
Pareto Front Training for Multi-Objective Symbolic Optimization
Jonathan G. Faris1,2, Conor F. Hayes1, Andre R. Goncalves1, Kayla G. Sprenger2, Daniel Faissol1,

Brenden K. Petersen1 Mikel Landajuela1, and Felipe Leno da Silva1
1 Lawrence Livermore National Laboratory, Livermore, USA.

2 University of Colorado, Boulder, USA.
{jonathan.faris,kayla.sprenger}@colorado.edu,{hayes56,goncalves1,faissol1,bp,landajuelala1,leno}@llnl.gov

ABSTRACT
Although Symbolic Optimization (SO) solutions have successfully
been used in applications ranging from Neural Architecture Search
to Antibody Therapeutics Optimization, current SO algorithms are
typically limited to using a single quality measure to search for
optimal solutions. However, for many applications, solutions are
more naturally described by multiple measures, e.g., a solar panel
must be designed to maximize power generation while minimizing
heat generation. Herein, we propose Pareto Front Training (PFT),
a SO algorithm that searches for token sequences by training a
Recurrent Neural Network on the Pareto front of explored solu-
tions. We evaluate PFT in an antibody optimization scenario using
a real SARS-CoV-2 viral strain and show that PFT outperforms the
baselines in terms of antibody binding quality, stability, and hu-
manness. We hope PFT will inspire a new family of multi-objective
SO algorithms and will help SO achieve varied new applications.

KEYWORDS
Symbolic Optimization, Multi-Objective Learning, Antibody Thera-
peutics Development

1 INTRODUCTION
The field of symbolic optimization (SO) aims to derive token se-
quences which describe a solution for a given problem. To uncover
an appropriate solution, SO algorithms search the space of possible
solutions by efficiently evaluating discrete token sequences. SO has
been successfully applied to a diverse set of problems including
power converter design [37], pharmaceutical formulation [6], un-
derwater vehicle modeling [47], and others [29, 39]. State-of-the-art
methods in this field solve the problem by modelling the SO task
as a Deep Reinforcement Learning (DRL) problem, where each to-
ken is sampled sequentially (action) based on the partial sequence
sampled so far (state) and the token sequence quality is assessed
when a complete solution is achieved (reward).

To date, SO methods have been focusing on solving problems by
optimizing a single scalar reward [28]. However, in practice, many
real-world problems have multiple, often conflicting, objectives
[10, 44] (e.g. operators of a wind turbine may aim to maximize
power output while minimizing stress on the turbine components).
In such settings optimal solutions are derived by optimizing with
respect to a human decision maker’s preferences over objectives,
also known as a utility function [14]. The simplest way to fit SO
methods to solve those problems is to a handcraft a scalarization
function linearly combining objectives. However, this human deci-
sion maker’s scalarization utility function may be unknown or can

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Milec, Müller,
Wang, Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

be difficult to specify a priori, making it infeasible to solve many
problems [14, 34]. It is more desirable instead to present a set of
solutions that are considered optimal to a human decision maker,
who will be responsible to pick a solution that best reflects their
preferences [14]. For example, a patient selecting a treatment may
want to maximize the efficacy of the treatment, while minimizing
the side effects. In this setting, it may be difficult for the user to
exactly specify their preferences a priori. Therefore, a set of optimal
treatments must be computed and presented to the user, allow-
ing the patient to select their preferred treatment. However, SO
methods do not have this capability at the moment.

To compute a set of optimal solutions for multi-objective sym-
bolic optimization problems, we propose a new algorithm, Pareto
Front Training (PFT). Our method uses an explicitly multi-objective
approach, whereby PFT computes and trains a Recurrent Neural
Network (RNN) on a Pareto-efficient data set based on all solu-
tions explored up to the current timestep. To construct a data set of
Pareto non-dominated solutions, at each timestep a RNN is used to
generate a batch of solutions. Each solution is then evaluated using
a multi-objective reward function. After each iteration, PFT up-
dates a Pareto-efficient solution set by considering newly-evaluated
samples generated from the RNN. PFT then uses the updated Pareto-
efficient solution set to train and update the parameters of the RNN.
PFT iterates over this approach, and over time our method is able
to approximate the Pareto front in SO settings.

To evaluate our method, experiments are performed in a complex
and relevant SO domain: antibody optimization, where we aim to
discover highly-effective SARS-CoV-2 antibodies considering effec-
tiveness (binding), stability, and safety (humanness). We benchmark
the performance of PFT against relevant baseline algorithms from
the SO literature and show that PFT clearly outperforms the base-
lines in this challenging task.

2 RELATED LITERATURE
There are several strategies that can be employed to solve a SO
problem (described in detail in Section 3.1). One of the most popular
in the literature is the use of genetic algorithms [6, 13]. We have
chosen Non-dominated Sorting Genetic Algorithm II (NSGA-II) as
our representative of this group in our experimental evaluation and,
as shown in our results, those algorithms have very high sample
complexity, which becomes a challenge in domains such as antibody
optimization where evaluating solutions is expensive.

Another group of solutions deeply specializes the method to the
application at hand, handcrafting heuristics to bias the search to-
wards more promising token sequences [19, 24, 41, 42]. AI Feynman
[43], which derived all 100 equations from the Feynman Lectures on
Physics, is a famous example of this group. Unfortunately, most of

https://ala2024.github.io/

those methods are specialized to Symbolic Regression, the flagship
application of SO, and cannot be easily adapted to additional appli-
cations, such as Antibody Optimization. We are mostly interested
in general purpose approaches.

The last group leverages machine learning to solve the SO prob-
lem. Methods such as Priority Queue Training (PQT; our base al-
gorithm) and Deep Symbolic Optimization (DSO; added as a base-
line), demonstrate the flexibility and efficiency of machine learning
models when employed to SO. Those models achieved varied ap-
plications [36, 37, 40, 47] and can be easily combined with other
methods, forming hybrid approaches [21, 22, 26, 38].

One major limitation of all those aforementioned SO approaches
was that most of them (except genetic algorithms) could not handle
multiple objectives, and PFT is our contribution to fill this gap.

Manymulti-objective approaches optimizewith respect to known
nonlinear utility functions [15, 32, 33]. However, a nonlinear util-
ity function must be known a priori, and as a result this is not
always possible and a set of solutions that are optimal for all utility
functions must be computed. PFT computes a set of solutions and
therefore does not need to have a utility function specified a priori.
Other approaches learn robust policies for all linear utility functions
[1]. Many other multi-objective methods also learn a set of optimal
solutions like the Convex-hull [4], Pareto front [31], and Distribu-
tional sets [16, 35]. While these approaches are similar to the work
presented in this paper, the highlighted methods are defined for
reinforcement learning and planning settings and aim to compute
policies (probability distributions that map states to actions). The
goal of the SO setting is to compute symbolic solutions, and as a
result the aforementioned methods cannot be utilized in SO set-
tings. The poor performance of standard RL-based on SO tasks has
been discussed elsewhere [21]. Herein, we selected baselines we
expected to succeed on the SO task at hand. In conclusion, to the
best of our knowledge our contribution represents the first general
purpose, dedicated multi-objective algorithm for SO.

