficiency of the proposed algorithms by several large-scale
tensors constructed by two multivariate functions, i.e., Rastrigin and Schwefel functions 1

Rastrigin function: f(x) = 10d+

d∑
i=1

(x2
i − 10 cos(2πxi)), xi ∈ [−5.12, 5.12],

Schwefel function: f(x) = 418.9829d−
d∑

i=1

xi sin(
√

|xi|), xi ∈ [−500, 500],

(5.1)

where d is the dimension. To make the size of tensors large enough, we set the dimension d and
grid size to 10 and 4096, i.e., the input tensor A ∈ R4096×4096···×4096, its CP representation can be
derived from Eq. 5.1.

Table 2 records the tested results, including the obtained maximum/minimum value, the number of
iterations, and the running time for the tested algorithms. Because power iteration and star sampling

7

Under review as a conference paper at ICLR 2024

−3

−2

−1

0

1

2

3

Ru
nn

in
g
tim

e
(M

a
im

um
)

N=3
Star sampling
MinCPD
Our
Our (b=3)
Our (b=5)
Our (b=7)

−3

−2

−1

0

1

2

3

N=4

−3

−2

−1

0

1

2

3

N=5

−3

−2

−1

0

1

2

3

Ru
nn

in
g
tim

e
(M

in
im

um
)

−2

−1

0

1

2

3

−2

−1

0

1

2

3

Figure 2: Running time (s) on random tensors for all tested algorithms.

are only suitable for locating the maximum value, we leave the results of minimum as ’–’. From
the accuracy perspective, it is seen that the proposed algorithms can obtain similar or even better
results than their counterparts. Additionally, it is worth mentioning that the accuracy of star sampling
is broken due to the increase in the size of tensors. As for performance, our proposed algorithms
not only have a faster convergence speed but also are more efficient across all tested algorithms.
Table 4 shows that the proposed algorithms can achieve 41.9× ∼ 176.0×, 7.4× ∼ 27.7×, and
11.02× ∼ 778.52× speedups over the power iteration, star sampling, and MinCPD, respectively.

Table 2: The obtained maximum/minimum value, the number of iterations, and the running time (s)
on tensors from multivariate functions for all tested algorithms.

Algorithms Max / Min #Iterations Time

Rastrigin

Power iteration 403.53 / – 1000 / – 460.02 / –
Star sampling 320.48 / – – / – 81.62 / –

MinCPD 403.36 / 0.0031 1000 / 1000 2351.12 / 2291.15
Our 403.53 / 0.0031 11 / 11 3.02 / 3.02

Our (b = 5) 403.53 / 0.0031 11 / 11 10.99 / 10.92

Schwefel

Power iteration 8359.64 / – 1000 / – 498.21 / –
Star sampling 6953.63 / – 1000 / – 78.49 / –

MinCPD 8375.27 / 0.0103 13 / 1000 31.20 / 2315.15
Our 8379.65 / 0.0103 11 / 11 2.83 / 3.07

Our (b = 5) 8379.65 / 0.0103 11 / 11 10.54 / 11.10

5.3 TESTS ON REAL-WORLD TENSORS

In the third example, the accuracy of the proposed algorithms for locating the k largest elements
is evaluated on four real-world tensors from various applications, as summarized in Table 3. The
tensor ’Cavity’ is generated from computational fluid dynamics simulations of lid-driven cavity flow,
a standard benchmark problem Burggraf (1966). ’Boltzmann’ represents a set of distribution data
from Boelens et al. (2020). CP representations of these tensors are obtained using the alternating

1Retrieved from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/
Hedar_files/TestGO.htm

8

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

Under review as a conference paper at ICLR 2024

least squares (CP-ALS) method in TensorLy. And the accuracy is defined as #hit
k , where #hit is the

number of values found by each algorithm that are smaller than the k-th largest element.