3 BACKGROUND
In this section, we describe the relevant background needed to
understand our approach. In the following text, we provide defi-
nitions for Symbolic Optimization, Priority Queue Training, and
Multi-Objective Optimization.

3.1 (Deep) Symbolic Optimization
Broadly, Symbolic Optimization (SO), involves finding solutions
which consist of a discrete, symbolic sequence of tokens to maxi-
mize a scoring function. Given a library of tokens L = {𝜆1, . . . , 𝜆𝑛},
we can construct a sequence 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩ (where 𝜏𝑖 represents
the token at position 𝑖), which would represent a potential solution
to the problem under investigation. In general, 𝜏 may be of arbitrary
length, and may have multiple copies of the same token, 𝜆𝑖 . For
the purposes of this study, the sequence length is known. Upon
generating a sequence, a scoring function, or reward signal, is then
calculated R : 𝜏 → R. All combinations of tokens which result in a
valid sequence can then be scored according to their fitness via the
reward functionR(𝜏). Thus, the solution to a symbolic optimization

problem takes the form:

argmax
𝑛∈N,𝜏

[R(𝜏)] with 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩, and where 𝜏𝑖 ∈ L (1)

That is, SO aims at finding the sequence that optimizes the reward
function. Therefore, SO consists of a search problem where we
have to efficiently search a huge space of token sequences. This
problem can be solved in several ways [6, 19, 22, 24, 36, 37, 41, 42,
47], as discussed in Section 2. Currently, using machine learning
techniques to sample sequences is considered to be the state-of-the-
art strategy.

The Deep Symbolic Optimization (DSO) [28] algorithm is con-
sidered to be the state-of-the-art method after achieving first place
on the real-world track of the 2022 SRBench competition1. The
heart of the algorithm is the risk-seeking policy gradient training
loss function, which optimizes for finding the best possible token
sequence, as opposed to the regular policy gradient algorithm that
optimizes for average sampling performance. DSO has been applied
in a broad range of applications, but has been hampered by the
inability to natively handle multiple objectives. To better demon-
strate the value of multi-objective symbolic optimization, we add
a simple adaptation of single-objective DSO as a baseline to our
algorithm.

3.2 Priority Queue Training
Priority Queue Training (PQT), is an algorithm used in the training
of RNNs. PQT generates solutions by sampling from the RNN, the
best solutions are scored, and the top 𝐾 solutions are then added
to a priority queue. The RNN is then trained on the samples in
this queue, a new sample is drawn, scored, the queue is updated,
and this process is iterated until convergence. PQT has been used
previously for program synthesis [2] and molecular optimization
[3]. For the purposes of this study, we used PQT as a baselines
during experimentation. For reference, we include a description of
the algorithm below. Briefly, a batch of samples, T , is generated
by the current policy, Γ𝜃 . The reward is then calculated for each
sequence. The top 𝐾 performing samples are then filtered, TK ⊂
{T0:𝑁 } : R(𝜏𝐾) ≥ R(𝜏𝑖∈𝑛);∀𝑛 ≥ 𝐾 , where 𝑖 is the rank of a given
sequence, and T0:𝑁 represents all of the sequences sampled thus
far. Finally, the top 𝐾 samples are added to the queue, and the RNN
weights are updated via the following objective function:

𝐽𝑃𝑄𝑇 (𝜃 ;𝑘) =
1
𝑘

𝑘∑︁
𝑖=1

log𝑝 (TK |𝜃), (2)

where 𝑘 is the priority queue size, and TK is the top 𝐾 samples
explored thus far.

3.3 Multi-Objective Optimization
Multi-objective (MO) optimization involves the simultaneous opti-
mization of multiple objectives. In many cases, the objectives may
present conflicting reward signals resulting in the need to evalu-
ate trade-offs between each objective. In this work, we follow the
utility-based approach [34] and assume that for any decision maker
there exists some utility function, 𝑢, that represents their prefer-
ences over objectives. However, the decision maker may not know

1https://cavalab.org/srbench/competition-2022/

https://cavalab.org/srbench/competition-2022/

their utility function during learning. As a result, optimizing with
respect to a utility function is not possible. In the taxonomy of multi-
objective decision making [14], we are operating in the unknown
utility function scenario. An efficient way to tackle problems in
this scenario is to compute the Pareto Front (PF). The PF is a set of
solutions that are optimal for all monotonically increasing utility
functions where each solution in the set is Pareto non-dominated.
The Pareto dominance relation R𝑑 (𝜏 ′) ≻𝑝 R𝑑 (𝜏) can be defined
as:

R
𝑑 (𝜏 ′) ≻𝑝 R

𝑑 (𝜏) ⇐⇒

(∀𝑑 : R𝑑 (𝜏 ′) ≥ R
𝑑 (𝜏)) ∧ (∃𝑑 : R𝑑 (𝜏 ′) > R

𝑑 (𝜏))
(3)

Using the relation outlined in Eqn. 3, the PF can then be deter-
mined using:

𝑃𝐹 (Π) = {𝜏 ∈ Π | � 𝜏 ′ ∈ Π : R𝑑 (𝜏 ′) ≻𝑝 R
𝑑 (𝜏)}, (4)

where Π is the set of all possible solutions, ≻𝑝 defines the Pareto
dominance, and R𝑑 (𝜏) is the vectorial reward.

By utilizing the utility-based approach, a decision maker can se-
lect a solution from the PF once their preferences over the objectives
become known after learning.

To measure the quality of the set of solutions found for a given
MO problem, we define the following multi-objective metrics. The
hypervolume metric calculates the volume of a computed solution
set with respect to a predefined reference point, 𝑉𝑟𝑒 𝑓 . The refer-
ence point𝑉𝑟𝑒 𝑓 must be carefully chosen a priori given its selection
can impact the final volume calculation. The hypervolume corre-
lates with the spread of a set of undominated solutions over the
multi-objective solution space. Given a set of points, or a PF, and a
reference point, 𝑉𝑟𝑒 𝑓 ∈ R𝑑 , the hypervolume can be defined as:

𝐻𝑉 (T 𝑃𝐹 ,𝑉𝑟𝑒 𝑓) =
⋃

𝜏∈T𝑃𝐹

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉𝑟𝑒 𝑓 ,T 𝑃𝐹) (5)

However, hypervolume does not evaluate the sparsity of the PF.
As shown by Xu et al. [48] two similar PFs can give very similar
hypervolume score, but the sparsity of solutions on a given PF can
vary widely. Having a dense PF, ensures that sufficient solutions are
captured from which the user can select at decision time. As a result
we aim to compute a dense PF while simultaneously maximizing
hypervolume.

To capture the density of the computed PF, we use the sparsity
metric proposed by Xu et al. [48], which is defined as follows:

𝑆𝑝 (𝑃𝐹) = 1
|𝑃𝐹 | − 1

𝑑∑︁
𝑗=1

|𝑃𝐹 |−1∑︁
𝑖=1
(˜𝑃𝐹 𝑗 (𝑖) − ˜𝑃𝐹 𝑗 (𝑖 + 1))2 (6)

Where PF is the empirically recovered set of Pareto-efficient solu-
tions for 𝑑 objectives, and ˜𝑃𝐹 𝑗 (𝑖) is the 𝑖𝑡ℎ value in a sorted list of
rewards for the 𝑗𝑡ℎ objective. In words, the sparsity metric gives
us an average density of the PF. The metric is the average distance
between solutions in the relevant multi-objective space.

By utilizing both hypervolume and sparsity it is possible to
measure the breadth of the computed Pareto front (maximal hy-
pervolume) while simultaneously providing us with a measure of
density (minimal sparsity) of solutions on the Pareto front.

4 PROBLEM FORMULATION
In this work, we consider Multi-Objective Symbolic Optimization
(MOSO), which involves finding a set of optimal solutions which
consist of a discrete and symbolic sequence of tokens that maximize
a number of scoring functions corresponding to the objectives of a
given problem domain. Similarly to symbolic optimization, MOSO
constructs sequences from a library of tokens, which represent a
potential solution for the problem under consideration. In contrast
to SO, MOSO utilizes multiple scoring functions (reward signals).
Each sequence is evaluated using each scoring function and a vector
score is used to represent the sequence, with respect to the scoring
functions: R : 𝝉 → R𝑑 , where 𝑑 is the number of objectives. All
combinations of tokens which result in a valid sequence can then
be scored according to their fitness via each objective’s reward
function R(𝜏).

Given that we now have multiple reward functions, the best
token sequence cannot be trivially defined given that the sequence
can be the best for only some of the objectives, but not for all of
them at the same time. For this reason, in MOSO we aim to find a
set of optimal solutions. In our case, the solution of MOSO problems
is the PF of sequences (see Section 3.3).

Therefore, we define the solution to a MOSO problem as follows:

𝑃𝐹𝑛∈N,𝜏 [R1 (𝜏), . . . ,R𝑑 (𝜏)], (7)

with 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩, 𝜏𝑖 ∈ L, and where 𝑃𝐹 is the Pareto front
defined on the 𝑑 objectives. In Section 5, we present our novel
algorithm to learn an empirical PF in MOSO settings.

5 PARETO FRONT TRAINING
It is often challenging for a human decision maker to accurately
specify their preferences over the objectives of a given problem
[34]. To overcome this challenge, it is preferred to compute a set of
solutions that represent all possible utility functions, also known as
the Pareto front (PF) [14]. After learning, a human decision maker
can then select a solution from the computed Pareto front that best
reflects their preferences. This process is also robust to changes
in a decision maker’s preferences over time, given the PF remains
static [44]. Taking this into consideration, our algorithm aims to
compute the PF of token sequences. We present a novel algorithm
named Pareto Front Training (PFT). Our method is anytime, which
means that the learning process can be stopped at any time, and
the algorithm will return a set of non-dominated solutions found
so far.

PFT utilizes a Recurrent Neural Network (RNN), whereby a so-
lution is generated by sampling from the RNN one token at a time.
Tokens are sampled autoregressively, meaning each token is condi-
tioned on the previously sampled tokens. At every sampling step,
the RNN defines a categorical distribution 𝑝 (𝜏 |𝜃) (𝜃 is the RNN
weights) over all tokens in the library, and one of them is sampled
according to the following distribution:

𝑝 (𝜏𝑖 |𝜏𝑖−1;𝜃) = softmax(𝜓 𝑖L(𝜏𝑖)) (8)

Here,𝜓𝑖 represents the RNN outputs, normalized through a softmax
layer. Therefore, the likelihood of sampling a given solution, 𝑝 (𝜏 |𝜃),

is the product of the likelihood of the constituent tokens:

𝑝 (𝜏 |𝜃) =
|𝜏 |∏
𝑖=1

𝑝 (𝜏𝑖 |𝜏𝑖−1;𝜃) =
|𝜏 |∏
𝑖=1

𝜓
(𝑖)
L(𝜏𝑖) (9)

PFT samples a batch of 𝑁 solutions, T , at each iteration, 𝑘 ,
where 𝐾 is the total number of iterations. To compute the PF, PFT
maintains a buffer of Pareto non-dominated solutions, T 𝑃𝐹 , where
each solution, 𝜏 is a solution that has been sampled from the RNN.
After a batch of solutions has been sampled from the RNN, T 𝑃𝐹 is
updated by keeping only Pareto-dominant samples.

Naturally, T𝑃𝐹 , contains all Pareto-optimal solutions that have
been explored over all sampling iterations at any time.
T𝑃𝐹 is used to update the RNN during training. Specifically PFT

trains on the log-likelihood loss function computed on all Pareto-
efficient solutions in the computed Pareto-efficient set. The objec-
tive function for PFT is defined as follows:

𝐽𝑃𝐹𝑇 (𝜃) =
𝑤

|T 𝑃𝐹 |

| T𝑃𝐹 |∑︁
𝑖=1

log𝑝 (T 𝑃𝐹𝑖 | 𝜃), (10)

where𝑤 is a hyperparameter controlling the weight of the loss func-
tion, and T 𝑃𝐹

𝑖
represents the 𝑖𝑡ℎ solution in the Pareto-efficient set

of solutions. Rather than randomly mutating tokens as a genetic
algorithm might, the RNN learns how to explore in the proximity
of the Pareto front. The intuition behind doing this is that PFT pri-
oritizes exploring in the neighborhood of currently Pareto-optimal
samples, rather than haphazardly arriving at these solutions. A key
benefit of this approach lies in the lack of domain-specific tuning
required. Whereas a GA will typically require the user to explore
a variety of parameters (e.g., crossover frequency, population size,
selection criteria) for their problem at hand, PFT needs little adap-
tation to new areas of study.

To ensure PFT sufficiently explores the search space, an entropy
regularization term is added to the loss function defined in Eqn. 10.
The entropy regularization term increases exploration by ensuring
the categorical distribution over tokens produced by the RNN is
not dominated by any one token.

Algorithm 1 Pareto Front Training (PFT)
Require: Γ𝜃 : Policy network parameterized by 𝜃 ;

𝑁 : Size of the batch;
1: initiate network parameters 𝜃
2: while termination condition not achieved do
3: T ← Γ𝜃 (𝑁) ⊲ Generate samples
4: for ∀𝜏 ∈ T do
5: 𝜏 .r← R(𝜏) ⊲ Score sequences with vector reward
6: end for
7: T 𝑃𝐹 = PF𝑝𝑟𝑢𝑛𝑒 (T ∪ T 𝑃𝐹) ⊲ Remove dominated samples
8: 𝜃 ← 𝐿𝐸𝐴𝑅𝑁 (𝜃,T 𝑃𝐹) ⊲ Update Policy Network
9: end while
10: return T 𝑃𝐹

Algorithm 1 outlines the PFT learning process. PFT takes a policy
network parameterized by 𝜃 (in this case an RNN), and a batch size
𝑁 as input. At each iteration, PFT samples from the parameterized
policy to generate a set of K samples, T . The algorithm computes

a PF by taking the union of the current batch of samples and the
current approximation of the PF. Using 𝑃𝐹𝑝𝑟𝑢𝑛𝑒 , PFT updates T 𝑃𝐹
by removing the Pareto-dominated solutions. Finally, PFT utilizes
the 𝐿𝐸𝐴𝑅𝑁 step in Algorithm 1 Line 8, which updates the policy
network using the loss function defined in Eqn. 10. This process
repeats until a fixed number of iterations has been executed, or a
stopping condition is met.