The accuracy and running time of the tested algorithms are presented in Table 4. From this table,
we observe that Algorithm 2 maintains high accuracy in locating the 5, 10, and 15 largest elements
across different real-world tensors. It improves accuracy by at least 14.3% and 25% compared to
star sampling and MinCPD, respectively. Additionally, the algorithms we proposed demonstrate
substantially lower running times, indicating their suitability for low-latency scenarios.

Table 3: Summary of real-world tensors from various applications.

Name Order CP-rank Dimension

COVID2 3 20 438× 6× 11
Mnist3 4 5 28× 28× 5000× 10
Cavity 3 10 512× 512× 100

Boltzmann 4 10 64× 64× 64× 64

Table 4: The obtained accuracy (%) and running time (s) for locating the 5, 10, and 15 largest
elements on real-world tensors for all tested algorithms.

Algorithms top-5 top-10 top-15
Acc. Time Acc. Time Acc. Time

COVID

Star sampling 80.0 4.13 50.0 8.56 46.7 13.17
MinCPD 60.0 330.76 70.0 670.94 66.7 1060.43

Our 20.0 1.09 40.0 2.36 53.3 3.70
Our (b = 5) 80.0 2.04 80.0 4.34 93.3 6.44

Mnist

Star sampling 0.0 93.69 10.0 194.12 6.7 309.26
MinCPD 0.0 1407.67 0.0 3024.72 0.0 4920.46

Our 0.0 1.48 30.0 3.31 53.3 5.76
Our (b = 5) 40.0 3.58 70.0 8.07 73.3 14.17

Cavity

Star sampling 0.0 63.84 0.0 131.09 13.3 204.89
MinCPD 20.0 483.97 50.0 1035.02 53.3 1570.14

Our 60.0 1.13 30.0 2.66 20.0 4.34
Our (b = 5) 100.0 1.76 100.0 5.26 100.0 9.03

Boltzmann

Star sampling 80.0 71.53 30.0 148.30 26.7 226.89
MinCPD 20.0 185.34 10.0 390.17 6.7 612.90

Our 100.0 0.87 60.0 1.64 46.7 2.80
Our (b = 5) 100.0 1.79 100.0 3.58 73.3 6.06

6 CONCLUSION

In this work, we focus on developing efficient algorithms for the task of locating the largest/smallest
elements in a factorized tensor. We first propose a general continuous optimization model, which
allows for the development of algorithms from an optimization perspective. Then we introduce the
MBI approach and combine it with an alternating iterative method to solve the optimization problem,
along with a convergence theory. Additionally, a novel block-search strategy is developed to further
enhance accuracy. Numerical experiments with synthetic and real-world tensors demonstrate that our
proposed algorithm can achieve significant improvements in both accuracy and efficiency over the
existing works. Due to the generality of the proposed continuous optimization model, the proposed
algorithms could also be applied to other tensor formats, such as Tucker, tensor-train, and tensor
ring. Furthermore, there are challenges in estimating the convergence speed of Algorithm 1 and
establishing the convergence theory of Algorithm 2. These will be verified and explored as our future
works.

2Retrieved from https://github.com/tensorly/tensorly/blob/main/tensorly/
datasets/data/COVID19_data.npy

3Retrieved from http://yann.lecun.com/exdb/mnist/

9

https://github.com/tensorly/tensorly/blob/main/tensorly/datasets/data/COVID19_data.npy
https://github.com/tensorly/tensorly/blob/main/tensorly/datasets/data/COVID19_data.npy
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2024

REFERENCES

Grey Ballard, Tamara G Kolda, Ali Pinar, and C Seshadhri. Diamond sampling for approximate
maximum all-pairs dot-product (MAD) search. In 2015 IEEE International Conference on Data
Mining, pp. 11–20. IEEE, 2015.

Arnout MP Boelens, Daniele Venturi, and Daniel M Tartakovsky. Tensor methods for the Boltzmann-
BGK equation. Journal of Computational Physics, 421:109744, 2020.

Odus R Burggraf. Analytical and numerical studies of the structure of steady separated flows. Journal
of Fluid Mechanics, 24(1):113–151, 1966.