6 EMPIRICAL EVALUATION
Here we examine the performance of PFT in the challenging MO
optimization domain of antibody optimization.

Antibodies serve as one of the primary defensive measures our
immune systems have in response to a prolonged infection. They
function by binding to the surface of a pathogen protein (antigen)
and either (1) physically blocking the antigen from functioning; or
(2) marking the pathogen for destruction by another immune cell.
The field of antibody design and engineering has evolved drastically
in the past few decades, resulting in over a hundred FDA approved
antibody therapeutics [7, 46]. These therapies currently represent
some of the most effective treatment options for diseases such as
cancer, arthritis, and SARS-CoV-2 amongst others [9, 11, 12, 18, 27].
Regardless of the disease one is targeting, optimizing antibodies
requires (at least) three major considerations: (1) tight, irreversible
binding to the target antigen; (2) high-stability in vivo; and (3)
low-to-negligible levels of autoimmunity (targeting the patient,
rather than the pathogen; i.e., high-confidence in the safety of the
antibody) [25]. In this context, we aim at leveraging simulations to
computationally solve the antibody optimization problem.

6.1 Antibody Optimization Problem Modeling
Although de novo antibody design is possible [23, 30], engineering
efforts are typically focused on mutating naturally-evolved anti-
bodies. By starting from a known antibody sequence, there is more
confidence the resulting mutant will bind to its target and have
fewer side-effects due to off-target binding. For these reasons, in this
study we elected not to design the antibody from scratch. Rather,
the optimization process begins with a parental antibody strain.
Mutations are then introduced into this sequence up to a maximum
of five point mutations. Therefore we model this problem as SO as
follows:

The library of tokens, L, was defined to be the 20 naturally
occurring amino acids (except Cysteine (C) and Proline (P)), for an
average of 17 potential mutations at each point in the sequence, 𝜏 .
To computationally compute our three objectives in practice, we
use:
• Binding objective: Rosetta simulations to calculate the bind-
ing affinity of a given Ab sequence [5];
• Stability objective: Free-energy perturbation (FEP) to calcu-
late a stability metric [20]; and
• Safety objective: The AbBERT [45] language model to esti-
mate the potential for autoimmunity (using humanness as a
proxy).

The reward,R(𝜏), takes the form ⟨𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔, 𝑟𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟ℎ𝑢𝑚𝑎𝑛𝑛𝑒𝑠𝑠 ⟩.
Each of these calculations are quite computationally expensive, mak-
ing experimentation cumbersome and time-consuming. To increase
the efficiency of our experiments, we assumed the mutation effects

to be additive. That is, when calculating the effects of 𝑛 mutations,
𝑀1, . . . , 𝑀𝑛 , we approximate this as ΔΔ𝐺𝑀1,...,𝑀𝑛

=
∑𝑛
𝑖=0 ΔΔ𝐺𝑖 ,

which has been shown to be a good approximation for antibody
mutations in the literature [17].

In order to validate the performance of our PFT algorithm, we
compare the quality of its suggested antibodies against several
benchmarks:
• PQT: PQT is the single-objective version of our algorithm.
We have added PQT as a baseline to validate if PFT can
indeed outperform single-objective algorithms.
• DSO: DSO is the state-of-the-art algorithm in SO.
• NSGA-II: As a representative of solving this problem with a
multi-objective genetic algorithm, we have included NSGA-II
[8] as a baseline.

For both single-objective baselines (PQT and DSO), we have con-
figured them with ten different utility functions. It is infeasible to
sample from a distribution over all possible utility functions, given
a parametric form of such a distribution may not exist. However, it
is possible to sample from a subset of utility functions that are linear.
To sample from a distribution over linear weights, a Dirichlet dis-
tribution can be utilized. We select a number of linear weights that
give good coverage over the space of all possible weights parame-
terized by a Dirichlet distribution. Each of those utility functions,
𝑢, take the form:

𝑢 (R(𝜏)) = 𝑤1 ∗ 𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔 +𝑤2 ∗ 𝑟𝑠𝑡𝑎𝑏𝑖𝑙𝑡𝑦 +𝑤3 ∗ 𝑟ℎ𝑢𝑚𝑎𝑛𝑛𝑒𝑠𝑠 , (11)

where the real numbers 𝑤𝑖 ≥ 0 and
∑𝑛
𝑖 𝑤𝑖 = 1 (convex combina-

tion).
The weights of each utility function were selected to provide a

good coverage of different preferences, such as where each compo-
nent reward was (1) considered in isolation (𝑤𝑖 = 1); (2) a dominant
contributor to the reward (𝑤𝑖 = 0.75 and 𝑤𝑖 = 0.5); and (3) repre-
sented equally (𝑤𝑖 = 0.33). A list of all functions we considered is
shown in Table 1.

For all algorithms, we keep the empirical Pareto front of the best
samples evaluated by the algorithm so far (regardless of whether the
algorithm discards those samples or not). This optimal set is used
to compute the hypervolume (higher is better) and sparsity (lower
is better) statistics for all algorithms. While measuring the learning
rate may suffice for the single-objective algorithms, as the domain
we are using to test the algorithm is inherently multi-objective the
use of hypervolume and sparsity in our analysis is paramount to
adequately evaluating the performance of our algorithm.

The experiments shown in the following were performed using
100 replicates for each algorithm, with a batch size of 1000. Each
simulation was run for 750 iterations, i.e., a total sample size of
750,000 sequences per replicate.

6.2 Experimental Results
Given the high number of possible configurations for both DSO and
PQT baselines, we present the analysis of the experimental results
in parts. Sections 6.2.1 and 6.2.2 describe our efforts to find the
best configurations for PQT and DSO. With the top DSO and PQT
configurations chosen, we carry out a final evaluation between them
and the explicit multi-objective algorithms (PFT and NSGA-II) in

Section 6.2.3. The single-objective algorithms are named according
to the first floating point of their utility function. For example,
𝐷𝑆𝑂0.7,0.1,0.1 refers to a linear utility function with weights as
follows:𝑤1 = 0.75,𝑤2 = 0.125,𝑤3 = 0.125. See Table 1 for all linear
utility functions used during experimentation.

6.2.1 PQT Evaluation. Figure 1 (top and bottom, respectively) de-
picts the hypervolume and sparsity results for all PQT configura-
tions described above during the course of training, while Table 2
shows the final results for each configuration.

Although not all differences across configurations are statisti-
cally significant, the results for this algorithm confirm the reason-
able intuition that weighting multiple objectives recovers a better
PF (higher hypervolume) than optimizing uniquely for a single
objective (all three "single-objective" configurations perform sig-
nificantly worse than the top configuration, which considers all
objectives with equal weights). For the sparsity metric, primarily a
tie-breaking measure, results are not clearly distinguishable across
configurations given the relatively high standard deviation. There-
fore, our decisions are made for this comparison based solely on
the hypervolume.

Analyzing those results, we observed the trend of the hypervol-
ume consistently increasing as the dominance of single objectives
is decreased. While the worst average performance is achieved
by the single-objective configurations, the performance increases
as the weights are more equally spread, reaching the best aver-
age performance for configuration PQT0.3,0.3,0.3. We hypothesize
that this observed trend is due to the way the RNN is trained. By
weighting each objective equally, the top 𝑘 samples used for train-
ing likely reflect those which are able to maximize each objective
simultaneously, thus yielding a large hypervolume.

By comparing the performance of the single-objective configura-
tions, we also observe that obtaining large values of 𝑟ℎ𝑢𝑚𝑎𝑛𝑛𝑒𝑠𝑠 can
arise independently of 𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔 or 𝑟𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . The opposite, however,
may not be true when looking at PQT1,0,0 or PQT0,1,0. That is, there
are likely many human antibodies which are not able to bind to a
given target (high 𝑟ℎ𝑢𝑚𝑎𝑛𝑛𝑒𝑠𝑠 ; low 𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔), but those which are
capable of binding (high 𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔) likely still resemble a non-zero
level of humanness.

Given we have to choose a configuration to proceed to the next
experiments, we selected PQT0.3,0.3,0.3 although the results for this

w1 w2 w3
1 0 0
0 1 0
0 0 1

0.75 0.125 0.125
0.125 0.75 0.125
0.125 0.125 0.75
0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5
0.33 0.33 0.33

Table 1: List of all the weights explored for utility function
baselines.

configuration are nearly indistinguishable from PQT0.5,0.2,0.2, as it
has a slightly better average performance.

0 100 200 300 400 500 600 700

Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
y
p

er
vo

lu
m

e

0 100 200 300 400 500 600 700

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ar
si

ty

×10−2

PQT1,0,0

PQT0.7,0.1,0.1

PQT0.5,0.2,0.2

PQT0,1,0

PQT0.1,0.7,0.1

PQT0.2,0.5,0.2

PQT0,0,1

PQT0.1,0.1,0.7

PQT0.2,0.2,0.5

PQT0.3,0.3,0.3

Figure 1: Average hypervolume (top) and sparsity (bottom)
across 100 replicates with standard deviation (shaded). Each
line represents one configuration of weights in Table 1 with
the PQT algorithm.

6.2.2 DSO Evaluation. Figure 2 and Table 3 show the performance
for all DSO configurations. The results for DSO are similar to those
for PQT in many aspects, demonstrating that particular weights
for the objectives leads to similar outcomes, regardless of the opti-
mization algorithm used. The lowest performing utility function
(DSO0,0,1) again places all of the weight on the humanness score,
reinforcing that the 𝑟ℎ𝑢𝑚𝑎𝑛𝑛𝑒𝑠𝑠 objective seems not very corre-
lated to the other objectives. Likewise in the previous experiment,
DSO0.3,0.3,0.3 is the best-performing utility function.

Interestingly, DSO reaches convergence much faster (and at a
lower performance) than PQT, plateauing very quickly to a lower
hypervolume. Our hypothesis for this low performance displayed by

Configuration Hypervolume Sparsity [10−2]
(Avg +/- Std) (Avg +/- Std)

PQT1,0,0 0.21 +/- 0.02 0.039 +/- 0.034
PQT0.7,0.1,0.1 0.22 +/- 0.02 0.037 +/- 0.026
PQT0.5,0.2,0.2 0.29 +/- 0.03 0.030 +/- 0.026
PQT0,1,0 0.18 +/- 0.02 0.051 +/- 0.037

PQT0.1,0.7,0.1 0.20 +/- 0.03 0.050 +/- 0.042
PQT0.2,0.5,0.2 0.25 +/- 0.03 0.042 +/- 0031
PQT0,0,1 0.12 +/- 0.02 0.043 +/- 0.034

PQT0.1,0.1,0.7 0.17 +/- 0.03 0.033 +/- 0.030
PQT0.2,0.2,0.5 0.25 +/- 0.03 0.036 +/- 0.026
PQT0.3,0.3,0.3 0.30 +/- 0.03 0.031 +/- 0.021

Table 2: Comparison across PQT configurations, results refer
to 100 experiment repetitions.

Configuration Hypervolume Sparsity [10−2]
(Avg +/- Std) (Avg +/- Std)

DSO1,0,0 0.18 +/- 0.03 0.032 +/- 0.015
DSO0.7,0.1,0.1 0.18 +/- 0.04 0.031 +/- 0.015
DSO0.5,0.2,0.2 0.12 +/- 0.03 0.030 +/- 0.017
DSO0,1,0 0.15 +/- 0.02 0.044 +/- 0.034

DSO0.1,0.7,0.1 0.17 +/- 0.02 0.041 +/- 0.027
DSO0.2,0.5,0.2 0.18 +/- 0.02 0.029 +/- 0.021
DSO0,0,1 0.09 +/- 0.01 0.040 +/- 0.020

DSO0.1,0.1,0.7 0.09 +/- 0.01 0.029 +/- 0.011
DSO0.2,0.2,0.5 0.10 +/- 0.01 0.023 +/- 0.012
DSO0.3,0.3,0.3 0.18 +/- 0.03 0.023 +/- 0.010

Table 3: Comparison across DSO configurations, results refer
to 100 experiment repetitions. Italics represent the highest
performing configurations in terms of hypervolume.

DSO is that it is caused by the very characteristic that made DSO the
top performer in single-objective SO: the risk-seeking nature of the
policy gradient. While discarding lower-performers is more trivial
in a single-objective problem, the multiple objectives interact in a
non-trivial way, and the risk-seeking objective prematurely discards
samples thought to be of lower quality, reducing the diversity of
solutions explored.

Additionally, we did not observe the same trend of reducing the
dominance of a single objective yielding increases in the hypervol-
ume for all objectives. Specifically, when 𝑟𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is the dominant
contributor to the reward signal we see the opposite trend take hold.
While DSO1,0,0 and DSO0.7,0.1,0.1 generate solution sets with ap-
proximately equivalent hypervolumes, DSO0.5,0.2,0.2 only achieves
approximately 75% of their hypervolume, on average.

In conclusion, we elected the DSO0.3,0.3,0.3 configuration to be
added to the next experiments, as it was the top configuration for
DSO in terms of hypervolume, while simultaneously achieving a
relatively lower sparsity score than the others.