Bilian Chen, Simai He, Zhening Li, and Shuzhong Zhang. Maximum block improvement and
polynomial optimization. SIAM Journal on Optimization, 22(1):87–107, 2012.

Andrei Chertkov, Gleb Ryzhakov, Georgii Novikov, and Ivan Oseledets. Optimization of functions
given in the tensor train format. arXiv preprint arXiv:2209.14808, 2022.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic, et al.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama,
Danilo P Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations and Trends® in Machine Learning, 9(6):
431–673, 2017.

Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia Astikainen, and Tapani Ristaniemi.
Tensor decomposition of eeg signals: a brief review. Journal of Neuroscience Methods, 248:59–69,
2015.

Mike Espig, Wolfgang Hackbusch, Alexander Litvinenko, Hermann G Matthies, and Elmar Zander.
Efficient analysis of high dimensional data in tensor formats. Springer, 2013.

Mike Espig, Wolfgang Hackbusch, Alexander Litvinenko, Hermann G Matthies, and Elmar Zander.
Iterative algorithms for the post-processing of high-dimensional data. Journal of Computational
Physics, 410:109396, 2020.

Evgeny Frolov and Ivan Oseledets. Tensor methods and recommender systems. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 7(3):e1201, 2017.

Lars Grasedyck, Lukas Juschka, and Christian Löbbert. Finding entries of maximum absolute value
in low-rank tensors. arXiv preprint arXiv:1912.02072, 2019.

Nicholas J Higham and Samuel D Relton. Estimating the largest elements of a matrix. SIAM Journal
on Scientific Computing, 38(5):C584–C601, 2016.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor learning in
python. arXiv preprint arXiv:1610.09555, 2016.

Zhi Lu, Yang Hu, and Bing Zeng. Sampling for approximate maximum search in factorized tensor.
In IJCAI, pp. 2400–2406, 2017.

Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Tensors for data mining
and data fusion: Models, applications, and scalable algorithms. ACM Transactions on Intelligent
Systems and Technology (TIST), 8(2):1–44, 2016.

10

Under review as a conference paper at ICLR 2024

Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis,
and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE
Transactions on Signal Processing, 65(13):3551–3582, 2017.

Nicholas D Sidiropoulos, Paris Karakasis, and Aritra Konar. Finding the smallest or largest element
of a tensor from its low-rank factors. arXiv preprint arXiv:2210.11413, 2022.

Micheline B Soley, Paul Bergold, and Victor S Batista. Iterative power algorithm for global optimiza-
tion with quantics tensor trains. Journal of Chemical Theory and Computation, 17(6):3280–3291,
2021.

Panagiotis Symeonidis. Matrix and tensor decomposition in recommender systems. In Proceedings
of the 10th ACM conference on recommender systems, pp. 429–430, 2016.

Kejun Tang and Qifeng Liao. Rank adaptive tensor recovery based model reduction for partial
differential equations with high-dimensional random inputs. Journal of Computational Physics,
409:109326, 2020.

Kun Xie, Jiazheng Tian, Xin Wang, Gaogang Xie, Jigang Wen, and Dafang Zhang. Efficiently
inferring top-k elephant flows based on discrete tensor completion. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pp. 2170–2178. IEEE, 2019.

Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender systems.
The Journal of Machine Learning Research, 22(1):3032–3066, 2021.

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Due to the rank-one structure of the optimal solution of problem (2.3), which is equivalent to

max
X
⟨X ,A ∗X ⟩

s.t. X = x(1) ◦ x(2) · · · ◦ x(N),

x(n) = 1 for all n = 1, 2, · · · , N.

(A.1)

According to the CP representation of A, i.e.,
R∑

r=1
U

(1)
:,r ◦U (2)

:,r · · · ◦U (N)
:,r , and the rank-one form of

X , then A ∗X can be represented by

R∑
r=1

(U (1)
:,r ∗ x(1)) ◦ (U (2)

:,r ∗ x(2)) · · · ◦ (U (N)
:,r ∗ x(N)).