6.2.3 Final Multi-objective Evaluation. We now compare the per-
formance of our algorithm, PFT, with the performance from the

0 100 200 300 400 500 600 700

Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
y
p

er
vo

lu
m

e

0 100 200 300 400 500 600 700

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ar
si

ty

×10−2

DSO1,0,0

DSO0.7,0.1,0.1

DSO0.5,0.2,0.2

DSO0,1,0

DSO0.1,0.7,0.1

DSO0.2,0.5,0.2

DSO0,0,1

DSO0.1,0.1,0.7

DSO0.2,0.2,0.5

DSO0.3,0.3,0.3

Figure 2: Average hypervolume (top) and sparsity (bottom)
across 100 replicates with standard deviation (shaded). Each
line represents one configuration of weights in Table 1 with
the DSO algorithm.

top DSO and PQT configurations, as well as NSGA-II. Figure 3 and
Table 4 show the results of this last experiment.

Configuration Hypervolume Sparsity [10−2]
(Avg +/- Std) (Avg +/- Std)

PQT0.3,0.3,0.3 0.30 +/- 0.03 0.031 +/- 0.021
DSO0.3,0.3,0.3 0.18 +/- 0.03 0.023 +/- 0.010
NSGA-II 0.10 +/- 0.03 0.073 +/- 0.187
PFT (Ours) 0.35 +/- 0.03 0.003 +/- 0.002

Table 4: Performance comparison for the winner DSO and
PQT configurations against the PFT and NSGA-II multi-
objective algorithms. Results refer to 100 experiment repeti-
tions.

0 200 400 600

Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
yp

er
vo

lu
m

e

0 200 400 600

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ar
si

ty

×10−2

PFT

PQT0.3,0.3,0.3

DSO0.3,0.3,0.3

NSGA-II

Figure 3: Average hypervolume (top) and sparsity (bottom)
across 100 replicates with standard deviation (shaded).

Very early in the training process (the first 50 iterations), PFT
performs similarly in the hypervolume metric to both PQT0.3,0.3,0.3
and DSO0.3,0.3,0.3 while greatly outperforming NSGA-II. After this
initial period, PFT quickly begins to outperform all three baselines.
By the end of the training, not only does PFT achieve a better aver-
age hypervolume, but also obtains an average sparsity score almost
a full order of magnitude better than the closest scalar configura-
tion (DSO0.3,0.3,0.3) and represents a 25-fold improvement over the
native multi-objective baseline, NSGA-II.

Considering both metrics together, PFT significantly outper-
forms all baselines by a good margin. Those metrics reflect that
the PF recovered by PFT is not only covering more of the solution
space, but is increasing the density of the solution set, which is
desired for multi-objective algorithms.

Not only does PFT outperform all algorithms in the experimental
evaluation, PFT also does not require a utility function (which we
dedicated an entire experiment to, just to find the most appropriate

function for DSO and PQT). Without the bias of requiring a utility
function, the optimization scheme is able to not just arrive at a
better hypervolume, but also avoids the process of tuning weights
altogether.

Figure 4: Pareto Fronts for all algorithms (top) showing PFT
(blue) enclosing all others (PQT, green; DSO, orange; NSGA-II,
red)

6.2.4 Examination of Sample Pareto Fronts. We next sought to
examine samples of the Pareto surfaces that were obtained from
each algorithm (Figure 4). The visual inspection of the PFs allows
one to glean potentially useful information from the best sequences
found by each algorithm, which complements the numerical results
on hypervolume and sparsity. Although those metrics are useful
for comparing algorithms, it is hard to infer the space covered by
the PFs through only looking at the numbers. Further, by working
with the individual PFs, we hope to provide a more robust intuition
for how the hypervolume and sparsity metrics correspond to the
relevant objective space.

The sample PFs provide support for the findings outlined pre-
viously for the average hypervolume and sparsity data. Namely,
the PF generated by PFT encloses the others, corresponding to the
larger hypervolume seen in the average across all replicates (Figure
3). Not only is the space occupied by the PFT samples dominating
the others, but additionally it outperforms the other algorithms in
the critical binding task (without the ability to bind its target, the
other objectives are irrelevant). One can also see in Figure 4 that PFT
achieves this while still sampling a wide range of trade offs in stabil-
ity and humanness. By generating a dense, diverse set of solutions
a user is able to weigh any benefits or drawbacks, and ultimately
make the decision of what sequences to test experimentally.

Further, we can begin to explore where PFT was able to outper-
form our baselines in the antibody engineering domain. Looking
at the samples from DSO (orange), PQT (green), and PFT (blue),
they each uncovered similar regions of the objective space when
maximizing the humanness objective, but differed in their ability
to maintain this reward in combination with the others for the PFs
shown. That is, PFT maintains a high degree of humanness and a
high level of binding, whereas the others do not. We should also

note the lack of success from NSGA-II (Figure 4; red) in this sample.
While the algorithm does balance the three objectives, it does so at
a much lower level compared to the other configurations.

The data presented here is a single sample from each algorithm,
which is especially important to consider when looking at the
results of NSGA-II, as this algorithm had the greatest standard devi-
ation in both numerical metrics (Table 4). Nevertheless, the analysis
presented here conveys the importance of interrogating the out-
puts in the relevant objective space in addition to any higher-level
metrics. These observations require additional significance testing,
and warrant further exploration with other pertinent domains, but
nonetheless seem to be interesting properties worth investigating.

7 CONCLUSION AND FURTHERWORK
Although Symbolic Optimization (SO) algorithms have successfully
solved challenging tasks in the past years, state-of-the-art SO meth-
ods can only handle a single objective, which makes it challenging
to solve applications that are more naturally described by multi-
ple objectives. In this work, we present a novel algorithm, Pareto
Front Training (PFT), for applications in multi-objective symbolic
optimization. We applied PFT, as well as several other baselines, to
an antibody design task. PFT significantly outperformed all tested
baselines, in addition to not requiring the parameterization of a
utility function.

As future work, we aim to improve the performance of PFT by
altering the data set used by PFT to update the policy network.
For example, Reymond et al. [31] found, in reinforcement learning
settings, training explicitly on the Pareto front to not be sufficient.
Instead, Reymond et al. train on a number of sub-optimal solu-
tions that are close to the Pareto front based on crowding distance
and other metrics. This enhancement led to a performance boost.
Approaches like those outlined by Reymond et al. [31] are an inter-
esting starting point for future work. Furthermore, exploring recent
advances in multi-fidelity SO [40], to assess how multi-fidelity algo-
rithms would be impacted by multi-objective optimization would
be another interesting avenue for future work.

ACKNOWLEDGMENTS
The GUIDE program is executed by the Joint Program Executive
Office for Chemical, Biological, Radiological, and Nuclear Defense
(JPEO-CBRND) Joint Project Lead for Enabling Biotechnologies
(JPL CBRND EB) on behalf of the Chemical and Biological Defense
Program. The views expressed in this publication reflect the views
of the authors and do not necessarily reflect the position of the
Department of the Army, Department of Defense, nor the United
States Government. References to non-federal entities do not con-
stitute or imply Department of Defense or Army endorsement of
any company or organization. This work was performed under
the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC. LLNL-CONF-855513.