Further, the objective function of problem A.1 can be rewritten as

R∑
r=1

(x(1)T (U (1)
:,r ∗ x(1)))(x(2)T (U (2)

:,r ∗ x(2))) · · · (x(N)T (U (N)
:,r ∗ x(N))),

which illustrates that problem A.1 is equivalent to (2.3).

A.2 PROOF OF THEOREM 2

Proof. For convenience, we denote the objective function of problem (2.3) as
f(x(1),x(2), · · · ,x(N)), then λ = f(x(1),x(2), · · · ,x(N)). Let S(n) be the unit sphere in
RIn for all n = 1, 2, · · · , N , and S = S(1) × S(2) · · · × S(N). Since x(n) ∈ S(n), the
sequence {(x(1)

k ,x
(2)
k , · · · ,x(N)

k)} is bounded, and there exists a convergent subsequence
{(x(1)

kl
,x

(2)
kl

, · · · ,x(N)
kl

)} such that

lim
l→∞

(x
(1)
kl

,x
(2)
kl

, · · · ,x(N)
kl

) = (x
(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗).

11

Under review as a conference paper at ICLR 2024

Then we have

lim
l→∞

f(x
(1)
kl

,x
(2)
kl

, · · · ,x(N)
kl

) = f(x
(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) = lim
l→∞

λkl
= λ∗.

Further, since the sequence {λk} is convergent, we have

lim
k→∞

λk = lim
l→∞

λkl
= λ∗,

which implies that {λk} converges to the λ∗ that corresponds to the value of f at the limit point
(x

(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗). According to the strategy of MBI, we know that the following inequality

f(x
(1)
kl

, · · · ,x(n−1)
kl

,x,x
(n+1)
kl

, · · · ,x(N)
kl

) ≤ f(x
(1)
kl

, · · · ,x(n−1)
kl

, x̃,x
(n+1)
kl

, · · · ,x(N)
kl

) ≤

f(x
(1)
kl+1, · · · ,x

(n−1)
kl+1 ,x

(n)
kl+1,x

(n+1)
kl+1 , · · · ,x(N)

kl+1) ≤ f(x
(1)
kl+1

, · · · ,x(n−1)
kl+1

,x
(n)
kl+1

,x
(n+1)
kl+1

, · · · ,x(N)
kl+1

)

(A.2)
holds for all n = 1, 2, · · · , N and x ∈ S(n), where x̃ is the updated value of x(n) when other

variables are fixed. Take the limit on both sides of A.2, then for any x in S(n), we can obtain

f(x
(1)
∗ , · · · ,x(n−1)

∗ ,x,x
(n+1)
∗ , · · · ,x(N)

∗) ≤ f(x
(1)
∗ , · · · ,x(n−1)

∗ ,x
(n)
∗ ,x

(n+1)
∗ ,x

(n)
∗ ,x

(N)
∗),

which means that f reaches its maximum value at the point (x(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) along the x(n)

coordinate for all n = 1, 2, · · · , N . Clearly, the gradient of f on the manifold S , i.e., ∇Sf , equals to
0, that is, (x(1)

∗ ,x
(2)
∗ , · · · ,x(N)

∗) is the stationary point of problem (2.3).

A.3 PROOF OF THEOREM 3

Proof. We first rewrite problem (2.3) as

max
y(1),··· ,y(N)

g(y(1), · · · ,y(N))

s.t. y(n) ∈ Y(n) for all n = 1, · · · , N,
(A.3)

where g(y(1), · · · ,y(N)) = f(
x(1)

∗ +y(1)

∥x(1)
∗ +y(1)∥2

, · · · , x(N)
∗ +y(N)

∥x(N)
∗ +y(N)∥2

), and Y(n) represents the set in RIn

that is orthogonal to x
(n)
∗ . Clearly, the optimal solution of A.3 is 0. From the convergence theory of

MBI illustrated in Theorem 3.3 of Ref. [3], we know that Algorithm 1 is R-linearly convergent to
(x