REFERENCES
[1] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher.

2019. Dynamic weights in multi-objective deep reinforcement learning. In Inter-
national conference on machine learning. PMLR, 11–20.

[2] Daniel A Abolafia, Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V
Le. 2018. Neural program synthesis with priority queue training. arXiv preprint
arXiv:1801.03526 (2018).

[3] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. [n. d.]. Guiding Deep
Molecular Optimization with Genetic Exploration. In 34th Conference on Neural
Information Processing Systems (NeurIPS 2020).

[4] Lucas Nunes Alegre, Ana Bazzan, and Bruno C Da Silva. 2022. Optimistic linear
support and successor features as a basis for optimal policy transfer. In Interna-
tional Conference on Machine Learning. PMLR, 394–413.

[5] Kyle A Barlow, Shane Ó Conchúir, Samuel Thompson, Pooja Suresh, James E
Lucas, Markus Heinonen, and Tanja Kortemme. 2018. Flex ddG: Rosetta ensemble-
based estimation of changes in protein–protein binding affinity upon mutation.
The Journal of Physical Chemistry B 122, 21 (2018), 5389–5399.

[6] P. Barmpalexis, K. Kachrimanis, A. Tsakonas, and E. Georgarakis. 2011. Symbolic
regression via genetic programming in the optimization of a controlled release
pharmaceutical formulation. Chemometrics and Intelligent Laboratory Systems
107 (5 2011), 75–82. Issue 1. https://doi.org/10.1016/j.chemolab.2011.01.012

[7] Henry Hongrong Cai and Ayesha Pandit. 2021. Therapeutic monoclonal antibod-
ies approved by FDA in 2020. Clin. Res. Immunol 4 (2021), 1–2.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[9] S Di Martino, A Rainone, A Troise, M Di Paolo, S Pugliese, S Zappavigna, A
Grimaldi, and D Valente. 2015. Overview of FDA-approved anti cancer drugs
used for targeted therapy. WCRJ 2, 3 (2015), e553.

[10] Matthias Ehrgott. 2005. Multicriteria optimization. Vol. 491. Springer Science &
Business Media.

[11] Loretta Fala. 2016. Portrazza (Necitumumab), an IgG1 Monoclonal Antibody,
FDA Approved for Advanced Squamous Non–Small-Cell Lung Cancer. American
health & drug benefits 9, Spec Feature (2016), 119.

[12] Marco Falcone, Giusy Tiseo, Beatrice Valoriani, Chiara Barbieri, Sara Occhineri,
Paola Mazzetti, Maria Linda Vatteroni, Lorenzo Roberto Suardi, Niccolò Riccardi,
Mauro Pistello, et al. 2021. Efficacy of bamlanivimab/etesevimab and casiriv-
imab/imdevimab in preventing progression to severe COVID-19 and role of
variants of concern. Infectious diseases and therapy 10, 4 (2021), 2479–2488.

[13] Stephanie Forrest. 1996. Genetic algorithms. ACM computing surveys (CSUR) 28,
1 (1996), 77–80.

[14] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,Matthew
Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard
Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion,
Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vamplew, and Diederik M.
Roijers. 2022. A practical guide to multi-objective reinforcement learning and
planning. Autonomous Agents and Multi-Agent Systems 36, 1 (2022), 1–59.

[15] Conor F Hayes, Mathieu Reymond, Diederik M Roijers, Enda Howley, and Patrick
Mannion. 2023. Monte Carlo tree search algorithms for risk-aware and multi-
objective reinforcement learning. Autonomous Agents and Multi-Agent Systems
37, 2 (2023), 26.

[16] Conor F Hayes, Diederik M Roijers, Enda Howley, and Patrick Mannion. 2022.
Decision-Theoretic Planning for the Expected Scalarised Returns. In Proceedings
of the 21st International Conference on Autonomous Agents and Multiagent Systems.
1621–1623.

[17] Sherlyn Jemimah and M. Michael Gromiha. 2018. Exploring additivity effects of
double mutations on the binding affinity of protein-protein complexes. Proteins:
Structure, Function and Bioinformatics 86 (5 2018), 536–547. Issue 5. https://doi.
org/10.1002/prot.25472

[18] Disha Kesharwani, Rishi Paliwal, Trilochan Satapathy, and Swarnali Das Paul.
2019. Rheumatiod arthritis: An updated overview of latest therapy and drug
delivery. Journal of pharmacopuncture 22, 4 (2019), 210.

[19] Yaroslav Kharkov, Oles Shtanko, Alireza Seif, Przemyslaw Bienias, Mathias Van
Regemortel, Mohammad Hafezi, and Alexey V. Gorshkov. 2021. Discovering
hydrodynamic equations of many-body quantum systems. (11 2021). http:
//arxiv.org/abs/2111.02385

[20] Seonghoon Kim, Hiraku Oshima, Han Zhang, Nathan R Kern, Suyong Re, Jumin
Lee, Benoît Roux, Yuji Sugita, Wei Jiang, and Wonpil Im. 2020. CHARMM-GUI
free energy calculator for absolute and relative ligand solvation and binding free
energy simulations. Journal of chemical theory and computation 16, 11 (2020),
7207–7218.

[21] Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago,
Ignacio Aravena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen.
2022. A unified framework for deep symbolic regression. Advances in Neural
Information Processing Systems 35 (2022), 33985–33998.

[22] Haochen Li, Fabian Waschkowski, Yaomin Zhao, and Richard D. Sandberg. 2023.
Turbulence Model Development based on a Novel Method Combining Gene
Expression Programming with an Artificial Neural Network. (1 2023). http:
//arxiv.org/abs/2301.07293

[23] Tong Li, Robert J Pantazes, and Costas D Maranas. 2014. OptMAVEn–a new
framework for the de novo design of antibody variable region models targeting

specific antigen epitopes. PloS one 9, 8 (2014), e105954.
[24] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.

2014. Symbolic optimization with SMT solvers. Conference Record of the Annual
ACM Symposium on Principles of Programming Languages, 607–618. https://doi.
org/10.1145/2535838.2535857

[25] Jennifer Maynard and George Georgiou. 2000. Antibody engineering. Annual
review of biomedical engineering 2, 1 (2000), 339–376.

[26] Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Brenden K
Petersen, et al. 2021. Symbolic regression via deep reinforcement learning en-
hanced genetic programming seeding. Advances in Neural Information Processing
Systems 34 (2021), 24912–24923.

[27] John O’Horo, Douglas W Challener, Ryan J Anderson, Richard F Arndt, Sara E
Ausman, Scott T Hall, Alexander Heyliger, Brian D Kennedy, Perry W Sweeten,
Ravindra Ganesh, et al. 2022. Rates of severe outcomes after bamlanivimab-
etesevimab and casirivimab-imdevimab treatment of high-risk patients with
mild to moderate coronavirus disease 2019. In Mayo Clinic Proceedings, Vol. 97.
Elsevier, 943–950.