(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) when the Hessian matrix∇2g(0) is negative definite onY(1)×Y(2) · · ·×Y(N).
Therefore, we only need to prove that for any y ∈ Y(1) × Y(2) · · · × Y(N), ∇2g(0) satisfies
⟨y,∇2g(0)y⟩ < 0. By the chain rule, we obtain

⟨y,∇2g(0)y⟩ = ⟨y,∇2f∗y⟩ −
N∑

n=1

x
(n)T
∗ ∇f∗n∥y(n)∥22, (A.4)

where ∇f∗n is the gradient of f at (x(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) along the x(n) coordinate, which is

represented by
R∑

r=1
α∗
r(U

(n)
:,r ∗ x(n)

∗), and α∗
r =

∏
l ̸=n

(x
(l)T
∗ (U

(l)
:,r ∗ x(l)

∗)). By the expression of ∇f∗,

we have

∇2f∗n,n =

R∑
r=1

α∗
rdiag(U (n)

:,r)

and

∇2f∗m,n =

R∑
r=1

β∗
r (U

(m)
:,r ∗ x

(m)
∗) ◦ (U (n)

:,r ∗ x
(n)
∗), m ̸= n,

where α∗
r =

∏
l ̸=n

(x
(l)T
∗ (U

(l)
:,r ∗ x

(l)
∗)) and β∗

r =
∏

l ̸=m,n

(x
(l)T
∗ (U

(l)
:,r ∗ x

(l)
∗)). Since

(x
(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗) satisfies the KKT condition corresponding to the problem (2.3), i.e.,

∇f∗n =

R∑
r=1

α∗
r(U

(n)
:,r ∗ x

(n)
∗) = λ∗x

(n), n = 1, 2, · · · , N,

12

Under review as a conference paper at ICLR 2024

we have
N∑

n=1

x
(n)T
∗ ∇f∗n∥y(n)∥22 = λ∗

N∑
n=1

∥y(n)∥22. (A.5)

Furthermore, we know that the optimal solution x
(n)
∗ is a column of the In×In identity matrix, which

is denoted as e(n)in
. Then for m ̸= n, ∇2f∗m,n can be reformulated by

R∑
r=1

β∗
r (U

(m)
im,r ·U

(n)
in,r

)E(m,n),

where E(m,n) ∈ RIm×In and satisfies

Ei,j =

{
1, (i, j) = (im, in),

0, otherwise.

And we have

y(m)T∇2f∗m,ny
(n) =

R∑
r=1

β∗
r (U

(m)
im,r ·U

(n)
in,r

)(y
(m)
im
· y(n)

in
).

Since y(n) ∈ Y(n), which is orthogonal to x
(n)
∗ , i.e., y(n)

in
= 0, we obtain that y(m)T∇2f∗m,ny

(n) =

0 holds for all y(m) ∈ Y(m),y(n) ∈ Y(n). Combined with A.4 and A.5, we have

⟨y,∇2g(0)y⟩ =
N∑

n=1

y(n)T∇2f∗n,ny
(n) − λ∗

N∑
n=1

∥y(n)∥22, ∀ y ∈ Y(1) × Y(2) · · · × Y(N).

Due to the optimality of (x(1)
∗ ,x

(2)
∗ , · · · ,x(N)

∗), the largest eigenvalue of ∇2f∗n,n is λ∗, which
implies that

N∑
n=1

y(n)T∇2f∗n,ny
(n) < λ∗

N∑
n=1

∥y(n)∥22

for all y ∈ Y(1)×Y(2) · · ·×Y(N), that is,∇2g(0) is negative positive on Y(1)×Y(2) · · ·×Y(N).

13

	Introduction
	Perspective of Continuous Optimization Model
	Components of A-Loc
	MBI Approach for Convergence
	Block-Search Strategy for Better Accuracy
	Finding the k largest elements

	Convergence Analysis
	Numerical Experiments
	Tests on Random Tensors
	Tests on Tensors from Multivariate Functions
	Tests on Real-World Tensors

	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