[28] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago,
Soo K Kim, and Joanne T Kim. 2021. Deep symbolic regression: Recovering
mathematical expressions from data via risk-seeking policy gradients. Proceeding
of the International Conference on Learning Representations (ICLR) (2021).

[29] Jacob F Pettit, Brenden K Petersen, Chase Cockrell, Dale B Larie, Felipe Leno
Silva, Gary An, and Daniel M Faissol. 2021. Learning sparse symbolic policies
for sepsis treatment. In Interpretable ML in Healthcare Workshop at ICML.

[30] Venkata Giridhar Poosarla, Tong Li, Boon Chong Goh, Klaus Schulten, Thomas K
Wood, and Costas D Maranas. 2017. Computational de novo design of antibodies
binding to a peptide with high affinity. Biotechnology and bioengineering 114, 6
(2017), 1331–1342.

[31] Mathieu Reymond, Eugenio Bargiacchi, and Ann Nowé. 2022. Pareto Conditioned
Networks. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. 1110–1118.

[32] Mathieu Reymond, Conor F Hayes, Denis Steckelmacher, Diederik M Roijers,
and Ann Nowé. 2023. Actor-critic multi-objective reinforcement learning for
non-linear utility functions. Autonomous Agents and Multi-Agent Systems 37, 2
(2023), 23.

[33] Diederik M Roijers, Denis Steckelmacher, and Ann Nowé. [n. d.]. Multi-objective
reinforcement learning for the expected utility of the return.

[34] Diederik M Roijers, Peter Vamplew, ShimonWhiteson, and Richard Dazeley. 2013.
A survey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research 48, 1 (2013), 67–113.

[35] Willem Röpke, Conor F Hayes, Patrick Mannion, Enda Howley, Ann Nowé,
and Diederik M Roijers. 2023. Distributional Multi-Objective Decision Mak-
ing. Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence (IJCAI-23) (2023).

[36] Jennifer J. Schnur and Nitesh V. Chawla. 2023. Information fusion via symbolic
regression: A tutorial in the context of human health. , 326-335 pages. https:
//doi.org/10.1016/j.inffus.2022.11.030

[37] Felipe Leno da Silva, Ruben Glatt, Wencong Su, Van-Hai Bui, Fangyuan Chang,
ShivamChaturvedi, MengqiWang, Yi LuMurphey, CanHuang, Lingxiao Xue, and
Rong Zeng. 2023. AutoTG: Reinforcement Learning-Based Symbolic Optimization
for AI-Assisted Power Converter Design. IEEE Journal of Emerging and Selected
Topics in Industrial Electronics (2023), 1–10. https://doi.org/10.1109/JESTIE.2023.
3303836

[38] Felipe Leno da Silva, Andre Goncalves, Sam Nguyen, Denis Vashchenko, Ruben
Glatt, Thomas Desautels, Mikel Landajuela, Daniel Faissol, and Brenden Petersen.
2023. Languagemodel-accelerated deep symbolic optimization. Neural Computing
and Applications (2023), 1–17.

[39] Felipe Leno da Silva, Andre Goncalves, Sam Nguyen, Denis Vashchenko, Ruben
Glatt, Thomas Desautels, Mikel Landajuela, Brenden Petersen, and Daniel Faissol.
2022. Leveraging Language Models to Efficiently Learn Symbolic Optimization
Solutions. In Adaptive and Learning Agents (ALA) Workshop at AAMAS.

[40] Felipe Leno da Silva, Jiachen Yang, Mikel Landajuela, Andre Goncalves, Alexan-
der Ladd, , Daniel Faissol, and Brenden Petersen. 2023. Toward Multi-Fidelity
Reinforcement Learning for Symbolic Optimization. In Adaptive and Learning
Agents (ALA) Workshop at AAMAS.

[41] Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. 2022. Symbolic Physics
Learner: Discovering governing equations via Monte Carlo tree search. (5 2022).
http://arxiv.org/abs/2205.13134

[42] Wassim Tenachi, Rodrigo Ibata, and Foivos I. Diakogiannis. 2023. Deep sym-
bolic regression for physics guided by units constraints: toward the automated
discovery of physical laws. (3 2023). http://arxiv.org/abs/2303.03192

[43] Silviu-Marian Udrescu and Max Tegmark. 2020. AI Feynman: A physics-inspired
method for symbolic regression. Science Advances 6, 16 (2020), eaay2631.

[44] Peter Vamplew, Benjamin J Smith, Johan Källström, Gabriel Ramos, Roxana
Rădulescu, Diederik M Roijers, Conor F Hayes, Fredrik Heintz, Patrick Mannion,
Pieter JK Libin, et al. 2022. Scalar reward is not enough: A response to silver,
singh, precup and sutton (2021). Autonomous Agents and Multi-Agent Systems 36,
2 (2022), 41.

https://doi.org/10.1016/j.chemolab.2011.01.012
https://doi.org/10.1002/prot.25472
https://doi.org/10.1002/prot.25472
http://arxiv.org/abs/2111.02385
http://arxiv.org/abs/2111.02385
http://arxiv.org/abs/2301.07293
http://arxiv.org/abs/2301.07293
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1016/j.inffus.2022.11.030
https://doi.org/10.1016/j.inffus.2022.11.030
https://doi.org/10.1109/JESTIE.2023.3303836
https://doi.org/10.1109/JESTIE.2023.3303836
http://arxiv.org/abs/2205.13134
http://arxiv.org/abs/2303.03192

[45] Denis Vashchenko, Sam Nguyen, Andre Goncalves, Felipe Leno da Silva, Brenden
Petersen, Thomas Desautels, and Daniel Faissol. 2022. AbBERT: Learning Anti-
body Humanness via Masked Language Modeling. In Workshop on Healthcare AI
and Covid-19.

[46] Shawn Shouye Wang, Yifei Yan, and Kin Ho. 2021. US FDA-approved therapeutic
antibodies with high-concentration formulation: summaries and perspectives.
Antibody therapeutics 4, 4 (2021), 262–272.

[47] Nai Long Wu, Xu Yang Wang, Tong Ge, Chao Wu, and Rui Yang. 2017. Paramet-
ric identification and structure searching for underwater vehicle model using
symbolic regression. Journal of Marine Science and Technology (Japan) 22 (3
2017), 51–60. Issue 1. https://doi.org/10.1007/s00773-016-0396-8

[48] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech
Matusik. 2020. Prediction-guided multi-objective reinforcement learning for
continuous robot control. In International conference on machine learning. PMLR,
10607–10616.

https://doi.org/10.1007/s00773-016-0396-8

	Abstract
	1 Introduction
	2 Related Literature
	3 Background
	3.1 (Deep) Symbolic Optimization
	3.2 Priority Queue Training
	3.3 Multi-Objective Optimization

	4 Problem Formulation
	5 Pareto Front Training
	6 Empirical Evaluation
	6.1 Antibody Optimization Problem Modeling
	6.2 Experimental Results

	7 Conclusion and Further Work
	Acknowledgments
	References

